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Introduction

Windows kernel programming is considered by many a dark art, available to select few that manage to
somehow unlock the mysteries of the Windows kernel. Kernel development, however, is no different than
user-mode development, at least in general terms. In both cases, a good understanding of the platform is
essential for producing high quality code.

The book is a guide to programming within the Windows kernel, using the well-known Visual Studio
integrated development environment (IDE). This environment is familiar to many developers in the
Microsoft space, so that the learning curve is restricted to kernel understanding, coding and debugging,
with less friction from the development tools.

The book targets software device drivers, a term I use to refer to drivers that do not deal with hardware.
Software kernel drivers have full access to the kernel, allowing these to perform any operation allowed by

the kernel. Some software drivers are more specific, such as file system mini filters, also described in the
book.

Who Should Read This Book

The book is intended for software developers that target the Windows kernel, and need to write kernel
drivers to achieve their goals. Common scenarios where kernel drivers are employed are in the Cyber
Security space, where kernel drivers are the chief mechanism to get notified of important events, with the
power to intercept certain operations. The book uses C and C++ for code examples, as the kernel API is all
C. C++ is used where it makes sense, where its advantages are obvious in terms of maintenance, clarity,
resource management, or any combination of these. The book does not use complex C++ constructs, such
as template metaprogramming. The book is not about C++, it’s about Windows kernel drivers.

What You Should Know to Use This Book

Readers should be very comfortable with the C programming language, especially with pointers, structures,
and its standard library, as these occur very frequently when working with kernel APIs. Basic C++
knowledge is highly recommended, although it is possible to traverse the book with C proficiency only.

Book Contents

Here is a quick rundown of the chapters in the book:

o Chapter 1 (“Windows Internals Overview) provides the fundamentals of the internal workings of
the Windows OS at a high level, enough to get the fundamentals without being bogged down by
too many details.
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« Chapter 2 (“Getting Started with Kernel Development”) describes the tools and procedures needed
to set up a development environment for developing kernel drivers. A very simple driver is created
to make sure all the tools and procedures are working correctly.

« Chapter 3 (“Kernel Programming Basics) looks at the fundamentals of writing drivers, including
basic kernel APIs, handling of common programming tasks involving strings, linked lists, dynamic
memory allocations, and more.

« Chapter 4 (“Driver from Start to Finish”) shows how to build a complete driver that performs some
useful functionality, along with a client application to drive it.

If you are new to Windows kernel development, you should read chapters 1 to 7 in order. Chapter 8 contains
some advanced material you may want to go back to after you have built a few simple drivers. Chapters
9 onward describe specialized techniques, and in theory at least, can be read in any order.

Sample Code

All the sample code from the book is freely available on the book’s Github repository at https://github.
com/zodiacon/windowskernelprogrammingbook2e. Updates to the code samples will be pushed to this
repository. It’s recommended the reader clone the repository to the local machine, so it’s easy to experiment
with the code directly.

All code samples have been compiled with Visual Studio 2019. It’s possible to compile most code samples
with earlier versions of Visual Studio if desired. There might be few features of the latest C++ standards
that may not be supported in earlier versions, but these should be easy to fix.

Happy reading!

Pavel Yosifovich
June 2022


https://github.com/zodiacon/windowskernelprogrammingbook2e
https://github.com/zodiacon/windowskernelprogrammingbook2e

Chapter 1: Windows Internals Overview

This chapter describes the most important concepts in the internal workings of Windows. Some of the
topics will be described in greater detail later in the book, where it’s closely related to the topic at hand.
Make sure you understand the concepts in this chapter, as these make the foundations upon any driver
and even user mode low-level code, is built.

In this chapter:

+ Processes

+ Virtual Memory

« Threads

» System Services

+ System Architecture
« Handles and Objects

Processes

A process is a containment and management object that represents a running instance of a program. The
term “process runs” which is used fairly often, is inaccurate. Processes don’t run — processes manage.
Threads are the ones that execute code and technically run. From a high-level perspective, a process owns
the following:

» An executable program, which contains the initial code and data used to execute code within the
process. This is true for most processes, but some special ones don’t have an executable image
(created directly by the kernel).

« A private virtual address space, used for allocating memory for whatever purposes the code within
the process needs it.

« An access token (called primary token), which is an object that stores the security context of the
process, used by threads executing in the process (unless a thread assumes a different token by using
impersonation).

« A private handle table to executive objects, such as events, semaphores, and files.

+ One or more threads of execution. A normal user-mode process is created with one thread (executing
the classic main/WinMain function). A user mode process without threads is mostly useless, and
under normal circumstances will be destroyed by the kernel.
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These elements of a process are depicted in figure 1-1.

Virtual Address Descriptors

Process

Executable
Image (File)

. Executive
Object

Token
Thread >—' Thread >—- Thread

Figure 1-1: Important ingredients of a process

v

A process is uniquely identified by its Process ID, which remains unique as long as the kernel process object
exists. Once it’s destroyed, the same ID may be reused for new processes. It’s important to realize that the
executable file itself is not a unique identifier of a process. For example, there may be five instances of
notepad.exe running at the same time. Each of these Notepad instances has its own address space, threads,
handle table, process ID, etc. All those five processes are using the same image file (notepad.exe) as their
initial code and data. Figure 1-2 shows a screenshot of Task Manager’s Details tab showing five instances
of Notepad.exe, each with its own attributes.
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& Task Manager

File Options View
Processes Performance App history Startup  Users Details  Services
MName - PID Status Username  Sessi..  CPU  Memory (active.. Commitsize Base priority  Handles Threads ™
[55] MsSense.exe 7120 Running SYSTEM ] 00 238,648 K 864,744 K Mermal 1,170 39
[5] NisSrv.exe 1616 Running LOCALSE.. 0 00 43,428 K 59,820 K Mormal 339 13
jnotepad.exe 28468  Running Pavel 1 0o 1,736 K 3076 K MNormal 244 7
mjnotepad.exe 14504 Running Pavel 1 00 14416K 33,324K Mermal 765 25
jnotepad.exe 30076 Running Pavel 1 0o 1,744 K 3072K Mormal 245 7
jnotepad.exe 11396 Running Pavel 1 oo 1,732K 3,080 K MNermal 243 7
jnotepad.exe 38700 Running Pavel 1 00 1,732 K 3076 K Mormal 243 7
Dn\raplw.exe 22332 Running Pavel 1 00 1,136 K 4124 K Mermal 136 2
.nvcontainar.axe 6832 Running SYSTEM 0 00 744K 13,772K Mormal 701 35
. nvcontainer.exe 1392 Running Pavel 1 0o 67,440 K 83,188 K Mormal 523 24
.nvcnntainer.exe 12632 Running Pavel 1 00 3420 K 3816 K Mormal 368 16
.NVDispIay.Container.exe 5072 Running SYSTEM 1 0o 26,140 K 46,136 K Mormal 40 39
.NVDispIay.Container.exe 4204 Running SYSTEM 0 00 3732K 6,156 K Mermal 331 g
.NVID\ASharE.ExE 29152 Running Pavel 1 0o 18,376 K 31,820 K Mormal 788 31y
<l >
Fewer details End task

Figure 1-2: Five instances of notepad

Virtual Memory

Every process has its own virtual, private, linear address space. This address space starts out empty (or
close to empty, since the executable image and NtD11.D11 are the first to be mapped, followed by more
subsystem DLLs). Once execution of the main (first) thread begins, memory is likely to be allocated, more
DLLs loaded, etc. This address space is private, which means other processes cannot access it directly.
The address space range starts at zero (technically the first and last 64KB of the address space cannot be
committed), and goes all the way to a maximum which depends on the process “bitness” (32 or 64 bit) and
the operating system “bitness” as follows:

« For 32-bit processes on 32-bit Windows systems, the process address space size is 2 GB by default.

« For 32-bit processes on 32-bit Windows systems that use the increase user virtual address space
setting, it can be configured to have up to 3GB of address space per process. To get the extended
address space, the executable from which the process was created must have been marked with the
LARGEADDRESSAWARE linker flag in its PE header. If it was not, it would still be limited to 2 GB.

« For 64-bit processes (on a 64-bit Windows system, naturally), the address space size is 8 TB (Windows
8 and earlier) or 128 TB (Windows 8.1 and later).

« For 32-bit processes on a 64-bit Windows system, the address space size is 4 GB if the executable
image has the LARGEADDRESSAWARE flag in its PE header. Otherwise, the size remains at 2 GB.

The requirement of the LARGEADDRESSAWARE flag stems from the fact that a 2 GB address range
requires 31 bits only, leaving the most significant bit (MSB) free for application use. Specifying
this flag indicates that the program is not using bit 31 for anything and so having that bit set
(which would happen for addresses larger than 2 GB) is not an issue.
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Each process has its own address space, which makes any process address relative, rather than absolute.
For example, when trying to determine what lies in address 0x20000, the address itself is not enough; the
process to which this address relates to must be specified.

The memory itself is called virtual, which means there is an indirect relationship between an address
and the exact location where it’s found in physical memory (RAM). A buffer within a process may be
mapped to physical memory, or it may temporarily reside in a file (such as a page file). The term virtual
refers to the fact that from an execution perspective, there is no need to know if the memory about to be
accessed is in RAM or not; if the memory is indeed mapped to RAM, the CPU will perform the virtual-
to-physical translation before accessing the data. if the memory is not resident (specified by a flag in the
translation table entry), the CPU will raise a page fault exception that causes the memory manager’s page
fault handler to fetch the data from the appropriate file (if indeed it’s a valid page fault), copy it to RAM,
make the required changes in the page table entries that map the buffer, and instruct the CPU to try again.
Figure 1-3 shows this conceptual mapping from virtual to physical memory for two processes.

Virtual Memory Virtual Memory
Physical Memaory | |

Process A Process B

Figure 1-3: virtual memory mapping

The unit of memory management is called a page. Every attribute related to memory is always at a
page’s granularity, such as its protection or state. The size of a page is determined by CPU type (and on
some processors, may be configurable), and in any case, the memory manager must follow suit. Normal
(sometimes called small) page size is 4 KB on all Windows-supported architectures.

Apart from the normal (small) page size, Windows also supports large pages. The size of a large page is 2
MB (x86/x64/ARM64) or 4 MB (ARM). This is based on using the Page Directory Entry (PDE) to map the
large page without using a page table. This results in quicker translation, but most importantly better use
of the Translation Lookaside Buffer (TLB) — a cache of recently translated pages maintained by the CPU.
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In the case of a large page, a single TLB entry maps significantly more memory than a small page.

fail if memory is tight or very fragmented. Also, large pages are always non-pageable and can
only use read/write protection.
Huge pages (1 GB in size) are supported on Windows 10 and Server 2016 and later. These are
used automatically with large pages if an allocation is at least 1 GB in size, and that size can be
located as contiguous in RAM.

0 The downside of large pages is the need to have the memory contiguous in RAM, which can

Page States

Each page in virtual memory can be in one of three states:

+ Free - the page is not allocated in any way; there is nothing there. Any attempt to access that page
would cause an access violation exception. Most pages in a newly created process are free.
Committed - the reverse of free; an allocated page that can be accessed successfully (assuming non-
conflicting protection attributes; for example, writing to a read-only page causes an access violation).
Committed pages are mapped to RAM or to a file (such as a page file).

Reserved - the page is not committed, but the address range is reserved for possible future
commitment. From the CPU’s perspective, it’s the same as Free — any access attempt raises an
access violation exception. However, new allocation attempts using the VirtualAlloc function
(or NtAllocateVirtualMemory, the related native API) that does not specify a specific address
would not allocate in the reserved region. A classic example of using reserved memory to maintain
contiguous virtual address space while conserving committed memory usage is described later in
this chapter in the section “Thread Stacks”.

System Memory

The lower part of the address space is for user-mode processes use. While a particular thread is executing,

its associated process address space is visible from address zero to the upper limit as described in the
previous section. The operating system, however, must also reside somewhere — and that somewhere is
the upper address range that’s supported on the system, as follows:

On 32-bit systems running without the increase user virtual address space setting, the operating
system resides in the upper 2 GB of virtual address space, from address x80000000 to @xFFFFFFFF.
On 32-bit systems configured with the increase user virtual address space setting, the operating
system resides in the address space left. For example, if the system is configured with 3 GB user
address space per process (the maximum), the OS takes the upper 1 GB (from address 0xC0000000
to @xFFFFFFFF). The component that suffers mostly from this address space reduction is the file
system cache.

On 64-bit systems running Windows 8, Server 2012 and earlier, the OS takes the upper 8 TB of virtual
address space.

On 64-bit systems running Windows 8.1, Server 2012 R2 and later, the OS takes the upper 128 TB of
virtual address space.
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Figure 1-4 shows the virtual memory layout for the two “extreme” cases: 32-bit process on a 32-bit system
(left) and a 64-bit process on a 64-bit system (right).

High addresses 32-bit 64-bit
FFFFFFFF’FFFFFFFF
128 TB
FEFFFEFF System Space
2GB FFFF8000°’00000000

System Space Unmapped

80000000
7FFF’FFFFFFFF
5B 128 TB
00000000 User Process User Process
Space Space
Low addresses 000000000000

Figure 1-4: virtual memory layout

System space is not process-relative — after all, it’s the same system, the same kernel, the same drivers that
service every process on the system (the exception is some system memory that is on a per-session basis
but is not important for this discussion). It follows that any address in system space is absolute rather than
relative, since it “looks” the same from every process context. Of course, actual access from user mode into
system space results in an access violation exception.

System space is where the kernel itself, the Hardware Abstraction Layer (HAL), and kernel drivers reside
once loaded. Thus, kernel drivers are automatically protected from direct user mode access. It also means
they have a potentially system-wide impact. For example, if a kernel driver leaks memory, that memory
will not be freed even after the driver unloads. User-mode processes, on the other hand, can never leak
anything beyond their lifetime. The kernel is responsible for closing and freeing everything private to a
dead process (all handles are closed and all private memory is freed).

Threads

The actual entities that execute code are threads. A Thread is contained within a process, using the
resources exposed by the process to do work (such as virtual memory and handles to kernel objects).
The most important details a thread owns are the following:

« Current access mode, either user or kernel.

- Execution context, including processor registers and execution state.

+ One or two stacks, used for local variable allocations and call management.

« Thread Local Storage (TLS) array, which provides a way to store thread-private data with uniform
access semantics.

« Base priority and a current (dynamic) priority.

» Processor affinity, indicating on which processors the thread is allowed to run on.
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The most common states a thread can be in are:

« Running - currently executing code on a (logical) processor.

« Ready — waiting to be scheduled for execution because all relevant processors are busy or
unavailable.

« Waiting — waiting for some event to occur before proceeding. Once the event occurs, the thread
goes to the Ready state.

Figure 1-5 shows the state diagram for these states. The numbers in parenthesis indicate the state numbers,
as can be viewed by tools such as Performance Monitor. Note that the Ready state has a sibling state called
Deferred Ready, which is similar, and exists to minimize internal locking.

Preemption
quantum end

Voluntary
switch

Figure 1-5: Common thread states

Thread Stacks

Each thread has a stack it uses while executing, used to store local variables, parameters passed to functions
(in some cases), and where return addresses are stored prior to making function calls. A thread has at least
one stack residing in system (kernel) space, and it’s pretty small (default is 12 KB on 32-bit systems and
24 KB on 64-bit systems). A user-mode thread has a second stack in its process user-space address range
and is considerably larger (by default can grow up to 1 MB). An example with three user-mode threads
and their stacks is shown in figure 1-6. In the figure, threads 1 and 2 are in process A, and thread 3 is in
process B.

The kernel stack always resides in RAM while the thread is in the Running or Ready states. The reason
for this is subtle and will be discussed later in this chapter. The user-mode stack, on the other hand, may
be paged out, just like any other user-mode memory.

The user-mode stack is handled differently than the kernel-mode stack in terms of its size. It starts out
with a certain amount of committed memory (could be as small as a single page), where the next page is
committed with a PAGE_GUARD attribute. The rest of the stack address space memory is reserved, thus not
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wasting memory. The idea is to grow the stack in case the thread’s code needs to use more stack space.
If the thread needs more stack space it would access the guard page which would throw a page-guard
exception. The memory manager then removes the guard protection, and commits an additional page,
marking it with a PAGE_GUARD attribute. This way, the stack grows as needed, avoiding the entire stack
memory being committed upfront. Figure 1-7 shows this layout.

Thread 3 stack
Thread 1 stack

Kernel
space

Thread 2 stack

Thread 2 stack
User
space
Thread 1 stack Thread 3 stack
Process A Process B

Figure 1-6: User mode threads and their stacks

e Technically, Windows uses 3 guard pages rather than one in most cases.
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High addresses

< Stack base < Stack base
4 Read/Write Read/Write
Read/Write Committed Read/Write

Read/write/Guard Read/Write Committed
Read/write/Guard
Reserved Reserved
Low addresses + Stack limit . Stack limit
Before stack expansion After stack expansion

Figure 1-7: Thread’s stack in user space

The sizes of a thread’s user-mode stack are determined as follows:

« The executable image has a stack commit and reserved values in its Portable Executable (PE) header.
These are taken as defaults if a thread does not specify alternative values. These are always used for
the first thread in the process.

« When a thread is created with CreateThread (or similar functions), the caller can specify its
required stack size, either the upfront committed size or the reserved size (but not both), depending
on a flag provided to the function; specifying zero uses the defaults set in the PE header.

Curiously enough, the functions CreateThread and CreateRemoteThread(Ex) only allow
specifying a single value for the stack size and can be the committed or the reserved size, but not
both. The native (undocumented) function, NtCreateThreadEx allows specifying both values.

System Services (a.k.a. System Calls)

Applications need to perform various operations that are not purely computational, such as allocating
memory, opening files, creating threads, etc. These operations can only be ultimately performed by code
running in kernel mode. So how would user-mode code be able to perform such operations?

Let’s take a common (simple) example: a user running a Notepad process uses the File / Open menu to
request opening a file. Notepad’s code responds by calling the CreateFile documented Windows API
function. CreateFile is documented as implemented in kernel132.D11, one of the Windows subsystem
DLLs. This function still runs in user mode, so there is no way it can directly open a file. After some
error checking, it calls NtCreateFile, a function implemented in NTDLL .d11, a foundational DLL that
implements the API known as the Native API, and is the lowest layer of code which is still in user mode.
This function (documented in the Windows Driver Kit for device driver developers) is the one that makes
the transition to kernel mode. Before the actual transition, it puts a number, called system service number,
into a CPU register (EAX on Intel/AMD architectures). Then it issues a special CPU instruction (syscall
on x64 or sysenter on x86) that makes the actual transition to kernel mode while jumping to a predefined
routine called the system service dispatcher.
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The system service dispatcher, in turn, uses the value in that EAX register as an index into a System Service
Dispatch Table (SSDT). Using this table, the code jumps to the system service (system call) itself. For
our Notepad example, the SSDT entry would point to the NtCreateFile function, implemented by the
kernel’s I/O manager. Notice the function has the same name as the one in NTDLL .d11, and has the same
parameters as well. On the kernel side is the real implementation. Once the system service is complete,
the thread returns to user mode to execute the instruction following sysenter/syscall. This sequence of
calls is depicted in figure 1-8.

call fread App.exe

\ 4

call ReadFile Msvcrt.dll

\ 4

call NtReadFile Kernel32.DLL

A 4

sysenter / syscall NtDII.DLL

User mode

Kernel mode

call NtReadFile NtOskrnl.EXE

Y

NtReadFile: NtOskrnl.EXE
call driver

initiate 1/0

driver.sys
return to caller

Figure 1-8: System service function call flow
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Figure 1-9 shows the general architecture of Windows, comprising of user-mode and kernel-mode

components.
Subsystem
Process User Processes
(CSRSS.exe)
| Subsystem DLLs |
NTOLL.DLL | User Mode
Executive
Win32k.Sys

Device Drivers Kernel

Hardware Abstraction Layer (HAL)

Kernel Mode
(hypervisor context)

Hyper-V Hypervisor

Figure 1-9: Windows system architecture

Here’s a quick rundown of the named boxes appearing in figure 1-9:

» User processes

These are normal processes based on image files, executing on the system, such as instances of
Notepad.exe, cmd.exe, explorer.exe, and so on.

+ Subsystem DLLs

Subsystem DLLs are dynamic link libraries (DLLs) that implement the API of a subsystem. A
subsystem is a particular view of the capabilities exposed by the kernel. Technically, starting from
Windows 8.1, there is only a single subsystem — the Windows Subsystem. The subsystem DLLs
include well-known files, such as kernel32.dll, user32.dll, gdi32.dll, advapi32.dll, combase.dll, and
many others. These include mostly the officially documented API of Windows.

« NTDLL.DLL

A system-wide DLL, implementing the Windows native API. This is the lowest layer of code which
is still in user mode. Its most important role is to make the transition to kernel mode for system call
invocation. NTDLL also implements the Heap Manager, the Image Loader and some part of the user
mode thread pool.
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« Service Processes

Service processes are normal Windows processes that communicate with the Service Control
Manager (SCM, implemented in services.exe) and allow some control over their lifetime. The SCM
can start, stop, pause, resume and send other messages to services. Services typically execute under
one of the special Windows accounts — local system, network service or local service.

- Executive

The Executive is the upper layer of NtOskrnl.exe (the “kernel”). It hosts most of the code that is
in kernel mode. It includes mostly the various “managers”: Object Manager, Memory Manager, I/O
Manager, Plug & Play Manager, Power Manager, Configuration Manager, etc. It’s by far larger than
the lower Kernel layer.

+ Kernel

The Kernel layer implements the most fundamental and time-sensitive parts of kernel-mode OS

code. This includes thread scheduling, interrupt and exception dispatching, and implementation of

various kernel primitives such as mutexes and semaphores. Some of the kernel code is written in

CPU-specific machine language for efficiency and for getting direct access to CPU-specific details.
« Device Drivers

Device drivers are loadable kernel modules. Their code executes in kernel mode and so has the full
power of the kernel. This book is dedicated to writing certain types of kernel drivers.
« Win32k.sys

This is the kernel-mode component of the Windows subsystem. Essentially, it’s a kernel module
(driver) that handles the user interface part of Windows and the classic Graphics Device Interface
(GDI) APIs. This means that all windowing operations (CreateWindowEx, GetMessage, PostMes-
sage, etc.) are handled by this component. The rest of the system has little-to-none knowledge of
UL

« Hardware Abstraction Layer (HAL)

The HAL is a software abstraction layer over the hardware closest to the CPU. It allows device
drivers to use APIs that do not require detailed and specific knowledge of things like Interrupt
Controllers or DMA controller. Naturally, this layer is mostly useful for device drivers written to
handle hardware devices.

+ System Processes

System processes is an umbrella term used to describe processes that are typically “just there”, doing
their thing where normally these processes are not communicated with directly. They are important
nonetheless, and some in fact, critical to the system’s well-being. Terminating some of them is fatal
and causes a system crash. Some of the system processes are native processes, meaning they use
the native API only (the API implemented by NTDLL). Example system processes include Smss.exe,
Lsass.exe, Winlogon.exe, and Services.exe.

« Subsystem Process

The Windows subsystem process, running the image Csrss.exe, can be viewed as a helper to the
kernel for managing processes running under the Windows subsystem. It is a critical process,
meaning if killed, the system would crash. There is one Csrss.exe instance per session, so on a
standard system two instances would exist — one for session 0 and one for the logged-on user session
(typically 1). Although Csrss.exe is the “manager” of the Windows subsystem (the only one left these
days), its importance goes beyond just this role.



Chapter 1: Windows Internals Overview 15

« Hyper-V Hypervisor

The Hyper-V hypervisor exists on Windows 10 and server 2016 (and later) systems if they support
Virtualization Based Security (VBS). VBS provides an extra layer of security, where the normal OS is
a virtual machine controlled by Hyper-V. Two distinct Virtual Trust Levels (VTLs) are defined, where
VTL 0 consists of the normal user-mode/kernel-mode we know of, and VTL 1 contains the secure
kernel and Isolated User Mode (IUM). VBS is beyond the scope of this book. For more information,
check out the Windows Internals book and/or the Microsoft documentation.

may look like yet another subsystem, like the old POSIX and OS/2 subsystems supported by
Windows, it is not like that at all. The old subsystems were able to execute POSIX and OS/2 apps
if these were compiled using a Windows compiler to use the PE format and Windows system
calls. WSL, on the other hand, has no such requirement. Existing executables from Linux (stored
in ELF format) can be run as-is on Windows, without any recompilation.

e Windows 10 version 1607 introduced the Windows Subsystem for Linux (WSL). Although this

To make something like this work, a new process type was created — the Pico process together
with a Pico provider. Briefly, a Pico process is an empty address space (minimal process) that is
used for WSL processes, where every system call (Linux system call) must be intercepted and
translated to the Windows system call(s) equivalent using that Pico provider (a device driver).
There is a true Linux (the user-mode part) installed on the Windows machine.

The above description is for WSL version 1. Starting with Windows 10 version 2004, Windows
supports a new version of WSL known as WSL 2. WSL 2 is not based on pico processes anymore.
Instead, it’s based on a hybrid virtual machine technology that allows installing a full Linux
system (including the Linux kernel), but still see and share the Windows machine’s resources,
such as the file system. WSL 2 is faster than WSL 1 and solves some edge cases that didn’t work
well in WSL 1, thanks to the real Linux kernel handling Linux system calls.

Handles and Objects

The Windows kernel exposes various types of objects for use by user-mode processes, the kernel itself and
kernel-mode drivers. Instances of these types are data structures in system space, created by the Object
Manager (part of the executive) when requested to do so by user-mode or kernel-mode code. Objects are
reference counted — only when the last reference to the object is released will the object be destroyed and
freed from memory.

Since these object instances reside in system space, they cannot be accessed directly by user mode. User
mode must use an indirect access mechanism, known as handles. A handle is an index to an entry in a
table maintained on a process by process basis, stored in kernel space, that points to a kernel object residing
in system space. There are various Create* and Open* functions to create/open objects and retrieve back
handles to these objects. For example, the CreateMutex user-mode function allows creating or opening a
mutex (depending on whether the object is named and exists). If successful, the function returns a handle
to the object. A return value of zero means an invalid handle (and a function call failure). The OpenMutex
function, on the other hand, tries to open a handle to a named mutex. If the mutex with that name does
not exist, the function fails and returns null (0).
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Kernel (and driver) code can use either a handle or a direct pointer to an object. The choice is usually
based on the API the code wants to call. In some cases, a handle given by user mode to the driver must
be turned into a pointer with the ObReferenceOb jectByHandle function. We’ll discuss these details in a
later chapter.

Most functions return null (zero) on failure, but some do not. Most notably, the CreateFile
function returns INVALID_HANDLE_VALUE (-1) if it fails.

Handle values are multiples of 4, where the first valid handle is 4; Zero is never a valid handle value.

Kernel-mode code can use handles when creating/opening objects, but they can also use direct pointers to
kernel objects. This is typically done when a certain API demands it. Kernel code can get a pointer to an
object given a valid handle using the ObRe ferenceOb jectByHandle function. If successful, the reference
count on the object is incremented, so there is no danger that if the user-mode client holding the handle
decided to close it while kernel code holds a pointer to the object would now hold a dangling pointer. The
object is safe to access regardless of the handle-holder until the kernel code calls ObDerefenceOb ject,
which decrements the reference count; if the kernel code missed this call, that’s a resource leak which will
only be resolved in the next system boot.

All objects are reference counted. The object manager maintains a handle count and total reference count
for objects. Once an object is no longer needed, its client should close the handle (if a handle was used to
access the object) or dereference the object (if kernel client using a pointer). From that point on, the code
should consider its handle/pointer to be invalid. The Object Manager will destroy the object if its reference
count reaches zero.

Each object points to an object type, which holds information on the type itself, meaning there is a single
type object for each type of object. These are also exposed as exported global kernel variables, some of
which are defined in the kernel headers and are needed in certain cases, as we’ll see in later chapters.

Object Names

Some types of objects can have names. These names can be used to open objects by name with a suitable
Open function. Note that not all objects have names; for example, processes and threads don’t have names —
they have IDs. That’s why the OpenProcess and OpenThread functions require a process/thread identifier
(a number) rather than a string-base name. Another somewhat weird case of an object that does not have
a name is a file. The file name is not the object’s name - these are different concepts.

mode API SetThreadDescription. This is not, however, a true name, but rather a friendly
name/description most useful in debugging, as Visual Studio shows a thread’s description, if
there is any.

’ Threads appear to have a name (starting from Windows 10), that can be set with the user-
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From user-mode code, calling a Create function with a name creates the object with that name if an object
with that name does not exist, but if it exists it just opens the existing object. In the latter case, calling
GetLastError returns ERROR_ALREADY_EXISTS, indicating this is not a new object, and the returned
handle is yet another handle to an existing object.

The name provided to a Create function is not actually the final name of the object. It’s prepended with
\Sessions\x\BaseNamedObjects\ where x is the session ID of the caller. If the session is zero, the name is
prepended with \BaseNamedObjects\. If the caller happens to be running in an AppContainer (typically
a Universal Windows Platform process), then the prepended string is more complex and consists of the
unique AppContainer SID: \Sessions\x\AppContainerNamedObjects\{AppContainerSID}.

All the above means is that object names are session-relative (and in the case of AppContainer — package
relative). If an object must be shared across sessions it can be created in session 0 by prepending the object
name with Global\; for example, creating a mutex with the CreateMutex function named Global\MyMutex
will create it under \BaseNamedODbjects. Note that AppContainers do not have the power to use session 0
object namespace.

This hierarchy can be viewed with the Sysinternals WinObj tool (run elevated) as shown in figure 1-10.

@g WinObj - Sysinternals: www.sysinternals.com

File View Help
VL \ MName ¢ Type SymLink "™
il ArcName 5 BrowserEmulation!SharedMemory!Mutex Mutant
E:IZI\:L"EdObJECtS % NECompat!Mutex Mutant
Device % .MET CLR Data_Perf_Library_Lock_PID_13c4 Mutant
Driver % {MET CLR Data_Perf_Library_Lock_PID_3ff4 Mutant
DriverStores % .MET CLR Data_Perf_Library_Lock_PID_6ced Mutant
FileSystem % MNET CLR Metworking 4.0.0.0_Perf_Library_Lock_PID_13c4 Mutant
GLOBAL?? % {NET CLR Networking 4.0.0.0_Perf_Library_Lock_PID_3ff4 Mutant
KernelObjects % MNET CLR Metworking 4.0.0.0_Perf_Library_Lock_PID_fce8 Mutant
KnownDlls % .MET CLR MNetworking_Perf_Library_Lock_PID_13cd Mutant
KnownDlls32 % .MET CLR Networking_Perf_Library_Lock_PID_3ff4 Mutant
MNLS % {NET CLR MNetworking_Perf_Library_Lock_PID_6ced Mutant
ObjectTypes % .NET Data Provider for Oracle_Perf_Library_Lock PID_13c4 Mutant
RPC Control % .MET Data Provider for Oracle_Perf_Library_Lock_PID_3ff4 Mutant
Security % .NET Data Provider for Oracle_Perf_Library_Lock_PID_fcel Mutant
L Sessions % {MET Data Provider for SqlServer_Perf_Library_Lock_PID_13c4 Mutant
> L4 0 5 |NET Data Provider for SqlServer_Perf_Library_Lock_PID_3ff4 Mutant
b 1 % {MNET Data Provider for SglServer_Perf_Library_Lock_PID_Gced Mutant
AppContainerNamedObjects £l NET Memory Cache 4.0_Perf_Library_Lock_PID_13c4 Mutant
izzdicrizi dizEs 5 NET Memory Cache 4.0_Perf_Library_Lock_PID_3ff4 Mutart
DosDevices 0 NET Memory Cache 4.0_Perf_Library_Lock_PID_6ces Mutant
o ng_'lmusws 8, NETFramework Perf_Library_Lock_PID_13c4 Mutant
UMDFCommunicationPorts % {NETFramework_Perf_Library_Lock_PID_3ff4 Mutant
Windows % METFramework_Perf_Library_Lock_PID_fced Mutant
% 02638d71-0935-35e8-9d1b-9dd1a2a34627-Settings Mutant
/0 02F078CH1dcb46548b2e40e3823Fc51ef2eb74F901DACTAN00T 184 Event
A8, 02F078C680953463352548ad95dd0d94c5b7ed8f01DACTA0001184 Event
0 10ACB_GETTING_DATA10_5-1-5-5-0-1138735 Event
; 10FM_ACB_5-1-5-5-0-1138735 Section
3 10FM_ACBBD_5-1-5-5-0-1138755 Section
% 10MU_ACB10_5-1-5-5-0-1138755 Mutant w
< >
‘\Sessions\ 1\ BaseNamedObjects

Figure 1-10: Sysinternals WinObj tool

The view shown in figure 1-10 is the object manager namespace, comprising of a hierarchy of named
objects. This entire structure is held in memory and manipulated by the Object Manager (part of the
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Executive) as required. Note that unnamed objects are not part of this structure, meaning the objects seen
in WinObj do not comprise all the existing objects, but rather all the objects that were created with a name.

Every process has a private handle table to kernel objects (whether named or not), which can be viewed
with the Process Explorer and/or Handles Sysinternals tools. A screenshot of Process Explorer showing
handles in some process is shown in figure 1-11. The default columns shown in the handles view are the
object type and name only. However, there are other columns available, as shown in figure 1-11.

8 Process Explorer - Sysintemals: www.sysintemals.com [VOVAGER\Pavel]

File Options View Process Find Handle Users Help
digswom F e[ | T 16 I L W [
Process PID CPU  Private Bytes Working Sel. User Name Session  Protection Prioity Handles Start Time Threads Bl
[|dwm exe 22992 036 248332K 185,300 K Window Manager. 2 13 1684 07:09:32 26-Mar-19 15
=l (B EpicGGamesLauncher exe 9416 022 275084 K 25748 K VOYAGER \Pavel 2 8 196.016 23:09:41 28-Mar-19 92
[ esif_uf exe 5308 1616 K 3,312 K NT AUTHORITY. 0 13 109 18:12:11 25-Mar-19 3
SRS plorer exe 192,584 K VOYAGER\Pavel 2 9,501 07:51:56 27-Mar-19
34468 10228K 17732 K VOYAGER\Pavel 2 8 383 09:25:24 30-Mar-19 4
39212 026 441 644K 442,792 K VOYAGER\Pavel 2 8 3,092 19:22:04 28-Mar-19 68
@ fircfon exe 44540 016 227704 K 252,988 K VOYAGER\Pavel 2 8 844 19:22:05 28-Mar-19 10 W
Hande Type Name Cbiect Address Access  Decoded Access il
0x34  Directory KnownDils OxFFFFDO0ABSDCAESQ (00000003 QUERY | TRAVERSE
x40 File C:\Windows (xFFFFBB00224B1270 (00100020 SYNCHRONIZE | EXECUTE
W70 Key HKLM\SYSTEM'Control Set001\Control\Session Manager OxFFFFDODABB4E1320 (00000001 QUERY_VALUE
34 Fie C:\Windows \System 32 en-LIS\winmm dll mui (xFFFFBBO0205DES20 (x00120089 READ_CONTROL | SYNCHRONIZE | FILE_GENERIC_READ
x88 Key HKLM (OxFFFFDO0ABB4E1560 (00020019 READ_CONTROL|KEY_READ
238 Key HKLM\SYSTEM\Control Set001\Contral\Nis\ Serting\Versions (xFFFFD0DABB4E2830 (00020019 READ_CONTROL IKEY_READ
A4 File Device\CNG (O«FFFFBBO01C59FE60 (00100001 SYNCHRONIZE | READ_DATA
A8 Key HKLM\SOF TWARE\Microsaft\Ole O«FFFFDO0ABB4E1C20 (00020019 READ_CONTROL IKEY_READ
0xBO  Key HKCU\Software"Classes\Local Settings'\Software\Microsoft OxFFFFDO0ABB4ET17AQ (00020019 READ_CONTROL|KEY_READ
B4 Key HKCUNSeftware'\Classes\Local Settings O«FFFFDO0ABB4E19ED (x00020019 READ_CONTROL | KEY_READ
OxE4  Directory \Sessions'\2\BaseNamedObjects (OxFFFFDODAE348CB40 (x0000000F QUERY | TRAVERSE | CREATE_OBJECT | CREATE_SUBDIRECTORY
o110 Key HKLM\SOF TV Windows NT\Currert e File OxFFFFDO0ABBAE1B00 0x00000009 QUERY_VALUE | ENUMERATE_SUB_KEYS
Ox11C Window Station “Sessions\2\Windows\Window Stations \WinSta 0 OcFFFFBBO017C496C0 (x000F037F READ_CONTROL | DELETE | WRITE_DAC IWRITE_OWNER | WINSTA_ALL ACCESS
04120 Desktop Defautt O«FFFFBBODDAO3BCA0 0x000FO1FF  READ_CONTROL | DELETE | WRITE_DAC | WRITE_OWNER | ENUMERATE | READOBJ
0x124  Window Station “Sessions\2\Windows\Window Stations \WinSta 0 O<FFFFBBO017C496C0 (<000F037F READ_CONTROL | DELETE | WRITE_DAC IWRITE_OWNER | WINSTA_ALL ACCESS
0128 Flle C:\Windows \en-US\explorer.exe mui O<FFFFBBO014658520 000120089 READ_CONTROL | SYNCHRONIZE | FILE_GENERIC_READ
180 File “Device'\DeviceApi (OxFFFFBBO00STC34C0 (00120089 READ_CONTROL | SYNCHRONIZE | FILE_GENERIC_READ
KIE4 Fie Device\KsecDD 0xFFFFBBO0154AC3F0 000100003 SYNCHRONIZE | WRITE_DATA | READ_DATA
O«1EC  Mutant “Sessions\2\BaseNamedObjects'\SM0:15524:304 WilStaging_02 (OxFFFFBBOFF862BB70 0x001F0001 READ_CONTROL | DELETE | SYNCHRONIZE | WRITE_DAC | WRITE_OWNER | MUTAN
0«1F0  Semaphore Sessions'2\BaseNamedObjects\SM0:15524:304: WilStaging_02_p0 OxFFFFBBO040257FB0 0:001F0003 READ_CONTROL | DELETE | SYNCHRONIZE | WRITE_DAC | WRITE_OWNER | SEMAPI
(1F4  Semaphore “Sessions\2\BaseNamedObjects'\SM0:15524:304 WilStaging_02_p0h OxFFFFBBO040256F 30 (0x001F0003 READ_CONTROL | DELETE | SYNCHRONIZE | WRITE_DAC | WRITE_OWNER | SEMAPI
B0 Key HKCU OxFFFFDO0ABBAE21CO 0:000F003F READ_CONTROL | DELETE | WRITE_DAC | WRITE_OWNER | KEY_ALL_ACCESS
x2CC  Key HKCU ic Windo ument Versic ol (OxFFFFDO0ABB4E22EQ (0x000F003F READ_CONTROL | DELETE | WRITE_DAC | WRITE_OWNER | KEY_ALL_ACCESS
0x2D0 Key HKLM\SYSTEMControlSet001\Control \Nis\\Sorting\lds OxFFFFDODABBAE2520 0:00020079 READ_CONTROL|KEY_READ
(320 Mutant “Sessions’ i lorhute (xFFFFBBOD0AB243E0 (001F0001 READ_CONTROL | DELETE | SYNCHRONIZE | WRITE_DAC | WRITE_OWNER | MUTAN
0:324  Section Sessions\ A 0<FFFFDO0AF13C6610 0:000F00TF  READ_CONTROL | DELETE | WRITE_DAC | WRITE_OWNER | SECTION_ALL_ACCESS
328 File C: _microsoft windows ls_6595. SYNCHRONIZE | EXECUTE
0:330 Key HKC UM Software'Classes OxFFFFDODABBAE2640 0:000F003F READ_CONTROL | DELETE | WRITE_DAC | WRITE_OWNER | KEY_ALL_ACCESS
334 Section “BaseNamedObjects'__ComCatalogCache__ OxFFFFDO0ABBAF40F0 0x00000004 MAP_READ v
< >
CPU Usage: 2057% Commit Charge: 8131% Processes: 314 Physical Usage: 76.57%

Figure 1-11: Viewing handles in processes with Process Explorer

By default, Process Explorer shows only handles for objects, which have names (according to Process
Explorer’s definition of a name, discussed shortly). To view all handles in a process, select Show Unnamed
Handles and Mappings from Process Explorer’s View menu.

The various columns in the handle view provide more information for each handle. The handle value and
the object type are self explanatory. The name column is tricky. It shows true object names for Mutexes
(Mutants), Semaphores, Events, Sections, ALPC Ports, Jobs, Timers, Directory (object manager Directories,
not file system directories), and other, less used object types. Yet others are shown with a name that has a
different meaning than a true named object:

« Process and Thread objects, the name is shown as their unique ID.

« For File objects, it shows the file name (or device name) pointed to by the file object. It’s not the
same as an object’s name, as there is no way to get a handle to a file object given the file name -
only a new file object may be created that accesses the same underlying file or device (assuming
sharing settings for the original file object allow it).

« (Registry) Key objects names are shown with the path to the registry key. This is not a name, for
the same reasoning as for file objects.

« Token object names are shown with the user name stored in the token.
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Accessing Existing Objects

The Access column in Process Explorer’s handles view shows the access mask which was used to open or
create the handle. This access mask is key to what operations are allowed to be performed with a specific
handle. For example, if client code wants to terminate a process, it must call the OpenProcess function
first, to obtain a handle to the required process with an access mask of (at least) PROCESS_TERMINATE,
otherwise there is no way to terminate the process with that handle. If the call succeeds, then the call to
TerminateProcess is bound to succeed.

Here’s a user-mode example for terminating a process given its process ID:

bool KillProcess(DWORD pid) {
//

// open a powerful-enough handle to the process

//

HANDLE hProcess = OpenProcess(PROCESS_TERMINATE, FALSE, pid);
if (!hProcess)

return false;

/7

// now kill it with some arbitrary exit code

//

BOOL success = TerminateProcess(hProcess, 1);

//
// close the handle

//

CloseHandle(hProcess);

return success != FALSE;

The Decoded Access column provides a textual description of the access mask (for some object types),
making it easier to identify the exact access allowed for a particular handle.

Double-clicking a handle entry (or right-clicking and selecting Properties) shows some of the object’s
properties. Figure 1-12 shows a screenshot of an example event object properties.
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\Sessions\2\BaseNamedObjects\ShellDesktopSwitchEvent P...

Details Security

Basic Information

Name: |\Sessions\2\BaseNamedObjects\ShellDesktopSwitchEvent

Type: Evenl
Description: A synchronization object.
Address:  OxFFFFAO8F948ACOBO

References CQuota Charges
References: 98302 Paged: 0
Handles: 2 Mon-Paged: 112
Event Info

Type: MNotification
Signaled: TRUE

OK

Figure 1-12: Object properties in Process Explorer

Notice that the dialog shown in figure 1-12 is for the object’s properties, rather than the handle’s. In other
words, looking at an object’s properties from any handle that points to the same object shows the same
information.

The properties in figure 1-12 include the object’s name (if any), its type, a short description, its address
in kernel memory, the number of open handles, and some specific object information, such as the state
and type of the event object shown. Note that the References shown do not indicate the actual number
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of outstanding references to the object (it does prior to Windows 8.1). A proper way to see the actual
reference count for the object is to use the kernel debugger’s !trueref command, as shown here:

1kd> !object @xFFFFAQ8F948ACOBO
Object: ffffa®8f948acob® Type: (ffffa@8f684df140) Event
ObjectHeader: ffffa@8f948ac080 (new version)
HandleCount: 2 PointerCount: 65535
Directory Object: ffff90839b63a70@ Name: ShellDesktopSwitchEvent
1kd> !trueref ffffa@8f948ac@b0
f£££fa@8f948ackbd: HandleCount: 2 PointerCount: 65535 RealPointerCount: 3

We'll take a closer look at the attributes of objects and the kernel debugger in later chapters.

In the next chapter, we’ll start writing a very simple driver to show and use many of the tools we’ll need
later in this book.



Chapter 2: Getting Started with Kernel
Development

This chapter deals with the fundamentals needed to get up and running with kernel driver development.
During the course of this chapter, you’ll install the necessary tools and write a very basic driver that can
be loaded and unloaded.

In this chapter:

+ Installing the Tools

+ Creating a Driver Project

o The DriverEntry and Unload routines
+ Deploying the Driver

« Simple Tracing

Installing the Tools

In the old days (pre-2012), the process of developing and building drivers included using a dedicated build
tool from the Device Driver Kit (DDK), without having an integrated development experience developers
were used to when developing user-mode applications. There were some workarounds, but none of them
was perfect nor officially supported by Microsoft.

Fortunately, starting with Visual Studio 2012 and Windows Driver Kit 8, Microsoft officially supports
building drivers with Visual Studio (with msbuild), without the need to use a separate compiler and build
tools.

To get started with driver development, the following tools must be installed (in this order) on your
development machine:

« Visual Studio 2019 with the latest updates. Make sure the C++ workload is selected during
installation. Note that any SKU will do, including the free Community edition.

« Windows 11 SDK (generally, the latest is recommended). Make sure at least the Debugging Tools for
Windows item is selected during installation.

« Windows 11 Driver Kit (WDK) - it supports building drivers for Windows 7 and later versions of
Windows. Make sure the wizard installs the project templates for Visual Studio at the end of the
installation.
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« The Sysinternals tools, which are invaluable in any “internals” work, can be downloaded for free
from http://www.sysinternals.com. Click on Sysinternals Suite on the left of that web page and
download the Sysinternals Suite zip file. Unzip to any folder, and the tools are ready to go.

load the corresponding SDK with the WDK.
A quick way to make sure the WDK templates are installed correctly is to open Visual Studio
and select New Project and look for driver projects, such as “Empty WDM Driver”.

’ The SDK and WDK versions must match. Follow the guidelines in the WDK download page to

Creating a Driver Project

With the above installations in place, a new driver project can be created. The template you’ll use in this
section is “WDM Empty Driver”. Figure 2-1 shows what the New Project dialog looks like for this type
of driver in Visual Studio 2019. Figure 2-2 shows the same initial wizard with Visual Studio 2019 if the
Classic Project Dialog extension is installed and enabled. The project in both figures is named “Sample”.

[% O X
Configure your new project

Empty WDM Driver c++  Windows Driver

Project name

Sample ‘

Location

c\Dev

o
Solution name (i)

Sample ‘

D Place solution and project in the same directory

Figure 2-1: New WDM Driver Project in Visual Studio 2019


http://www.sysinternals.com.
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» . p-

Recent - Sort by: Search (Ctrl+E)
i °1 Empty WDM Driver Visual C++ Type: Visual G-+
b Visual C& An empty project for creating a WDM
b Visual Basic driver
4 Visual C++
‘Windows Desktop

Windows Universal
b Cross Platform
MFC/ATL
Test
Other
Extensibility
4 Windows Drivers
Applications
Devices
Legacy
Package
WDF
WTL
b Visual F2
S0L Server

b Aviies Mata | aba

-

Mot finding what you are locking for?

Open Visual Studic Installer

Name: [Sample] |
Location: ‘d:\Dev '| Browse...
Solution name: ‘Sample | Create directory for solution

I:‘ Create new Git repository

Figure 2-2: New WDM Driver Project in Visual Studio 2019 with the Classic Project Dialog extension

Once the project is created, the Solution Explorer shows a single file within the Driver Files filter -
Sample.inf. You won’t need this file in this example, so simply delete it (right-click and select Remove or
press the Del key).

Now it’s time to add a source file. Right-click the Source Files node in Solution Explorer and select Add /
New Item... from the File menu. Select a C++ source file and name it Sample.cpp. Click OK to create it.

The briverEntry and Unload Routines

Every driver has an entry point called DriverEntry by default. This can be considered the “main” function
of the driver, comparable to the classicmain of a user-mode application. This function is called by a system
thread at IRQL PASSIVE_LEVEL (0). (IRQLs are discussed in detail in chapter 8.)

DriverEntry has a predefined prototype, shown here:

NTSTATUS
DriverEntry(_In_ PDRIVER_OBJECT DriverObject, _In_ PUNICODE_STRING RegistryPath\

);

The _In_ annotations are part of the Source (Code) Annotation Language (SAL). These annotations are
transparent to the compiler, but provide metadata useful for human readers and static analysis tools. I may
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remove these annotations in code samples to make it easier to read, but you should use SAL annotations
whenever possible.

A minimal DriverEntry routine could just return a successful status, like so:

NTSTATUS

DriverEntry(
_In_ PDRIVER_OBJECT DriverObject,
_In_ PUNICODE_STRING RegistryPath) {
return STATUS_SUCCESS;

This code would not yet compile. First, you’ll need to include a header that has the required definitions
for the types present in DriverEntry. Here’s one possibility:

#include <ntddk.h>

Now the code has a better chance of compiling, but would still fail. One reason is that by default, the
compiler is set to treat warnings as errors, and the function does not make use of its given arguments.
Removing treat warnings as errors from the compiler’s options is not recommended, as some warnings
may be errors in disguise. These warnings can be resolved by removing the argument names entirely (or
commenting them out), which is fine for C++ files. There is another, more “classic” way to solve this, which
is to use the UNREFERENCED_PARAMETER macro:

NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {
UNREFERENCED_PARAMETER(DriverObject);
UNREFERENCED_PARAMETER(RegistryPath);

return STATUS_SUCCESS;

As it turns out, this macro actually references the argument given just by writing its value as is, and this
shuts the compiler up, making the argument technically “referenced”.

Building the project now compiles fine, but causes a linker error. The DriverEntry function must have
C-linkage, which is not the default in C++ compilation. Here’s the final version of a successful build of the
driver consisting of a DriverEntry function only:
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extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) ({
UNREFERENCED_PARAMETER(DriverObject);
UNREFERENCED_PARAMETER(RegistryPath);

return STATUS_SUCCESS;
}

At some point, the driver may be unloaded. At that time, anything done in the DriverEntry function must
be undone. Failure to do so creates a leak, which the kernel will not clean up until the next reboot. Drivers
can have an Unload routine that is automatically called before the driver is unloaded from memory. Its
pointer must be set using the DriverUnload member of the driver object:

DriverObject->DriverUnload = SampleUnload;

The unload routine accepts the driver object (the same one passed to DriverEntry) and returns void. As
our sample driver has done nothing in terms of resource allocation in DriverEntry, there is nothing to
do in the Unload routine, so we can leave it empty for now:

void SampleUnload(_In_ PDRIVER_OBJECT DriverObject) {
UNREFERENCED_PARAMETER(DriverObject);

}

Here is the complete driver source at this point:

#include <ntddk.h>
void SampleUnload(_In_ PDRIVER_OBJECT DriverObject) {

UNREFERENCED_PARAMETER(DriverObject);

extern "C" NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {
UNREFERENCED_PARAMETER(RegistryPath);

DriverObject->DriverUnload = SampleUnload;

return STATUS_SUCCESS;

Deploying the Driver

Now that we have a successfully compiled Sample.sys driver file, let’s install it on a system and then load
it. Normally, you would install and load a driver on a virtual machine, to remove the risk of crashing your
primary machine. Feel free to do so, or take the slight risk with this minimalist driver.
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Installing a software driver, just like installing a user-mode service, requires calling the CreateService
API with proper arguments, or using a comparable tool. One of the well-known tools for this purpose
is Sc.exe (short for Service Control), a built-in Windows tool for managing services. We’ll use this tool
to install and then load the driver. Note that installation and loading of drivers is a privileged operation,
normally available for administrators.

Open an elevated command window and type the following (the last part should be the path on your
system where the SYS file resides):

sc create sample type= kernel binPath= c:\dev\sample\x64\debug\sample.sys

Note there is no space between type and the equal sign, and there is a space between the equal sign and
kernel; same goes for the second part.

If all goes well, the output should indicate success. To test the installation, you can open the registry editor
(regedit.exe) and look for the driver details at HKLM\System\CurrentControlSet\Services\Sample. Figure
2-3 shows a screenshot of the registry editor after the previous command.

%,. Registry Editor

File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SYSTEM\ CurrentControlSeth Services\sample

Rpclocator || Name Type Data

Rpcss 2] (Default) REG_SZ (value not set)
ReFx0301 24| ErrorControl REG_DWORD 0x0000000T (1)
ab|ImagePath REG_EXPAMND_SZ UhCADenSample\xtd\Debug\Sample.sys
2] Start REG_DWORD 000000003 (3)

74| Type REG_DWORD 0x00000001 (1)

rspndr
RstMiwservice
RtkAudicUniversal!
RtkUsbAD
RTSPER
rtuzxBdw10
RzActionSve
RzComman
RzDev 021e
RzKLService
s3cap

sample

Samss
shp2port
SCardSvr
ScDeviceEnum

scfilter

Srhadula
£ > £ >

Figure 2-3: Registry for an installed driver

To load the driver, we can use the Sc.exe tool again, this time with the start option, which uses the
StartService API to load the driver (the same API used to load services). However, on 64 bit systems
drivers must be signed, and so normally the following command would fail:

sc start sample
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Since it’s inconvenient to sign a driver during development (maybe even not possible if you don’t have
a proper certificate), a better option is to put the system into test signing mode. In this mode, unsigned
drivers can be loaded without a hitch.

With an elevated command window, test signing can be turned on like so:
bcdedit /set testsigning on

Unfortunately, this command requires a reboot to take effect. Once rebooted, the previous start command
should succeed.

test signing mode will fail. This is one of the settings protected by Secure Boot (local kernel
debugging is also protected by Secure Boot). If you can’t disable Secure Boot through BIOS
setting, because of IT policy or some other reason, your best option is to test on a virtual
machine.

n If you are testing on a Windows 10 (or later) system with Secure Boot enabled, changing the

There is yet another setting that you may need to specify if you intend to test the driver on pre-Windows
10 machine. In this case, you have to set the target OS version in the project properties dialog, as shown
in figure 2-4. Notice that I have selected all configurations and all platforms, so that when switching
configurations (Debug/Release) or platforms (x86/x64/ ARM/ARM64), the setting is maintained.

Sample Property Pages

Configuration: | All Configurations ~ | Platform: | All Platforms v Configuration Manager...
4 Configuration Properties Target OS5 Version Windows 7 ~
General Target Platform
Debugging _NT_TARGET_VERSION
ViC++ Directories Build Package
b C/Ce Override default Runtime Library
I Linker
4 Driver Settings
General
Diriver Model
Metwork Adapter Drive

Mobile Broadband Adz
USE Connector Manag
USB Role Switch Driver
USE Device Emulation
USE Type-C Port Contr

Driver Install

Build Events

Inf2Cat

Driver Signing

Wpp Tracing

Message Compiler

Counters Manifest Preprod | Target OS Version

Code Analysis Target operating version that this driver will be built for.

v v v v v v W

Cancel Apply

Figure 2-4: Setting Target OS Platform in the project properties
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Once test signing mode is on, and the driver is loaded, this is the output you should see:

c:/>sc start sample
SERVICE_NAME: sample

TYPE : 1 KERNEL_DRIVER
STATE : 4 RUNNING
(STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
WIN32_EXIT_CODE : 0 (0x0)
SERVICE_EXIT_CODE : @ (0x0)
CHECKPOINT %))
WAIT_HINT : 0x0
PID : 0
FLAGS

This means everything is well, and the driver is loaded. To confirm, we can open Process Explorer and
find the Sample.Sys driver image file. Figure 2-5 shows the details of the sample driver image loaded into
system space.

.‘;- Process Explorer - Sysinternals: www.sysinternals.com [VOYAGER\Pavel]

File Options View Process Find DLL Users Help

d@a=m0e < ad [ 0L, L, 1l 1] \ NN

Process FID CFU Private Bytes _ User Name Cartrol Flow Gu.. Vitual Size  Integr
[#=] svchost exe 58736 2683 K 5,360 K NT AUTHORITY\LOCAL 5... CFG 2151772 516 K Systen
[#Z]svchost exe 43464 <001 4724 K 15.888 K NT AUTHORITY\SYSTEM CFG 2.151.788.580 K Systen

SIS ystem 4 073 192 K 100 K NT AUTHORITY\SYSTEM n/a 3828 K Syste

Mame Description Company Name Path Basze 2
RtsPersys RTS PCIE READER Driver Realsil Semiconductor Comporation  C:AWINDOW S\ System 32 drivers'\RtsPer sys OxFFFFFB0657000000
RtUsbAG4 sys Realtek () USE Audio Driver Realtek Semiconductor Comp. CAWINDOWS'\system 32\drivers\Rt Usb AB4 sys DxFFFFFE0G98IF0000
tuxGdw 10.sys Realtek USB FE/GbE NIC NDIS6.... Realtek Corporation ... CAWINDOWS\System 32 drivers\rtuxGdw 10.e... (OxFFFFFB0658520000
Sample.sys C:\Dev\Sample'\x64\Debug'Sample sys O=FFFFF306388B0000
SgrmAgent sys System Guard Runtime Monitor Ag... Microsoft Corporation CAWINDOW S'system32\drivers" SgmAgent O FFFFFB0BE3710000
SleepStudyHelper sys Sleep Study Helper Microsoft Corporation CAWINDOWS'\system32\drivers'\Sleep Study ... (xFFFFFB0BE3G70000

paceport .sys Storage Spaces Driver Microsoft Corporation CAWINDOWS\System32\drivers\spaceport sys (xFFFFFB0BE4BS0000
SpbCx gy SPB Class Extension Microsoft Corparation CAWINDOW S'\system 32\drivers\SpbCu.sys (OxFFFFF2065ASED000 W
< >

CPU Usage: 19.63% Commit Charge: 83.35% Processes: 360 Physical Usage: 81.21%

Figure 2-5: sample driver image loaded into system space

At this point, we can unload the driver using the following command:

sc stop sample

Behind the scenes, sc.exe calls the ControlService API with the SERVICE_CONTROL_STOP value. Unload-
ing the driver causes the Unload routine to be called, which at this time does nothing. You can verify the
driver is indeed unloaded by looking at Process Explorer again; the driver image entry should not be there
anymore.

Simple Tracing

How can we know for sure that the DriverEntry and Unload routines actually executed? Let’s add basic
tracing to these functions. Drivers can use the DbgPrint function to output print f-style text that can be
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viewed using the kernel debugger, or some other tool.

Here is updated versions for DriverEntry and the Unload routine that use DbgPrint to trace the fact their
code executed:

void SampleUnload(PDRIVER_OBJECT DriverObject) {
UNREFERENCED_PARAMETER(DriverObject);

DbgPrint("Sample driver Unload called\n");

extern "C" NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {
UNREFERENCED_PARAMETER(RegistryPath);

DriverObject->DriverUnload = SampleUnload;
DbgPrint("Sample driver initialized successfully\n");

return STATUS_SUCCESS;
}

A more typical approach is to have these outputs in Debug builds only. This is because Dbgprint has some
overhead that you may want to avoid in Release builds. KdPrint is a macro that is only compiled in Debug
builds and calls the underlying DbgPrint kernel APL Here is a revised version that uses KdPrint:

void SampleUnload(PDRIVER_OBJECT DriverObject) {
UNREFERENCED_PARAMETER(DriverObject);

KdPrint(("Sample driver Unload called\n"));

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {
UNREFERENCED_PARAMETER(RegistryPath);
DriverObject->DriverUnload = SampleUnload;

KdPrint(("Sample driver initialized successfully\n"));

return STATUS_SUCCESS,;
}

Notice the double parenthesis when using KdPrint. This is required because KdPrint is a macro, but
apparently accepts any number of arguments, a-laprint£. Since macros cannot receive a variable number
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of parameters, a compiler trick is used to call the DbgPrint function that does accept a variable number
of parameters.

With these statements in place, we would like to load the driver again and see these messages. We’ll use a
kernel debugger in chapter 4, but for now we’ll use a useful Sysinternals tool named DebugView.

Before running DebugView, you’ll need to make some preparations. First, starting with Windows Vista,
DbgPrint output is not actually generated unless a certain value is in the registry. You’ll have to add
a key named Debug Print Filter under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager (the
key typically does not exist). Within this new key, add a DWORD value named DEFAULT (not the default
value that exists in any key) and set its value to 8 (technically, any value with bit 3 set will do). Figure 2-6
shows the setting in RegEdit. Unfortunately, you’ll have to restart the system for this setting to take effect.

5 Registry Editor

File Edit Yiew Favorites Help
Computen\HEKEY_LOCAL MACHINE\SYSTEMA CurrentControlSet\ Control\Session Manager\Debug Print Filter

) ServiceProvider || Mame Type Data

v [ Session Manager 28] (Default) REG_SZ (value not set)
Apisetschemabdensions %) DEFAULT REG_DWORD 0x00000008 (2]
AppCompatCache h

Configuration Manager
Debug Print Filter

D05 Devices
Environment
Executive
FileRenameOperations
1/0 System

kernel

KnownDLLs

Memory Management
NamespaceSeparation
Power

Quota System
SubSystemns

WPA i
< > < >

Figure 2-6: Debug Print Filter key in the registry

Once this setting has been applied, run DebugView (DbgView.exe) elevated. In the Options menu, make
sure Capture Kernel is selected (or press Ctrl+K). You can safely deselect Capture Win32 and Capture
Global Win32, so that user-mode output from various processes does not clutter the display.

2-6 if you select Enable Verbose Kernel Output from its Capture menu. However, it seems this

’ DebugView is able to show kernel debug output even without the Registry value shown in figure
option does not work on Windows 11, and the Registry setting is necessary.

Build the driver, if you haven’t already. Now you can load the driver again from an elevated command
window (sc start sample). You should see output in DebugView as shown in figure 2-7. If you unload
the driver, you’ll see another message appearing because the Unload routine was called. (The third output
line is from another driver and has nothing to do with our sample driver)
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. DebugView on \WWOYAGER (local)

File Edit Capture Opticns Computer Help
2EdEd | Q[ E- A EBEBC ¢F | M

# Time Debug Print

1 21:17:44 Sample driver initialized successfully

2 21:17:48 Sample driver Unload called

3 21:17:48 received arp reguest through adapter 1, for 158.14.168.192

Figure 2-7: Sysinternals DebugView Output

build number. Use the Rt 1GetVersion function to retrieve the information. Check the results

f Add code to the sample DriverEntry to output the Windows OS version: major, minor, and
with DebugView.

Summary

We’ve seen the tools you need to have for kernel development and wrote a very minimalistic driver to
prove the basic tools work. In the next chapter, we’ll look at the fundamental building blocks of kernel
APIs, concepts, and fundamental structures.
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In this chapter, we’ll dig deeper into kernel APIs, structures, and definitions. We’ll also examine some of
the mechanisms that invoke code in a driver. Finally, we’ll put all that knowledge together to create our
first functional driver and client application.

In this chapter:

+ General Kernel Programming Guidelines
« Debug vs. Release Builds

+ The Kernel API

+ Functions and Error Codes

« Strings

« Dynamic Memory Allocation

+ Linked Lists

« Object Attributes

+ The Driver Object

« Device Objects

General Kernel Programming Guidelines

Developing kernel drivers requires the Windows Driver Kit (WDK), where the appropriate headers and
libraries needed are located. The kernel APIs consist of C functions, very similar in essence to user-mode
APIs. There are several differences, however. Table 3-1 summarizes the important differences between
user-mode programming and kernel-mode programming.

Table 3-1: Differences between user mode and kernel mode development

User Mode Kernel Mode

Unhandled Exceptions ~ Unhandled exceptions crash the process Unhandled exceptions crash the system

Termination When a process terminates, all private If a driver unloads without freeing
memory and resources are freed everything it was using, there is a leak,
automatically only resolved in the next boot

Return values API errors are sometimes ignored Should (almost) never ignore errors

IRQL Always PASSIVE_LEVEL (0) May be DISPATCH_LEVEL (2) or higher
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Table 3-1: Differences between user mode and kernel mode development
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User Mode Kernel Mode

Bad coding Typically localized to the process Can have system-wide effects

Testing and Debugging  Typical testing and debugging done on Debugging must be done with another
the developer’s machine machine

Libraries Can use almost any C/C++ library (e.g. Most standard libraries cannot be used
STL, boost)

Exception Handling Can use C++ exceptions or Structured Only SEH can be used
Exception Handling (SEH)

C++ Usage Full C++ runtime available No C++ runtime

Unhandled Exceptions

Exceptions occurring in user-mode that are not caught by the program cause the process to terminate
prematurely. Kernel-mode code, on the other hand, being implicitly trusted, cannot recover from an
unhandled exception. Such an exception causes the system to crash with the infamous Blue screen of
death (BSOD) (newer versions of Windows have more diverse colors for the crash screen). The BSOD may
first appear to be a form of punishment, but it’s essentially a protection mechanism. The rationale being
it, is that allowing the code to continue execution could cause irreversible damage to Windows (such as
deleting important files or corrupting the registry) that may cause the system to fail boot. It’s better, then,
to stop everything immediately to prevent potential damage. We’ll discuss the BSOD in more detail in
chapter 6.

All this leads to at least one conclusion: kernel code must be meticulously programmed, and no details like
error checking should be skipped.

Termination

When a process terminates, for whatever reason - either normally, because of an unhandled exception,
or terminated by external code - it never leaks anything: all private memory is freed, and all handles are
closed. Of course, premature handle closing may cause some loss of data, such as a file handle being closed
before flushing some data to disk - but there are no resource leaks beyond the lifetime of the process; this
is guaranteed by the kernel.

Kernel drivers, on the other hand, don’t provide such a guarantee. If a driver unloads while still holding
onto allocated memory or open kernel handles - these resources will not be freed automatically, only
released at the next system boot.

Why is that? Can’t the kernel keep track of a driver’s allocations and resource usage so these can be freed
automatically when the driver unloads?

Theoretically, this would have been possible to achieve (although currently the kernel does not track such
resource usage). The real issue is that it would be too dangerous for the kernel to attempt such cleanup.
The kernel has no way of knowing whether the driver leaked those resources for a reason; for example, the
driver could allocate some buffer and then pass it to another driver, with which it cooperates. That second
driver may use the memory buffer and free it eventually. If the kernel attempted to free the buffer when
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the first driver unloads, the second driver would cause an access violation when accessing that now-freed
buffer, causing a system crash.

This emphasizes the responsibility of a kernel driver to properly clean up allocated resources; no one else
will do it.

Function Return Values

In typical user-mode code, return values from API functions are sometimes ignored, the developer being
somewhat optimistic that the called function is unlikely to fail. This may or may not be appropriate for
one function or another, but in the worst case, an unhandled exception would later crash the process; the
system, however, remains intact.

Ignoring return values from kernel APIs is much more dangerous (see the previous Termination section),
and generally should be avoided. Even seemingly “innocent” looking functions can fail for unexpected
reasons, so the golden rule here is - always check return status values from kernel APIs.

IRQL

Interrupt Request Level (IRQL) is an important kernel concept that will be further discussed in chapter 6.
Suffice it to say at this point that normally a processor’s IRQL is zero, and in particular it’s always zero
when user-mode code is executing. In kernel mode, it’s still zero most of the time - but not all the time.
Some restrictions on code execution exist at IRQL 2 and higher, which means the driver writer must be
careful to use only allowed APIs at that high IRQL. The effects of higher than zero IRQLs are discussed in
chapter 6.

C++ Usage

In user mode programming, C++ has been used for many years, and it works well when combined with
user-mode Windows APIs. With kernel code, Microsoft started officially supporting C++ with Visual
Studio 2012 and WDK 8. C++ is not mandatory, of course, but it has some important benefits related
to resource cleanup, with a C++ idiom called Resource Acquisition Is Initialization (RAII). We’ll use this
RAII idiom quite a bit to make sure we don’t leak resources.

C++ as a language is almost fully supported for kernel code. But there is no C++ runtime in the kernel,
and so some C++ features just cannot be used:

+ The new and delete operators are not supported and will fail to compile. This is because their
normal operation is to allocate from a user-mode heap, which is irrelevant within the kernel. The
kernel APT has “replacement” functions that are more closely modeled after the C functionsmalloc
and free. We'll discuss these functions later in this chapter. It is possible, however, to overload
the new and delete operators similarly as is sometimes done in user-mode, and invoke the kernel
allocation and free functions in the implementation. We'll see how to do that later in this chapter
as well.

+ Global variables that have non-default constructors will not be called - there is no C/C++ runtime
to call these constructors. These situations must be avoided, but there are some workarounds:



Chapter 3: Kernel Programming Basics 36

— Avoid any code in the constructor and instead create some Init function to be called explicitly
from driver code (e.g. from DriverEntry).

— Allocate a pointer only as a global (or static) variable, and create the actual instance
dynamically. The compiler will generate the correct code to invoke the constructor. This
works assuming the new and delete operators have been overloaded, as described later in
this chapter.

+ The C++ exception handling keywords (try, catch, throw) do not compile. This is because the
C++ exception handling mechanism requires its own runtime, which is not present in the kernel.
Exception handling can only be done using Structured Exception Handling (SEH) - a kernel
mechanism to handle exceptions. We’ll take a detailed look at SEH in chapter 6.

o The standard C++ libraries are not available in the kernel. Although most are template-based, these
do not compile, because they may depend on user-mode libraries and semantics. That said, C++
templates as a language feature work just fine. One good usage of templates is to create alternatives
for a kernel-mode library types, based on similar types from the user-mode standard C++ library,
such as std: :vector<>, std: :wstring, etc.

The code examples in this book make some use of C++. The features mostly used in the code examples
are:

» The nullptr keyword, representing a true NULL pointer.

« Theauto keyword that allows type inference when declaring and initializing variables. This is useful
to reduce clutter, save some typing, and focus on the important pieces.

« Templates will be used where they make sense.

« Overloading of the new and delete operators.

» Constructors and destructors, especially for building RAII types.

Any C++ standard can be used for kernel development. The Visual Studio setting for new projects is to
use C++ 14. However, you can change the C++ compiler standard to any other setting, including C++ 20
(the latest standard as of this writing). Some features we’ll use later will depend on C++ 17 at least.

Strictly speaking, kernel drivers can be written in pure C without any issues. If you prefer to go that route,
use files with a C extension rather than CPP. This will automatically invoke the C compiler for these files.

Testing and Debugging

With user-mode code, testing is generally done on the developer’s machine (if all required dependencies
can be satisfied). Debugging is typically done by attaching the debugger (Visual Studio in most cases) to
the running process or launching an executable and attaching to the process.

With kernel code, testing is typically done on another machine, usually a virtual machine hosted on
the developer’s machine. This ensures that if a BSOD occurs, the developer’s machine is unaffected.
Debugging kernel code must be done with another machine, where the actual driver is executing. This
is because hitting a breakpoint in kernel-mode freezes the entire machine, not just a particular process.
The developer’s machine hosts the debugger itself, while the second machine (again, usually a virtual
machine) executes the driver code. These two machines must be connected through some mechanism
so data can flow between the host (where the debugger is running) and the target. We’ll look at kernel
debugging in more detail in chapter 5.
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Debug vs. Release Builds

Just like with user-mode projects, building kernel drivers can be done in Debug or Release mode. The
differences are similar to their user-mode counterparts - Debug builds use no compiler optimizations by
default, but are easier to debug. Release builds utilize full compiler optimizations by default to produce
the fastest and smallest code possible. There are a few differences, however.

The terms in kernel terminology are Checked (Debug) and Free (Release). Although Visual Studio kernel
projects continue to use the Debug/Release terms, older documentation uses the Checked/Free terms. From
a compilation perspective, kernel Debug builds define the symbol DBG and set its value to 1 (compared to
the _DEBUG symbol defined in user mode). This means you can use the DBG symbol to distinguish between
Debug and Release builds with conditional compilation. This is, for example, what the KdPrint macro
does: in Debug builds, it compiles to calling DbgPrint, while in Release builds it compiles to nothing,
resulting in KdPrint calls having no effect in Release builds. This is usually what you want because these
calls are relatively expensive. We'll discuss other ways of logging information in chapter 5.

The Kernel API

Kernel drivers use exported functions from kernel components. These functions will be referred to as the
Kernel APL Most functions are implemented within the kernel module itself (NtOskrnl.exe), but some may
be implemented by other kernel modules, such the HAL (hal.dll).

The Kernel API is a large set of C functions. Most of these start with a prefix suggesting the component
implementing that function. Table 3-2 shows some of the common prefixes and their meaning:

Table 3-2: Common kernel API prefixes

Prefix Meaning Example

Ex General executive functions ExAllocatePoolWithTag
Ke General kernel functions KeAcquireSpinLock

Mm Memory manager MmProbeAndLockPages
Rt1 General runtime library RtlInitUnicodeString
FsRtl file system runtime library FsRtlGetFileSize

Flt file system mini-filter library FltCreateFile

Ob Object manager ObReferenceOb ject

Io I/O manager IoCompleteRequest

Se Security SeAccessCheck

Ps Process manager PsLookupProcessByProcessId
Po Power manager PoSetSystemState

Wmi Windows management instrumentation WmiTraceMessage

Zw Native API wrappers ZwCreateFile
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Table 3-2: Common kernel API prefixes

Prefix Meaning Example
Hal Hardware abstraction layer HalExamineMBR
Cm Configuration manager (registry) CmRegisterCallbackEx

If you take a look at the exported functions list from NtOsKrnl.exe, you’ll find many functions that are
not documented in the Windows Driver Kit; this is just a fact of a kernel developer’s life - not everything
is documented.

One set of functions bears discussion at this point - the Zw prefixed functions. These functions mirror
native APIs available as gateways from NtDILDIl with the actual implementation provided by the
Executive. When an Nt function is called from user mode, such as NtCreateFile, it reaches the Executive
at the actual NtCreateFile implementation. At this point, NtCreateF ile might do various checks based
on the fact that the original caller is from user mode. This caller information is stored on a thread-by-thread
basis, in the undocumented PreviousMode member in the KTHREAD structure for each thread.

You can query the previous processor mode by calling the documented ExGetPreviousMode APIL.

On the other hand, if a kernel driver needs to call a system service, it should not be subjected to the
same checks and constraints imposed on user-mode callers. This is where the Zw functions come into play.
Calling a Zw function sets the previous caller mode to KernelMode (0) and then invokes the native function.
For example, calling ZwCreateFile sets the previous caller to KernelMode and then calls NtCreateFile,
causing NtCreateFile to bypass some security and buffer checks that would otherwise be performed. The
bottom line is that kernel drivers should call the Zw functions unless there is a compelling reason to do
otherwise.

Functions and Error Codes

Most kernel API functions return a status indicating success or failure of an operation. This is typed as
NTSTATUS, a signed 32-bit integer. The value STATUS_SUCCESS (0) indicates success. A negative value
indicates some kind of error. You can find all the defined NTSTATUS values in the file <ntstatus.h>.

Most code paths don’t care about the exact nature of the error, and so testing the most significant bit is
enough to find out whether an error occurred. This can be done with the NT_SUCCESS macro. Here is an
example that tests for failure and logs an error if that is the case:
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NTSTATUS DoWork() {
NTSTATUS status = CallSomeKernelFunction();
if(INT_SUCCESS(status)) {
KdPrint((L"Error occurred: 0x%08X\n", status));
return status;

// continue with more operations

return STATUS_SUCCESS;

In some cases, NTSTATUS values are returned from functions that eventually bubble up to user mode. In
these cases, the STATUS_xxx value is translated to some ERROR_yyy value that is available to user-mode
through the GetLastError function. Note that these are not the same numbers; for one, error codes in
user-mode have positive values (zero is still success). Second, the mapping is not one-to-one. In any case,
this is not generally a concern for a kernel driver.

Internal kernel driver functions also typically return NTSTATUS to indicate their success/failure status. This
is usually convenient, as these functions make calls to kernel APIs and so can propagate any error by simply
returning the same status they got back from the particular API. This also implies that the “real” return
values from driver functions is typically returned through pointers or references provided as arguments
to the function.

P Return NTSTATUS from your own functions. It will make it easier and consistent to report errors.

Strings

The kernel API uses strings in many scenarios as needed. In some cases, these strings are simple Unicode
pointers (wchar_t* or one of their typedefs such as WCHAR*), but most functions dealing with strings
expect a structure of type UNICODE_STRING.

The term Unicode as used in this book is roughly equivalent to UTF-16, which means 2 bytes per character.
This is how strings are stored internally within kernel components. Unicode in general is a set of standards
related to character encoding. You can find more information at https://unicode.org.

The UNICODE_STRING structure represents a string with its length and maximum length known. Here is a
simplified definition of the structure:


https://unicode.org

Chapter 3: Kernel Programming Basics

40

typedef struct _UNICODE_STRING {

USHORT Length;
USHORT MaximumlLength;
PWCH Buffer;

} UNICODE_STRING;

typedef UNICODE_STRING *PUNICODE_STRING;
typedef const UNICODE_STRING *PCUNICODE_STRING;

The Length member is in bytes (not characters) and does not include a Unicode-NULL terminator, if one
exists (aNULL terminator is not mandatory). The MaximumLength member is the number of bytes the string
can grow to without requiring a memory reallocation.

Manipulating UNICODE_STRING structures is typically done with a set of Rtl functions that deal specifically
with strings. Table 3-3 lists some of the common functions for string manipulation provided by the Rtl

functions.
Table 3-3: Common UNICODE_STRING functions

Function Description

RtlInitUnicodeString Initializes a UNICODE_STRING based on an existing C-string pointer. It
sets Buffer, then calculates the Length and sets MaximumLength to the
same value. Note that this function does not allocate any memory - it
just initializes the internal members.

Rt1CopyUnicodeString Copies one UNICODE_STRING to another. The destination string pointer

(Buffer) must be allocated before the copy and MaximumLength set
appropriately.

Rt1CompareUnicodeString

Compares two UNICODE_STRINGs (equal, less, greater), specifying
whether to do a case sensitive or insensitive comparison.

Rt1lEqualUnicodeString

Compares two UNICODE_STRINGs for equality, with case sensitivity
specification.

Rt1AppendUnicodeStringToString

Appends one UNICODE_STRING to another.

Rt1AppendUnicodeToString

Appends UNICODE_STRING to a C-style string.

In addition to the above functions, there are functions that work on C-string pointers. Moreover, some of
the well-known string functions from the C Runtime Library are implemented within the kernel as well
for convenience: wcscpy_s, wescat_s, weslen, wescpy_s, weschr, strepy, strepy_s and others.

suffix _s in some functions indicates a safe function, where an additional argument indicating

e The wcs prefix works with C Unicode strings, while the str prefix works with C Ansi strings. The

the maximum length of the string must be provided so the function would not transfer more

data than that size.

functions if you do use these in code.

’ Never use the non-safe functions. You can include <dontuse.h> to get errors for deprecated
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Dynamic Memory Allocation

Drivers often need to allocate memory dynamically. As discussed in chapter 1, kernel thread stack size is
rather small, so any large chunk of memory should be allocated dynamically.

The kernel provides two general memory pools for drivers to use (the kernel itself uses them as well).

« Paged pool - memory pool that can be paged out if required.
« Non-Paged Pool - memory pool that is never paged out and is guaranteed to remain in RAM.

Clearly, the non-paged pool is a “better” memory pool as it can never incur a page fault. We’ll see later in
this book that some cases require allocating from non-paged pool. Drivers should use this pool sparingly,
only when necessary. In all other cases, drivers should use the paged pool. The POOL_TYPE enumeration
represents the pool types. This enumeration includes many “types” of pools, but only three should be used
by drivers: PagedPool, NonPagedPool, NonPagedPoolNx (non-page pool without execute permissions).

Table 3-4 summarizes the most common functions used for working with the kernel memory pools.

Table 3-4: Functions for kernel memory pool allocation

Function Description

ExAllocatePool Allocate memory from one of the pools with a default tag. This function is
considered obsolete. The next function in this table should be used instead

ExAllocatePoolWithTag Allocate memory from one of the pools with the specified tag

ExAllocatePoolZero Same as ExAllocatePoolWithTag, but zeroes out the memory block

ExAllocatePoolWithQuotaTag Allocate memory from one of the pools with the specified tag and charge the
current process quota for the allocation

ExFreePool Free an allocation. The function knows from which pool the allocation was
made

reverse). Older Windows versions used * mdW (WDM in reverse). You should avoid

e ExAllocatePool calls ExAllocatePoolWithTag using the tag enoN (the word “none” in
this function and use ExAllocatePoolWithTag' instead.

ExAllocatePoolZero is implemented inline in wdm.h by calling ExAllocatePoolWithTag
and adding the POOL_ZERO_ALLOCATION (=1024) flag to the pool type.

Other memory management functions are covered in chapter 8, “Advanced Programming Techniques”.

The tag argument allows “tagging” an allocation with a 4-byte value. Typically this value is comprised
of up to 4 ASCII characters logically identifying the driver, or some part of the driver. These tags can be
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used to help identify memory leaks - if any allocations tagged with the driver’s tag remain after the driver
is unloaded. These pool allocations (with their tags) can be viewed with the Poolmon WDK tool, or my
own PoolMonXv2 tool (downloadable from http://www.github.com/zodiacon/AllTools). Figure 3-1 shows
a screenshot of PoolMonXv2.
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Figure 3-1: PoolMonXv2

You must use tags comprised of printable ASCII characters. Otherwise, running the driver
under the control of the Driver Verifier (described in chapter 11) would lead to Driver Verifier
complaining.

The following code example shows memory allocation and string copying to save the registry path passed
to DriverEntry, and freeing that string in the Unload routine:


http://www.github.com/zodiacon/AllTools
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// define a tag (because of little endianness, viewed as 'abcd')
#define DRIVER_TAG 'dcba'
UNICODE_STRING g_RegistryPath;

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) ({
UNREFERENCED_PARAMETER(DriverObject);
DriverObject->DriverUnload = SampleUnload;

g_RegistryPath.Buffer = (WCHAR*)ExAllocatePoolWithTag(PagedPool,
RegistryPath->Length, DRIVER_TAG);

if (g_RegistryPath.Buffer == nullptr) {
KdPrint(("Failed to allocate memory\n"));
return STATUS_INSUFFICIENT_RESOURCES;

g_RegistryPath.MaximumLength = RegistryPath->Length;
Rt1CopyUnicodeString(&g_RegistryPath,
(PCUNICODE_STRING)RegistryPath);

// #wZ is for UNICODE_STRING objects

KdPrint(("Original registry path: %wZ\n", RegistryPath));
KdPrint(("Copied registry path: %wZ\n", &g_RegistryPath));
Y/

return STATUS_SUCCESS;

void SampleUnload(_In_ PDRIVER_OBJECT DriverObject) {
UNREFERENCED_PARAMETER(DriverObject);

ExFreePool (g_RegistryPath.Buffer);
KdPrint(("Sample driver Unload called\n"));

Linked Lists

The kernel uses circular doubly linked lists in many of its internal data structures. For example, all processes
on the system are managed by EPROCESS structures, connected in a circular doubly linked list, where its
head is stored in the kernel variable PsActiveProcessHead.

All these lists are built in the same way, centered around the LIST_ENTRY structure defined like so:
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typedef struct _LIST_ENTRY {
struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;

} LIST_ENTRY, *PLIST_ENTRY;

Figure 3-2 depicts an example of such a list containing a head and three instances.

L list head
|<<> »> »>

Figure 3-2: Circular linked list

One such structure is embedded inside the real structure of interest. For example, in the EPROCESS structure,
the member ActiveProcessLinks is of type LIST_ENTRY, pointing to the next and previous LIST_ENTRY
objects of other EPROCESS structures. The head of a list is stored separately; in the case of the process,
that’s PsActiveProcessHead.

To get the pointer to the actual structure of interest given the address of a LIST_ENTRY can be obtained
with the CONTAINING_RECORD macro.

For example, suppose you want to manage a list of structures of type MyDataltem defined like so:

struct MyDataltem {
// some data members
LIST_ENTRY Link;

// more data members

};

When working with these linked lists, we have a head for the list, stored in a variable. This means that
natural traversal is done by using the F1ink member of the list to point to the next LIST_ENTRY in the list.
Given a pointer to the LIST_ENTRY, what we’re really after is the MyDataItem that contains this list entry
member. This is where the CONTAINING_RECORD comes in:

MyDataltem* GetItem(LIST_ENTRY* pEntry) {
return CONTAINING_RECORD(pEntry, MyDataltem, Link):

The macro does the proper offset calculation and does the casting to the actual data type (MyDataltem in
the example).

Table 3-5 shows the common functions for working with these linked lists. All operations use constant
time.
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Table 3-5: Functions for working with circular linked lists

Function

Description

InitializelistHead

Initializes a list head to make an empty list. The forward and back pointers
point to the forward pointer.

InsertHeadlList Insert an item to the head of the list.
InsertTaillist Insert an item to the tail of the list.
IsListEmpty Check if the list is empty.
RemoveHeadlList Remove the item at the head of the list.

RemoveTaillist

Remove the item at the tail of the list.

RemoveEntrylList

Remove a specific item from the list.

ExInterlockedInsertHeadlList

Insert an item at the head of the list atomically by using the specified
spinlock.

ExInterlockedInsertTaillist

Insert an item at the tail of the list atomically by using the specified spinlock.

ExInterlockedRemoveHeadlList

Remove an item from the head of the list atomically by using the specified

spinlock.

The last three functions in table 3-4 perform the operation atomically using a synchronization primitive
called a spin lock. Spin locks are discussed in chapter 6.

The Driver Object

We've already seen that the DriverEntry function accepts two arguments, the first is a driver object
of some kind. This is a semi-documented structure called DRIVER_OBJECT defined in the WDK headers.
“Semi-documented” means that some of its members are documented for driver’s use and some are not.
This structure is allocated by the kernel and partially initialized. Then it’s provided to DriverEntry (and
before the driver unloads to the Unload routine as well). The role of the driver at this point is to further
initialize the structure to indicate what operations are supported by the driver.

We’ve seen one such “operation” in chapter 2 - the Unload routine. The other important set of operations
to initialize are called Dispatch Routines. This is an array of function pointers, stored in the in the
MajorFunction member of DRIVER_OBJECT. This set specifies which operations the driver supports, such
as Create, Read, Write, and so on. These indices are defined with the IRP_MJ_ prefix. Table 3-6 shows
some common major function codes and their meaning.
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Table 3-6: Common major function codes

Major function Description

IRP_MJ_CREATE (0) Create operation. Typically invoked for CreateFile or
ZwCreateFile calls.

IRP_MJ_CLOSE (2) Close operation. Normally invoked for CloseHandle or ZwClose.

IRP_MJ_READ (3) Read operation. Typically invoked for ReadFile, ZwReadFile and
similar read APIs.

IRP_MJ_WRITE (4) Write operation. Typically invoked for WriteFile, ZwWriteFile,
and similar write APIs.

IRP_MJ_DEVICE_CONTROL (14) Generic call to a driver, invoked because of DeviceloControl or

ZwDeviceloControlFile calls.
IRP_MJ_INTERNAL_DEVICE_CONTROL (15)  Similar to the previous one, but only available for kernel-mode
callers.
IRP_MJ_SHUTDOWN (16) Called when the system shuts down if the driver has registered for
shutdown notification with IoRegisterShutdownNotification.

IRP_MJ_CLEANUP (18) Invoked when the last handle to a file object is closed, but the file
object’s reference count is not zero.

IRP_MJ_PNP (31) Plug and play callback invoked by the Plug and Play Manager.
Generally interesting for hardware-based drivers or filters to such
drivers.

IRP_MJ_POWER (22) Power callback invoked by the Power Manager. Generally
interesting for hardware-based drivers or filters to such drivers.

Initially, the MajorFunction array is initialized by the kernel to point to a kernel internal routine,
IopInvalidDeviceRequest, which returns a failure status to the caller, indicating the operation is not
supported. This means the driver, in its DriverEntry routine only needs to initialize the actual operations
it supports, leaving all the other entries in their default values.

For example, our Sample driver at this point does not support any dispatch routines, which means there
is no way to communicate with the driver. A driver must at least support the IRP_MJ_CREATE and IRP_-
MJ_CLOSE operations, to allow opening a handle to one of the device objects for the driver. We’ll put these
ideas into practice in the next chapter.

Object Attributes

One of the common structures that shows up in many kernel APIs is OBJECT_ATTRIBUTES, defined like
so:
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typedef struct _OBJECT_ATTRIBUTES {
ULONG Length;
HANDLE RootDirectory;
PUNICODE_STRING ObjectName;
ULONG Attributes;
PVOID SecurityDescriptor; // SECURITY_DESCRIPTOR
PVOID SecurityQualityOfService; // SECURITY_QUALITY OF _SERVICE
} OBJECT_ATTRIBUTES;
typedef OBJECT_ATTRIBUTES *POBJECT_ATTRIBUTES;
typedef CONST OBJECT_ATTRIBUTES *PCOBJECT_ATTRIBUTES;

The structure is typically initialized with the InitializeObjectAttributes macro, that allows specify-
ing all the structure members except Length (set automatically by the macro), and SecurityQualityOfService,
which is not normally needed. Here is the description of the members:

« ObjectName is the name of the object to be created/located, provided as a pointer to a UNICODE _-
STRING. In some cases it may be ok to set it to NULL. For example, the ZwOpenProcess allows opening
a handle to a process given its PID. Since processes don’t have names, the Ob jectName in this case
should be initialized to NULL.

« RootDirectory is an optional directory in the object manager namespace if the name of the object
is relative one. If ObjectName specifies a fully-qualified name, RootDirectory should be set to
NULL.

«+ Attributes allows specifying a set of flags that have effect on the operation in question. Table 3-7

shows the defined flags and their meaning.

SecurityDescriptor is an optional security descriptor (SECURITY_DESCRIPTOR) to set on the

newly created object. NULL indicates the new object gets a default security descriptor, based on

the caller’s token.

SecurityQualityOfService is an optional set of attributes related to the new object’s imper-
sonation level and context tracking mode. It has no meaning for most object types. Consult the
documentation for more information.

Table 3-7: Object attributes flags

Flag (0BJ_) Description
INHERIT (2) The returned handle should be marked as inheritable
PERMANENT (0x10) The object created should be marked as permanent. Permanent

objects have an additional reference count that prevents them
from dying even if all handles to them are closed

EXCLUSIVE (0x20) If creating an object, the object is created with exclusive access.
No other handles can be opened to the object. If opening an
object, exclusive access is requested, which is granted only if the
object was originally created with this flag

CASE_INSENSITIVE (0x40) When opening an object, perform a case insensitive search for its
name. Without this flag, the name must match exactly
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Table 3-7: Object attributes flags

Flag (0BJ_) Description

OPENIF (0x80) Open the object if it exists. Otherwise, fail the operation (don’t
create a new object)

OPENLINK (0x100) If the object to open is a symbolic link object, open the symbolic
link object itself, rather than following the symbolic link to its
target

KERNEL_HANDLE (0x200) The returned handle should be a kernel handle. Kernel handles
are valid in any process context, and cannot be used by user mode
code

FORCE_ACCESS_CHECK (0x400) Access checks should be performed even if the object is opened in

KernelMode access mode

IGNORE_IMPERSONATED_DEVICEMAP (0x800)  Use the process device map instead of the user’s if it’s
impersonating (consult the documentation for more information
on device maps)

DONT_REPARSE (0x1000) Don’t follow a reparse point, if encountered. Instead an error is
returned (STATUS_REPARSE_POINT_ENCOUNTERED). Reparse points
are briefly discussed in chapter 11

A second way to initialize an OBJECT_ATTRIBUTES structure is available with the RTL_CONSTANT_OBJECT_-
ATTRIBUTES macro, that uses the most common members to set - the object’s name and the attributes.

Let’s look at a couple of examples that use OBJECT_ATTRIBUTES. The first one is a function that opens a
handle to a process given its process ID. For this purpose, we’ll use the ZwOpenProcess API, defined like
so:

NTSTATUS ZwOpenProcess (

_Out_ PHANDLE ProcessHandle,

_In_ ACCESS_MASK DesiredAccess,

_In_ POBJECT_ATTRIBUTES ObjectAttributes,
_In_opt_ PCLIENT_ID ClientlId);

It uses yet another common structure, CLIENT_ID that holds a process and/or a thread ID:

typedef struct _CLIENT_ID {
HANDLE UniqueProcess; // PID, not handle
HANDLE UniqueThread; // TID, not handle
} CLIENT_ID;
typedef CLIENT_ID *PCLIENT_ID;

To open a process, we need to specify the process ID in the UniqueProcess member. Note that although
the type of UniqueProcess is HANDLE, it is the unique ID of the process. The reason for the HANDLE type
is that process and thread IDs are generated from a private handle table. This also explains why process
and thread IDs are always multiple of four (just like normal handles), and why they don’t overlap.

With these details at hand, here is a process opening function:
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NTSTATUS

OpenProcess(ACCESS_MASK accessMask, ULONG pid, PHANDLE phProcess) {
CLIENT_ID cid;
cid.UniqueProcess = ULongToHandle(pid);
cid.UniqueThread = nullptr;

OBJECT_ATTRIBUTES procAttributes =
RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, OBJ_KERNEL_HANDLE);
return ZwOpenProcess(phProcess, accessMask, &procAttributes, &cid);

}

The ULongToHandle function performs the required casts so that the compiler is happy (HANDLE is 64-bit
on a 64-bit system, but ULONG is always 32-bit). The only member used in the above code from OBJECT_-
ATTRIBUTES is the Attributes flags.

The second example is a function that opens a handle to a file for read access, by using the ZwOpenFile
API, defined like so:

NTSTATUS ZwOpenFile(
_Out_  PHANDLE FileHandle,

_In_ ACCESS_MASK DesiredAccess,

_In_ POBJECT_ATTRIBUTES ObjectAttributes,
_Out_  PIO_STATUS_BLOCK IoStatusBlock,
_In_ ULONG ShareAccess,

_In_ ULONG OpenOptions);

A full discussion of the parameters to ZwOpenFile is reserved for chapter 11, but one thing is obvious: the
file name itself is specified using the OBJECT_ATTRIBUTES structure - there is no separate parameter for
that. Here is the full function opening a handle to a file for read access:

NTSTATUS OpenFileForRead(PCWSTR path, PHANDLE phFile) {
UNICODE_STRING name;
RtlInitUnicodeString(&name, path);

OBJECT_ATTRIBUTES fileAttributes;
InitializeObjectAttributes(&fileAttributes, &name,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE, nullptr, nullptr);
TO_STATUS_BLOCK ioStatus;
return ZwOpenFile(phFile, FILE_GENERIC_READ,
&fileAttributes, &ioStatus, FILE_SHARE_READ, 0);
}

InitializeObjectAttributes is used to initialize the OBUECT_ATTRIBUTES structure, although the RTL _-
CONSTANT_OBJECT_ATTRIBUTES could have been used just as well, since we’re only specifying the name
and attributes. Notice the need to turn the passed-in NULL-terminated C-string pointer into a UNICODE_-
STRING with Rt1InitUnicodeString.
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Device Objects

Although a driver object may look like a good candidate for clients to talk to, this is not the case. The
actual communication endpoints for clients are device objects. Device objects are instances of the semi-
documented DEVICE_OBJECT structure. Without device objects, there is no one to talk to. This means that
at least one device object should be created by the driver and given a name, so that it may be contacted
by clients.

The CreateFile function (and its variants) accepts a first argument which is called “file name” in the
documentation, but really this should point to a device object’s name, where an actual file system file
is just one particular case. The name CreateFile is somewhat misleading - the word “file” here means
“file object”. Opening a handle to a file or device creates an instance of the kernel structure FILE_OBJECT,
another semi-documented structure.

More precisely, CreateFile accepts a symbolic link, a kernel object that knows how to point to another
kernel object. (You can think of a symbolic link as similar in principle to a file system shortcut.) All the
symbolic links that can be used from the user mode CreateFile or CreateFile2 calls are located in
the Object Manager directory named ??. You can see the contents of this directory with the Sysinternals
WinObj tool. Figure 3-3 shows this directory (named Global?? in WinObj).
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Figure 3-3: Symbolic links directory in WinObj

Some of the names seem familiar, such as C:, Aux, Con, and others. Indeed, these are valid “file names”
for CreateFile calls. Other entries look like long cryptic strings, and these in fact are generated by the
I/O system for hardware-based drivers that call the IoRegisterDeviceInter face APL These types of
symbolic links are not useful for the purpose of this book.

Most of the symbolic links in the \?? directory point to an internal device name under the \Device directory.
The names in this directory are not directly accessible by user-mode callers. But they can be accessed by
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kernel callers using the IoGetDeviceObjectPointer APIL

A canonical example is the driver for Process Explorer. When Process Explorer is launched with
administrator rights, it installs a driver. This driver gives Process Explorer powers beyond those that can
be obtained by user-mode callers, even if running elevated. For example, Process Explorer in its Threads
dialog for a process can show the complete call stack of a thread, including functions in kernel mode. This
type of information is not possible to obtain from user mode; its driver provides the missing information.

The driver installed by Process Explorer creates a single device object so that Process Explorer is able to
open a handle to that device and make requests. This means that the device object must be named, and
must have a symbolic link in the ?? directory; and it’s there, called PROCEXP152, probably indicating
driver version 15.2 (at the time of writing). Figure 3-4 shows this symbolic link in WinObj.

*& WinObj - Sysinternals: www.sysinternals.com

File Edit Find View Options Help
®| O| E; ‘ p Quick Find: |¢°SE.; ch
EXRR A Name - Trpe Symbalic Link Target ~
Archame @oFRN SymbolicLink \DosDevices\LPTI
BaseNamedObjects 20 PROCEXP152 SymbalicLink \Device\PROCEXP152
E:'Jil‘k 20 Psched SymbolicLink \Device\Psched
Driver @oRdpDrDvMgr SymbelicLink ‘\Device\RdpDrDvMgr
DriverStores 60 RealTekUsbCard{2D153898- DEFE-416A-9FAD-1FDAD2DTSDFC} SymbolicLink \Device\RealTeklsbCarc{2D158398-DEFE-416
FileSystem ©0 RESOURCE_HUB SymbolicLink \Device\RESOURCE_HUB
00 ROOT#BasicDisplay#0000#{5645201d-F2£2-4f3b-35bb-30F1f... SymbolicLink \Dexice\D0000003
KemelObjects ©0 ROQTBasicRender=00002{1ca05180-a699-450a-alc-dedfb... SymbolicLink \Device\D0ODD0OF
KnownDlls 00 ROQTZCAD20000# ecalccd-4204-43fb-bF37-bBS0ced5f337)  SymbolicLink \Device\ 0000000
KnownDlls32 00 ROOTEspaceport#00004{535630e-bbbf-11d0-9472-00a0c1e... SymbolicLink \Device\D000000S
NLS 00 ROOT#spaceport#0000={ef60a56f-88d1-4cdB-98c4-49faf57a...  SymbelicLink \Device\ 00000002
ObjectTypes 00 ROQTEstorvsp=0000#{E6chdesf-1828-47de-B3d-e415b3120...  SymbolicLink \Device\00000010
ReC Control I D R 2o+ nnnnnas =
\GLOBAL??\PROCEXP152 526 Objects Interval: 2 sec

Figure 3-4: Process Explorer’s symbolic link in WinObj

Notice the symbolic link for Process Explorer’s device points to \Device \PROCEXP152, which is the internal
name only accessible to kernel callers (and the native APIs NtOpenFile and NtCreateFile, as shown in
the next section). The actual CreateFile call made by Process Explorer (or any other client) based on
the symbolic link must be prepended with \\. \. This is necessary so that the /O manager’s parser will
not assume the string “PROCEXP152” refers to a file with no extension in the current directory. Here is
how Process Explorer would open a handle to its device object (note the double backslashes because of the
backslash being an escape character in C/C++):

HANDLE hDevice = CreateFile(L"\\\\.\\PROCEXP152",
GENERIC_WRITE | GENERIC_READ, 0, nullptr, OPEN_EXISTING,
0, nullptr);

With C++ 11 and later, you can write strings without escaping the backslash character. The
device path in the above code can be written like so: LR"(\\.\PROCEXP152)". L indicates
Unicode (as always), while anything between R"( and )" is not escaped.
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You can try the above code yourself. If Process Explorer has run elevated at least once on the system
since boot, its driver should be running (you can verify with the tool itself), and the call to CreateFile
will succeed if the client is running elevated.

A driver creates a device object using the IoCreateDevice function. This function allocates and initializes
a device object structure and returns its pointer to the caller. The device object instance is stored in the
DeviceObject member of the DRIVER_OBJECT structure. If more than one device object is created, they
form a singly linked list, where the member NextDevice of the DEVICE_OBJECT points to the next device
object. Note that the device objects are inserted at the head of the list, so the first device object created is
stored last; its NextDevice points to NULL. These relationships are depicted in figure 3-5.

DRIVER_OBJECT DEVICE_OBIJECT DEVICE_OBJECT

: . NextDevice NextDevice
DeviceObject

NULL

Figure 3-5: Driver and Device objects

Opening Devices Directly

The existence of a symbolic link makes it easy to open a handle to a device with the documented
CreateFile user-mode API (or from the ZwOpenFile API in the kernel). It is sometimes useful, however,
to be able to open device objects without going through a symbolic link. For example, a device object
might not have a symbolic link, because its driver decided (for whatever reason) not to provide one.

The native NtOpenFile (and NtCreateFile) function can be used to open a device object directly.
Microsoft never recommends using native APIs, but this function is somewhat documented for user-mode
use . Its definition is available in the <Winternlh> header file:

NTAPI NtOpenFile (
OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG ShareAccess,
IN ULONG OpenOptions);

Notice the similarity to the ZwOpenFile we used in an earlier section - this is the same function prototype,
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just invoked here from user mode, eventually to land at NtOpenF i le within the I/O manager. The function
requires usage of an OBJECT_ATTRIBUTES structure, described earlier in this chapter.

The above prototype uses old macros such as IN, OUT and others. These have been replaced by SAL
annotations. Unfortunately, some header files were not yet converted to SAL.

To demonstrate using NtOpenFile from user mode, we’ll create an application to play a single sound.
Normally, the Beep Windows user-mode API provides such a service:

BOOL Beep(
_In_ DWORD dwFreq,
_In_ DWORD dwDuration);

The function accepts the frequency to play (in Hertz), and the duration to play, in milliseconds. The
function is synchronous, meaning it does not return until the duration has elapsed.

The Beep API works by calling a device named \Device\Beep (you can find it in WinObj), but the beep
device driver does not create a symbolic link for it. However, we can open a handle to the beep device using
NtOpenFile. Then, to play a sound, we can use the DeviceIoContol function with the correct parameters.
Although it’s not too difficult to reverse engineer the beep driver workings, fortunately we don’t have to.
The SDK provides the <ntddbeep.h> file with the required definitions, including the device name itself.

We'll start by creating a C++ Console application in Visual Studio. Before we get to the main function, we
need some #includes:

#include <Windows.h>
#include <winternl.h>
#include <stdio.h>

#include <ntddbeep.h>

<winternl.h> provides the definition for NtOpenFile (and related data structures), while <ntddbeep.h>
provides the beep-specific definitions.

Since we will be using NtOpenFile, we must also link against NtDILDII, which we can do by adding a
#pragma to the source code, or add the library to the linker settings in the project’s properties. Let’s go
with the former, as it’s easier, and is not tied to the project’s properties:

#pragma comment(1ib, "ntdlIl")

g Without the above linkage, the linker would issue an “unresolved external” error.

Now we can start writing main, where we accept optional command line arguments indicating the
frequency and duration to play:
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int main(int argc, const char* argv[]) {
printf("beep [<frequency> <duration_in_msec>]\n");
int freq = 800, duration = 1000;
if (argec > 2) {
freq = atoi(argv[1]);
duration = atoi(argv[2]);

The next step is to open the device handle using NtOpenFile:

HANDLE hFile;
OBJECT_ATTRIBUTES attr;
UNICODE_STRING name;
Rt1InitUnicodeString(&name, L"\\Device\\Beep");
InitializeObjectAttributes(&attr, &name, OBJ_CASE_INSENSITIVE,
nullptr, nullptr);
IO_STATUS_BLOCK ioStatus;
NTSTATUS status = ::NtOpenFile(&hFile, GENERIC_WRITE, &attr, &ioStatus, 0, 0);

The line to initialize the device name can be replaced with:
RtlInitUnicodeString(&name, DD_BEEP_DEVICE_NAME_U);

The DD_BEEP_DEVICE_NAME_U macro is conveniently supplied as part of <ntddbeep.h>.

If the call succeeds, we can play the sound. To do that, we call DeviceIoControl with a control code
defined in <ntddbeep.h> and use a structure defined there as well to fill in the frequency and duration:

if (NT_SUCCESS(status)) {
BEEP_SET_PARAMETERS params;
params.Frequency = freq;
params.Duration = duration;
DWORD bytes;
//
// play the sound
//
printf("Playing freq: %u, duration: %u\n", freq, duration);
. :DeviceloControl(hFile, IOCTL_BEEP_SET, &params, sizeof(params),
nullptr, 0, &bytes, nullptr);

//
// the sound starts playing and the call returns immediately

// Wait so that the app doesn't close
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/7
::Sleep(duration);
::CloseHandle(hFile);

The input buffer passed to DeviceIoControl should be a BEEP_SET_PARAMETERS structure, which we pass
in along with its size. The last piece of the puzzle is to use the Sleep API to wait based on the duration,
otherwise the handle to the device would be closed and the sound cut off.

f Write an application that plays an array of sounds by leveraging the above code.

Summary

In this chapter, we looked at some of the fundamental kernel data structures, concepts, and APIs. In the next
chapter, we’ll build a complete driver, and a client application, expanding on the information presented
thus far.



Chapter 4: Driver from Start to Finish

In this chapter, we’ll use many of the concepts we learned in previous chapters and build a simple, yet
complete, driver, and an associated client application, while filling in some of the missing details from
previous chapters. We’ll deploy the driver and use its capabilities - perform some operation in kernel
mode that is difficult, or impossible to do, in user mode.

In this chapter:

+ Introduction

« Driver Initialization

« Client Code

« The Create and Close Dispatch Routines
» The Write Dispatch Routine

« Installing and Testing

Introduction

The problem we’ll solve with a simple kernel driver is the inflexibility of setting thread priorities using
the Windows APL In user mode, a thread’s priority is determined by a combination of its process Priority
Class with an offset on a per thread basis, that has a limited number of levels.

Changing a process priority class (shown as Base priority column in Task Manager) can be achieved with
the SetPriorityClass function that accepts a process handle and one of the six supported priority classes.
Each priority class corresponds to a priority level, which is the default priority for threads created in that
process. A particular thread’s priority can be changed with the SetThreadPriority function, accepting
a thread handle and one of several constants corresponding to offsets around the base priority class. Table
4-1 shows the available thread priorities based on the process priority class and the thread’s priority offset.

Table 4-1: Legal values for thread priorities with the Windows APIs

Priority Class -Sat -2 -1 0(default) +1 +2 +Sat Comments
Idle 1 2 3 4 5 6 15 Task Manager refers to Idle as “Low”

Below Normal 1 4 5 6 7 8 15

Normal 1 6 7 8 9 10 15




Chapter 4: Driver from Start to Finish 57

Table 4-1: Legal values for thread priorities with the Windows APIs

Priority Class -Sat -2 -1 oO(default) +1 +2 +Sat Comments

Above Normal 1 8 9 10 1 12 15
High 1 1 12 13 14 15 15 Only six levels are available (not seven).
Real-time 16 22 23 24 25 26 31 All levels between 16 to 31 can be

selected.

The values acceptable to SetThreadPriority specify the offset. Five levels correspond to the offsets -2
to +2: THREAD_PRIORITY_LOWEST (-2), THREAD_PRIORITY_BELOW_NORMAL (-1), THREAD_PRIORITY_NORMAL
(0), THREAD_PRIORITY_ABOVE_NORMAL (+1), THREAD_PRIORITY_HIGHEST (+2). The remaining two levels,
called Saturation levels, set the priority to the two extremes supported by that priority class: THREAD_-
PRIORITY_IDLE (-Sat) and THREAD_PRIORITY_TIME_CRITICAL (+Sat).

The following code example changes the current thread’s priority to 11:

SetPriorityClass(GetCurrentProcess(),

ABOVE_NORMAL _PRIORITY_CLASS); // process base=10
SetThreadPriority(GetCurrentThread(),
THREAD_PRIORITY_ABOVE_NORMAL); // +1 offset for thread

provide some of the timing guarantees normally provided by true real-time operating systems.
Also, since Real-time priorities are very high and compete with many kernel threads doing
important work, such a process must be running with administrator privileges; otherwise,
attempting to set the priority class to Real-time causes the value to be set to High.

0 The Real-time priority class does not imply Windows is a real-time OS; Windows does not

There are other differences between the real-time priorities and the lower priority classes.
Consult the Windows Internals book for more information.

Table 4-1 shows the problem we will address quite clearly. Only a small set of priorities are available to
set directly. We would like to create a driver that would circumvent these limitations and allow setting a
thread’s priority to any number, regardless of its process priority class.

Driver Initialization

We'll start building the driver in the same way we did in chapter 2. Create a new “WDM Empty Project”
named Booster (or another name of your choosing) and delete the INF file created by the wizard. Next, add
a new source file to the project, called Booster.cpp (or any other name you prefer). Add the basic #include
for the main WDK header and an almost empty DriverEntry:
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#include <ntddk.h>

extern "C" NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {
return STATUS_SUCCESS;

Most software drivers need to do the following in DriverEntry:

« Set an Unload routine.

« Set dispatch routines the driver supports.

« Create a device object.

« Create a symbolic link to the device object.

Once all these operations are performed, the driver is ready to take requests.

The first step is to add an Unload routine and point to it from the driver object. Here is the new
DriverEntry with the Unload routine:

// prototypes
void BoosterUnload(PDRIVER_OBJECT DriverObject);
// DriverEntry

extern "C" NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {
DriverObject->DriverUnload = BoosterUnload;

return STATUS_SUCCESS;

void BoosterUnload(PDRIVER_OBJECT DriverObject) {
// empty for now

We’'ll add code to the Unload routine as needed when we do actual work in DriverEntry that needs to be
undone.

Next, we need to set up the dispatch routines that we want to support. Practically all drivers must support
IRP_MJ_CREATE and IRP_MJ_CLOSE, otherwise there would be no way to open a handle to any device for
this driver. So we add the following to DriverEntry:
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DriverObject->MajorFunction[IRP_MJ_CREATE] = BoosterCreateClose;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = BoosterCreateClose;

We’re pointing the Create and Close major functions to the same routine. This is because, as we’ll see
shortly, they will do the same thing: simply approve the request. In more complex cases, these could be
separate functions, where in the Create case the driver can (for instance) check to see who the caller is and
only let approved callers succeed with opening a handle.

All major functions have the same prototype (they are part of an array of function pointers), so we have
to add a prototype for BoosterCreateClose. The prototype for these functions is as follows:

NTSTATUS BoosterCreateClose(PDEVICE_OBJECT DeviceObject, PIRP Irp);

The function must return NTSTATUS, and accepts a pointer to a device object and a pointer to an I/O Request
Packet (IRP). An IRP is the primary object where the request information is stored, for all types of requests.
We'll dig deeper into an IRP in chapter 7, but we’ll look at the basics later in this chapter, since we require
it to complete our driver.

Passing Information to the Driver

The Create and Close operations we set up are required, but certainly not enough. We need a way to tell
the driver which thread and to what value to set its priority. From a user-mode client’s perspective, there
are three basic functions it can use: WriteFile, ReadFile, and DeviceloControl.

For our driver’s purposes, we can use either WriteFile or DeviceloControl. Read doesn’t make sense,
because we’re passing information fo the driver, rather than from the driver. So which is better,WriteFile
or DeviceloControl? This is mostly a matter of taste, but the general wisdom here is to use Write if it’s
really a write operation (logically); for anything else - DeviceIoControl is preferred, as it’s a generic
mechanism for passing data to and from the driver.

Since changing a thread’s priority is not a purely Write operation, DeviceIoControl makes more sense,
but we’ll use WriteFile, as it’s a bit easier to handle. We’ll look at all the details in chapter 7. WriteFile
has the following prototype:

BOOL WriteFile(

_In_ HANDLE hFile,
_In_reads_bytes_opt_(nNumberOfBytesToWrite) LPCVOID 1pBuffer,
_In_ DWORD nNumberOfBytesToWrite,

_Out_opt_  LPDWORD 1pNumberOfBytesWritten,
_Inout_opt_ LPOVERLAPPED 1lpOverlapped);

Our driver has to export its handling of a write operation capability by assigning a function pointer to the
IRP_MJ_WRITE index of the Ma jorFunction array in the driver object:
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DriverObject->MajorFunction[IRP_MJ_WRITE] = BoosterWrite;
BoosterWrite must have the same prototype as all major function code handlers:

NTSTATUS BoosterWrite(PDEVICE_OBJECT DeviceObject, PIRP Irp);

Client / Driver Communication Protocol

Given that we use WriteFile for client/driver communication, we now must define the actual semantics.
WriteFile allows passing in a buffer, for which we need to define proper semantics. This buffer should
contain the two pieces of information required so the driver can do its thing: the thread id and the priority
to set for it.

These pieces of information must be usable both by the driver and the client. The client would supply the
data, and the driver would act on it. This means these definitions must be in a separate file that must be
included by both the driver and client code.

For this purpose, we’ll add a header file named BoosterCommon.h to the driver project. This file will also
be used later by the user-mode client.

Within this file, we need to define the data structure to pass to the driver in the WriteFile buffer,
containing the thread ID and the priority to set:

struct ThreadData {
ULONG ThreadlId;
int Priority;

Y

We need the thread’s unique ID and the target priority. Thread IDs are 32-bit unsigned integers, so we
select ULONG as the type. The priority should be a number between 1 and 31, so a simple 32-bit integer will
do.

We cannot normally use DWORD - a common type defined in user mode headers - because it’s not defined
in kernel mode headers. ULONG, on the other hand, is defined in both. It would be easy enough to define
it ourselves, but ULONG is the same anyway.

Creating the Device Object

We have more initializations to do in DriverEntry. Currently, we don’t have any device object and so
there is no way to open a handle and reach the driver. A typical software driver needs just one device object,
with a symbolic link pointing to it, so that user-mode clients can obtain handles easily with CreateFile.

Creating the device object requires calling the IoCreateDevice API, declared as follows (some SAL
annotations omitted/simplified for clarity):
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NTSTATUS IoCreateDevice(

_In_ PDRIVER_OBJECT DriverObject,
_In_ ULONG DeviceExtensionSize,
_In_opt_ PUNICODE_STRING DeviceName,
_In_ DEVICE_TYPE DeviceType,

_In_ ULONG DeviceCharacteristics,
_In_ BOOLEAN Exclusive,

_Outptr_ PDEVICE_OBJECT *DeviceObject);

The parameters to IoCreateDevice are described below:

DriverObject - the driver object to which this device object belongs to. This should be simply the
driver object passed to the DriverEntry function.

DeviceExtensionSize - extra bytes that would be allocated in addition to sizeof(DEVICE_OBJECT).
Useful for associating some data structure with a device. It’s less useful for software drivers creating
just a single device object, since the state needed for the device can simply be managed by global
variables.

DeviceName - the internal device name, typically created under the \Device Object Manager
directory.

DeviceType - relevant to some type of hardware-based drivers. For software drivers, the value FILE _-
DEVICE_UNKNOWN should be used.

DeviceCharacteristics - a set of flags, relevant for some specific drivers. Software drivers specify
zero or FILE_DEVICE_SECURE_OPEN if they support a true namespace (rarely needed by software
drivers). More information on device security is presented in chapter 8.

Exclusive - should more than one file object be allowed to open the same device? Most drivers should
specify FALSE, but in some cases TRUE is more appropriate; it forces a single client at a time for the
device.

DeviceObject - the returned pointer, passed as an address of a pointer. If successful, IoCreateDevice
allocates the structure from non-paged pool and stores the resulting pointer inside the dereferenced
argument.

Before calling IoCreateDevice we must create a UNICODE_STRING to hold the internal device name:

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\Booster");

// a
// R

lternatively,
tlInitUnicodeString(&devName, L"\\Device\\Booster");

The device name could be anything but should be in the \Device object manager directory. There are two
ways to initialize a UNICODE_STRING with a constant string. The first is using Rt1InitUnicodeString,
which works just fine. But Rt1InitUnicodeString must count the number of characters in the string to
initialize the Length and MaximumLength appropriately. Not a big deal in this case, but there is a quicker

way

- using the RTL_CONSTANT_STRING macro, which calculates the length of the string statically (at

compile time), meaning it can only work correctly with literal strings.

Now

we are ready to call the IoCreateDevice function:
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PDEVICE_OBJECT DeviceObject;
NTSTATUS status = IoCreateDevice(

DriverObject, // our driver object

Q, // no need for extra bytes
&devName, // the device name
FILE_DEVICE_UNKNOWN, // device type

9, // characteristics flags
FALSE, // not exclusive
&DeviceObject); // the resulting pointer

if (!NT_SUCCESS(status)) {
KdPrint(("Failed to create device object (0x%08X)\n", status));

return status;

If all goes well, we now have a pointer to our device object. The next step is to make this device object
accessible to user-mode callers by providing a symbolic link. Creating a symbolic link involves calling
IoCreateSymboliclink:

NTSTATUS IoCreateSymboliclink(
_In_ PUNICODE_STRING SymboliclLinkName,
_In_ PUNICODE_STRING DeviceName);

The following lines create a symbolic link and connect it to our device object:

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Booster");
status = IoCreateSymbolicLink(&symLink, &devName);
if (INT_SUCCESS(status)) {
KdPrint(("Failed to create symbolic link (@x%@8X)\n", status));
IoDeleteDevice(DeviceObject); // important!
return status;

The IoCreateSymbolicLink does the work by accepting the symbolic link and the target of the link. Note
that if the creation fails, we must undo everything done so far - in this case just the fact the device object
was created - by calling IoDeleteDevice. More generally, if DriverEntry returns any failure status, the
Unload routine is not called. If we had more initialization steps to do, we would have to remember to undo
everything until that point in case of failure. We’ll see a more elegant way of handling this in chapter 6.

Once we have the symbolic link and the device object set up, DriverEntry can return success, indicating
the driver is now ready to accept requests.

Before we move on, we must not forget the Unload routine. Assuming DriverEntry completed success-
fully, the Unload routine must undo whatever was done in DriverEntry. In our case, there are two things
to undo: device object creation and symbolic link creation. We’ll undo them in reverse order:
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void BoosterUnload(_In_ PDRIVER_OBJECT DriverObject) {
UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Booster");
// delete symbolic link
IoDeleteSymbolicLink(&symLink);

// delete device object
IoDeleteDevice(DriverObject->DeviceObject);

Notice the device object pointer is extracted from the driver object, as it’s the only argument we get in the
Unload routine. It’s certainly possible to store the device object pointer in a global variable and access it
here directly, but there is no need. Global variables usage should be kept to a minimum.

Client Code

At this point, it’s worth writing the user-mode client code. Everything we need for the client has already
been defined.

Add a new C++ Console Application project to the solution named Boost (or some other name of your
choosing). The Visual Studio wizard should create a single source file with some “hello world” type of
code. You can safely delete all the contents of the file.

First, we add the required #includes to the Boost.cpp file:

#include <windows.h>
#include <stdio.h>

"

#include "..\Booster \BoosterCommon.h"

Note that we include the common header file created by the driver to be shared with the client.

Change the main function to accept command line arguments. We’ll accept a thread ID and a priority
using command line arguments and request the driver to change the priority of the thread to the given
value.

int main(int argc, const char* argv[]) {
if (argc < 3) {
printf("Usage: Boost <threadid> <priority>\n");

return 0;
}
/7
// extract from command line
//

int tid = atoi(argv[1]);
int priority = atoi(argv([2]);
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Next, we need to open a handle to our device. The “file name” to CreateFile should be the symbolic link
prepended with “\.\”. The entire call should look like this:

HANDLE hDevice = CreateFile(L"\\\\.\\Booster", GENERIC_WRITE,
0, nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE)
return Error("Failed to open device");

The Error function simply prints some text with the last Windows API error:

int Error(const char* message) {
printf("%s (error=%u)\n", message, GetlLastError());
return 1;

The CreateFile call should reach the driver in its IRP_MJ_CREATE dispatch routine. If the driver is not
loaded at this time - meaning there is no device object and no symbolic link - we’ll get error number 2
(file not found).

Now that we have a valid handle to our device, it’s time to set up the call toWrite. First, we need to create
a ThreadData structure and fill in the details:

ThreadData data;
data.Threadld = tid;
data.Priority = priority;

Now we’re ready to call WriteFile and close the device handle afterwards:

DWORD returned;

BOOL success = WriteFile(hDevice,
Rdata, sizeof(data), // buffer and length
&returned, nullptr);

if (!success)
return Error("Priority change failed!");

printf("Priority change succeeded!\n");
CloseHandle(hDevice);

The call to WriteFile reaches the driver by invoking the IRP_MJ_WRITE major function routine.

At this point, the client code is complete. All that remains is to implement the dispatch routines we declared
on the driver side.
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The Create and Close Dispatch Routines

Now we’re ready to implement the three dispatch routines defined by the driver. The simplest by far are
the Create and Close routines. All that’s needed is completing the request with a successful status. Here
is the complete Create/Close dispatch routine implementation:

NTSTATUS BoosterCreateClose(PDEVICE_OBJECT DeviceObject, PIRP Irp) {
UNREFERENCED_PARAMETER(DeviceObject);

Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.Information = 0;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
return STATUS_SUCCESS;

Every dispatch routine accepts the target device object and an I/O Request Packet (IRP). We don’t care
much about the device object, since we only have one, so it must be the one we created in DriverEntry.
The IRP on the other hand, is extremely important. We'll dig deeper into IRPs in chapter 6, but we need
to take a quick look at IRPs now.

An IRP is a semi-documented structure that represents a request, typically coming from one of the
managers in the Executive: the I/O Manager, the Plug & Play Manager, or the Power Manager. With
a simple software driver, that would most likely be the I/O Manager. Regardless of the creator of the IRP,
the driver’s purpose is to handle the IRP, which means looking at the details of the request and doing what
needs to be done to complete it.

Every request to the driver always arrives wrapped in an IRP, whether that’s a Create, Close, Read, Write,
or any other IRP. By looking at the IRP’s members, we can figure out the type and details of the request
(technically, the dispatch routine itself was pointed to based on the request type, so in most cases you
already know the request type). It’s worth mentioning that an IRP never arrives alone; it’s accompanied
by one or more structures of type I0_STACK_LOCATION. In simple cases like our driver, there is a single
TO_STACK_LOCATION. In more complex cases where there are filter drivers above or below us, multiple I0_-
STACK_LOCATION instances exist, one for each layer in the device stack. (We’ll discuss this more thoroughly
in chapter 7). Simply put, some of the information we need is in the base IRP structure, and some is in the
I0_STACK_LOCATION for our “layer” in the device stack.

In the case of Create and Close, we don’t need to look into any members. We just need to set the completion
status of the IRP in its IoStatus member (of type I0_STATUS_BLOCK), which has two members:

» Status (NTSTATUS) - indicating the status this request should complete with.
« Information (ULONG_PTR) - a polymorphic member, meaning different things in different request
types. In the case of Create and Close, a zero value is just fine.

To complete the IRP, we call IoCompleteRequest. This function has a lot to do, but basically it propagates
the IRP back to its creator (typically the /O Manager), and that manager notifies the client that the
operation has completed and frees the IRP. The second argument is a temporary priority boost value that a
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driver can provide to its client. In most cases for a software driver, a value of zero is fine (I0_NO_INCREMENT
is defined as zero). This is especially true since the request is completed synchronously, so no reason the
caller should get a priority boost. More information on this function is provided in chapter 7.

The last thing to do is return the same status as the one put into the IRP. This may seem like a useless
duplication, but it is necessary (the reason will be clearer in a later chapter).

g You may be tempted to write the last line of BoosterCreateClose like so:

return Irp->IoStatus.Status; So that the returned value is always the same as the one
stored in the IRP. This code is buggy, however, and will cause a BSOD in most cases. The reason
is that after IoCompleteRequest is invoked, the IRP pointer should be considered “poison”, as
it’s more likely than not that it has already been deallocated by the I/O manager.

The Write Dispatch Routine

This is the crux of the matter. All the driver code so far has led to this dispatch routine. This is the one
doing the actual work of setting a given thread to a requested priority.

The first thing we need to do is check for errors in the supplied data. In our case, we expect a structure of
type ThreadData. The first thing is to do is retrieve the current IRP stack location, because the size of the
buffer happens to be stored there:

NTSTATUS BoosterWrite(PDEVICE_OBJECT, PIRP Irp) {
auto status = STATUS_SUCCESS;
ULONG_PTR information = ©; // track used bytes

// 1rpSp is of type PIO_STACK_LOCATION
auto irpSp = IoGetCurrentlIrpStackLocation(Irp);

The key to getting the information for any IRP is to look inside the IO_STACK_LOCATION associated with
the current device layer. Calling IoGetCurrentIrpStackLocation returns a pointer to the correct I0_-
STACK_LOCATION. In our case, there is just one I0_STACK_LOCATION, but in the general case there could be
more (in fact, a filter may be above our device), so calling IoGetCurrentIrpStackLocation is the right
thing to do.

The main ingredient in an I0_STACK_LOCATION is a monstrous union identified with the member named
Parameters, which holds a set of structures, one for each type of IRP. In the case of IRP_MJ_WRITE, the
structure to look at is Parameters.Write.

Now we can check the buffer size to make sure it’s at least the size we expect:
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do {
if (irpSp->Parameters.Write.Length < sizeof(ThreadData)) ({
status = STATUS_BUFFER_TOO_SMALL;
break;

}

The do keyword opens a simple do/while( false) block that allows using the break keyword to bail out
early in case of an error. We’ll discuss this technique in greater detail in chapter 7.

Next, we need to grab the user buffer’s pointer, and check if the priority value is in the legal range (0 to 31).
We also check if the pointer itself is NULL, as it’s possible for the client to pass a NULL pointer for the buffer,
but the length may be greater than zero. The buffer’s address is provided in the UserBuffer member of
the IRP:

auto data = static_cast<ThreadData*>(Irp->UserBuffer);

if (data == nullptr || data->Priority < 1 || data->Priority > 31) {
status = STATUS_INVALID_PARAMETER;
break;

}

UserBuffer is typed as a void pointer, so we need to cast it to the expected type. Then we check the
priority value, and if not in range change the status to STATUS_INVALID_PARAMETER and break out of the
“loop”.

next check takes place. If data is NULL, however, no further checks are made. This behavior is

g Notice the order of checks: the pointer is compared to NULL first, and only if non-NULL, the
guaranteed by the C/C++ standard, known as short circuit evaluation.

C++ compiler allows casting a void pointer to any other pointer, so it doesn’t look that useful
in this case, and perhaps a C-style cast would be simpler to write. Still, it’s a good habit to have,
as it can catch some errors at compile time (rather than nasty bugs at runtime).

P The use of static_cast asks the compiler to check if the cast makes sense. Technically, the

We're getting closer to our goal. The API we would like to use is KeSetPriorityThread, prototyped as
follows:

KPRIORITY KeSetPriorityThread(
_Inout_ PKTHREAD Thread,
_In_ KPRIORITY Priority);

The KPRIORITY type is just an 8-bit integer. The thread itself is identified by a pointer to a KTHREAD object.
KTHREAD is one part of the way the kernel manages threads. It’s completely undocumented, but we need
the pointer value anyway. We have the thread ID from the client, and need to somehow get a hold of a
pointer to the real thread object in kernel space. The function that can look up a thread by its ID is aptly
named PsLookupThreadByThreadId. To get its definition, we need to add another #include:
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#include <ntifs.h>

You must add this #include before <ntddk.h>, otherwise you’ll get compilation errors. In fact,
you can remove <ntddk.h> entirely, as it’s included by <ntifs.h>.

Here is the definition for PsLookupThreadByThreadId:

NTSTATUS PslLookupThreadByThreadId(
_In_ HANDLE ThreadlId,
_Outptr_ PETHREAD *Thread);

Again, we see that a thread ID is required, but its type is HANDLE - but it is the ID that we need
nonetheless. The resulting pointer is typed as PETHREAD or pointer to ETHREAD. ETHREAD is completely
opaque. Regardless, we seem to have a problem since KeSetPriorityThread accepts a PKTHREAD rather
than PETHREAD. It turns out these are the same, because the first member of an ETHREAD is a KTHREAD (the
member is named Tcb). We’ll prove all this in the next chapter when we use the kernel debugger. Here is
the beginning of the definition of ETHREAD:

typedef struct _ETHREAD {
KTHREAD Tcb;
// more members

} ETHREAD;

The bottom line is we can safely switch PKTHREAD for PETHREAD or vice versa when needed without a
hitch.
Now we can turn our thread ID into a pointer:

PETHREAD thread;

status = PslLookupThreadByThreadId(ULongToHandle(data->Threadld),
&thread);

if (INT_SUCCESS(status))
break;

The call to PsLookupThreadByThreadld can fail, the main reason being that the thread ID does not
reference any thread in the system. If the call fails, we simply break and let the resulting NTSTATUS
propagate out of the “loop”.

We are finally ready to change the thread’s priority. But wait - what if after the last call succeeds, the
thread is terminated, just before we set its new priority? Rest assured, this cannot happen. Technically,
the thread can terminate (from an execution perspective) at that point, but that will not make our pointer
a dangling one. This is because the lookup function, if successful, increments the reference count on the
kernel thread object, so it cannot die until we explicitly decrement the reference count. Here is the call to
make the priority change:
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auto oldPriority = KeSetPriorityThread(thread, data->Priority);
KdPrint(("Priority change for thread %u from %d to %d succeeded!\n",
data->Threadld, oldPriority, data->Priority));

We get back the old priority, which we output with KdPrint for debugging purposes. All that’s left to do
now is decrement the thread object’s reference; otherwise, we have a leak on our hands (the thread object
will never die), which will only be resolved in the next system boot. The function that accomplishes this
feat is ObDereferenceObject:

ObDereferenceObject(thread);

We should also report to the client that we used the buffer provided. This is where the information
variable is used:

information = sizeof(data);

We'll write that value to the IRP before completing it. This is the value returned as the second to last
argument from the client’s WritewFile call. All that’s left to do is to close the while “loop” and complete
the IRP with whatever status we happen to have at this time.

// end the while "loop"
} while (false);

/7

// complete the IRP with the status we got at this point
/7

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = information;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

And we’re done! For reference, here is the complete IRP_MJ_WRITE handler:

NTSTATUS BoosterWrite(PDEVICE_OBJECT, PIRP Irp) {
auto status = STATUS_SUCCESS;
ULONG_PTR information = 0;
auto irpSp = IoGetCurrentlIrpStackLocation(Irp);
do {
if (irpSp->Parameters.Write.Length < sizeof(ThreadData)) ({
status = STATUS_BUFFER_TOO_SMALL;
break;
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}

auto data = static_cast<ThreadData*>(Irp->UserBuffer);
if (data == nullptr
|| data->Priority < 1 || data->Priority > 31) {
status = STATUS_INVALID_PARAMETER;
break;
}
PETHREAD thread;
status = PslLookupThreadByThreadId(
ULongToHandle(data->Threadld), &thread);
if (!NT_SUCCESS(status)) {
break;
}
auto oldPriority = KeSetPriorityThread(thread, data->Priority);
KdPrint(("Priority change for thread %u from %d to %d succeeded!\n",
data->Threadld, oldPriority, data->Priority));

ObDereferenceObject(thread);
information = sizeof(data);
} while (false);

Irp->IoStatus.Status = status;
Irp->IoStatus.Information = information;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
return status;

Installing and Testing

At this point, we can build the driver and client successfully. Our next step is to install the driver and test
its functionality. You can try the following on a virtual machine, or if you’re feeling brave enough - on
your development machine.

First, let’s install the driver. Copy the resulting booster.sys file to the target machine (if it’s not your
development machine). On the target machine, open an elevated command window and install the driver
using the sc.exe tool as we did back in chapter 2:

c:\> sc create booster type= kernel binPath= c:\Test\Booster.sys

Make sure binPath includes the full path of the resulting SYS file. The name of the driver (booster) in the
example is the name of the created Registry key, and so must be unique. It doesn’t have to be related to
the SYS file name.

Now we can load the driver:
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c:\> sc start booster

71

If all is well, the driver would have started successfully. To make sure, we can open WinObj and look for
our device name and symbolic link. Figure 4-1 shows the symbolic link in WinObj.
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Figure 4-1: Symbolic Link in WinObj

Now we can finally run the client executable. Figure 4-2 shows a thread in Process Explorer of a cmd.exe

process selected as an example for which we want set priority to a new value.
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.| emd.exe:644 Properties
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e
TID CPU  Cycles Delta Start Address
cmd exelmainCRTStartup
11716 rtdll.dll! TppWeorker Thread

< >
Thread ID: 763 | Stack | | Module
Start Time: 09:13:47 15-Apr-19
State: Wait:Executive Base Priority: 3
Kernel Time: 0:00:00, 156 Dynarmnic Priority: 3
LIser Time; 0:00:00,015 I/ Priority: Mormal
Context Switches: 628 Memory Priority: 5
Cydes: 241,587,466 Ideal Processor: 3

| Permissions | | Kill | | Suspend |
| oK | | Cancel

Figure 4-2: Original thread priority

Run the client with the thread ID and the desired priority (replace the thread ID as needed):

c:\Test> boost 768 25

72
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If you get an error trying to run the executable (usually it’s a Debug build), you may need to set

A the runtime library to a static one instead of a DLL. Go to Project properties in Visual Studio for
the client application, C++ node, Code Generation, Runtime Library, and select Multithreaded
Debug. Alternatively, you can compile the client in Release build, and that should run without
any changes.

And voila! See figure 4-3.

73

You should also run DbgView and see the output when a successful priority change occurrs.
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.| emd.exe:644 Properties
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Figure 4-3: Modified thread priority

Summary

We’ve seen how to build a simple, yet complete, driver, from start to finish. We created a user-mode client
to communicate with the driver. In the next chapter, we’ll tackle debugging, which is something we’re
bound to do when writing drivers that may not behave as we expect.
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Just like with any software, kernel drivers tend to have bugs. Debugging drivers, as opposed to user-mode
debugging, is more challenging. Driver debugging is essentially debugging an entire machine, not just a
specific process. This requires a somewhat different mindset. This chapter discusses user-mode and kernel-
mode debugging using the WinDbg debugger.

In this chapter:

« Debugging Tools for Windows

« Introduction to WinDbg

+ Kernel Debugging

» Full Kernel Debugging

+ Kernel Driver Debugging Tutorial
+ Asserts and Tracing

Debugging Tools for Windows

The Debugging Tools for Windows package contains a set of debuggers, tools, and documentation focusing
on the debuggers within the package. This package can be installed as part of the Windows SDK or the
WDK, but there is no real “installation” done. The installation just copies files but does not touch the
Registry, meaning the package depends only on its own modules and the Windows built-in DLLs. This
makes it easy to copy the entire directory to any other directory including removable media.

The package contains four debuggers: Cdb.exe, Ntsd.Exe, Kd.exe, and WinDbg.exe. Here is a rundown of
the basic functionality of each debugger:

+ Cdband Ntsd are user-mode, console-based debuggers. This means they can be attached to processes,
just like any other user-mode debugger. Both have console UI - type in a command, get a response,
and repeat. The only difference between the two is that if launched from a console window, Cdb uses
the same console, whereas Ntsd always opens a new console window. They are otherwise identical.

+ Kd is a kernel debugger with a console user interface. It can attach to the local kernel (Local
Kernel Debugging, described in the next section), or to another machine for a full kernel debugging
experience.

« WinDbg is the only debugger with a graphical user interface. It can be used for user-mode debugging
or kernel debugging, depending on the selection performed with its menus or the command line
arguments passed to it when launched.
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A relatively recent alternative to the classic WinDbg is Windbg Preview, available through the Microsoft
store. This is a remake of the classic debugger with a much better user interface. It can be installed on
Windows 10 version 1607 or later. From a functionality standpoint, it’s similar to the classic WinDbg. But
it is somewhat easier to use because of the modern, convenient U, and in fact has also solved some bugs
that still plague the classic debugger. All the commands we’ll see in this chapter work equally well with
either debugger.

Although these debuggers may seem different from one another, the user-mode debuggers are essentially
the same, as are the kernel debuggers. They are all based around a single debugger engine implemented
as a DLL (DbgEng.DIl). The various debuggers are able to use extension DLLs, that provide most of the
power of the debuggers by loading new commands.

The Debugger Engine is documented to a large extent in the Debugging tools for Windows documentation,
which makes it possible to write new debuggers (or other tools) that utilize the debugger engine.

Other tools that are part of the package include the following (partial list):

« Gflags.exe - the Global Flags tool that allows setting some kernel flags and image flags.
« ADPlus.exe - generate a dump file for a process crash or hang.

« Kill.exe - a simple tool to terminate process(es) based on process ID, name, or pattern.

« Dumpchk.exe - tool to do some general checking of dump files.

» TList.exe - lists running processes on the system with various options.

« Umdh.exe - analyzes heap allocations in user-mode processes.

 UsbView.exe - displays a hierarchical view of USB devices and hubs.

Introduction to WinDbg

This section describes the fundamentals of WinDbg, but bear in mind everything is essentially the same
for the console debuggers, with the exception of the GUI windows.

WinDbg is built around commands. The user enters a command, and the debugger responds with text
describing the results of the command. With the GUI, some of these results are depicted in dedicated
windows, such as locals, stack, threads, etc.

WinDbg supports three types of commands:

« Intrinsic commands - these commands are built-in into the debugger (part of the debugger engine),
and they operate on the target being debugged.

+ Meta commands - these commands start with a period (.) and they operate on the debugging
environment, rather than directly on the target being debugged.
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« Extension commands (sometimes called bang commands) - these commands start with an ex-
clamation point (!), providing much of the power of the debugger. All extension commands are
implemented in external DLLs. By default, the debugger loads a set of predefined extension DLLs,
but more can be loaded from the debugger directory or another directory with the .load meta
command.

Writing extension DLLs is possible and is fully documented in the debugger docs. In fact, many such DLLs
have been created and can be loaded from their respective source. These DLLs provide new commands
that enhance the debugging experience, often targeting specific scenarios.

Tutorial: User mode debugging basics

If you have experience with WinDbg usage in user-mode, you can safely skip this section.

This tutorial is aimed at getting a basic understanding of WinDbg and how to use it for user-mode
debugging. Kernel debugging is described in the next section.

There are generally two ways to initiate user-mode debugging - either launch an executable and attach to
it, or attach to an already existing process. We’ll use the latter approach in this tutorial, but except for this
first step, all other operations are identical.

« Launch Notepad.
« Launch WinDbg (either the Preview or the classic one. The following screenshots use the Preview).

« Select File / Attach To Process and locate the Notepad process in the list (see figure 5-1). Then click
Attach. You should see output similar to figure 5-2.
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Record process with Time Travel Debugging
For more information about Time Travel Debugging, click here

Figure 5-1: Attaching to a process with WinDbg
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7 ModLoad: @@@e7ffc 1bdoeeee eeee7ffc 1bd9ceae  C:\WINDOWS\system32\CRYPTBASE.DLL Address: | @3copelp
£ Modioad: 0007’ 20380086 00GG7FFC' 20320600  C:\WINDOWS\Systen32\IMM32.DIL o0eaTFfC" 20482060 cC B
T ModLoad: @0ee7ffc 16f10000 @607Ffc 16face@d  C:\WINDOWS\system32\uxtheme.d1l oBaATFfC" 20483060 CC
S ModLoad: @eee7ffc’ 1dcseeee eeee7ffc’1dd22eee  C:\WINDOWS\System32\clbcatqg.dll o0eaTFfC" 2043206 cC
ModLoad: 80@07ffb 3d80060 60GE7Ffb £3287000  C:\Windows\System32\MrmCoreR.d1l 00007 fC" 20433070 cC
ModLoad: 8@@87ffc’ 1d980060 BOGETFFC 1daea@e®  C:\WINDOWS\System32\MSCTF.d1l o0ea7FfC" 20483071 cC
ModLoad: 8@@87ffC’ 12660000 BOGBTFFC 12762080  C:\WINDOWS\System32\dwmapi.d1l o0eaTFfC" 20483072 CC
ModLoad: 80@87Ffc’ 1ca6P0eR BOBETFFC 1cc3b@8O  C:\WINDOWS\System32\CRYPT32.d11 eB@a7FfC" 20483073 CC
ModLoad: 8@@87ffC’ 1c460060 BOGBTFFC 10472089  C:\WINDOHS\System32\MSASNL.d11 @0007FFC" 20483074 CC
ModLoad: 80@07Ffb’ afbedBBd BABOTFfb afcat@@d  C:\Windows\System32\efswrt.d1l eB@a7FfC" 20483075 CC
ModLoad: 80@87Ffc’ 14130060 6OBE7FFc 14283080  C:\WINDOWS\SYSTEM32\uwintypes.dll 0000TFFC" 20483076 6666618400004
ModLoad: 80@87Ffc’ 96550060 BOBETFFC @656b@80  C:\Windows\System32\MPR.d11 ntd111DbgBreakpoint:
ModLoad: @0@@7ffc’ 1a7c0@e@ 80@O7ffc 1a0cde@d  C:\Windows\System32\twinapi.appcore.dll BeaaTFFC 20483080 cc
ModLoad: @0@@7ffc’ 1a0de@ee @0ee7ffc 1a0f8ee®  C:\Windows\System32\RMCLIENT.d1l ©BB07FfC" 20483081 <3
ModLoad: 80@87ffc’ 02560080 BABO7FFC @a5cc@BO  C:\Windows\System32\oleacc.d1l P0E0TFFC" 20483082 cC
ModLoad: @0@@7ffb’ f26b000 @OeE7ffb 2745080  C:\WINDOWS\System32\TextInputFramework.dll 00B7FFC" 20483083 cC
ModLoad: @0@@7ffc’ 16230000 @0@E7ffC 16012089  C:\WINDOWS\System32\CoreMessaging.dll eBaaTFfC" 20483084 cC
ModLoad: @@@07ffc’ 11250000 80@e7ffC 11572009  C:\WINDOWS\System32\CoreUIComponents.d11 ©BaA7FfC" 20483085 cC
ModLoad: @0@07ffc’ 1b440008 @0@E7fC 10471000  C:\WINDOWS\SYSTEM32\ntmarta.d1l 20087FFC" 20433086 CC
(zé;zlti;lsze:): E;e?ktinstructian exception - code 8eeeeee3 (first chance) 0BB7FFC" 20483087 cC
ntd11!pbgBreakpoint: i ©0e0TffC 20432088 0F13400000006¢
00007 ffC’ 20483080 CC int 3 = ntdl]!DbgUserBreakPoint ;
[T D] | eeeerffc 20483000 cc
| oeea7ffc" 20483091 3 [
0:803>
< bl
Locals 2 X |[stack - 2 X
Frame Index Name
0x0] ntdiliDbgBreakPoint
[0t ntdiliDbgUiRemoteBreakin = Oxdb
The parameter is incorrect. (0x80070057) jel) KERNEL32!BaseThread nitThunk + Ox14
03 ntdlRtUserThreadStart + 0x21
Locals | Watch Threads | Stack | Breakpoints

Figure 5-2: First view after process attach

The Command window is the main window of interest - it should always be open. This is the one showing
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the various responses of commands. Typically, most of the time in a debugging session is spent interacting
with this window.

The process is suspended - we are in a breakpoint induced by the debugger.

« The first command we’ll use is ~, which shows information about all threads in the debugged
process:

0:003> ~

© Id: 8T4c.18068 Suspend: 1 Teb: 00000001~ 2229d000 Unfrozen
Id: 874c.46ac Suspend: 1 Teb: 0000VVO1 22225000 Unfrozen
Id: 874c.152cc Suspend: 1 Teb: 000VVVO1"222a7000 Unfrozen
Id: 874c.bb0@8 Suspend: 1 Teb: 00000001 222ab@@@ Unfrozen

w N o=

The exact number of threads you’ll see may be different than shown here.

One thing that is very important is the existence of proper symbols. Microsoft provides a public symbol
server, which allows locating symbols for most modules by produced by Microsoft. This is essential in any

low-level debugging.

« To set symbols quickly, enter the .symfix command.

+ Abetter approach is to set up symbols once and have them available for all future debugging sessions.
To do that, add a system environment variable named _NT_SYMBOL_PATH and set it to a string
like the following:

SRV*c:\Symbols*http://msdl .microsoft.com/download/symbols

The middle part (between asterisks) is a local path for caching symbols on your local machine; you
can select any path you like (including a network share, if sharing with a team is desired). Once this
environment variable is set, next invocations of the debugger will find symbols automatically and load
them from the Microsoft symbol server as needed.

environment variables. Sysinternals tools (e.g. Process Explorer, Process Monitor), Visual Studio,
and others look for the same variable as well. You set it once, and get its benefit using multiple
tools.

’ The debuggers in the Debugging Tools for Windows are not the only tools that look for this

+ To make sure you have proper symbols, enter the 1m (loaded modules) command:
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0:003> 1m

start end module name

00oOTEfT7 53820000 QEOTEfT7 53863000  notepad (deferred)
000OTffb afbelOQ 0VVOTffb afcablRd  efswrt (deferred)
00T ffc 1dboRRY 0VATffc 1dba8000 shcore (deferred)
00T ffc 1dbboood 00VOTffc 1dcT74000  OLEAUT32 (deferred)
0000Tffc 1dc800R0 PRROTffc 1dd2200@ clbcatqg (deferred)
0000Tffc 1dd30000 V0VOTffc 1de5T7000  COMDLG32 (deferred)
00ROTffc 1debRRR VROTffc 1350000  SHELL32 (deferred)
000OTffc™ 11500000 VVOTffc 1622000 RPCRT4 (deferred)
00PRTffc 1630000 VVVOTffc 1f6e3000  KERNEL32 (pdb symbols) c:\symbols\ker\

nel32.pdb\3B92DED9912D874A2BDO8735BCO199A31 \kernel32. pdb

00ROTffc 1£700000 VVVOTffc ™ 1£729000 GDI32 (deferred)
00ROTffc 1£790000 VVVOTffc 1£f7e2000 SHLWAPI (deferred)
0oROTffc 1£8d00O0 VVLOTffc 1f96e000 sechost (deferred)
0000Tffc > 1fo70000 VVVOTffc 1fcOc@Pd  combase (deferred)
00RO Tffc 1fcaddRo 00VOTffc 1fd3e000 msvcert (deferred)
000OTffc 1feb0ROQ VOO Tffc 1fef3000  ADVAPI32 (deferred)
0ROTffc 20380000 VROTffc 203ae000 IMM32 (deferred)
0000Tffc 203e0000 VVOOTffc 205cdOR®  ntdll (pdb symbols)  c¢:\symbols\ntd\

11.pdb\ETEEB8OBFAA91532B88FF026DC6BIOF 341 \ntdll.pdb

The list of modules shows all modules (DLLs and the EXE) loaded into the debugged process at this time.
You can see the start and end virtual addresses into which each module is loaded. Following the module

name you can see the symbol status of this module (in parenthesis). Possible values include:

deferred - the symbols for this module were not needed in this debugging session so far, and so
are not loaded at this time. The symbols will be loaded when needed (for example, if a call stack
contains a function from that module). This is the default value.

pdb symbols - proper public symbols have been loaded. The local path of the PDB file is displayed.
private pdb symbols - private symbols are available. This would be the case for your own modules,
compiled with Visual Studio. For Microsoft modules, this is very rare (at the time of writing,
combase.dll is provided with private symbols). With private symbols, you have information about
local variables and private types.

export symbols - only exported symbols are available for this DLL. This typically means there are
no symbols for this module, but the debugger is able to use the exported sysmbols. It’s better than
no symbols at all, but could be confusing, as the debugger will use the closest export it can find, but
the real function is most likely different.

no symbols - this module’s symbols were attempted to be located, but nothing was found, not even
exported symbols (such modules don’t have exported symbols, as is the case of an executable or
driver files).

You can force loading of a module’s symbols using the following command:
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.reload /f modulename.dll

This will provide definitive evidence to the availability of symbols for this module.
Symbol paths can also be configured in the debugger’s settings dialog.

Open the File / Settings menu and locate Debugging Settings. You can then add more paths for symbol
searching. This is useful if debugging your own code, so you would like the debugger to search your
directories where relevant PDB files may be found (see figure 5-3).

I Settings
g

General E— E——
Command Window chugging Setiings

Debugging settings Persist engine settings across debugging sessions
Disassernbly Window Debugging Paths

Events and Exceptions

Source Window Source path:

Browse..

Symbol path: lSRV*c:\,SymbcI s*http://msdl.microsoft.com/download/symbols

Browse...

Figure 5-3: Symbols and source paths configuration

Make sure you have symbols configured correctly before you proceed. To diagnose any issues, you can
enter the !sym noisy command that logs detailed information for symbol load attempts.

Back to the thread list - notice that one of the threads has a dot in front of its data. This is the current
thread as far as the debugger is concerned. This means that any command issued that involves a thread,
where the thread is not explicitly specified, will work on that thread. This “current thread” is also shown
in the prompt - the number to the right of the colon is the current thread index (3 in this example).

Enter the k command, that shows the stack trace for the current thread:

0:003> k

# Child-SP RetAddr Call Site

00 0EVV1 " 224ffbd8 0VVOTffc 204aefbb ntdll!DbgBreakPoint

01 00000001 224ffbe@ 0000T7ffc 1£f647974 ntdll!DbgUiRemoteBreakin+0x4b

02 0001 " 224ffc10 0VVOTffc 2044a271 KERNEL32!BaseThreadInitThunk+0x14
03 00000001 " 224ffc40 0VVVVVVV VVVVVVVO ntdll!RtlUserThreadStart+0x21
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You can see the list of calls made on this thread (user-mode only, of course). The top of the call stack in
the above output is the function DbgBreakPoint located in the module ntd11.d11. The general format of
addresses with symbols is modulename! functionname+offset. The offset is optional and could be zero
if it’s exactly the start of this function. Also notice the module name is without an extension.

How can you tell that you don’t have proper symbols except using the Im command? If you see
very large offsets from the beginning of a function, this is probably not the real function name
- it’s just the closest one the debugger knows about. “Large offsets” is obviously a relative term,
but a good rule of thumb is that a 4-hex digit offset is almost always wrong.

In the output above, DbgBreakpoint was called by DbgUiRemoteBreak In, which was called by BaseThreadInitThunl
and so on.

This thread, by the way, was injected by the debugger in order to break into the target forcefully.

To switch to a different thread, use the following command: ~ns where n is the thread index. Let’s switch
to thread 0 and then display its call stack:

0:003> ~0s
win32u!NtUserGetMessage+0x14:
0000Tffc 1c4b1164 c3
0:000> k

# Child-SP

ret

RetAddr Call Site

(5]
01
02
03
04
@5

000V ~2247£998
00LRVV1 22471920
0PV~ 2247200
0VVVVO1 " 2247 b0
0001 ~224TfbcO
0001~ 224Tfbf0O

00Tffc 1d802fbd
QRRTEET5382449f
QROTEET 5383ae@7
0OOTEfc 11647974
00OTffc 20442271
0000VYYA " VVYVVVD

win32u!NtUserGetMessage+0x14
USER32 ! GetMessageW+0x2d
notepad!WinMain+0x267
notepad!__mainCRTStartup+0x19f
KERNEL32!BaseThreadInitThunk+0x14
ntdll!RtlUserThreadStart+0x21

This is Notepad’s main (first) thread. The top of the stack shows the thread waiting for UI messages
(win32u!NtUserGetMessage). The thread is actually waiting in kernel mode, but this is invisible from a
user-mode debugger’s view.

An alternative way to show the call stack of another thread without switching to it, is to use the tilde and
thread number before the actual command. The following output is for thread 1’s stack:
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0:000> ~1k
# Child-SP RetAddr Call Site
00 0VVVEV1"2267f4c8 VVVOTffc 204301f4 ntdll!NtWaitForWorkViaWorkerFactory+0x14
01 0001 2267f4d0 VVVQTffc ™ 1f647974 ntdll!TppWorkerThread+0x274
02 0001 2267fT7cO 0VVOTffc 2044a271 KERNEL32!BaseThreadInitThunk+0x14
03 0001226770 VVVVVVVV " VVVVVVVY ntdll!RtlUserThreadStart+0x21

TppWorkerThread is the thread entry point for thread pool threads (Tpp is short for “Thread
Pool Private”).

e The above call stack is very common, and indicates a thread that is part of the thread pool.

Let’s go back to the list of threads:

Id: 874c.18068 Suspend: 1 Teb: 000001 2229d000 Unfrozen
Id: 874c.46ac Suspend: 1 Teb: 00000001 22225000 Unfrozen
Id: 874c.152cc Suspend: 1 Teb: 0000001~ 222a7000 Unfrozen
Id: 874c.bb@8 Suspend: 1 Teb: 00001 222ab00 Unfrozen

W N~

Notice the dot has moved to thread 0 (current thread), revealing a hash sign (#) on thread 3. The thread
marked with a hash (#) is the one that caused the last breakpoint (which in this case was our initial debugger
attach).

The basic information for a thread provided by the ~ command is shown in figure 5-4.

Client ID (Process ID.Thread ID) Thread Environment Block (TEB)

/

@ Id: 874c.18068 Suspend: 1 Teb: 00000001 2229d000 Unfrozen

Debugger thread index Suspend count (normally 1) Frozen? (from debugger’s
perspective), normally
Unfrozen

Figure 5-4: Thread information for the ~ command

Most numbers reported by WinDbg are hexadecimal by default. To convert a value to decimal, you can
use the ? (evaluate expression) command.

Type the following to get the decimal process ID (you can then compare to the reported PID in Task
Manager):
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0:000> ? 8T4c
Evaluate expression: 34636 = 000000 OLVO8T4Ac
You can express decimal numbers with the @n prefix, so you can get the inverse result as well:

0:000> ? On34636
Evaluate expression: 34636 = 00000000 08 T4c

) o

You can examine the TEB of a thread by using the ! teb command. Using ! teb without an address shows
the TEB of the current thread:

The @y prefix can be used in WinDbg to specify binary values. For example, using @y1100 is
the same as @n12 as is @xc. You can use the ? command to see the converted values.

Self:

0VVVVO1222a5000

0:000> !teb

TEB at 000000012229d000
ExceptionlList: [9161616/616151514141616/6165]%]
StackBase: 000122480000
StackLimit: 00V 12246 000
SubSystemTib: [9161616/61615154141616.665]%]
FiberData: 000VVVVV1edd
ArbitraryUserPointer: 0000000000VOVVD
Self: 00V 12229d000
EnvironmentPointer: (4161616/616161514141416.6.65]%]
ClientlId: 0000VVVVVRBT4C . VOVVVVVVVV18068
RpcHandle: [9161616/616151514141616.665]%]
Tls Storage: 00LVV1c93676c940
PEB Address: 00O 12229c000
LastErrorValue: 0
LastStatusValue: 8000001a
Count Owned Locks: Q
HardErrorMode: Q

0:000> !teb 0LV 22225000

TEB at 00000001222a5000
ExceptionList: [9161616/61615154161616.6165]%]
StackBase: 000122680000
StackLimit: 0012266000
SubSystemTib: (4161616/616161514141416,6165]%]
FiberData: 000VVVVVV1 e
ArbitraryUserPointer: 0000000000V
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EnvironmentPointer:
Clientld:
RpcHandle:

Tls Storage:

PEB Address:
LastErrorValue:
LastStatusValue:
Count Owned Locks:
HardErrorMode:

85

0000VVVOVYVYVVAD
00VVVVVOVRR8T4C .
00VVVVVVVVVVVBVD
0000V1c936764260
000VVV12229c000
Q

Cc00YVA34

Q

Q

00VVVVVLLB46ac

Some data shown by the !teb command is relatively known or easy to guess:

« StackBase and StackLimit - user-mode current stack base and stack limit for the thread.

« Clientld - process and thread IDs.

« LastErrorValue - last Win32 error code (GetLastError).

« TisStorage - Thread Local Storage (TLS) array for this thread (full explanation of TLS is beyond the

scope of this book).

o PEB Address - address of the Process Environment Block (PEB), viewable with the ! peb command.
« LastStatusValue - last NTSTATUS value returned from a system call.

« The !teb command (and similar commands) shows parts of the real data structure behind the scenes,
in this case _TEB. You can always look at the real structure using the dt (display type) command:

0:000> dt ntdll!_teb
+0x000 NtTib : _NT_TIB
+0x038 EnvironmentPointer : Ptr64 Void
+0x040 Clientld : _CLIENT_ID
+0x050 ActiveRpcHandle Ptr64 Void
+0x058 ThreadlLocalStoragePointer : Ptr64 Void
+0x060 ProcessEnvironmentBlock : Ptr64 _PEB
+0x1808 LockCount : Uint4B
+0x180c WowTebOffset Int4B
+0x1810 ResourceRetValue : Ptr64 Void
+0x1818 ReservedForWdf . Ptr64 Void
+0x1820 ReservedForCrt : Uint8B
+0x1828 EffectiveContainerId : _GUID

Notice that WinDbg is not case sensitive when it comes to symbols. Also, notice the structure name starting
with an underscore; this the way most structures are defined in Windows (user-mode and kernel-mode).
Using the typedef name (without the underscore) may or may not work, so always using the underscore

is recommended.
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How do you know which module defines a structure you wish to view? If the structure
is documented, the module would be listed in the docs for the structure. You can also try
specifying the structure without the module name, forcing the debugger to search for it.
Generally, you “know” where the structure is defined with experience and sometimes context.

If you attach an address to the previous command, you can get the actual values of data members:

0:000> dt ntdll!_teb 00000001 " 2229d000
+0x000 NtTib : _NT_TIB
+0x038 EnvironmentPointer : (null)
+0x040 ClientId : _CLIENT_ID
+0x050 ActiveRpcHandle : (null)
+0x058 ThreadlLocalStoragePointer : 0x000001c9"3676c940@ Void
+0x060 ProcessEnvironmentBlock : 0x00000001 2229c000 _PEB
+0x068 LastErrorValue ;0
+0x1808 LockCount 10
+0x180c WowTebOffset N e1%]
+0x1810 ResourceRetValue : 0x000001c9 3677fd0@ Void
+0x1818 ReservedForWdf : (null)
+0x1820 ReservedForCrt 10

+0x1828 EffectiveContainerId : _GUID {00000000-0000-0000-0000-000000000A0 }

Each member is shown with its offset from the beginning of the structure, its name, and its value. Simple
values are shown directly, while structure values (such as NtTib above) are shown with a hyperlink.
Clicking this hyperlink provides the details of the structure.

Click on the NtTib member above to show the details of this data member:

0:000> dx -r1 (*((ntdll!_NT_TIB *)0x12229d000))
(*((ntdll! _NT_TIB *)0x12229d000)) [Type: _NT_TIB]
[+0x000] ExceptionList © 0x0 [Type: _EXCEPTION_REGISTRATION_RECORD *]
[+0x008] StackBase © 0x122480000 [Type: void *]
[+0x010] StackLimit © 0x12246f000 [Type: void *]
[+0x018] SubSystemTib © 0x0 [Type: void *]
[+0x020] FiberData © 0x1e00 [Type: void *]
[+0x020] Version : 0x1e00 [Type: unsigned long]
[+0x028] ArbitraryUserPointer : 0x0 [Type: void *]
[+0x030] Self © 0x12229d000 [Type: _NT_TIB *]

The debugger uses the newer dx command to view data. See the section “Advanced Debugging with
WinDbg” later in this chapter for more on the dx command.
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If you don’t see hyperlinks, you may be using a very old WinDbg, where Debugger Markup Language
(DML) is not on by default. You can turn it on with the .prefer_dml 1 command.

Now let’s turn our attention to breakpoints. Let’s set a breakpoint when a file is opened by notepad.

« Type the following command to set a breakpoint in the CreateFile API function:

0:000> bp kernel32!createfilew

Notice the function name is in fact CreateFileW, as there is no function called CreateFile. In code, this
is a macro that expands to CreateFileW (wide, Unicode version) or CreateFileA (ASCII or Ansi version)
based on a compilation constant named UNICODE. WinDbg responds with nothing. This is a good thing.

The reason there are two sets of functions for most APIs where strings are involved is a historical
one. In any case, Visual Studio projects define the UNICODE constant by default, so Unicode is
the norm. This is a good thing - most of the A functions convert their input to Unicode and call
the W function.

You can list the existing breakpoints with the bl command:

0:000> bl
0 e Disable Clear 00007ffc 1f652300 0001 (0001) ©:****x KERNEL32!CreateFileW

You can see the breakpoint index (0), whether it’s enabled or disabled (e=enabled, d=disabled), and you
get DML hyperlinks to disable (bd command) and delete (bc command) the breakpoint.

Now let notepad continue execution, until the breakpoint hits:
Type the g command or press the Go button on the toolbar or hit F5:

You’ll see the debugger showing Busy in the prompt and the command area shows Debuggee is running,
meaning you cannot enter commands until the next break.

Notepad should now be alive. Go to its File menu and select Open.... The debugger should spew details of
module loads and then break:

Breakpoint @ hit

KERNEL32!CreateFileW:

QPYOTffc 1652300 ff25aa670500 jmp gword ptr [KERNEL32! _imp_CreateFileW \
(00RRTffc 1f6a8ab@)] ds:0000Tffc 1f6a8ab0@={KERNELBASE!CreateFileW (0Q00QTffc 1cT\
5e260) }

« We have hit the breakpoint! Notice the thread in which it occurred. Let’s see what the call stack
looks like (it may take a while to show if the debugger needs to download symbols from Microsoft’s
symbol server):
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0:002> k
# Child-SP

00 001 " 226fab08
01 0001 " 226fabl@
odule+0x2c

02 0000001 " 226fab6
03 0PLVV1 " 226fb3ed
04 0001 " 226fb460

RetAddr
00T ffc 0618368
00T ffc 061cbd4d

0VROTffc 061c6068
0OOTEfc 061cbT48
00OTffc 061cb62b

stedRuntimeHelper+0xfc

05 0PVVVO1 " 226fbT40
stedRuntime+0x120

21 000001 " 226feded

00T ffc 061ed4eb

00OTffc 1df025b2

adedOverlayldentifiers+0xaa

22 00000001 " 226f£320
+0x46

23 00000001 " 226f 350
erlaylmages+0xff

24 00001 " 226f£390
Ge

25 0001 " 226ff3cO
fo+0x12b

26 0000001 226ff470
tOverlayIndex+0xb6
27 00000001 " 226ff4f0
nfo+0xbf

28 000001 "~ 226ff5c0
dex+0x47

29 00001 " 226ff5f0
0x51

2a 00PLLVV1 " 2260640
esumeRT+0x45

2b 0001 " 226ff6T70
2c 0001 "~ 226ff6bO
2d 0001”2261 f6e0
Proc+0xdd

2e 000LOO1 " 226ffT790
adProc+0x35

2f 00001 " 226ffTcO
30 0001 226ffTf0
31 0001 " 226ff8d0
32 00000001 " 226ffbcd
33 00000001 226ffbfo

000Tffc 1df022af

00OTffc 1def434e

0RROTffc 1cf250a3

0VROTEffc 1ceb2726

000OTffc 1cf3108b

000OTffc 1cf30£87

00eOTffb df8fc4dl

00OTffb"dfo1f095

00OTEEb df8fT70C2

00eOTffc 1cfTb58c

000OTffc 1cfTb245

0000Tffc 1cfTb125

000Tffc 1db32ac6

00RRTffc"204521c5

Q0ROTffc 204305c4

0VOTEfc 11647974

00OTffc 20442271
0000V " VYV

Call Site

KERNEL32!CreateFileW
mscoreei!RuntimeDesc: :VerifyMainRuntimeM\
mscoreei!FindRuntimesInInstal 1Root+0x2fb
mscoreei ! GetOrCreateSxSProcessInfo+0x94

mscoreei !|CLRMetaHostPolicyImpl: :GetReque\

mscoreei !CLRMetaHostPolicyImpl: :GetReque\

SHELL32!CFSIconOverlayManager : :LoadNonlo\
SHELL32!EnableExternalOverlayldentifiers\
SHELL32!CFSIconOverlayManager : :RefreshOv\
SHELL32!SHELL32_GetIconOverlayManager+0x\
windows_storage!CFSFolder: :_GetOverlayIn\
windows_storage!CAutoDestItemsFolder: :Ge\
windows_storage!CRegFolder: : _GetOverlayI\
windows_storage!CRegFolder: :GetOverlayIn\
explorer frame!CNscOverlayTask: : _Extract+\
explorer frame!CNscOverlayTask: : InternalR\
explorer frame!CRunnableTask: : Run+0xb2
windows_storage!CShellTask: : TT_Run+0x3c
windows_storage!CShellTaskThread: : Thread\
windows_storage!CShellTaskThread: :s_Thre\
shcore!ExecuteWorkItemThreadProc+0x16
ntdll!Rt1pTpWorkCallback+0x165

ntdll ! TppWorkerThread+0x644

KERNEL32!BaseThreadInitThunk+0x14
ntdll!RtlUserThreadStart+0x21

88
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Your call stack may be different, as it depends on the Windows version, and any extensions that may be
loaded and used by the open file dialog box.

What can we do at this point? You may wonder what file is being opened. We can get that information

based on the calling convention of the CreateFileW function. Since this is a 64-bit process (and the

processor is Intel/AMD), the calling convention states that the first integer/pointer arguments are passed

in the RCX, RDX, R8, and R9 registers (in this order). Since the file name in CreateFileW is the first
argument, the relevant register is RCX.

resources).

You can get more information on calling conventions in the Debugger documentation (or in several web

Display the value of the RCX register with the r command (you’ll get a different value):

0:002> r rcx

rCcx=00000001226fabf8

We can view the memory pointed by RCX with various d (display) family of commands. Here is the db
command, interpreting the data as bytes.

0:002> db 000VVVV1226fabf8
00001 ~226fabf8 43 00 3a

.d.o.
00LVY1 " 226fac08
.r.0.
001 " 226fac18
.E.T.
00VLVY1 " 226fac28
.W.O.
001 " 226fac38
V. 2.
001 " 226fac48
L2.7.
00LVY1 " 226fach8
1.1
0001 " 226fac68

7

73

5c

72

2e

5c

00

(5]

(5]

00

(5]

00

(5]

(5]

73

6f

46

6b

30

63

76

Q0

00

(5]

Q0

(5]

Q0

(5]

1c

5c

5c

66

72

36

2e

6¢c

fc

Q0

0

Q0

Q0

Q0

Q0

Q0

Tf

57

4d

T4

61

34

35

72

(5]

00-69

00-69

00-2e

00-6d

00-5¢

00-30

00-2e

00-00

(5]

00

00

Q0

00

00

0

00

be

63

de

65

5c

37

64

(59]

00

(5]

(5]

00

(5]

00

(5]

(5]

64

72

45

7

76

32

6c

(5]

00

(5]

(5]

00

(5]

00

(5]

(5]

6f

6f

54

o6f

32

37

6¢c

(5]

00

0

00

Q0

00

00

0

00
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The db command shows the memory in bytes, and ASCII characters on the right. It’s pretty clear what the
file name is, but because the string is Unicode, it’s not very convenient to see.

Use the du command to view Unicode string more conveniently:

©:002> du 0OLVVVY1226fabf8
000RYR1 ~226fabf8 "C:\Windows\Microsoft.NET\Framewo"
0000001 ~226fac38 "rk64\\v2.0.50727\clr.dll"

You can use a register value directly by prefixing its name with @:

0:002> du @rcx
00001 ~226fabf8 "C:\Windows\Microsoft.NET\Framewo"
00001 ~226fac38 "rk64\\v2.0.50727\clr.dl1l"

Similarly, you can view the value of the second argument by looking at the rdx register.

Now let’s set another breakpoint in the native API that is called by CreateFileW - NtCreateFile:

0:002> bp ntdll!ntcreatefile
0:002> bl

0 e Disable Clear 00007ffc 1f652300 0001 (0001) O:**** KERNEL32!CreateFil\
eW

1 e Disable Clear 00007ffc 20480120 0001 (0001) 0:**** ntdll!NtCreateFile

Notice the native API never uses W or A - it always works with Unicode strings (in fact it expects
UNICODE_STRING structures, as we've seen already).

Continue execution with the g command. The debugger should break:

Breakpoint 1 hit
ntdll!NtCreateFile:
00ROTffc 20480120 4c8bdl mov r10,rcx

Check the call stack again:
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0:002> k
# Child-SP RetAddr Call Site
00 0PLVVO1 " 226fa938 REOTffc 1cT5e5d6 ntdll!NtCreateFile
01 00PVV1 " 226fa940 0VVOTffc 1cT5e2c6 KERNELBASE !CreateFilelnternal+0x2f6
02 001" 226faabd VVVATffc ©61c8368 KERNELBASE!CreateFileW+0x66
03 001" 226fabl@ VVVOTffc 061c5d4d mscoreei!RuntimeDesc: :VerifyMainRuntimeM\
odule+0x2c
04 00PVV1 " 226fabb@ VLEOTffc 061c6068 mscoreei!FindRuntimesInlnstallRoot+0x2fb
05 0PEVV1 " 226fb3e@ VVOTffc 061cbT748 mscoreei!GetOrCreateSxSProcessInfo+0x94

List the next 8 instructions that are about to be executed with the u (unassemble or disassemble) command:

0:002> u

ntdll!NtCreateFile:

0OROTffc 20480120 4c8bdl mov r10,rcx
0VVOTffc 20480123 b855000000 mov eax, 55h

00ROTffc 20480128 f604250803feT7f01 test byte ptr [SharedUserData+0x308 (0000\
0000 T7ffe@308)] ,1

000OTffc 20480130 7503 jne ntdll!NtCreateFile+0x15 (000OTffc 204\
80135)

00007 ffc 20480132 0f05 syscall

00007 ffc 20480134 c3 ret

0007 ffc 20480135 cd2e int 2Eh

00007 ffc 20480137 c3 ret

Notice the value 0x55 is copied to the EAX register. This is the system service number for NtCreateFile,
as described in chapter 1. The syscall instruction shown is the one causing the transition to kernel-mode,
and then executing the NtCreateFile system service itself.

You can step over the next instruction with the p command (step - hit F10 as an alternative). You can step
into a function (in case of assembly, this is the call instruction) with the t command (trace - hit F11 as
an alternative):

0:002> p
Breakpoint 1 hit
ntdll!NtCreateFile:

00ROTffc 20480120 4c8bdl mov r10,rcx
0:002> p

ntdl1l!NtCreateFile+0x3:

00ROTffc 20480123 b855000000 mov eax,55h
0:002> p

ntdl1!NtCreateFile+0x8:
00T ffc 20480128 f604250803feT7f01 test byte ptr [SharedUserData+0x308 (0000\
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0000 7ffe@308)],1 ds:00000000"Tffe@308=00

0:002> p

ntdll!NtCreateFile+0x10:

00T ffc 20480130 7503 jne ntdl1l!NtCreateFile+0x15 (0Q00QTffc 204\
80135) [br=0]

0:002> p

ntdll!NtCreateFile+0x12:

00POTffc 20480132 0f05 syscall

Stepping inside a syscall is not possible, as we’re in user-mode. When we step over/into it, all is done
and we get back a result.

0:002> p
ntdl1!NtCreateFile+0x14:
Q0 Tffc 20480134 c3 ret

The return value of functions in x64 calling convention is stored in EAX or RAX. For system calls, it’s an
NTSTATUS, so EAX contains the returned status:

0:002> r eax
eax=c00v034

Zero means success, and a negative value (in two’s complement, most significant bit is set) means an error.
We can get a textual description of the error with the !error command:

0:002> lerror @eax
Error code: (NTSTATUS) 0xc@000034 (3221225524) - Object Name not found.

This means the file wasn’t found on the system.

Disable all breakpoints and let Notepad continue execution normally:

0:002> bd *
0:002> g

Since we have no breakpoints at this time, we can force a break by clicking the Break button on the toolbar,
or hitting Ctrl+Break on the keyboard:

874c.16ab4): Break instruction exception - code 80000003 (first chance)
ntdll!DbgBreakPoint:

0ROTffc 20483080 cc int 3

Notice the thread number in the prompt. Show all current threads:
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0:022> ~

0 Id:
Iq:
Iq:
Id:
Id:

8T4c.
8T4c.
8T4c.
8T74c.
8T4c.

1 Teb:
1 Teb:

1 Teb:
1 Teb:

1 Teb:

0PV ~2229d00 Unfrozen
0001 "~ 22225000 Unfrozen
00V ~222a7000 Unfrozen
001 " 222adl® Unfrozen
001~ 222af0@0 Unfrozen

18068 Suspend:
46ac Suspend:
152cc Suspend:
fT7ec Suspend:
145b4 Suspend:

BwWw N -

18
19
20
21
22
23
24

Iq:
Iq:
Id:
Id:
Iq:
Iq:
Iq:

8T4c . fOc4 Suspend:
8T4c.17414 Suspend:
8T74c.c878 Suspend:
8T74c.d8cO Suspend:
8T74c.16a54 Suspend:
8T74c.10838 Suspend:

8T74c.10cf@ Suspend:

1 Teb:
1 Teb:

1 Teb:

1 Teb:
1 Teb:
1 Teb:
1 Teb:

0001 "~ 222d1000 Unfrozen
000001 "~ 222d3000 Unfrozen
001 ~222d5000 Unfrozen
0LV ~222d7000 Unfrozen
00V ~222e1000 Unfrozen
000001 " 222dbeR0 Unfrozen
000001 " 222ddee0 Unfrozen

Lots of threads, right? These were created by the common open dialog, so not the direct fault of Notepad.

Continue exploring the debugger in any way you want!

f Find out the system service numbers for NtWriteFile and NtReadFile.

If you close Notepad, you’ll hit a breakpoint at process termination:

ntdll!NtTerminateProcess+0x14:
QRROTffc 2047fc14 c3
0:000> k
# Child-SP

00 0LVR1 " 224T7f6a8
01 00LRRL1 " 224Tf6bO
02 00LVY1 224760
03 000012247710
untimes+0x287

ret

RetAddr

00T ffc"20446dd8
00RRTffc1£f64d62a
Q0ORTffc 061ceeb8
00RATffc 0644719

Call Site

ntdll!NtTerminateProcess+0x14
ntdll!RtlExitUserProcess+0xb8
KERNEL32!ExitProcessImplementation+@xa
mscoreei!RuntimeDesc: : ShutdownAllActiveR\

04
05
06
Q7
08
09
Qa

You can use the g command to quit the debugger. If the process is still alive, it will be terminated. An

0001 2247 a0
0001 "~ 224T7fa30
00001 "~ 2247 fab0
0001 ~2247£a90
0001 ~ 2247 b0
0001 ~ 2247 fbco
0001 "~ 224Tfbf0O

000QTffc 1fcda291
00T ffc"1fcda2ad
0RATffc 1£fcda925
QRATL£T7 5383aele
000QTffc 1f647974
Q00T ffc 20442271
(010]6]515]5155 M 51516151615.5.4]

mscoree!ShellShim_CorExitProcess+0x11e
msvert! _crtCorExitProcess+0x4d
msvert!_crtExitProcess+0xd
msvert!doexit+0x171
notepad!__mainCRTStartup+0x1b6
KERNEL32 !BaseThreadInitThunk+0x14
ntdll!RtlUserThreadStart+0x21

alternative is to use the . detach command to disconnect from the target without killing it.
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Kernel Debugging

User-mode debugging involves the debugger attaching to a process, setting breakpoints that cause the
process’ threads to become suspended, and so on. Kernel-mode debugging, on the other hand, involves
controlling the entire machine with the debugger. This means that if a breakpoint is set and then hit, the
entire machine is frozen. Clearly, this cannot be achieved with a single machine. In full kernel debugging,
two machines are involved: a host (where the debugger runs) and a target (being debugged). The target can,
however, be a virtual machine hosted on the same machine (host) where the debugger executes. Figure
5-5 shows a host and target connected via some connection medium.

Connection

medium
Host

(Debugger)

Figure 5-5: Host-target connection

Before we get into full kernel debugging, we’ll take a look at its simpler cousin - local kernel debugging.

Local Kernel Debugging

Local kernel debugging (LKD) allows viewing system memory and other system information on the local
machine. The primary difference between local and full kernel debugging, is that with LKD there is no
way to set up breakpoints, which means you’re always looking at the current state of the system. It also
means that things change, even while commands are being executed, so some information may be stale
or unreliable. With full kernel debugging, commands can only be entered while the target system is in a
breakpoint, so system state is unchanged.

To configure LKD, enter the following in an elevated command prompt and then restart the system:

bcdedit /debug on

activate LKD you’ll have to disable Secure Boot in the machine’s BIOS settings. If, for whatever
reason, this is not possible, there is an alternative using the Sysinternals LiveKd tool. Copy
LiveKd.exe to the Debugging Tools for Windows main directory. Then launch WinDbg using
LiveKd with the following command: 1ivekd -w. The experience is not the same, as data may
become stale because of the way Livekd works, and you may need to exit the debugger and
relaunch from time to time.

e Local Kernel Debugging is protected by Secure Boot on Windows 10, Server 2016, and later. To

After the system is restarted, launch WinDbg elevated (the 64-bit one, if you are on a 64-bit system). Select
the menu File / Attach To Kernel (WinDbg preview) or File / Kernel Debug... (classic WinDbg). Select the
Local tab and click OK. You should see output similar to the following:
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Microsoft (R) Windows Debugger Version 10.0.22415.1003 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Connected to Windows 10 22000 x64 target at (Wed Sep 29 10:57:30.682 2021 (UTC \
+ 3:00)), ptr64 TRUE

FooRR kR R Path validation summary skt
Response Time (ms) Location

Deferred SRV*c:\symbols*https://msdl .micr\
osoft.com/download/symbols

Symbol search path is: SRV*c:\symbols*https://msdl.microsoft.com/download/symbo\
1s

Executable search path is:

Windows 10 Kernel Version 22000 MP (6 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Edition build lab: 22000.1.amd64fre.co_release.210604-1628

Machine Name:

Kernel base = 0Oxfffff802°07a0000@ PslLoadedModulelList = Oxfffff802 08629710

Debug session time: Wed Sep 29 10:57:30.867 2021 (UTC + 3:00)

System Uptime: © days 16:44:39.106

Note the prompt displays lkd. This indicates Local Kernel Debugging is active.

Local kernel Debugging Tutorial

If you’re familiar with kernel debugging commands, you can safely skip this section.

You can display basic information for all processes running on the system with the process @ @ command:

1kd> !process 0 ©

*f%% NT ACTIVE PROCESS DUMP ****

PROCESS ffffd104936c8040
SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBase: 006d5000 ObjectTable: ffffab8d3cc44do®@ HandleCount: 3909.
Image: System

PROCESS ffffd104936e2080
SessionId: none Cid: 0058 Peb: 00000000 ParentCid: 0004
DirBase: 0182c000 ObjectTable: ffffab58d3cc4ea4® HandleCount: Q.
Image: Secure System

PROCESS ffffd1049370a080
Sessionld: none Cid: 0090 Peb: 00000000 ParentCid: 0004
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DirBase: 011b600@ ObjectTable: ffffab58d3cc65a80 HandleCount: Q.
Image: Registry

PROCESS ffffd10497ddo080
Sessionld: none Cid: 024c Peb: bc6c2bald@ ParentCid: 0004
DirBase: 10be4b0@@ ObjectTable: ffffa58d3d49ddc® HandleCount: 60.
Image: smss.exe

For each process, the following information is displayed:

+ The address attached to the PROCESS text is the EPROCESS address of the process (in kernel space,
of course).

« Sessionld - the session the process is running under.

» Cid - (client ID) the unique process ID.

+ Peb - the address of the Process Environment Block (PEB). This address is in user space, naturally.

« ParentCid - (parent client ID) the process ID of the parent process. Note that it’s possible the parent
process no longer exists, so this ID may belong to some process created after the parent process
terminated.

« DirBase - physical address of the Master Page Directory for this process, used as the basis for virtual
to physical address translation. On x64, this is known as Page Map Level 4, and on x86 it’s Page
Directory Pointer Table (PDPT).

» ObjectTable - pointer to the private handle table for the process.

« HandleCount - number of handles in the handle table for this process.

« Image - executable name, or special process name for those not associated with an executable (such
as Secure System, System, Mem Compression).

The ! process command accepts at least two arguments. The first indicates the process of interest using its
EPROCESS address or the unique Process ID, where zero means “all or any process”. The second argument
is the level of detail to display (a bit mask), where zero means the least amount of detail. A third argument
can be added to search for a particular executable. Here are a few examples:

List all processes running explorer.exe:

1kd> !process © @ explorer.exe

PROCESS ffffd1049e118080
Sessionld: 1 Cid: 1780 Peb: 0076b000 ParentCid: 16d0
DirBase: 362eab50@@ ObjectTable: ffffab58d45891680 HandleCount: 3208.
Image: explorer.exe

PROCESS ffffd104a14e2080
Sessionld: 1 Cid: 2548 Peb: 005c1000 ParentCid: 0314
DirBase: 140fe9000 ObjectTable: ffffab58d46a99500@ HandleCount: 2613.
Image: explorer.exe

List more information for a specific process by specifying its address and a higher level of detail:
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1kd> !process ffffd1049e7ab0cO 1

PROCESS ffffd1049e7a60c0
Sessionld: 1 Cid: 1374
DirBase: 37eb97000 ObjectTable:
Image: dllhost.exe

97

Peb: d3e343000 ParentCid: 0314

ffffab8d58a9de®@ HandleCount: 224.

VadRoot ffffd104b81c7db® Vads 94 Clone © Private 455. Modified 2. Locked 0.

DeviceMap ffffa58d41354230
Token

ElapsedTime

UserTime

KernelTime

QuotaPoolUsage [PagedPool |
QuotaPoolUsage [NonPagedPool |
Working Set Sizes (now,min,max)
PeakWorkingSetSize
VirtualSize

PeakVirtualSize
PageFaultCount
MemoryPriority

BasePriority

CommitCharge

Job

ffffa58d466e0060
01:04:36.652
00:00:00.015
00:00:00.015
201696

13048
(4330, 50, 345) (17320KB, 200KB, 1380KB)
4581

2101383 Mb
2101392 Mb

5427

BACKGROUND

8

678
fff£d104a05ed380

As can be seen from the above output, more information on the process is displayed. Some of this
information is hyperlinked, allowing easy further examination. For example, the job this process is part of
(if any) is a hyperlink, executing the ! job command if clicked.

Click on the Job address hyperlink:

1kd> !job ffffd104a05ed380
Job at ffffd104a05ed380
Basic Accounting Information

TotalUserTime: 0x0
TotalKernelTime: 0x0
TotalCycleTime: 0x0
ThisPeriodTotalUserTime: 0x0
ThisPeriodTotalKernelTime: ©x@
TotalPageFaultCount: 0x0
TotalProcesses: 0x1
ActiveProcesses: 0x1
FreezeCount: Q
BackgroundCount : %)
TotalTerminatedProcesses: ©x0@
PeakJobMemoryUsed: 0x2£5
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PeakProcessMemoryUsed: 0x2£5
Job Flags
[wake notification allocated]
[wake notification enabled]
[timers virtualized]
Limit Information (LimitFlags: 0x800)
Limit Information (EffectivelLimitFlags: 0x403800)
JOB_OBJECT_LIMIT_BREAKAWAY_OK

limits and get accounting information. A discussion of jobs is beyond the scope of this book.
More information can be found in the Windows Internals 7th edition, part 1 and Windows 10
System Programming, Part 1books.

0 A Job is a kernel object that manages one or more processes, for which it can apply various

As usual, a command such as ! job hides some information available in the real data structure. In this case,
the type is EJOB. Use the command dt nt!_ejob with the job address to see all the details.

The PEB of a process can be viewed as well by clicking its hyperlink. This is similar to the ! peb command
used in user mode, but the twist here is that the correct process context must be set first, as the address is
in user space. Click the Peb hyperlink. You should see something like this:

1kd> .process /p ffffd1049eT7ab@cO®; !peb d3e343000
Implicit process is now ffffd104 9eT7ac0cOd
PEB at ©0000000d3e343000

InheritedAddressSpace: No
ReadImageFileExecOptions: No
BeingDebugged: No
ImageBaseAddress: 00T 661180000
NtGlobalFlag: 0
NtGlobalFlag2: 0
Ldr 00RRTffb37ef9120
Ldr.Initialized: Yes
Ldr.InInitializationOrderModulelList: ©00001d950004560 . 0VLV1d95005a960
Ldr.InLoadOrderModulelList: 000001d9500046f0 . ©VVY1dI5005a940
Ldr.InMemoryOrderModulelist: 000001d950004700 . ©LVV1dI5005a950
Base TimeStamp Module
7661180000 93f44fbf Aug 29 00:12:31 2048 C:\WINDOWS\system32\D11H\
ost.exe
Tffb37d80000 50702a8c Oct 06 15:56:44 2012 C:\WINDOWS\SYSTEM32\ntdl\
1.d11

Tffb36790000 ae@b35b0 Jul 13 01:50:24 2062 C:\WINDOWS\System32\KERN\
EL32.DLL
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The correct process context is set with the . process meta command, and then the PEB is displayed. This is
a general technique you need to use to show memory that is in user space - always make sure the debugger
is set to the correct process context.

Execute the ! process command again, but with the second bit set for the details:

1kd> !process ffffd1049e7ab0cO 2

PROCESS ffffd1049e7a60c0
Sessionld: 1 Cid: 1374 Peb: d3e343000 ParentCid: 0314
DirBase: 37eb97000 ObjectTable: ffffab58d58a9de@®@ HandleCount: 221.
Image: dllhost.exe

THREAD ffffd104a02de®80 Cid 1374.022c Teb: 0000000d3e344000 Win32Thread: \
ffffd104b82ccbb® WAIT: (UserRequest) UserMode Non-Alertable
fff£fd104b71d2860 SynchronizationEvent

THREAD ffffd104a45e8080 Cid 1374.0f04 Teb: 0000000d3e352000 Win32Thread: \
fff£fd104b82ccd9@ WAIT: (WrUserRequest) UserMode Non-Alertable
ff£fd104adc5e@c® Queuelbject

THREAD ffffd104a229a080 Cid 1374.1ed8 Teb: 0000000d3e358000 Win32Thread: \
ffffd104b82cf900 WAIT: (UserRequest) UserMode Non-Alertable
f£££d104b71dfb60@ NotificationEvent
f£££d104ad02a740 Queuelbject

THREAD ffffd104b78ee04@ Cid 1374.0330 Teb: 0000000d3e37a00@ Win32Thread: \
0000VVVVVVVVVYD WAIT: (WrQueue) UserMode Alertable
ffffd104adc4£640 QueueOlbject

Detail level 2 shows a summary of the threads in the process along with the object(s) they are waiting on
(if any).

You can use other detail values (4, 8), or combine them, such as 3 (1 or 2).

Repeat the !process command again, but this time with no detail level. More information is shown for
the process (the default in this case is full details):
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1kd> !process ffffd1049eT7ab60cO
PROCESS ffffd1049e7a60c0
SessionId: 1 Cid: 1374 Peb: d3e343000 ParentCid: 0314
DirBase: 37eb97000 ObjectTable: ffffab8d58a9de®@ HandleCount: 223.
Image: dllhost.exe
VadRoot ffffd104b81c7db@® Vads 94 Clone 0 Private 452. Modified 2. Locked 0.
DeviceMap ffffa58d41354230

Token ffffa58d466e0060

ElapsedTime 01:10:30.521

UserTime 00:00:00.015

KernelTime 00:00:00.015

QuotaPoolUsage [PagedPool | 201696

QuotaPoolUsage [NonPagedPool | 13048

Working Set Sizes (now,min,max) (4329, 50, 345) (17316KB, 200KB, 1380KB)

PeakWorkingSetSize 4581

VirtualSize 2101383 Mb

PeakVirtualSize 2101392 Mb

PageFaultCount 5442

MemoryPriority BACKGROUND

BasePriority 8

CommitCharge 678

Job ffffd104a05ed380

THREAD ffffd104a02de@80@ Cid 1374.022c Teb: 0000000d3e344000 Win32Thread:
ffffd104b82ccbb@ WAIT: (UserRequest) UserMode Non-Alertable

f£££d104b71d2860 SynchronizationEvent

Not impersonating

DeviceMap ffffa58d41354230

Owning Process f£££d1049eT7a60cO Image: dllhost.exe

Attached Process N/A Image: N/A

Wait Start TickCount 3641927 Ticks: 270880 (0:01:10:32.500)

Context Switch Count 27 IdealProcessor: 2

UserTime 00 :00:00.000

KernelTime 00:00:00.000

Win32 Start Address 0x00007ff661181310

Stack Init ffffbe88b4bdf630 Current ffffbe88b4bdfo10

Base ffffbe88b4be000 Limit ffffbe88b4bdo000 Call 0VVVVVVVVVVVLVY

Priority 8 BasePriority 8 PriorityDecrement © IoPriority 2 PagePriority 5

Kernel stack not resident.

THREAD ffffd104a45e8080 Cid 1374.0f04 Teb: 0000VVVd3e352000 Win32Thread:

ffffd104b82ccd90 WAIT: (WrUserRequest) UserMode Non-Alertable
ff£fd104adc5e0c@® Queuelbject
Not impersonating

\
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DeviceMap

Owning Process
Attached Process
Wait Start TickCount
Context Switch Count
UserTime

KernelTime
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ffffab8d41354230

f£££d1049e7a60cO Image: dllhost.exe
N/A Image: N/A

3910734 Ticks: 2211 (0:00:00:34.546)

2684 IdealProcessor: 4

00:00:00.046

00:00:00.078

Win32 Start Address 0x00007ffb3630f230

Stack Init ffffbe88b4c87630 Current ffffbe88b4c86a10

Base ffffbe88b4c88000 Limit ffffbe88b4c81000 Call 0VVVVVVVVVVVOVVD
Priority 10 BasePriority 8 PriorityDecrement 0O IoPriority 2 PagePriority 5

Child-SP

ffffbe88 b4c86a50
ffffbe88 b4c86b90
ffffbe88 b4c86c70
ffffbe88 b4c86d10
ffffbe88 b4c86e00
ffffbe88 b4c86100
ffffbe88 b4c86f08
ffffbe88 b4c86110
ffffbe88 b4c86118
ffffbe88 b4c86120
ffffbe88 b4c86£28
ffffbe88 b4c86£30

RetAddr

ff£££802°07cbdcl7
ff£££f802 07c5fac9
ff£££802°07c59d24
ff£££802°07c8ac70
fffff9da 64577446
ff£££f99¢ " c175d920
ff£££f99¢ " ¢c175d920
0000000 " V1L
ff££fd104"9a423df0
00000 " V1
ffffbe88 b4c87100
(4161616161616 515/615/6161610}

Call Site
nt!KiSwapContext+0x76
nt!KiSwapThread+0x3a7
nt!KiCommitThreadWait+0x159
nt!KeWaitForSingleOb ject+0x234
nt!KeWaitForMultipleOb jects+0x540
Oxfffff9da"~6d577d46
Oxfff££99¢c " c175d920
Oxfff££f99¢c " c175d920

0x1

Oxffffd104"9a423df0

0x1

Oxffffbe88 b4c87100

The command lists all threads within the process. Each thread is represented by its ETHREAD address
attached to the text “THREAD”. The call stack is listed as well - the module prefix “nt” represents the
kernel - there is no need to use the real kernel module name.

shorter.

One of the reasons to use “nt” instead of explicitly stating the kernel’s module name is because these are
different between 64 and 32 bit systems (ntoskrnl.exe on 64 bit, and ntkrnlpa.exe on 32 bit); and it’s a lot

User-mode symbols are not loaded by default, so thread stacks that span to user mode show just numeric
addresses. You can load user symbols explicitly with .reload /user after setting the process context to

the process of interest with the . process command:
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1kd> !process © O explorer.exe
PROCESS ffffd1049e118080
Sessionld: 1 Cid: 1780 Peb: 0076b00® ParentCid: 16d0

DirBase: 362eab0@@ ObjectTable: ffffab58d45891680 HandleCount:

Image: explorer.exe

PROCESS ffffd104a14e2080
Sessionld: 1 Cid: 2548 Peb: 005c1000 ParentCid: 0314

DirBase: 140fe9000 ObjectTable: ffffab58d46a99500 HandleCount:

Image: explorer.exe

1kd> .process /p ffffd1049e118080
Implicit process is now ffffd104 9e118080
1kd> .reload /user
Loading User Symbols
1kd> !process ffffd1049e118080
PROCESS ffffd1049e118080
Sessionld: 1 Cid: 1780 Peb: 0076b00® ParentCid: 16d0

DirBase: 362eab0@@ ObjectTable: ffffab58d45891680 HandleCount:

Image: explorer.exe

THREAD ffffd1049e47c400 Cid 1780.1754 Teb: 000000000OT78cOO Win32Thread: \

ffffd1049e5da7a@ WAIT: (WrQueue) UserMode Alertable
f£££d1049e076480 Queuelbject
IRP List:

3217.

2633.

3223.

fff£d1049fbea9b@: (0006,0478) Flags: 00060000 Mdl: 0OV

ffffd1049efd6aad: (0006,0478) Flags: 00060000 Mdl: 0OVLVVO

ff£fd1049efee@10: (0006,0478) Flags: 00060000 Mdl: QOO

ff£fd1049f3efB8a0: (00V6,0478) Flags: 00060000 Mdl: 0OV
Not impersonating

DeviceMap ff££ab8d41354230

Owning Process f£££d1049e118080 Image: explorer.exe
Attached Process N/A Image: N/A

Wait Start TickCount 3921033 Ticks: 7089 (0:00:01:50.765)
Context Switch Count 16410 IdealProcessor: 5

UserTime 00:00:00.265

KernelTime 00:00:00.234

Win32 Start Address ntdll!TppWorkerThread (0x00007ffb37d96830)
Stack Init ffffbe88b5fc7630 Current ffffbe88b5fc6d20
Base ffffbe88b5fc8000 Limit ffffbe88b5fc1000 Call 0VVVVVVVVVVVYY

Priority 9 BasePriority 8 PriorityDecrement © IoPriority 2 PagePriority 5

Child-SP RetAddr Call Site

102
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ffffbe88 b5fc6d60
ffffbe88 b5fcbead
ffffbe88 b5fc6£80
ffffbe88 b5fc7020
ffffbe88 b5fc70d0
ffffbe88 b5fc71£0

ffff£802°07c5dcl7
ffff£802 07c5fac9
ffff£802 07c62526
fff££f802°07c61£38
ffff£f802°07c6479¢
fEff£802°07e25075

nt !KiSwapContext+0x76
nt!|KiSwapThread+0x3a7
nt!|KiCommitThreadWait+0x159
nt ! KeRemoveQueueEx+0x2b6
nt!IoRemoveloCompletion+0x98

103

nt INtWaitForWorkViaWorkerFactory+ox\
39c¢
ffffbe88 b5fc7430 00ROTffb 37e26e84
pFrame @ ffffbe88 b5fc74a0)
00V " 03def858 VAT b 37d96bAf
+0x14
000V " 03def860 VVVATffb 367a54e0@
0000V " 03defb50 VAT fb"37d8485b
0000V " 03defb8O VYV * VYOV

nt!KiSystemServiceCopyEnd+0x25 (Tra\
ntdll!NtWaitForWorkViaWorkerFactory\

ntdll ! TppWorkerThread+0x2df
KERNEL32 !BaseThreadInitThunk+0x10
ntdll!RtlUserThreadStart+0x2b

Notice the thread above has issued several IRPs as well. We’ll discuss this in greater detail in chapter 7.

A thread’s information can be viewed separately with the ! thread command and the address of the thread.
Check the debugger documentation for the description of the various pieces of information displayed by
this command.

Other generally useful/interesting commands in kernel-mode debugging include:

« !pcr - display the Process Control Region (PCR) for a processor specified as an additional index
(processor 0 is displayed by default if no index is specified).

« !vm - display memory statistics for the system and processes.

« lrunning - displays information on threads running on all processors on the system.

We’ll look at more specific commands useful for debugging drivers in subsequent chapters.

Full Kernel Debugging

Full kernel debugging requires configuration on the host and target. In this section, we’ll see how to
configure a virtual machine as a target for kernel debugging. This is the recommended and most convenient
setup for kernel driver work (when not developing device drivers for hardware). We’ll go through the
steps for configuring a Hyper-V virtual machine. If you’re using a different virtualization technology (e.g.
VMWare or VirtualBox), please consult that product’s documentation or the web for the correct procedure
to get the same results.

The target and host machines must communicate using some communication media. There are several
options available. The fastest communication option is to use the network. Unfortunately, this requires the
host and target to run Windows 8 at a minimum. Since Windows 7 is still a viable target, there is another
convenient option - the COM (serial) port, which can be exposed as a named pipe to the host machine. All
virtualization platforms allow redirecting a virtual serial port to a named pipe on the host. We'll look at
both options.
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Just like Local Kernel Debugging, the target machine cannot use Secure Boot. With full kernel
debugging, there is no workaround.

Using a Virtual Serial Port

In this section, we’ll configure the target and host to use a virtual COM port exposed as a named pipe to
the host. In the next section, we’ll configure kernel debugging using the network.

Configuring the Target
The target VM must be configured for kernel debugging, similar to local kernel debugging, but with the
added connection media set to a virtual serial port on that machine.

One way to do the configuration is using bcdedit in an elevated command window:

bcdedit /debug on
bcdedit /dbgsettings serial debugport:1 baudrate:115200

Change the debug port number according to the actual virtual serial number (typically 1).

The VM must be restarted for these configurations to take effect. Before you do that, we can map the serial
port to a named pipe. Here is the procedure for Hyper-V virtual machines:

If the Hyper-V VM is Generation 1 (older), there is a simple Ul in the VM’s settings to do the configuration.
Use the Add Hardware option to add a serial port if there are none defined. Then configure the serial port
to be mapped to a named port of your choosing. Figure 5-6 shows this dialog.
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i Settings for Win7x84VM on localhost

R Hardware A ﬁ coM
r Add Hardware
@ RI0S You can configure the virtual COM port to communicate with the physical computer

through a named pipe. If the named pipe iz on a remote computer, you must also

. Boot from CD specify the computer name.
Security
Key Storage Drive disabled Siadan sk
W@ Memory O MNone
3072 MEB @® Named pipe:
13 Frocessor ]
2 Virtual processors Pipe name: |‘:|Ebl"97|1
-
= [ IDE Contraller 0 [ [
= Hard Drive
Win7x&4vM_1F00651A-E6. .. Named pipe path:
= IDE Controller 1 1. \pipe\debug?
() DVD Drive
Mone

&l scsl Controller
@ Metwork Adapter
Default Switch
& com1
debug?
i com2
Maone
[ piskette Drive
Maone
# Management
Name
Win7x64vM
D Integration Services
Some services offered
(& Chedkpoints
Standard
Fﬁ Smart Paging File Location
c:WirtualMachines \Win7x64vM
7w Automatic Start Action v

Cancel Apply

Figure 5-6: Mapping serial port to named pipe for Hyper-V Gen-1 VM

For Generation 2 VMs, no Ul is currently available. To configure this, make sure the VM is shut down, and
open an elevated PowerShell window.

Type the following to set a serial port mapped to a named pipe:

PS C:\>Set-VMComPort myvmname -Number 1 -Path "\\.\pipe\debug"

Change the VM name appropriately and the COM port number as set inside the VM earlier with bcdedit.
Make sure the pipe path is unique.

You can verify the settings are as expected with Get -VMComPort:
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PS C:\>Get-VMComPort myvmname

VMName Name Path

myvmname COM 1 \\.\pipe\debug
myvmname COM 2

You can boot the VM - the target is now ready.

Configuring the Host

The kernel debugger must be properly configured to connect with the VM on the same serial port mapped
to the same named pipe exposed on the host.

Launch the kernel debugger elevated, and select File / Attach To Kernel. Navigate to the COM tab. Fill in
the correct details as they were set on the target. Figure 5-7 shows what these settings look like.

Met USE 1394 Local E;' COM | EXDIl  Paste
Pipe

Reconnect

Resets

0

Baud Rate

115200

Port

Whpipe\debug

Initial break

& Note: Connecting to a virtual COM named pipe may require elevation.

Figure 5-7: Setting host COM port configuration

Click OK. The debugger should attach to the target. If it does not, click the Break toolbar button. Here is
some typical output:
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Microsoft (R) Windows Debugger Version 10.0.18317.1001 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Opened \\.\pipe\debug

Waiting to reconnect...

Connected to Windows 10 18362 x64 target at (Sun Apr 21 11:28:11.300 2019 (UTC \
+ 3:00)), ptr64 TRUE

Kernel Debugger connection established. (Initial Breakpoint requested)

kopoooslokkk Path validation summary ksl
Response Time (ms) Location

Deferred SRV*c:\Symbols*http://msdl .micro\
soft.com/download/symbols

Symbol search path is: SRV*c:\Symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:

Windows 10 Kernel Version 18362 MP (4 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 18362.1.amd64fre.19h1_release.190318-1202

Machine Name:

Kernel base = 0xfffff801 36a09000 PsLoadedModulelList = Oxfffff801 36e4c2d0@

Debug session time: Sun Apr 21 11:28:09.669 2019 (UTC + 3:00)

System Uptime: 1 days 0:12:28.864

Break instruction exception - code 80000003 (first chance)
stk o ok ok ok ok ok o sk sk ok ok sk ok o ok o sk o sk sk ok ok ok o ok o sk sk s ko sk ok o sk ok sk sk sk ok ok sk ok ok ok ok sk ok sk ok sk ok ok ok ok

*
You are seeing this message because you pressed either
CTRL+C (if you run console kernel debugger) or,

CTRL+BREAK (if you run GUI kernel debugger),
on your debugger machine's keyboard.

* X X X X

THIS IS NOT A BUG OR A SYSTEM CRASH

If you did not intend to break into the debugger, press the "g" key, then
press the "Enter" key now. This message might immediately reappear. If it

g

* X X X X

does, press and "Enter" again.

* KK X X XK X X X X X X

*

stk ok ok ok ok ok ok sk ok o ok ok ok ok ok sk ok sk ok ok ok sk sk ok s ok ok ok sk ok sk o ok ok ok sk ok sk sk ok ok ok sk sk ok ok ok ok sk ok ok ok ok ok sk ok ok sk o ok ok ok ok ok ok ok ok ok

nt !|DbgBreakPointWithStatus:
ffff£f801 " 36bcd580 cc int 3

Note the prompt has an index and the word kd. The index is the current processor that induced the break.
At this point, the target VM is completely frozen. You can now debug normally, bearing in mind anytime
you break somewhere, the entire machine is frozen.
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Using the Network

In this section, we’ll configure full kernel debugging using the network, focusing on the differences
compared to the virtual COM port setup.

Configuring the Target

On the target machine, running with an elevated command window, configure network debugging using
the following format with bcdedit:

bcdedit /dbgsettings net hostip:<ip> port: <port> [key: <key>]

The hostip must be the IP address of the host accessible from the target. port can be any available port on
the host, but the documentation recommends working with port 50000 and up. The key is optional. If you
don’t specify it, the command generates a random key. For example:

bcdedit /dbgsettings net hostip:10.100.102.53 port:51111
Key=1rhvit77hdpvT.rxgwjdvhxj7v.312gs2roip4sf.3w25wr jeocobh

The alternative is provide your own key for simplicity, which must be in the format a.b.c.d. This is
acceptable from a security standpoint when working with local virtual machines:

bcdedit /dbgsettings net hostip:10.100.102.53 port:51111 key:1.2.3.4
Key=1.2.3.4

You can always display the current debug configuration with /dbgsettings alone:

bcdedit /dbgsettings

key 1.2.3.4
debugtype NET

hostip 10.100.102.53
port 51111

dhcp Yes

The operation completed successfully.
Finally, restart the target.

Configuring the Host

On the host machine, launch the debugger and select the File / Attach the Kernel option (or File / Kernel
Debug... in the classic WinDbg). Navigate to the NET tab, and enter the information corresponding to your
settings (figure 5-7).
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Met | COM L-;:u-::aIE;I USE EXDI 1394  Paste connecticn string

Port number
(51111 |
Key

1.2.34

Target IP {not required)

Break on connection

Figure 5-8: Attach to kernel dialog

You may need to click the Break button (possibly multiple times) to establish a connection. More in-
formation and troubeshooting tips can be found at https://docs.microsoft.com/en-us/windows-hardware/
drivers/debugger/setting-up-a-network-debugging-connection.

Kernel Driver Debugging Tutorial

Once host and target are connected, debugging can begin. We will use the Booster driver we developed in
chapter 4 to demonstrate full kernel debugging.

Install (but don’t load) the driver on the target as was done in chapter 4. Make sure you copy the driver’s
PDB file alongside the driver SYS file itself. This simplifies getting correct symbols for the driver.

Let’s set a breakpoint in DriverEntry. We cannot load the driver just yet because that would cause
DriverEntry to execute, and we’ll miss the chance to set a breakpoint there. Since the driver is not loaded
yet, we can use the bu command (unresolved breakpoint) to set a future breakpoint. Break into the target
if it’s currently running, and type the following command in the debugger:

©: kd> bu booster!driverentry
0: kd> bl
0 e Disable Clear u 0001 (0001) (booster!driverentry)

The breakpoint is unresolved at this point, since our module (driver) is not yet loaded. The debugger will
re-evaluate the breakpoint any time a new module is loaded.

Issue the g command to let the target continue execution, and load the driver with sc start booster
(assuming the driver’s name is booster). If all goes well, the breakpoint should hit, and the source file
should open automatically, showing the following output in the command window:


https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-connection
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-connection
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0: kd> g

Breakpoint 0 hit

Booster !DriverkEntry:

fff£f802°13da11c@ 4889542410 mov gword ptr [rsp+10h],rdx

The index on the left of the colon is the CPU index running the code when the breakpoint hit
(CPU 0 in the above output).

Figure 5-9 shows a screenshot of WinDbg Preview source window automatically opening and the correct
line marked. The Locals window is also shown as expected.



Chapter 5: Debugging and Tracing

111

® com:port= ipe"-._n:lehug1'I,.haun:l:11SERD,.pipE,.recn:nnnect—I'-[D ‘com:port="\.\pipe\debug11,baud=115200,pipe reconnect’, Default Conned
File Home View Breakpoints Time Travel Maodel Scripting Source Command
{7 Step Out {'} Step Out Back p D Restart q anal| ~
II b | E oial s
*} stepinte  {¥} Step Into Back B Stop Debugging -
Break Go Go ‘ Settings |Seurce| Assembly Local  Update Send
- {] Step Over *{} Step Over Back gz & Detach Help -~ debugger Feedback
Flow Control Reverse Flow Control End Preferences
Y Boostercpp x ¥
E 1 #include <ntifs.h> -
g_ 2 #include "BoosterCommon.h” —
= 3
z 4 NTSTATUS BoosterCreateClose(PDEVICE_OBJECT DeviceObject, PIRP Irp):
= 5 NTSTATUS BoosterWrite(PDEVICE_OBJECT DeviceObject, PIRP Irp);
g 6 void BoosterUnload(PDRIVER_OBJECT DriverObject);
7
5 g extern "C" NTSTATUS
2 © o DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING /*RegistryPath*/) {
= 18 DriverObject->DriverUnload = BoosterUnload;
11 L
12 DriverObject->MajorFunction[IRP_MI_CREATE] = BoosterCreateClose;
13 DriverObject->MajorFunction[IRP_MI_CLOSE] = BoosterCreateClose;
14 DriverObject->MajorFunction[IRP_MI_WRITE] = Boosterkrite;
15
16 UNICODE_STRING devName = RTL_CONSTANT STRING{L"\\Device\\Booster");
17
18 PDEVICE_OBJECT DeviceObject;
19 NTSTATUS status = IoCreateDevice(
28 DriverObject, [/ our driver object
21 8, // no need for extra bytes
22 &devName, // the device name
23 FILE_DEVICE_UNKNOWN, // device type
24 8, [/ characteristics flags
25 FALSE, f/ not exclusive
26 &DeviceObject); [/ the resulting pointer
27 if (!NT_SUCCESS(status)) {
23 KdPrint(("Failed to create device object (8x¥@3X)\n", status));
29 return status;
38 }
31 E
Locals 2 X E
Name Value Type F
DeviceObject 0x0 _DEVICE_OBJECT *
devMame _UNICODE_STRING
status 0 lang
symLink _UNICODE_STRING
DriverObject Oxffff8b1b3943b307 : Driver {..} _DRIVER_OBJECT *
_ formal Oxffffd 104a30f6000 : "\REGISTRY\MACHIME\SYSTEM\C: _UNICODE_STRING *
Locals | Watch B

Figure 5-9: Breakpoint hit in DriverEntry
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At this point, you can step over source lines, look at variables in the Locals window, and even add
expressions to the Watch window. You can also change values using the Locals window just like you
would normally do with other debuggers.

The Command window is still available as always, but some operations are just easier with the GUL Setting
breakpoints, for example, can be done with the normal bp command, but you can simply open a source
file (if it’s not already open), go to the line where you want to set a breakpoint, and hit F9 or click the
appropriate button on the toolbar. Either way, the bp command will be executed in the Command window.
The Breakpoints window can serve as a quick overview of the currently set breakpoints.

« Issue the k command to see how DriverEntry is being invoked:

0: kd> k

# Child-SP RetAddr
00 ffffbe88°b3f4f138 fffff802 13dab020
ernelprogrammingbook2e\Chapter@4\Booster \Booster.cpp @ 9]
01 ffffbe88 b3f4f140 fffff802°081cafcO
1\tools\gs_support\kmode\gs_support.c @ 128]

Call Site
Booster |DriverEntry [D:\Dev\windowsk\

Booster |GsDriverEntry+0x20 [minkerne\

02
03
04
@5
06
Q7

) o

It may be the case that a breakpoint should hit only when a specific process is the one executing the code.
This can be done by adding the /p switch to a breakpoint. In the following example, a breakpoint is set

ffffbe88 b3f4f170
ffffbe88 b3f4f1d0
ffffbe88 b3f4£380
ffffbe88 b3f4£3c0O
ffffbe88 b3f4f5b0
ffffbe88 b3f4f600

fff£f802 080858e2
fff££802°081aeab’
fff££f802°07c48aaf
fff££802°07d5b615
fff££802°07e16c24
0000VYYA "~ VYYD

only if the process is a specific explorer.exe:

0: kd>

Iprocess 0 O explorer.exe

PROCESS ffffd1049e118080

Sessionld: 1

Cid:
DirBase: 362ea500@ ObjectTable:

1780

Image: explorer.exe

PROCESS ffffd104a14e2080

Sessionld: 1

Cid: 2548
DirBase: 140fe9000 ObjectTable:

Peb: 0076b000 ParentCid:
ffffab8d45891680 HandleCount: 3918.

nt!PnpCallDriverEntry+0x4c
nt!IoplLoadDriver+0x8ba
nt!IopLoadUnloadDriver+0x57

nt |ExpWorkerThread+0x14f

nt ! PspSystemThreadStartup+0x55
nt!KiStartSystemThread+0x34

If breakpoints fail to hit, it may be a symbols issue. Execute the .reload command and see
if the issues are resolved. Setting breakpoints in user space is also possible, but first execute
.reload /user to force the debugger to load user-mode symbols.

16d0

Peb: 005c1000 ParentCid: 0314
ffffab8d46a99500 HandleCount: 4524.
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Image: explorer.exe

0: kd> bp /p ffffd1049e118080 booster !boosterwrite
0: kd> bl

0 e Disable Clear fffff802°13da11c@ [D:\Dev\Chapter@4\Booster\Booster.cp\
p @ 9] 0001 (0001) Booster!DriverEntry

1 e Disable Clear fffff802°13da1090 [D:\Dev\Chapter@4\Booster \Booster.cp\
p @ 61] 0001 (0001) Booster!BoosterWrite

Match process data ffffd104 9e118080

Let’s set a normal breakpoint somewhere in the BoosterWrite function, by hitting F9 on the line in source
view, as shown in figure 5-10 (the earlier conditional breakpoint is shown as well).

= 43 w014 BOOSTErunload|_ln_ PUKLVEK_UBJELI UPLlverunject) {
2 a4 UNTICODE_STRING symLink = RTL_COMSTANT_STRING({L™\\??\\Booster");
£ 45 /{ delete symbolic link
2 46 IoDeleteSymbolicLink(&symLink);
< a7
48 // delete device object
49 IoDeleteDevice(DriverObject-»DeviceObject);
5@ }
51
52 NTSTATUS BoosterCreateClose(PDEVICE_OBJECT DeviceObject, PIRP Irp) {
53 UNREFERENCED_PARAMETER (DeviceObject);
54
55 Irp->IoStatus.5tatus = STATUS_SUCCESS;
56 Irp->IoStatus.Information = @;
57 IoCompleteRequest(Irp, I0_NO_INCREMENT);
L8 return STATUS_SUCCESS;
59 }
6a
® o
62 auto status = STATUS_SUCCESS;
63 ULONG_PTR information = @8;
64
® 6o ; irpSp = IoGetCurrentIrpStackLocation(Irp);
66 do {
67 if (irpSp->Parameters.Write.length < sizeof(ThreadData)) {
68 status = STATUS_BUFFER_TOO_SMALL;
69 break;
7a
71 auto data = static_cast<ThreadData*»(Irp->UserBuffer);
72 if (data == nullptr || data-»Priority < 1 || data->Priority > 31) {
73 status = STATUS_INVALID_PARAMETER;
74 break;
75
76 PETHREAD thread;
77 status = PsLockupThreadByThreadId(ULongToHandle(data-»ThreadId), &thread);
78 if (INT_SUCCESS(status)) {

Figure 5-10: Breakpoint hit in DriverEntry

Listing the breakpoints reflect the new breakpoint with the offset calculated by the debugger:
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0: kd> bl

0 e Disable Clear fffff802 13dal11c@ [D:\Dev\Chapter@4\Booster\Booster.cpp @\
9] 0001 (0001) Booster!DriverkEntry

1 e Disable Clear fffff802°13da109@ [D:\Dev\Chapter@4\Booster\Booster.cpp @\
61] 0001 (0001) Booster!BoosterWrite

Match process data ffffd104 9e118080

2 e Disable Clear fffff802 13dal@af [D:\Dev\Chapter@4\Booster\Booster.cpp @\
65] 0001 (0001) Booster!BoosterWrite+0x1 f

Enter the g command to release the target, and then run the boost application with some thread ID and
priority:

c:\Test> boost 5964 30
The breakpoint within BoosterWrite should hit:

Breakpoint 2 hit
Booster !|BoosterWrite+0x1f:
fffff802°13da10af 488b4c2468 mov rex,qword ptr [rsp+68h]

You can continue debugging normally, looking at local variables, stepping over/into functions, etc.

Finally, if you would like to disconnect from the target, enter the . detach command. If it does not resume
the target, click the Stop Debugging toolbar button (you may need to click it multiple times).

Asserts and Tracing

Although using a debugger is sometimes necessary, some coding can go a long way in making a debugger
less needed. In this section we’ll examine asserts and powerful logging that is suitable for both debug and
release builds of a driver.

Asserts

Just like in user mode, asserts can be used to verify that certain assumptions are correct. An invalid
assumption means something is very wrong, so it’s best to stop. The WDK header provides the NT_ASSERT
macro for this purpose.

NT_ASSERT accepts something that can be converted to a Boolean value. If the result is non-zero (true),
execution continues. Otherwise, the assertion has failed, and the system takes one of the following actions:

« If a kernel debugger is attached, an assertion failure breakpoint is raised, allowing debugging the
assertion.

« If a kernel debugger is not attached, the system bugchecks. The resulting dump file will poinpoint
the exact line where the assertion has failed.

Here is a simple assert usage added to the DriverEntry function in the Booster driver from chapter 4:
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extern "C" NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {
DriverObject->DriverUnload = BoosterUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] = BoosterCreateClose;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = BoosterCreateClose;
DriverObject->MajorFunction[IRP_MJ_WRITE] = BoosterWrite;

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\Booster");

PDEVICE_OBJECT DeviceObject;
NTSTATUS status = IoCreateDevice(

DriverObject, // our driver object

Q, // no need for extra bytes
&devName, // the device name
FILE_DEVICE_UNKNOWN, // device type

Q, // characteristics flags
FALSE, // not exclusive
&DeviceObject); // the resulting pointer

if (!NT_SUCCESS(status)) {
KdPrint(("Failed to create device object (0x%08X)\n", status));

return status;
NT_ASSERT(DeviceObject);
UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Booster");
status = IoCreateSymbolicLink(&symLink, &devName);
if (!NT_SUCCESS(status)) {
KdPrint(("Failed to create symbolic link (0x%@8X)\n", status));

IoDeleteDevice(DeviceObject);

return status;

NT_ASSERT(NT_SUCCESS(status));
return STATUS_SUCCESS;

The first assert makes sure the device object pointer is non-NULL:
NT_ASSERT(DeviceObject);

The second makes sure the status at the end of DriverEntry is a successful one:

115
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NT_ASSERT(NT_SUCCESS(status));

NT_ASSERT only compiles its expression in Debug builds, which makes using asserts practically free from
a performance standpoint, as these will not be part of the final released driver. This also means you need
to be careful that the expression inside NT_ASSERT has no side effects. For example, the following code is
wrong:

NT_ASSERT(NT_SUCCESS(IoCreateSymbolicLink(...)));

This is because the call to IoCreateSymbolicLink will disappear completely in Release build. The correct
way to assert would be something like the following:

status = IoCreateSymbolicLink(...);
NT_ASSERT(NT_SUCCESS(status));

Asserts are useful and should be used liberally because they only have an effect in Debug builds.

Extended DbgPrint

We’ve seen usage of the DbgPrint function (and the KdPrint macro) to generate output that can be viewed
with the kernel debugger or a comparable tool, such as DebugView. This works, and is simple to use, but
has some significant downsides:

All the output is generated - there is no easy way to filter output to show just some output (such

as errors and warnings only). This is partially mitigated with the extended DbgPrintEx function

described in the next paragraph.

DbgPrint(Ex) is a relatively slow function, which is why it’s mostly used with KdPrint so that the

overhead is removed in Release builds. But output in Release builds could be very important. Some

bugs may only happen in Release builds, where good output could be useful for diagnosing issues.

+ There is no semantic meaning associated with DbgPrint - it’s just text. There is no way to add
values with property name or type information.

» There is no built-in way to save the output to a file rather than just see it in the debugger. if using

DebugView, it allows saving its output to a file.

n The output from DbgPrint(Ex) is limited to 512 bytes. Any remaining bytes are lost.

The DbgPrintEx function (and the associated KdPrintEx macro) were added to provide some filtering
support for DbgPrint output:
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ULONG DbgPrintEx (
_In_ ULONG Componentld,
_In_ ULONG Level,
_In_z_ _Printf_format_string_ PCSTR Format,
) // any number of args

A list of component Ids is present in the <dpfilter.h>header (common to user and kernel mode), currently
containing 155 valid values (0 to 154). Most values are used by the kernel and Microsoft drivers, except for
a handlful that are meant to be used by third-party drivers:

« DPFLTR_IHVVIDEO_ID (78) - for video drivers.

« DPFLTR_IHVAUDIO_ID (79) - for audio drivers.

« DPFLTR_IHVNETWORK_ID (80) - for network drivers.

o DPFLTR_IHVSTREAMING_ID (81) - for streaming drivers.

« DPFLTR_IHVBUS_ID (82) - for bus drivers.

o DPFLTR_IHVDRIVER_ID (77) - for all other drivers.

+ DPFLTR_DEFAULT_ID (101) - used with DbgPrint or if an illegal component number is used.

For most drivers, the DPFLTR_IHVDRIVER_ID component ID should be used.

The Level parameter indicates the severity of the message (error, warning, information, etc.), but can
technically mean anything you want. The interpretation of this value depends on whether the value is
between 0 and 31, or greater than 31:

« 0 to 31 - the level is a single bit formed by the expression1 << Level. For example, if Level is 5,
then the value is 32.
« Anything greater than 31 - the value is used as is.

<dpfilter.h> defines a few constants that can be used as is for Level:

#define DPFLTR_ERROR_LEVEL 7
#define DPFLTR_WARNING_LEVEL 1
#define DPFLTR_TRACE_LEVEL 2
#define DPFLTR_INFO_LEVEL 3

You can define more (or different) values as needed. The final result of whether the output will make its
way to its destination depends on the component ID, the bit mask formed by the Level argument, and on
a global mask read from the Debug Print Filter Registry key at system startup. Since the Debug Print Filter
key does not exist by default, there is a default value for all component IDs, which is zero. This means that
actual level value is 1 (1 << @). The output will go through if either of the following conditions is true
(value is the value specified by the Level argument to DbgPrintEx):

« If value & (Debug print Filter value for that component) is non-zero, the output goes
through. With the default, it’s (value & 1) != 0.
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« If the result of the value ANDed with the Level of the ComponentId is non-zero, the output goes
through.

If neither is true, the output is dropped.

Setting the component ID level can be done in one of three ways:

+ Using the Debug Print Filter key under HKLM\System\CCS\Control\Session Manager. DWORD values
can be specified where their name is the macro name of a component ID without the prefix or suffix.
For example, for DPFLTR_IHVVIDEO_ID, you would set the name to “IHVVIDEO”.

» If a kernel debugger is connected, the level of a component can be changed during debugging. For
example, the following command changes the level of DPFLTR_IHVVIDEO_ID to 0x1ff:

ed Kd_IHVVIDEO_Mask Ox1ff

The Debug Print Filter value can also be changed with the kernel debugger by using the global
kernel variable Kd_WIN200@@_Mask.

« The last option is to make the change through the NtSetDebugFilterState native API It’s undocu-
mented, but it may be useful in practice. The Dbgkflt tool, available in the Tools folder in the book’s
samples repositpry, makes use of this API (and its query counterpart, NtQueryDebugFilterState),
so that changes can be made even if a kernel debugger is not attached.

If NtSetDebugFilterState is called from user mode, the caller must have the Debug privilege in its
token. Since administrators have this privilege by default (but not non-admin users), you must run dbgkflt
from an elevated command window for the change to succeed.

DbgSetDebugFilterState. These are still undocumented, but at least their declaration is
available. They use the same parameters and return type as their native invokers. This means
you can call these APIs from the driver itself if desired (perhaps based on configuration read
from the Registry).

P The kernel-mode APIs provided by the <wdm.h> are DbgQueryDebugFilterState and
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Using Dbgkfit

Running Dbgkflt with no arguments shows its usage.
To query the effective level of a given component, add the component name (without the prefix or suffix).
For example:

dbgkflt default

This returns the effective bits for the DPFLTR_DEFAULT_ID component. To change the value to something
else, specify the value you want. It’s always ORed with 0x80000000 so that the bits you specify are
directly used, rather than interpreting numbers lower than 32 as (1 << number). For example, the

following sets the first 4 bits for the DEFAULT component:

dbgkflt default Oxf

DbgPrint is just a shortcut that calls DbgPrintEx with the DPFLTR_DEFAULT_ID component like so (this
is conceptual and will not compile):

ULONG DbgPrint (PCSTR Format, arguments) {

return DbgPrintEx(DPFLTR_DEFAULT_ID, DPFLTR_INFO_LEVEL, Format, arguments);

This explains why the DWORD named DEFAULT with a value of 8 (1 << DPFLTR_INFO_LEVEL) is the value
to write in the Registry to get DbgPrint output to go through.

Given the above details, a driver can use DbgPrintEx (or the KdPrintEx macro) to specify different levels
so that output can be filtered as needed. Each call, however, may be somewhat verbose. For example:

DbgPrintEx(DPFLTR_IHVDRIVER_ID, DPFLTR_INFO_LEVEL,
"Booster: DriverEntry called. Registry Path: %wZ\n", RegistryPath);

Obviously, we might prefer a simpler function that always uses DPFLTR_IHVDRIVER_ID (the one that
should be used for generic third-party drivers), like so:

Log(DPFLTR_INFO_LEVEL,
"Booster: DriverEntry called. Registry Path: %wZ\n", RegistryPath);

We can go even further by defining specific functions that use a log level implicitly:
LogInfo("Booster: DriverEntry called. Registry Path: %wZ\n", RegistryPath);

Here is an example where we define several bits to be used by creating an enumeration (there is no necessity
to used the defined ones):
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enum class LoglLevel {
Error = 0O,
Warning,
Information,
Debug,
Verbose

};

Each value is associated with a small number (below 32), so that the values are interpreted as powers of
two by DbgPrintEx. Now we can define functions like the following:

ULONG Log(LogLevel level, PCSTR format, ...);
ULONG LogError(PCSTR format, ...);

ULONG LogWarning(PCSTR format, ...);

ULONG LogInfo(PCSTR format, ...);

ULONG LogDebug(PCSTR format, ...);

and so on. Log is the most generic function, while the others use a predefined log level. Here is the
implementation of the first two functions:

#include <stdarg.h>

ULONG Log(LogLevel level, PCSTR format, ...) {
va_list list;
va_start(list, format);
return vDbgPrintEx(DPFLTR_IHVDRIVER_ID,
static_cast<ULONG>(level), format, list);

}
ULONG LogError(PCSTR format, ...) {
va_list list;
va_start(list, format);
return vDbgPrintEx(DPFLTR_IHVDRIVER_ID,
static_cast<ULONG> (LogLevel: :Error), format, list);
}

automatically convert to integers. You can use a C-style cast instead, if you prefer. If you’re

0 The use of static_cast in the above code is required in C++, as scoped enums don’t
using pure C, change the scoped enum to a standard enum (remove the class keyword).

The return value from the various DbgPrint variants is typed as a ULONG, but is in fact a
standard NTSTATUS.
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The implementation uses the classic C variable arguments ellipsis (.. .) and implements these as you
would in standard C. The implementation calls vDbgPrintEx that accepts a va_list, which is necessary
for this to work correctly.

It’s possible to create something more elaborate using the C++ variadic template feature. This
is left as an exercise to the interested (and enthusiastic) reader.

The above code can be found in the Booster2 project, part of the samples for this chapter. As part of that
project, here are a few examples where these functions are used:

// in DriverEntry
Log(LogLevel : : Information, "Booster2: DriverEntry called. Registry Path: %wZ\n"\

’

RegistryPath);

// unload routine
LogInfo("Booster2: unload called\n");

// when an error is encountered creating a device object
LogError("Failed to create device object (0x%08X)\n", status);

// error locating thread ID
LogError("Failed to locate thread %u (0x%X)\n",
data->Threadld, status);

// success in changing thread priority
LogInfo("Priority for thread %u changed from %d to %d\n",
data->Threadld, oldPriority, data->Priority);

Other Debugging Functions

The previous section used vDbgPrintEx, defined like so:

ULONG vDbgPrintEx(
_In_ ULONG Componentld,
_In_ ULONG Level,
_In_z_ PCCH Format,
_In_ va_list arglist);

It’s identical to DbgPrintEx, except its last argument is an already constructed va_list. A wrapper macro
exists as well - vKdPrintEx (compiled in Debug builds only).

Lastly, there is yet another extended function for printing - vDbgPrintExWithPrefix:
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ULONG vDbgPrintExWithPrefix (
_In_z_ PCCH Prefix,
_In_ ULONG ComponentlId,
_In_ ULONG Level,
_In_z_ PCCH Format,
_In_ va_list arglist);

It adds a prefix (first parameter) to the output. This is useful to distinguish our driver from other drivers
using the same functions. It also allows easy filtering in tools such as DebugView. For example, this code
snippet shown earlier uses an explicit prefix:

LogInfo("Booster2: unload called\n");
We can define one as a macro, and use it as the first word in any output like so:

#define DRIVER_PREFIX "Booster2:
LogInfo(DRIVER_PREFIX "unload called\n");

This works, but it could be nicer by adding the prefix in every call automatically, by calling vDbgPrintExWithPrefix
instead of vDbgPrintEx in the Log implementations. For example:

ULONG Log(LogLevel level, PCSTR format, ...) {
va_list list;
va_start(list, format);
return vDbgPrintExWithPrefix("Booster2", DPFLTR_IHVDRIVER_ID,
static_cast<ULONG>(level), format, list);

f Complete the implementation of the Log functions variants.

Trace Logging

Using DbgPrint and its variants is convenient enough, but as discussed earlier has some drawbacks. Trace
logging is a powerful alternative (or complementary) that uses Event Tracing for Windows (ETW) for
logging purposes, that can be captured live or to a log file. ETW has the additional benefits of being
performant (can be used to log thousands of events per second without any noticeable delay), and has
semantic information not available with the simple strings generated by the DbgPrint functions.
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’ Trace logging can be used in exactly the same way in user mode as well.

ETW is beyond the scope of this book. You can find more information in the official
documentation or in my book “Windows 10 System Programming, Part 2.

To get started with trace logging, an ETW provider has to be defined. Contrary to “classic” ETW, no
provider registration is necessary, as trace logging ensures the even metadata is part of the logged
information, and as such is self-contained.

A provider must have a unique GUID. You can generate one with the Create GUID tool available with
Visual Studio (Tools menu). Figure 5-11 shows a screenshot of the tool with the second radio button selected,
as it’s the closest to the format we need. Click the Copy button to copy that text to the clipboard.

Create GUID
Choose the desired format below, then select "Copy™ to Copy
copy the results to the clipboard the results can then be
pasted into your source code). Choose "Exit" when New GUID
done.
Exit
GUID Format

{31, IMPLEMENT _OLECREATE...)

@) 2. DEFINE_GUID{.)

()3 static const struct GUID =1 .. }

i) 4. Registry Format (jie. feocoomoon: .. 0w J)
() 5. [Guid("eccoomoon: ... woe")]

() 6. «iGuid{"ooooomx 00 .. o)

Result

/7 {B2723AD5-1678-446D-A577-8599D3ES5EC B}
DEFINE_GUID(<<name>>,

Oxb2723ad5, 0x 1678, Bed46d, Oxa5, Bx77, Bx85, (x99, Cxd3, e,
Ox5e, Owcb);

Figure 5-11: The Create GUID tool

Paste the text to the main source file of the driver and change the pasted macro to TRACELOGGING_DEF INE_-
PROVIDER to look like this:
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// {B2723AD5-1678-446D-A577-8599D3E85ECB}
TRACELOGGING_DEFINE_PROVIDER(g_Provider, "Booster", \
(0xb2723ad5, 0x1678, 0x446d, 0Oxab, Ox77, 0x85, 0x99, 0xd3, 0xe8, 0x5e, 0xcb\

));

g_Provider isa global variable created to represent the ETW provider, where “Booster” is set as its friendly
name.

You will need to add the following #includes (these are common with user-mode):

#include <TracelLoggingProvider.h>
#include <evntrace.h>

In DriverEntry, call TraceLoggingRegister to register the provider:
TracelLoggingRegister(g_Provider);

Similarly, the provider should be deregistered in the unload routine like so:
TracelLoggingUnregister(g_Provider);

The logging is done with the TraceLoggingWrite macro that is provided a variable number of arguments
using another set of macros that provide convenient usage for typed properties. Here is an example of a
logging call in DriverEntry:

TracelLoggingWrite(g_Provider, "DriverEntry started", // provider, event name
TracelogginglLevel (TRACE_LEVEL_INFORMATION), // log level
TracelLoggingValue("Booster Driver", "DriverName"), // value, name

TraceLoggingUnicodeString(RegistryPath, "RegistryPath")); // value, name
The above call means the following:

« Use the provider described by g_Provider.

« The event name is “DriverEntry started”.

+ The logging level is Information (several levels are defined).

« A property named “DriverName” has the value “Boster Driver”.

« A property named “RegistryPath” has the value of the RegistryPath variable.

Notice the usage of the TraceloggingValue macro - it’s the most generic and uses the type inferred by the
first argument (the value). Many other type-safe macros exist, such as the TraceLoggingUnicodeString
macro above that ensures its first argument is indeed a UNICODE_STRING.

Here is another example - if symbolic link creation fails:
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TracelLoggingWrite(g_Provider, "Error",
TracelLogginglLevel (TRACE_LEVEL_ERROR),
TraceLoggingValue("Symbolic link creation failed", "Message"),
TracelLoggingNTStatus(status, "Status", "Returned status"));

You can use any “properties” you want. Try to provide the most important details for the event.

Here are a couple of more examples, taken from the Booster project part of the samples for this chapter:

// Create/Close dispatch IRP
TracelLoggingWrite(g_Provider, "Create/Close",
TracelLogginglLevel (TRACE_LEVEL _INFORMATION),

TracelLoggingValue(
IoGetCurrentIrpStackLocation(Irp)->MajorFunction == IRP_MJ_CREATE ?
"Create" : "Close", "Operation"));

// success in changing priority

TracelLoggingWrite(g_Provider, "Boosting",
TracelLogginglLevel (TRACE_LEVEL _INFORMATION),
TracelLoggingUInt32(data->Threadld, "ThreadId"),
TraceloggingInt32(oldPriority, "OldPriority"),
TracelLoggingInt32(data->Priority, "NewPriority"));

Viewing ETW Traces

Where do all the above traces go to? Normally, they are just dropped. Someone has to configure listening to
the provider and log the events to a real-time session or a file. The WDK provides a tool called TraceView
that can be used for just that purpose.

You can open a Developer’s Command window and run TraceView.exe directly. If you can’t locate it, it’s
installed by default in a directory such as C:\Program Files (x86)\Windows Kits\10\bin\10.0.22000.0\x64.

You can copy the executable to the target machine where the driver is supposed to run. When you run
TraceView.exe, an empty window is shown (figure 5-12).
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mYH

TraceView

File Options Help [

Group ID f Session Mame

For Help, Press F1

Figure 5-12: The TraceView.exe tool

Select the File / Create New log Session menu to create a new session. This opens up the dialog shown in
figure 5-13.
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i Select one or more ev

Mame

Provider Control GUID Setup

Select Method To Obtain Contral GUID Information
(®) Provider Binary File

{_JPDB {Debug Information) File

i) Manifest File

(" Manually Entered Control GUID or Hashed Name

e.g. 00000000-0000-0000-0000-000000000000 or *Mame

() Registered Provider

() Kernel Logger

Process Thread Hard Fault
File Ij0 Page Fault Image Load
Registry Disk: Met

Cancel

127

Figure 5-13: New session dialog with a new provider

TraceView provides several methods of locating providers. We can add multiple providers to the same
session to get information from other components in the system. For now, we’ll add our provider by using
the Manually Entered Control GUID option, and type in our GUID (figure 5-14):
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Provider Control GUID Setup

Select Method To Obtain Contral GUID Information

() Provider Binary File

() PDE {Debug Information) File

() Manifest File

(®) Manually Entered Control GUID or Hashed Name

e.g. 00000000-0000-0000-0000-000000000000 or *Mame

() Registered Provider

() Kernel Logger

I B2723AD5-1673-4460-A577-859903E85ECE| |

Process Thread Hard Fault
File Ij0 Fage Fault Image Load
Registry Disk Met

Cancel

Figure 5-14: Adding a provider GUID manually
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Click OK. A dialog will pop up asking the source for decoding information. Use the default Auto option,
as trace logging does not require any outside source. You’ll see the single provider in the Create New Log
Session dialog. Click the Next button. The last step of the wizard allows you to select where the output

should go to: a real-time session (shown with TraceView), a file, or both (figure 5-15).
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Log Session Options

Real Time Display Log Session Name

LogSession

[ ]Log Trace Event Data To File
Log File Mame
LogSession_20211023_133346.eH

Append To Existing Log File ~ SetFlags and - | AdvancedLog
Level Session Options

< Back Cancel Help

Figure 5-15: Output selection for a session

Click Finish. Now you can load/use the driver normally. You should see the output generated in the main
TraceView window (figure 5-16).

M recevie - O
File Options Help
Group ID / Session Name State EventCount Eventslost BuffersRead Flags MaxBuf MinBuf Level KDFiter Ignore TraceView Max Trace Records  Log File Name
0 Booster RUNNING 8 0 6 OxFFFFFFFFFFFFFFFF 2 4 5 FALSE  FALSE 65536
| | Msg# Name ProcessID ThreadID CPU# Sequence# System Time Message
D/ ooooooo1 Booster 4 272 1 [] 10\16\2021-12:48:53:830 {"Driver Name™:Booster Driver”, Registry Path™: "\\REGISTRY|MACH trolSet001|\Services\pooster”, ‘meta™: {"provider™: Booster”, "event": DriverE|

“Create”, meta’ {‘pmv.der “Booster”,"event™s Crestﬁ/ﬂnse “time";"2021-10-16T12:48:47. 246, Epu 12, p\d 4850, 7" 7380, "channel™: 11, Tevel™:4]

1) 00000002 Booster 4860 7380 2 o 10\16\2021-12:49:47: 246 {"Operation™:
, et tevel )

00000003 Booster 2360 7380 1 o 10\16\2021-12:48:47:247  {"Operation™:"Clos

00000005 Boaster 8508 4620 1 L] 10W1612021-

00000005 Boaster 6540 9260 2 L] 10W1612021- :

00000007 Booster 6540 9260 2 0 10\1612021-12:51:00:345 {Threadld":6400, "OldPriority ™9, NewPriority":22, ‘meta’ {'nrnvuder Booster”,"event”: ‘Bmsnng "time":"2021-10-

00000008 Booster 6540 9260 2 0 1016\2021-12:51:00:395  {'Operation™s Close”, meta™:{provider ™+ Booster”, event s Create/Close™, ime "+ 2021-10-16T12:51:00, 3457, "cpu™:2, D\d 15640, nd 19260, manr\e\ 11, Tevel™ 4}}

|For Help, Press F1 S S

Figure 5-16: ETW real-time session in action

You can see the various properties shown in the Message column. When logging to a file, you can open
the file later with TraceView and see what was logged.

There are other ways to use TraceView, and other tools to record and view ETW information. You could



Chapter 5: Debugging and Tracing 130

also write your own tools to parse the ETW log, as the events have semantic information and so can easily
be analyzed.

Summary

In this chapter, we looked at the basics of debugging with WinDbg, as well as tracing activities within the
driver. Debugging is an essential skill to develop, as software of all kinds, including kernel drivers, may

have bugs.

In the next chapter, we’ll delve into some kernel mechanisms we need to get acquainted with, as these
come up frequently while developing and debugging drivers.
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This chapter discusses various mechanisms the Windows kernel provides. Some of these are directly useful
for driver writers. Others are mechanisms that a driver developer needs to understand as it helps with
debugging and general understanding of activities in the system.

In this chapter:

Interrupt Request Level
Deferred Procedure Calls

« Asynchronous Procedure Calls

Structured Exception Handling
« System Crash

» Thread Synchronization

High IRQL Synchronization

+ Work Items

Interrupt Request Level (IRQL)

In chapter 1, we discussed threads and thread priorities. These priorities are taken into consideration when
more threads want to execute than there are available processors. At the same time, hardware devices
need to notify the system that something requires attention. A simple example is an I/O operation that is
carried out by a disk drive. Once the operation completes, the disk drive notifies completion by requesting
an interrupt. This interrupt is connected to an Interrupt Controller hardware that then sends the request
to a processor for handling. The next question is, which thread should execute the associated Interrupt
Service Routine (ISR)?

Every hardware interrupt is associated with a priority, called Interrupt Request Level (IRQL) (not to be
confused with an interrupt physical line known as IRQ), determined by the HAL. Each processor’s context
has its own IRQL, just like any register. IRQLs may or may not be implemented by the CPU hardware, but
this is essentially unimportant. IRQL should be treated just like any other CPU register.

The basic rule is that a processor executes the code with the highest IRQL. For example, if a CPU’s IRQL is
zero at some point, and an interrupt with an associated IRQL of 5 comes in, it will save its state (context) in
the current thread’s kernel stack, raise its IRQL to 5 and then execute the ISR associated with the interrupt.
Once the ISR completes, the IRQL will drop to its previous level, resuming the previously executed code
as though the interrupt never happened. While the ISR is executing, other interrupts coming in with an
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IRQL of 5 or less cannot interrupt this processor. If, on the other hand, the IRQL of the new interrupt is
above 5, the CPU will save its state again, raise IRQL to the new level, execute the second ISR associated
with the second interrupt and when completed, will drop back to IRQL 5, restore its state and continue
executing the original ISR. Essentially, raising IRQL blocks code with equal or lower IRQL temporarily.
The basic sequence of events when an interrupt occurs is depicted in figure 6-1. Figure 6-2 shows what
interrupt nesting looks like.

Kernel or
User mode
Save CPU State
code
Mask equal or lower
Interrupt IRQL interrupts
Call appropriate ISR

l

Restore CPU state

Figure 6-1: Basic interrupt dispatching
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User/kernel

code (IRQL 0)
ISR 1 (5) ISR 2 (8)

~ = =

TeS= T T

= ==

Figure 6-2: Nested interrupts

An important fact for the depicted scenarios in figures 6-1 and 6-2 is that execution of all ISRs is done
by the same thread - which got interrupted in the first place. Windows does not have a special thread
to handle interrupts; they are handled by whatever thread was running at that time on the interrupted
processor. As we’ll soon discover, context switching is not possible when the IRQL of the processor is 2 or
higher, so there is no way another thread can sneak in while these ISRs execute.

The interrupted thread does not get its quantum reduced because of these “interruptions”. It’s not its
fault, so to speak.

When user-mode code is executing, the IRQL is always zero. This is one reason why the term IRQL is not
mentioned in any user-mode documentation - it’s always zero and cannot be changed. Most kernel-mode
code runs with IRQL zero as well. It’s possible, however, in kernel mode, to raise the IRQL on the current
processor.

The important IRQLs are described below:

« PASSIVE_LEVEL in WDK (0) - this is the “normal” IRQL for a CPU. User-mode code always runs at
this level. Thread scheduling working normally, as described in chapter 1.

APC_LEVEL (1) - used for special kernel APCs (Asynchronous Procedure Calls will be discussed later
in this chapter). Thread scheduling works normally.

« DISPATCH_LEVEL (2) - this is where things change radically. The scheduler cannot wake up on this
CPU. Paged memory access is not allowed - such access causes a system crash. Since the scheduler
cannot interfere, waiting on kernel objects is not allowed (causes a system crash if used).

Device IRQL - a range of levels used for hardware interrupts (3 to 11 on x64/ARM/ARMS64, 3 to 26
on x86). All rules from IRQL 2 apply here as well.
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« Highest level (HIGH_LEVEL) - this is the highest IRQL, masking all interrupts. Used by some APIs
dealing with linked list manipulation. The actual values are 15 (x64/ARM/ARM64) and 31 (x86).

When a processor’s IRQL is raised to 2 or higher (for whatever reason), certain restrictions apply on the
executing code:

« Accessing memory not in physical memory is fatal and causes a system crash. This means accessing
data from non-paged pool is always safe, whereas accessing data from paged pool or from user-
supplied buffers is not safe and should be avoided.

« Waiting on any kernel object (e.g. mutex or event) causes a system crash, unless the wait timeout is
zero, which is still allowed. (we’ll discuss dispatcher object and waiting later in this chapter in the
Thread Synchronization section.)

These restrictions are due to the fact that the scheduler “runs” at IRQL 2; so if a processor’s IRQL is already
2 or higher, the scheduler cannot wake up on that processor, so context switches (replacing the running
thread with another on this CPU) cannot occur. Only higher level interrupts can temporarily divert code
into an associated ISR, but it’s still the same thread - no context switch can occur; the thread’s context is
saved, the ISR executes and the thread’s state resumes.

The current IRQL of a processor can be viewed while debugging with the ! irql command. An
optional CPU number can be specified, which shows the IRQL of that CPU.

You can view the registered interrupts on a system using the ! idt debugger command.

Raising and Lowering IRQL

As previously discussed, in user mode the concept of IRQL is not mentioned and there is no way to
change it. In kernel mode, the IRQL can be raised with the KeRaiseIrql function and lowered back with
KeLowerIrql. Here is a code snippet that raises the IRQL to DISPATCH_LEVEL (2), and then lowers it back
after executing some instructions at this IRQL.

// assuming current IRQL <= DISPATCH_LEVEL

KIRQL oldIrql; // typedefed as UCHAR
KeRaiseIrql (DISPATCH_LEVEL, &oldIrql);

NT_ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
// do work at IRQL DISPATCH_LEVEL

KeLowerIrqgl(oldIrqgl);

from a function with a higher IRQL than it was entered. Also, make sureKeRaiseIrql actually

g If you raise IRQL, make sure you lower it in the same function. It’s too dangerous to return
raises the IRQL and KeLowerIrql actually lowers it; otherwise, a system crash will follow.
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Thread Priorities vs. IRQLs

IRQL is an attribute of a processor. Priority is an attribute of a thread.

Thread priorities only have meaning at IRQL < 2. Once an executing thread raised IRQL to 2 or higher,
its priority does not mean anything anymore - it has theoretically an infinite quantum - it will continue
execution until it lowers the IRQL to below 2.

Naturally, spending a lot of time at IRQL >= 2 is not a good thing; user mode code is not running for sure.
This is just one reason there are severe restrictions on what executing code can do at these levels.

Task Manager shows the amount of CPU time spent in IRQL 2 or higher using a pseudo-process called
System Interrupts, Process Explorer calls it Interrupts. Figure 6-3 shows a screenshot from Task Manager
and figure 6-4 shows the same information in Process Explorer.

Processes Performance App history Startup Users Details  Senvices

Name PIDA Status User name Ses.. CPU Memory (a.. Commitsize Basepriority H.. Th.. Description
27 System interrupts - Running SYSTEM 0 ol 0K 0K N/A - - Deferred procedure calls and interrupt service routines
577 System Idle Process 0 Running SYSTEM 0 86 8K 60K N/A - 12 Percentage of time the processor is idle
[ System 4 Running SYSTEM 0 o0 20K 204 K N/A 9. 382 NTKernel & System
I8 Sariire Suctarm a0 Brinnina SVETERA n nn an a7y K 104 RIZA KT Karnel &1 Suctamn

Figure 6-3: IRQL 2+ CPU time in Task Manager

Process FID CPU Private Bytes Working Set Description Llzer Name

¥ Intemupts nfa 1.06 0K 0 K Hardware Intemupts and DPCs

B System ldle Process 0 8328 60K 8K NT AUTHORITT\SYSTEM
=10 088 204K 3,932K

n Suspended 184 K 80372K

Figure 6-4: IRQL 2+ CPU time in Process Explorer

Deferred Procedure Calls

Figure 6-5 shows a typical sequence of events when a client invokes some I/O operation. In this figure,
a user mode thread opens a handle to a file, and issues a read operation using the ReadFile function.
Since the thread can make an asynchronous call, it regains control almost immediately and can do other
work. The driver receiving this request, calls the file system driver (e.g. NTFS), which may call other
drivers below it, until the request reaches the disk driver, which initiates the operation on the actual disk
hardware. At that point, no code needs to execute, since the hardware “does its thing”.

When the hardware is done with the read operation, it issues an interrupt. This causes the Interrupt Service
Routine associated with the interrupt to execute at Device IRQL (note that the thread handling the request
is arbitrary, since the interrupt arrives asynchronously). A typical ISR accesses the device’s hardware to
get the result of the operation. Its final act should be to complete the initial request.
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Figure 6-5: Typical I/O request processing (part 1)

As we’ve seen in chapter 4, completing a request is done by calling IoCompleteRequest. The problem
is that the documentation states this function can only be called at IRQL <= DISPATCH_LEVEL (2). This
means the ISR cannot call IoCompleteRequest or it will crash the system. So what is the ISR to do?

done by IoCompleteRequest. We'll discuss this in more detail in the next chapter, but the
bottom line is that this function is relatively expensive. If the call would have been allowed,
that would mean the ISR will take substantially longer to execute, and since it executes in a
high TRQL, it will mask off other interrupts for a longer period of time.

o You may wonder why is there such a restriction. One of the reasons has to do with the work

The mechanism that allows the ISR to call IToCompleteRequest (and other functions with similar
limitations) as soon as possible is using a Deferred Procedure Call (DPC). A DPC is an object encapsulating
a function that is to be called at IRQL DISPATCH_LEVEL. At this IRQL, calling IoCompleteRequest is
permitted.

You may wonder why does the ISR not simply lower the current IRQL to DISPATCH_LEVEL,
call IoCompleteRequest, and then raise the IRQL back to its original value. This can cause a
deadlock. We’ll discuss the reason for that later in this chapter in the section Spin Locks.
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The driver which registered the ISR prepares a DPC in advance, by allocating a KDPC structure from non-
paged pool and initializing it with a callback function using KeInitializeDpc. Then, when the ISR is
called, just before exiting the function, the ISR requests the DPC to execute as soon as possible by queuing
it using KeInsertQueueDpc. When the DPC function executes, it calls IoCompleteRequest. So the DPC
serves as a compromise - it’s running at IRQL DISPATCH_LEVEL, meaning no scheduling can occur, no
paged memory access, etc. but it’s not high enough to prevent hardware interrupts from coming in and
being served on the same processor.

Every processor on the system has its own queue of DPCs. By default, KeInsertQueueDpc queues the
DPC to the current processor’s DPC queue. When the ISR returns, before the IRQL can drop back to zero,
a check is made to see whether DPCs exist in the processor’s queue. If there are, the processor drops to
IRQL DISPATCH_LEVEL (2) and then processes the DPCs in the queue in a First In First Out (FIFO) manner,
calling the respective functions, until the queue is empty. Only then can the processor’s IRQL drop to zero,
and resume executing the original code that was disturbed at the time the interrupt arrived.

DPCs can be customized in some ways. Check out the docs for the functions
KeSetImportantceDpc and KeSetTargetProcessorDpc.

Figure 6-6 augments figure 6-5 with the DPC routine execution.
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Figure 6-6: Typical I/O request processing (part 2)

Using DPC with a Timer

DPCs were originally created for use by ISRs. However, there are other mechanisms in the kernel that
utilize DPCs.

One such use is with a kernel timer. A kernel timer, represented by the KTIMER structure allows setting
up a timer to expire some time in the future, based on a relative interval or absolute time. This timer
is a dispatcher object and so can be waited upon with KeWaitForSingleObject (discussed later in this
chapter in the section “Synchronization”). Although waiting is possible, it’s inconvenient for a timer. A
simpler approach is to call some callback when the timer expires. This is exactly what the kernel timer
provides using a DPC as its callback.

The following code snippet shows how to configure a timer and associate it with a DPC. When the timer
expires, the DPC is inserted into a CPU’s DPC queue and so executes as soon as possible. Using a DPC is
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more powerful than a zero IRQL based callback, since it is guaranteed to execute before any user mode
code (and most kernel mode code).

KTIMER Timer;
KDPC TimerDpc;

void InitializeAndStartTimer (ULONG msec) {
KelnitializeTimer (&Timer);
KeInitializeDpc(&TimerDpc,
OnTimerExpired, // callback function
nullptr); // passed to callback as "context"

// relative interval is in 100nsec units (and must be negative)

// convert to msec by multiplying by 10000

LARGE_INTEGER interval;
interval.QuadPart = -10000LL * msec;
KeSetTimer (&Timer, interval, &TimerDpc);

void OnTimerExpired(KDPC* Dpc, PVOID context, PVOID, PVOID) {
UNREFERENCED_PARAMETER(Dpc) ;
UNREFERENCED_PARAMETER(context);

NT_ASSERT(KeGetCurrentIrgl() == DISPATCH_LEVEL);

// handle timer expiration

Asynchronous Procedure Calls

We've seen in the previous section that DPCs are objects encapsulating a function to be called at IRQL
DISPATCH_LEVEL. The calling thread does not matter, as far as DPCs are concerned.

Asynchronous Procedure Calls (APCs) are also data structures that encapsulate a function to be called. But
contrary to a DPC, an APC is targeted towards a particular thread, so only that thread can execute the
function. This means each thread has an APC queue associated with it.

There are three types of APCs:

« User mode APCs - these execute in user mode at IRQL PASSIVE_LEVEL only when the thread
goes into alertable state. This is typically accomplished by calling an API such as SleepEx,
WaitForSingleObjectEx, WaitForMultipleObjectsEx and similar APIs. The last argument to
these functions can be set to TRUE to put the thread in alertable state. In this state it looks at its APC
queue, and if not empty - the APCs now execute until the queue is empty.
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+ Normal kernel-mode APCs - these execute in kernel mode at IRQL PASSIVE_LEVEL and preempt
user-mode code (and user-mode APCs).

« Special kernel APCs - these execute in kernel mode at IRQL APC_LEVEL (1) and preempt user-mode
code, normal kernel APCs, and user-mode APCs. These APCs are used by the I/O manager to
complete I/O operations as will be discussed in the next chapter.

The APC API is undocumented in kernel mode (but has been reversed engineered enough to allow usage
if desired).

User-mode can use (user mode) APCs by calling certain APIs. For example, calling ReadFileEx
or WriteFileEx start an asynchronous I/O operation. When the operation completes, a user-
mode APC is attached to the calling thread. This APC will execute when the thread enters an
alertable state as described earlier. Another useful function in user mode to explicitly generate
an APC is QueueUserAPC. Check out the Windows API documentation for more information.

Critical Regions and Guarded Regions

A Critical Region prevents user mode and normal kernel APCs from executing (special kernel APCs
can still execute). A thread enters a critical region with KeEnterCriticalRegion and leaves it with
KeLeaveCriticalRegion. Some functions in the kernel require being inside a critical region, especially
when working with executive resources (see the section “Executive Resources” later in this chapter).

A Guarded Region prevents all APCs from executing. Call KeEnterGuardedRegion to enter a guarded
region and KeLeaveGuardedRegion to leave it. Recursive calls to KeEnterGuardedRegion must be
matched with the same number of calls to KeLeaveGuardedRegion.

P Raising the IRQL to APC_LEVEL disables delivery of all APCs.

f Write RAII wrappers for entering/leaving critical and guarded regions.

Structured Exception Handling

An exception is an event that occurs because of a certain instruction that did something that caused the
processor to raise an error. Exceptions are in some ways similar to interrupts, the main difference being
that an exception is synchronous and technically reproducible under the same conditions, whereas an
interrupt is asynchronous and can arrive at any time. Examples of exceptions include division by zero,
breakpoint, page fault, stack overflow and invalid instruction.
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If an exception occurs, the kernel catches this and allows code to handle the exception, if possible. This
mechanism is called Structured Exception Handling (SEH) and is available for user-mode code as well as
kernel-mode code.

The kernel exception handlers are called based on the Interrupt Dispatch Table (IDT), the same one holding
mapping between interrupt vectors and ISRs. Using a kernel debugger, the ! idt command shows all these
mappings. The low numbered interrupt vectors are in fact exception handlers. Here’s a sample output from
this command:

1kd> lidt
Dumping IDT: fffff8011d941000

00: fffff8011dd6c100 nt!KiDivideErrorFaultShadow

01: fffff8011dd6c180 nt!KiDebugTrapOrFaultShadow Stack
02: fffff8011dd6c200 nt!KiNmilnterruptShadow Stack
03: fffff8011dd6c280 nt!KiBreakpointTrapShadow

04: ffff£f8011dd6c300 nt!KiOver flowTrapShadow

05: fffff8011dd6c380 nt!KiBoundFaultShadow

06: fffff8011dd6c400 nt!KilnvalidOpcodeFaultShadow

Q7: fffff8011dd6c480 nt!KiNpxNotAvailableFaultShadow

08: fffff8011dd6c500 nt!KiDoubleFaultAbortShadow Stack = OxFFFFF8011D9453D0
09: fffff8011dd6c580 nt!KiNpxSegmentOverrunAbortShadow

Qa: fffff8011dd6c600 nt!KilnvalidTssFaultShadow

Ob: fffff8011dd6c680 nt!KiSegmentNotPresentFaultShadow

Qc: fffff8011dd6cT700 nt!KiStackFaultShadow

Qd: fffff8011dd6c780 nt!KiGeneralProtectionFaultShadow

Qe: fffff8011dd6c800 nt!KiPageFaultShadow

10: ffff£8011dd6c880 nt!KiFloatingErrorFaultShadow

11: fff££8011dd6c900 nt!KiAlignmentFaultShadow

OxFFFFF8011D9459D0@
OxFFFFF8011D9457D0

(truncated)

Note the function names - most are very descriptive. These entries are connected to Intel/AMD (in this
example) faults. Some common examples of exceptions include:

« Division by zero (0)

« Breakpoint (3) - the kernel handles this transparently, passing control to an attached debugger (if
any).

« Invalid opcode (6) - this fault is raised by the CPU if it encounters an unknown instruction.

« Page fault (14) - this fault is raised by the CPU if the page table entry used for translating virtual to
physical addresses has the Valid bit set to zero, indicating (as far as the CPU is concerned) that the
page is not resident in physical memory.
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Some other exceptions are raised by the kernel as a result of a previous CPU fault. For example, if a page
fault is raised, the Memory Manager’s page fault handler will try to locate the page that is not resident in
RAM. If the page happens not to exist at all, the Memory Manager will raise an Access Violation exception.

Once an exception is raised, the kernel searches the function where the exception occurred for a handler
(except for some exceptions which it handles transparently, such as Breakpoint (3)). If not found, it will
search up the call stack, until such handler is found. If the call stack is exhausted, the system will crash.

How can a driver handle these types of exceptions? Microsoft added four keywords to the C language to
allow developers to handle such exceptions, as well as have code execute no matter what. Table 6-1 shows
the added keywords with a brief description.

Table 6-1: Keywords for working with SEH

Keyword  Description
__try Starts a block of code where exceptions may occur.

__except Indicates if an exception is handled, and provides the handling code if it is.

__finally  Unrelated to exceptions directly. Provides code that is guaranteed to execute no matter what -
whether the __try block is exited normally, with a return statement, or because of an exception.

__leave Provides an optimized mechanism to jump to the __finally block from somewhere within a
__try block.

The valid combination of keywords is __try/__except and __try/_ finally. However, these can be
combined by using nesting to any level.

’ These same keywords work in user mode as well, in much the same way.

Using __try/__except

In chapter 4, we implemented a driver that accesses a user-mode buffer to get data needed for the driver’s
operation. We used a direct pointer to the user’s buffer. However, this is not guaranteed to be safe. For
example, the user-mode code (say from another thread) could free the buffer, just before the driver accesses
it. In such a case, the driver would cause a system crash, essentially because of a user’s error (or malicious
intent). Since user data should never be trusted, such access should be wrapped ina__try/__except block
to make sure a bad buffer does not crash the driver.

Here is the important part of a revised IRP_MJ_WRITE handler using an exception handler:
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do {
if (irpSp->Parameters.Write.Length < sizeof(ThreadData)) ({
status = STATUS_BUFFER_TOO_SMALL;
break;
}
auto data = (ThreadData*)Irp->UserBuffer;
if (data == nullptr) {
status = STATUS_INVALID_PARAMETER;
break;
}
—try {
if (data->Priority < 1 || data->Priority > 31) {
status = STATUS_INVALID_PARAMETER;
break;
}
PETHREAD Thread;
status = PslLookupThreadByThreadId(
ULongToHandle(data->Threadld), &Thread);
if (INT_SUCCESS(status))
break;
KeSetPriorityThread((PKTHREAD)Thread, data->Priority);
ObDereferenceObject(Thread);
KdPrint(("Thread Priority change for %d to %d succeeded!\n",
data->Threadld, data->Priority));
break;
}
__except (EXCEPTION_EXECUTE_HANDLER) {
// probably something wrong with the buffer
status = STATUS_ACCESS_VIOLATION;
}

} while(false);

Placing EXCEPTION_EXECUTE_HANDLER in __except says that any exception is to be handled. We can be
more selective by calling GetExceptionCode and looking at the actual exception. If we don’t expect this,
we can tell the kernel to continue looking for handlers up the call stack:

__except (GetExceptionCode() == STATUS_ACCESS_VIOLATION
? EXCEPTION_EXECUTE _HANDLER : EXCEPTION_CONTINUE_SEARCH) ({
// handle exception

Does all this mean that the driver can catch any and all exceptions? If so, the driver will never cause a
system crash. Fortunately (or unfortunately, depending on your perspective), this is not the case. Access
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violation, for example, is something that can only be caught if the violated address is in user space. If it’s
in kernel space, it cannot be caught and still cause a system crash. This makes sense, since something bad
has happened and the kernel will not let the driver get away with it. User mode addresses, on the other
hand, are not at the control of the driver, so such exceptions can be caught and handled.

The SEH mechanism can also be used by drivers (and user-mode code) to raise custom exceptions. The
kernel provides the generic function ExRaiseStatus to raise any exception and some specific functions
like ExRaiseAccessViolation:

void ExRaiseStatus(NTSTATUS Status);

A driver can also crash the system explicitly if it concludes that something really bad going on, such as
data being corrupted from underneath the driver. The kernel provides the KeBugCheckEx for this purpose:

VOID KeBugCheckEx(
_In_ ULONG BugCheckCode,
_In_ ULONG_PTR BugCheckParameter1,
_In_ ULONG_PTR BugCheckParameter?2,
_In_ ULONG_PTR BugCheckParameter3,
_In_ ULONG_PTR BugCheckParameter4);

KeBugCheckEx is the normal kernel function that generates a crash. BugCheckCode is the crash code to be
reported, and the other 4 numbers can provide more details about the crash. If the bugcheck code is one
of those documented by Microsoft, the meaning of the other 4 numbers must be provided as documented.
(See the next section System Crash for more details).

Using __try/__finally

Using a block of __try and __finally is not directly related to exceptions. This is about making sure
some piece of code executes no matter what - whether the code exits cleanly or mid-way because of an
exception. This is similar in concept to the finally keyword popular in some high level languages (e.g.
Java, C#). Here is a simple example to show the problem:

void foo() {
void* p = ExAllocatePoolWithTag(PagedPool, 1024, DRIVER_TAG);
if(p == nullptr)
return;

// do something with p

ExFreePool(p);

The above code seems harmless enough. However, there are several issues with it:
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« If an exception is thrown between the allocation and the release, a handler in the caller will be
searched, but the memory will not be freed.

o If areturn statement is used in some conditional between the allocation and release, the buffer will
not be freed. This requires the code to be careful to make sure all exit points from the function pass

through the code freeing the buffer.

The second bullet can be implemented with careful coding, but is a burden best avoided. The first bullet
cannot be handled with standard coding techniques. This is where __try/_ finally come in. Using this
combination, we can make sure the buffer is freed no matter what happens in the __try block:

void foo() {
void* p = ExAllocatePoolWithTag(PagedPool, 1024, DRIVER_TAG);
if(p == nullptr)
return;
—try {
// do something with p
}
__finally {
// called no matter what
ExFreePool(p);

With the above code in place, even if return statements appear within the __try body, the _ finally
code will be called before actually returning from the function. If some exception occurs, the __finally
block runs first before the kernel searches up the call stack for possible handlers.

__try/_ finally is useful not just with memory allocations, but also with other resources, where some
acquisition and release need to take place. One common example is when synchronizing threads accessing
some shared data. Here is an example of acquiring and releasing a fast mutex (fast mutex and other
synchronization primitives are described later in this chapter):

FAST_MUTEX MyMutex;

void foo() {
ExAcquireFastMutex(&MyMutex);
—try {
// do work while the fast mutex is held
}
__finally {
ExReleaseFastMutex(&MyMutex) ;
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Using C++ RAIl Instead of _try / _ finally

Although the preceding examples with __try/__finally work, they are not terribly convenient. Using
C++ we can build RAII wrappers that do the right thing without the need to use __try/__finally. C++
does not have a finally keyword like C# or Java, but it doesn’t need one - it has destructors.

Here is a very simple, bare minimum, example that manages a buffer allocation with a RAII class:

template<typename T = void>
struct kunique_ptr {
explicit kunique_ptr(T* p = nullptr) : _p(p) {}
~kunique_ptr() {
if (_p)
ExFreePool(_p);

T* operator->() const {

return _p;

T& operator*() const {

return *_p;

private:
T* _p;
b

The class uses templates to allow working easily with any type of data. An example usage follows:

struct MyData {
ULONG Datal;
HANDLE DataZ2;
¥

void foo() {

// take charge of the allocation

kunique_ptr<MyData> data((MyData*)ExAllocatePool(PagedPool, sizeof(MyData))\
)

// use the pointer

data->Datal = 10;

// when the object goes out of scope, the destructor frees the buffer
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If you don’t normally use C++ as your primary programming language, you may find the above code
confusing. You can continue working with __try/__finally, but I recommend getting acquainted with
this type of code. In any case, even if you struggle with the implementation of kunique_ptr above, you
can still use it without needing to understand every little detail.

The kunique_ptr type presented above is a bare minimum. You should also remove the copy constructor
and copy assignment, and allow move copy and assignment (C++ 11 and later, for ownership transfer).
Here is a more complete implementation:

template<typename T = void>
struct kunique_ptr {
explicit kunique_ptr(T* p = nullptr) : _p(p) {}

// remove copy ctor and copy = (single owner)
kunique_ptr(const kunique_ptr&) = delete;
kunique_ptr& operator=(const kunique_ptr&) = delete;

// allow ownership transfer
kunique_ptr(kunique_ptr&& other) : _p(other._p) {
other._p = nullptr;

kunique_ptr& operator=(kunique_ptr&& other) {
if (&other != this) {
Release();
_p = other._p;
other._p = nullptr;
}

return *this;

~kunique_ptr() {
Release();

operator bool() const {
return _p != nullptr;

T* operator->() const {
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return _p;

T& operator*() const {

return *_p;

void Release() {

if (_p)
ExFreePool(_p);

private:
T™* _p;
}

We’ll build other RAII wrappers for synchronization primitives later in this chapter.

be called, so a leak of some sort occurs. The reason this does not work (as it does in user-mode),
is the lack of a C++ runtime and the current inability of the compiler to set up elaborate code
with __try/_ finally to mimic this effect. Even so, it’s still very useful, as in many cases
exceptions are not expected, and even if they are, no handler exists in the driver for that and
the system should probably crash anyway.

g Using C++ RAIl wrappers has one missing piece - if an exception occurs, the destructor will not

System Crash

As we already know, if an unhandled exception occurs in kernel mode, the system crashes, typically with
the “Blue Screen of Death” (BSOD) showing its face (on Windows 8+, that’s literally a face - saddy or
frowny - the inverse of smiley). In this section, we’ll discuss what happens when the system crashes and
how to deal with it.

3

The system crash has many names, all meaning the same thing - “Blue screen of Death”, “System failure”,
“Bugcheck”, “Stop error”. The BSOD is not some punishment, as may seem at first, but a protection
mechanism. If kernel code, which is supposed to be trusted, did something bad, stopping everything
is probably the safest approach, as perhaps letting the code continue roaming around may result in an
unbootable system if some important files or Registry data is corrupted.

Recent versions of Windows 10 have some alternate colors for when the system crashes. Green is used
for insider preview builds, and I actually encountered a pink as well (power-related errors).
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If the crashed system is connected to a kernel debugger, the debugger will break. This allows examining
the state of the system before other actions take place.

The system can be configured to perform some operations if the system crashes. This can be done with the
System Properties Ul on the Advanced tab. Clicking Settings... at the Startup and Recovery section brings
the Startup and Recovery dialog where the System Failure section shows the available options. Figure 6-7

shows these two dialogs.

System startup

Default operating system:
System Properties X Windows 10 9

Computer Name  Hardware Advanced  System Protection Remote Time to display list of operating systems: 30 [ seconds
“You must be logged on as an Administrator to make most of these changes. O Timeto display recovery options when needed: 30 > | seconds
Performance

Visual effects, processor scheduling, memory usage, and virtual memory

Settings... System failure
Write an event to the system lo
User Profiles R4 9
Desktop settings related to your sign-n Automatically restart
Write debugging information
Settings...
Automatic memory dump ~
Startup and Recovery
System startup, system faiure, and debugging information Dump file:

Fe5ystemRoot 3\ MEMORY.DMP

ﬁ [] Overwrite any existing file

[ Disable automatic deletion of memory dumps when disk space is low

Environment Variables...

oK e Apply Cancel

Figure 6-7: Startup and recovery settings

If the system crashes, an event entry can be written to the event log. It’s checked by default, and there is
no good reason to change it. The system is configured to automatically restart; this has been the default
since Windows 2000.

The most important setting is the generation of a dump file. The dump file captures the system state at the
time of the crash, so it can later be analyzed by loading the dump file into the debugger. The type of the
dump file is important since it determines what information will be present in the dump. The dump is not
written to the target file at crash time, but instead written to the first page file.

Only when the system restarts, the kernel notices there is dump information in the page file, and it copies
the data to the target file. The reason has to do with the fact that at system crash time it may be too
dangerous to write something to a new file (or overwrite an existing file); the I/O system may not be stable
enough. The best bet is to write the data to a page file, which is already open anyway. The downside is that
the page file must be large enough to contain the dump, otherwise the dump file will not be generated.

0 The dump file contains physical memory only.



Chapter 6: Kernel Mechanisms

150

The dump type determines what data would be written and hints at the page file size that may be required.

Here are the options:

Small memory dump (256 KB on Windows 8 and later, 64 KB on older systems) - a very minimal
dump, containing basic system information and information on the thread that caused the crash.
Usually this is too little to determine what happened in all but the most trivial cases. The upside is
that the file is small, so it can be easily moved.

Kernel memory dump - this is the default on Windows 7 and earlier versions. This setting captures
all kernel memory but no user memory. This is usually good enough, since a system crash can only
be caused by kernel code misbehaving. It’s extremely unlikely that user-mode had anything to do
with it.

Complete memory dump - this provides a dump of all physical memory, user memory and kernel
memory. This is the most complete information available. The downside is the size of the dump,
which could be gigantic depending on the size of RAM (the total size of the final file). The obvious
optimization is not to include unused pages, but Complete Memory Dump does not do that.
Automatic memory dump (Windows 8+) - this is the default on Windows 8 and later. This is the
same as kernel memory dump, but the kernel resizes the page file on boot to a size that guarantees
with high probability that the page file size would be large enough to contain a kernel dump. This
is only done if the page file size is specified as “System managed” (the default).

Active memory dump (Windows 10+) - this is similar to a complete memory dump, with two
exceptions. First, unused pages are not written. Second, if the crashed system is hosting guest
virtual machines, the memory they were using at the time is not captured (as it’s unlikely these
have anything to do with the host crashing). These optimizations help in reducing the dump file

size.

Crash Dump Information

Once you have a crash dump in hand, you can open it in WinDbg by selecting File/ Open Dump File and

navigating to the file. The debugger will spew some basic information similar to the following:

Microsoft (R) Windows Debugger Version 10.0.18317.1001 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\MEMORY.DMP]
Kernel Bitmap Dump File: Kernel address space is available, User address space \
may not be available.

fookkokkockokkokkckk Pgth validation summary KK KOk K ok Kk ok kok kok >k

Response Time (ms) Location

Deferred SRV*c:\Symbols*http://msdl .micro\
soft.com/download/symbols

Symbol search path is: SRV*c:\Symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:

Windows 10 Kernel Version 18362 MP (4 procs) Free x64
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Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 18362.1.amd64fre.19h1_release.190318-1202

Machine Name:

Kernel base = 0xfffff803"7T0abcl0® PslLoadedModulelList = Oxfffff803 70eff2d0

Debug session time: Wed Apr 24 15:36:55.613 2019 (UTC + 3:00)

System Uptime: © days 0:05:38.923

Loading Kernel Symbols

.................................... Page 2001b5efc too large to be in the dump \
file.

Page 20001ebfb too large to be in the dump file.

Loading User Symbols

PEB is paged out (Peb.Ldr = 00000054 34256018). Type ".hh dbgerr@01" for detai\
1s

Loading unloaded module list

For analysis of this file, run l!analyze -v

nt |KeBugCheckEx:

fEfff803°70cT8810 48894c2408 mov gword ptr [rsp+8],rcx ss:fffff988 53b\
0 £6bB=00VVVVVVVVYYa

The debugger suggests running !analyze -v and it’s the most common thing to do at the start of dump
analysis. Notice the call stack is at KeBugCheckEx, which is the function generating the bugcheck.

The default logic behind !analyze -v performs basic analysis on the thread that caused the crash and
shows a few pieces of information related to the crash dump code:

2: kd> lanalyze -v
sk sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK o o o s s sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok s o s sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok

* *
* Bugcheck Analysis *
* k

>k 3K oK ok 5k 5k 3k 3k Sk ok ok ok >k sk Sk ok ok ok >k 3k ok Sk ok ok ok >k sk ok Sk sk ok >k sk ok ok ok ok ok sk Sk Sk ok ok >k ok ok Sk ok ok ok >k sk ok Sk ok ok ok sk ok ok ok ok ok ok kook ok ok ok kokookookok ok sk kockok

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)

An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is usually

caused by drivers using improper addresses.

If kernel debugger is available get stack backtrace.

Arguments:

Argl: ff££d907b0dc7660, memory referenced

Arg2: 00000000002, IRQL

Arg3: 0000VVVVVVVVVVY, value @ = read operation, 1 = write operation

Arg4: fffff80375261530, address which referenced memory
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Debugging Details:

(truncated)

DUMP_TYPE: 1

BUGCHECK_P1:

BUGCHECK_P2: 2

BUGCHECK_P3: @

BUGCHECK_P4:

READ_ADDRESS: Unable to get offset of nt!_MI_VISIBLE_STATE.SpecialPool

ff££d907b0dc 7660

fff£f80375261530

Unable to get value of nt!_MI_VISIBLE_STATE.SessionSpecialPool
f£££d907b@dc 7660 Paged pool

CURRENT_IRQL: 2

FAULTING_IP:
myfault+1530

ff£££803 75261530 8b03

(truncated)

ANALYSIS_VERSION:

TRAP_FRAME :
NOTE: The trap frame
Some register values
Tax=0000000VVYYYY
1rdx=0000000VVVVE80
rip=fffff80375261530
r8=ffffd9079c5cec10
r11=ff££d907b0dc1650
114=000000000VVO
iopl=0
my fault+0x1530:

nv up

fEff£803° 75261530 8b03

mov

10.0.18317.1001 amdb64fre

does not contain all

eax,dword ptr [rbx]

fEf££fO8853bOfTfO -- (.trap Oxfffffo8853b0f7f0)

registers.

may be zeroed or incorrect.

rbx=000000000VVVO
rsi=00000000VVVYYVV
rsp=fffffo8853b0f980
19=000000VYVYYVYVY
112=00000000000VV
1r15=000000000VVVO
ei ng nz na po nc

mov

rex=ff£f£d90797400340
1di=0000000VVVVYVVD
Tbp=000000VVVVVVYVAV2
r10=£fff£d907974002c0
113=000000000VVVVVD

eax,dword ptr [rbx] ds:00000000 00000\
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Resetting default scope

LAST_CONTROL_TRANSFER: from fffff80370c8a469 to fffff80370c78810

STACK_TEXT:

fEffffO88°53b0f6a8 fffff803 70c8a469 : 0VVVVVVD VVVVYLVa ffffdIOT7 bAdcT7660 VVVOO\
000" 000PYY2 VYYYYVLY " VVRYYYD : nt!KeBugCheckEx

fff£ffO88°53b0f6b0 fffff803°70c867ab : ffff8788 e4604080 ffffffdc c66c7010 00O\
000" 0VVLVVO3 VPVVRVV " VVVE88A : nt!KiBugCheckDispatch+0x69

fEff£ffO88°53b0f7f0 fffff803 75261530 : ffffffdc c66cTOOO VVVVVVVV VYYD fffff\
9887 53b0f9e@ 00VVVVVO " VVVVVVVD : nt!KiPageFault+0x465

ff££fO88°53b0fo80 fffff8@3 75261e2d : fffff988 00VVVVVVD VYYD VYYD ffff8\
788 ecTcf520 00000V VYOO : myfault+0x1530

fEf££ffO88°53b0fob0 fffff803°75261£f88 : ffffffdc c66cTO10 VVVVVVVV VYOI VOO \
000" 00000001 ffffff30 21ea8@aa : myfault+0Oxle2d

fEffffO88 53b0fbod fffff803 70ae3da9 : ffff8788 e6d8e40d 0VVVVVVV " VVVVVVAT VVVOO\
00083360018 VYV VYY1 : myfault+Ox1f88

ff£ffO88°53b0fb4@ fffff803°710d1dd5 : fffff988 53b0fecd ffff8788 e6d8e400 0VVVO\
000" 000Vl ffff8788 ecdb669@ : nt!IofCallDriver+0x59

fff£ffO88°53b0fb80 fffff803°710d172a : ffff8788 000VVVVVY VVVVVVVV 83360018 VLVOO\
000" 0VVVVVD fffffo88 53b0fecd : nt!lIopSynchronousServiceTail+0x1ab
fff£fO88°53b0fc20 fffff803°710d1146 : 00VVVV54"344feb28 000VVVV " VVVVVVY VOO \
000" VYYD VLYYV VVEVVEVD : nt!IopXxxControlFile+Ox5ca

fEf££ffO88°53b0fd60 fffff803°70c89e95 : ffff8788 e4604080 fffffo88 53b@fecd 0VVVOO\
054" 344feb28 fffffo88°569fd630 : nt!NtDeviceloControlFile+0x56

fE£££O088°53b0fdde 00VOTEf8 ba39c147 : 0VVVVVVD " VVVVYVVY VYV VVVVVVYD VYYD \
000" 000V VLYYV VVVRVVY : nt!KiSystemServiceCopyEnd+0x25
000054 " 344febd8 00VVVVVV " VVVVVVLD : VVVVVVV " VVYVYVYY VYV VPV VBV \
000" 0VVVYY VYV VVVYVYYL : ©x0LVATLf8 ba39c147

(truncated)

FOLLOWUP_IP:

myfault+1530

fffff803° 75261530 8b03 mov eax,dword ptr [rbx]
FAULT _INSTR_CODE: 8d48038b

SYMBOL_STACK_INDEX: 3

SYMBOL_NAME: myfault+1530

FOLLOWUP_NAME :  MachineOwner
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: myfault
myfault.sys
(truncated)

Every crash dump code can have up to 4 numbers that provide more information about the crash. In this
case, we can see the code is DRIVER_IRQL_NOT_LESS_OR_EQUAL (0xd1) and the next four numbers named
Arg1 through Arg4 mean (in order): memory referenced, the IRQL at the time of the call, read vs. write
operation and the accessing address.

The command clearly recognizes myfault.sys as the faulting module (driver). That’s because this is an easy
crash - the culprit is on the call stack as can be seen in the STACK TEXT section above (you can also simply
use the k command to see it again).

command using an extension DLL. You may be able to find such extensions on the web. Consult
the debugger API documentation for more information on how to add your own analysis code
to this command.

’ The !analyze -v command is extensible and it’s possible to add more analysis to that

More complex crash dumps may show calls from the kernel only on the call stack of the offending thread.
Before you conclude that you found a bug in the Windows kernel, consider this more likely scenario: A
driver did something that was not fatal in itself, such as experience a buffer overflow - wrote data beyond
its allocated buffer, but unfortunately ,the memory following that buffer was allocated by some other
driver or the kernel, and so nothing bad happened at that time. Some time later, the kernel accessed that
memory and got bad data and caused a system crash. But the faulting driver is nowhere to be found on
any call stack; this is much harder to diagnose.

One way to help diagnose such issues is using Driver Verifier. We’ll look at the basics of Driver
Verifier in module 12.

Once you get the crash dump code, it’s helpful to look in the debugger documentation at the
topic “Bugcheck Code Reference”, where common bugcheck codes are explained more fully
with typical causes and ideas on what to investigate next.

Analyzing a Dump File

A dump file is a snapshot of a system’s memory. Other than that, it’s the same as any other kernel
debugging session. You just can’t set breakpoints, and certainly cannot use any go command. All other
commands are available as usual. Commands such as !process, !thread, 1m, k can be used normally.
Here are some other commands and tips:

« The prompt indicates the current processor. Switching processors can be done with the command
~ns where n is the CPU index (it looks like switching threads in user mode).



Chapter 6: Kernel Mechanisms

2:

155

« The !running command can be used to list the threads that were running on all processors at the
time of the crash. Adding -t as an option shows the call stack for each thread. Here is an example
with the above crash dump:

kd> lrunning -t

System Processors:

048400

H#

Idle Processors:

Prcbs

fffff8036ef3f180

Child-SP

(0000VVVVYVAT )
(0002 )

Current

RetAddr

ff££8788e91cf080 ( 8)

(pri) Idle
ff£££80371\

(pri) Next

Call Site

00 00VVVVI4"edbee8ad VVVVVVVA " VVVYVVVD VxVLVATEf8 bT4c4bdT

955140

00
01
02
03
04
05
06
Q7
08
09
Qa
@b

c91140

#*

ffffb000c1944180

Child-SP

ff£££fO88°53b0f6a8
ff£££O88 53b0f6b0O
fff£fO88 53b0f7f0
ff£££O88 53b0fo80
ff£££f988 53b0fOb0
ff£££f988 53b0 b0
ff£££O088 53b0fb40
ff£££O88 53b0fb80
ff£f££O88 53b0fc20
ff£££fO88 53b0fd60
ff£££988 " 53b0fddo
0000VV54 344 feb48

ffffb000c1c80180

Child-SP

RetAddr

ff£££803" 70c8a469
ff£££803°70c867a5
ff£££803° 75261530
f££££803°75261e2d
fff££803° 75261 88
ff£f£803" 70ae3da9
f££££803°710d1dd5
f££££803°710d172a
f££££803°710d1146
ff£££803° 70c89e95
00RATf£8 ba39c147
1916161661615 0% 1616.61615151%)

RetAddr

f£££8788e4604080 (12)

ff££8788e917e0c0 ( 5)

f££fb00Oc1\

Call Site

nt !KeBugCheckEx

nt !KiBugCheckDispatch+0x69
nt!KiPageFault+0x465

my fault+0x1530

my fault+@x1e2d

my fault+0x1£88
nt!IofCallDriver+@x59
nt!IopSynchronousServiceTail+@x1ab
nt!IopXxxControlFile+@x5ca
nt!NtDeviceloControlFile+@x56
nt!KiSystemServiceCopyEnd+0x25
0x0000Tf£8 ba39c147

ff£fb000Cc1 \

Call Site

00 fffffo88°5683ec38 fffff803 TRael3dad Ntfs!NtfsFsdClose

01 fffffo88°5683ec40 fffff803°702bb5de nt!IofCallDriver+0x59

02 fffffo88°5683ec80 fffff803 702b9f16 FLTMGR!FltpLegacyProcessingAfterPreCallb\
acksCompleted+0x15e
03 fffff988°5683ed00 fffff803" 7Qae3da9 FLTMGR!FltpDispatch+@xb6
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04
05
06
QT
08
x11
@9
Qa
@b
Qc
@d
ack
Qe
of
10
11
12
13
14

ff£££988°5683ed60
ff££f988°5683edad
fffff988°5683ee20
fffffO88°5683ee80
fffffO88°5683eecd
1
ff££f988°5683e {00
fffff988°5683ef40
fffff988°5683£390
fffffO88°5683f6e0
ff££f988°5683f720
sCompleted+0x15e
fffff988°5683f7a0
fffff988°5683f800
fff£fO88°5683f840
ff££f988°5683f8d0
ff££f988°5683fa10
fffff988°5683fa80
00BVRObL5 “aacfodf8

fff££803° T710cfedd
ff££f803°710de470
ff£££f803 70aea9d4
fff££803° 7233915
fff££803°72218ca7

ff£££803°722ff7cf
ff£££803°722fe87d
ff£f££803 70ae3da9
fff££803° 702bb5de
fEf££f803°702b9f16

ff£££803 70ae3da9
fff££803°710ccc38
fff£f803°710d4bf8
ff£££803°710d9f3e
ff£££803°70c89e95
Q0718 bal39c247
0000V " VYYD

156

nt!IofCallDriver+0x59
nt!IopDeleteFile+@x12d

nt ! ObpRemoveOb jectRoutine+0x80
nt!0bfDereferencelOb ject+0xa4d
Ntfs!INtfsDeletelnternalAttributeStream+0\

Ntfs!NtfsDecrementCleanupCounts+0x147

Nt fs!NtfsCommonCleanup+0xadf

Nt fs!NtfsFsdCleanup+@x1ad
nt!IofCallDriver+0x59
FLTMGR!FltpLegacyProcessingAfterPreCallb\

FLTMGR!F1ltpDispatch+0xb6
nt!IofCallDriver+0x59
nt!IopCloseFile+0x188
nt!ObCloseHandleTableEntry+0x278
nt INtClose+@xde
nt!KiSystemServiceCopyEnd+0x25
Qx0T £8 bal39c247

The command gives a pretty good idea of what was going on at the time of the crash.

2:
Pro

© 0 © 0

127

(tr

« The !'stacks command lists all thread stacks for all threads by default. A more useful variant is a
search string that lists only threads where a module or function containing this string appears. This
allows locating driver’s code throughout the system (because it may not have been running at the
time of the crash, but it’s on some thread’s call stack). Here’s an example for the above dump:

kd> !stacks
c.Thread .Thread

.00
.00
.00
.00

.000018
.0001c

.000020

uncated)

Ticks

ThreadState Blocker

[ff£ff803710459c0 Idle]

fffff80371048400 0000VA3 RUNNING
ff£fb00OCc17b1140 ©00Qed9 RUNNING
ffffb000c1955140 00Ob6e RUNNING
ffffb000Cc1c91140 000V12b RUNNING
[ff££8788d6a81300
ffff8788d6b8a080 ©VV5483 Blocked
ff££8788d6bc5140 00RV982 Blocked

ff££8788d6bc9140 00LV85a Blocked

nt!KiIdleLoop+@x15e
hal!HalProcessorIdle+0xf
nt!KildlelLoop+@x15e
nt!KiIdleLoop+@x15e

System]
nt !PopFxEmergencyWorker+@x3e
nt!ExpWorkQueueManagerThread+0x\

nt | KeRemovePriQueue+@x25c
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2: kd> !stacks © myfault
Proc.Thread .Thread Ticks ThreadState Blocker
[ff£££803710459c0 Idle]
[ffff8788d6a81300 System]
(truncated)
[ff£f8788e99070c@ notmyfaultb4.exe]
af4.00160c ffff8788e4604080 0000VO6 RUNNING nt IKeBugCheckEx

(truncated)

The address next to each line is the thread’s ETHREAD address that can be fed to the !thread command.

System Hang

A system crash is the most common type of dump that is typically investigated. However, there is yet
another type of dump that you may need to work with: a hung system. A hung system is a non-responsive
or near non-responsive system. Things seem to be halted or deadlocked in some way - the system does
not crash, so the first issue to deal with is how to get a dump of the system.

A dump file contains some system state, it does not have to be related to a crash or any other bad state.
There are tools (including the kernel debugger) that can generate a dump file at any time.

If the system is still responsive to some extent, the Sysinternals NotMyFault tool can force a system crash
and so force a dump file to be generated (this is in fact the way the dump in the previous section was
generated). Figure 6-8 shows a screenshot of NotMyFault. Selecting the first (default) option and clicking
Crash immediately crashes the system and will generate a dump file (if configured to do so).
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Mot My Fault X

Crash Hang Lesk

Copyright © 2002-2016 Mark Russinovich
Contributions by Daniel Pearson

Options

Clicking the Crash button will cause the system to crash.
There is a risk that corrupted memory will be written to disk
or that work may be lost, Close any open applications.

(®) High IRQL fault (Kernel-mode)
() Buffer overflow

() Code overwrite

() Stack trash

(_J High IRQL fault (User-mode)
() stack overflow

() Hardcoded breakpoint

() Double free

Colors... Crash

Cancel

Figure 6-8: NotMyFault

NotMyFault uses a driver, myfault.sys that is actually responsible for the crash.

NotMyFault has 32 and 64 bit versions (the later file name ends with “64”). Remember to use
the correct one for the system at hand, otherwise its driver will fail to load.

If the system is completely unresponsive, and you can attach a kernel debugger (the target was configured
for debugging), then debug normally or generate a dump file using the . dump command.

If the system is unresponsive and a kernel debugger cannot be attached, it’s possible to generate a crash
manually if configured in the Registry beforehand (this assumes the hang was somehow expected). When
a certain key combination is detected, the keyboard driver will generate a crash. Consult this link® to get
the full details. The crash code in this case is @xe2 (MANUALLY_INITIATED_CRASH).

'https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/forcing-a-system-crash-from-the-keyboard


https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/forcing-a-system-crash-from-the-keyboard
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/forcing-a-system-crash-from-the-keyboard
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Thread Synchronization

Threads sometimes need to coordinate work. A canonical example is a driver using a linked list to gather
data items. The driver can be invoked by multiple clients, coming from many threads in one or more
processes. This means manipulating the linked list must be done atomically, so it’s not corrupted. If multiple
threads access the same memory where at least one is a writer (making changes), this is referred to as a
data race. If a data race occurs, all bets are off and anything can happen. Typically, within a driver, a
system crash occurs sooner or later; data corruption is practically guaranteed.

In such a scenario, it’s essential that while one thread manipulates the linked list, all other threads back
off the linked list, and wait in some way for the first thread to finish its work. Only then another thread
(just one) can manipulate the list. This is an example of thread synchronization.

The kernel provides several primitives that help in accomplishing proper synchronization to protect
data from concurrent access. The following discussed various primitives and techniques for thread
synchronization.

Interlocked Operations

The Interlocked set of functions provide convenient operations that are performed atomically by utilizing
the hardware, which means no software objects are involved. If using these functions gets the job done,
then they should be used, as these are as efficient as they can possibly be.

Technically, these Interlocked-family of functions are called compiler intrinsincs, as they are instruc-
tions to the processor, disguised as functions.

P The same functions (intrinsics) are available in user-mode as well.

A simple example is incrementing an integer by one. Generally, this is not an atomic operation. If two (or
more) threads try to perform this at the same time on the same memory location, it’s possible (and likely)
some of the increments will be lost. Figure 6-9 shows a simple scenario where incrementing a value by 1
done from two threads ends up with result of 1 instead of 2.
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X++ X: 0 X++

Thread 1 Thread 2
time
] v
Reg=0 Reg+——X Reg=0 Reg +— X
' v
Reg=1 Inc Reg Reg=1 Inc Reg

\ 4

X=1 X «<—Reg J X=1 X «<— Reg

Should be: X=2

Figure 6-9: Concurrent increment

consider, especially caching, which makes the shown scenario even more likely. CPU caching,

store buffers, and other aspects of modern CPUs are non-trivial topics, well beyond the scope
of this book.

0 The example in figure 6-9 is extremely simplistic. With real CPUs there are other effects to

Table 6-2 lists some of the Interlocked functions available for drivers use.

Table 6-2: Some Interlocked functions

Function Description

InterlockedIncrement / InterlockedIncrement16  Atomically increment a 32/16/64 bit integer by one
/ InterlockedIncrement64

InterlockedDecrement /16 / 64 Atomically decrement a 32/16/64 bit integer by one.
InterlockedAdd / InterlockedAdd64 Atomically add one 32/64 bit integer to a variable.
InterlockedExchange /8 /16 / 64 Atomically exchange two 32/8/16/64 bit values.
InterlockedCompareExchange / 64 /128 Atomically compare a variable with a value. If equal

exchange with the provided value and return TRUE;
otherwise, place the current value in the variable and
return FALSE.
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programming technique to perform complex atomic operations without using software objects.

6 The InterlockedCompareExchange family of functions are used in lock-free programming, a
This topic is well beyond the scope of this book.

The functions in table 6-2 are also available in user mode, as these are not really functions, but
rather CPU intrinsics - special instructions to the CPU.

Dispatcher Objects

The kernel provides a set of primitives known as Dispatcher Objects, also called Waitable Objects. These
objects have a state, either signaled or non-signaled, where the meaning of signaled and non-signaled
depends on the type of object. They are called “waitable” because a thread can wait on such objects until
they become signaled. While waiting, the thread does not consume CPU cycles as it’s in a Waiting state.

The primary functions used for waiting are KeWaitForSingleObject and KeWaitForMultipleObjects.
Their prototypes (with simplified SAL annotations for clarity) are shown below:

NTSTATUS KeWaitForSingleObject (
_In_ PVOID Object,
_In_ KWAIT_REASON WaitReason,
_In_ KPROCESSOR_MODE WaitMode,
_In_ BOOLEAN Alertable,
_In_opt_ PLARGE_INTEGER Timeout);

NTSTATUS KeWaitForMultipleObjects (
_In_ ULONG Count,
_In_reads_(Count) PVOID Object[],
_In_ WAIT_TYPE WaitType,
_In_ KWAIT_REASON WaitReason,
_In_ KPROCESSOR_MODE WaitMode,
_In_ BOOLEAN Alertable,
_In_opt_ PLARGE_INTEGER Timeout,
_Out_opt_ PKWAIT_BLOCK WaitBlockArray);

Here is a rundown of the arguments to these functions:

« Object - specifies the object to wait for. Note these functions work with objects, not handles. If you
have a handle (maybe provided by user mode), call ObRe ferenceOb jectByHandle to get the pointer
to the object.

« WaitReason - specifies the wait reason. The list of wait reasons is pretty long, but drivers should
typically set it to Executive, unless it’s waiting because of a user request, and if so specify
UserRequest.
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« WaitMode - can be UserMode or KernelMode. Most drivers should specify KernelMode.

« Alertable - indicates if the thread should be in an alertable state during the wait. Alertable state
allows delivering of user mode Asynchronous Procedure Calls (APCs). User mode APCs can be
delivered if wait mode is UserMode. Most drivers should specify FALSE.

« Timeout - specifies the time to wait. If NULL is specified, the wait is indefinite - as long as it takes for
the object to become signaled. The units of this argument are in 100nsec chunks, where a negative
number is relative wait, while a positive number is an absolute wait measured from January 1, 1601
at midnight.

« Count - the number of objects to wait on.

+ Object[] - an array of object pointers to wait on.

« WaitType - specifies whether to wait for all object to become signaled at once (WaitAl1l) or just one
object (WaitAny).

« WaitBlockArray - an array of structures used internally to manage the wait operation. It’s optional
if the number of objects is <= THREAD_WAIT_OBJECTS (currently 3) - the kernel will use the built-in
array present in each thread. If the number of objects is higher, the driver must allocate the correct
size of structures from non-paged memory, and deallocate them after the wait is over.

The main return values from KeWaitForSingleOb ject are:
» STATUS_SUCCESS - the wait is satisfied because the object state has become signaled.

« STATUS_TIMEOUT - the wait is satisfied because the timeout has elapsed.

n Note that all return values from the wait functions pass the NT_SUCCESS macro with true.

KeWaitForMultipleObjects return values include STATUS_TIMEOUT just as KeWaitForSingleObject.
STATUS_SUCCESS is returned if WaitAll wait type is specified and all objects become signaled. For
WaitAny waits, if one of the objects became signaled, the return value is STATUS_WAIT_® plus its index in
the array of objects (Note that STATUS_WAIT_® is defined to be zero).

There are some fine details associated with the wait functions, especially if wait mode is
UserMode and the wait is alertable. Check the WDK docs for the details.

Table 6-3 lists some of the common dispatcher objects and the meaning of signaled and non-signaled for
these objects.
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Table 6-3: Object Types and signaled meaning

Object Type  Signaled meaning Non-Signaled meaning

Process process has terminated (for whatever reason) process has not terminated

Thread thread has terminated (for whatever reason) thread has not terminated

Mutex mutex is free (unowned) mutex is held

Event event is set event is reset

Semaphore semaphore count is greater than zero semaphore count is zero

Timer timer has expired timer has not yet expired

File asynchronous I/O operation completed asynchronous I/O operation is in progress

All the object types from table 6-3 are also exported to user mode. The primary waiting
functions in user mode are WaitForSingleObject and WaitForMultipleObjects.

The following sections will discuss some of common object types useful for synchronization in drivers.
Some other objects will be discussed as well that are not dispatcher objects, but support waiting as well.

Mutex

Mutex is the classic object for the canonical problem of one thread among many that can access a shared
resource at any one time.

e Mutex is sometimes referred to as Mutant (its original name). These are the same thing.

A mutex is signaled when it’s free. Once a thread calls a wait function and the wait is satisfied, the mutex
becomes non-signaled and the thread becomes the owner of the mutex. Ownership is critical for a mutex.
It means the following:

« If a thread is the owner of a mutex, it’s the only one that can release the mutex.

« A mutex can be acquired more than once by the same thread. The second attempt succeeds
automatically since the thread is the current owner of the mutex. This also means the thread needs
to release the mutex the same number of times it was acquired; only then the mutex becomes free
(signaled) again.

Using a mutex requires allocating a KMUTEX structure from non-paged memory. The mutex API contains
the following functions working on that KMUTEX:

e KeInitializeMutex or KeInitializeMutant must be called once to initialize the mutex.
+ One of the waiting functions, passing the address of the allocated KMUTEX structure.
o KeReleaseMutex is called when a thread that is the owner of the mutex wants to release it.

Here are the definitions of the APIs that can initialize a mutex:
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VOID KelnitializeMutex (
_Out_ PKMUTEX Mutex,
_In_ ULONG Level);
VOID KelnitializeMutant ( // defined in ntifs.h
_Out_ PKMUTANT Mutant,
_In_ BOOLEAN InitialOwner);

TheLevel parameter inKeInitializeMutex is not used, so zero is a good value as any.KeInitializeMutant
allows specifying if the current thread should be the initial owner of the mutex. KeInitializeMutex
initializes the mutex to be unowned.

Releasing the mutex is done with KeReleaseMutex:

LONG KeReleaseMutex (
_Inout_ PKMUTEX Mutex,
_In_ BOOLEAN Wait);

The returned value is the previous state of the mutex object (including recursive ownership count), and
should mostly be ignored (although it may sometimes be useful for debugging purposes). The Wait
parameter indicates whether the next API call is going to be one of the wait functions. This is used as
a hint to the kernel that can optimize slightly if the thread is about to enter a wait state.

IRQL is not lowered, which would allow the next wait function (KeWaitForSingleObject or

6 As part of calling KeReleaseMutex, the IRQL is raised to DISPATCH_LEVEL. If Wait is TRUE, the
KeWaitForMultipleObjects) to execute more efficiently, as no context switch can interfere.

Given the above functions, here is an example using a mutex to access some shared data so that only a
single thread does so at a time:

KMUTEX MyMutex;
LIST_ENTRY DataHead;

void Init() {
KelnitializeMutex(&MyMutex, 0);
void DoWork() {
// wait for the mutex to be available

KeWaitForSingleObject(&MyMutex, Executive, KernelMode, FALSE, nullptr);

// access DataHead freely
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// once done, release the mutex

KeReleaseMutex(&MyMutex, FALSE);

It’s important to release the mutex no matter what, so it’s better to use __try / __finally to make sure
it’s executed however the __try block is exited:

void DoWork() {
// wait for the mutex to be available

KeWaitForSingleObject(&MyMutex, Executive, KernelMode, FALSE, nullptr);

—try {
// access DataHead freely

}
__finally {
// once done, release the mutex
KeReleaseMutex(&MyMutex, FALSE);
}

Figure 6-10 shows two threads attempting to acquire the mutex at roughly the same time, as they want to
access the same data. One thread succeeds in acquiring the mutex, the other has to wait until the mutex
is released by the owner before it can acquire it.
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Since using __try/__finally is a bit awkward, we can use C++ to create a RAII wrapper for waits. This
could also be used for other synchronization primitives.

Figure 6-10: Acquiring a mutex

First, we’ll create a mutex wrapper that provides functions named Lock and Unlock:
struct Mutex {

void Init() {
KelnitializeMutex(&_mutex, 0);

void Lock() {
KeWaitForSingleObject(&_mutex, Executive, KernelMode, FALSE, nullptr);

void Unlock() {
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KeReleaseMutex(&_mutex, FALSE);

private:
KMUTEX _mutex;
b

Then we can create a generic RAII wrapper for waiting for any type that has a Lock and Unlock functions:

template<typename TLock>
struct Locker {
explicit Locker(TLock& lock) : _lock(lock) {
lock.Lock();

~Locker() {
_lock.Unlock();

private:
TLock& _lock;
}i
With these definitions in place, we can replace the code using the mutex with the following:
Mutex MyMutex;
void Init() {
MyMutex.Init();
void DoWork() {

Locker <Mutex> locker(MyMutex);

// access DataHead freely
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scope containing Locker and the code to execute while the mutex is owned, to acquire the
mutex as late as possible and release it as soon as possible.

’ Since locking should be done for the shortest time possible, you can use an artificial C/C++

With C++ 17 and later, Locker can be used without specifying the type like so:
Locker locker(MyMutex);

Since Visual Studio currently uses C++ 14 as its default language standard, you’ll have to change
that in the project properties under the General node / C++ Language Standard.

We'll use the same Locker type with other synchronization primitives in subsequent sections.

Abandoned Mutex

A thread that acquires a mutex becomes the mutex owner. The owner thread is the only one that can release
the mutex. What happens to the mutex if the owner thread dies for whatever reason? The mutex then
becomes an abandoned mutex. The kernel explicitly releases the mutex (as no thread can do it) to prevent
a deadlock, so another thread would be able to acquire that mutex normally. However, the returned value
from the next successful wait call is STATUS_ABANDONED rather than STATUS_SUCCESS. A driver should
log such an occurrence, as it frequently indicates a bug.

Other Mutex Functions

Mutexes support a few miscellaneous functions that may be useful at times, mostly for debugging purposes.
KeReadStateMutex returns the current state (recursive count) of the mutex, where 0 means “unowned”:

LONG KeReadStateMutex (_In_ PKMUTEX Mutex);

Just remember that after the call returns, the result may no longer be correct as the mutex state may have
changed because some other thread has acquired or released the mutex before the code gets to examine
the result. The benefit of this function is in debugging scenarios only.

You can get the current mutex owner with a call to KeQueryOwnerMutant (defined in <ntifs.h>) as a
CLIENT_ID data structure, containing the thread and process IDs:

VOID KeQueryOwnerMutant (
_In_ PKMUTANT Mutant,
_Out_ PCLIENT_ID ClientlId);

Just like with KeReadStateMutex, the returned information may be stale if other threads are doing work
with that mutex.
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Fast Mutex

A fast mutex is an alternative to the classic mutex, providing better performance. It’s not a dispatcher
object, and so has its own API for acquiring and releasing it. A fast mutex has the following characteristics
compared with a regular mutex:

« A fast mutex cannot be acquired recursively. Doing so causes a deadlock.
» When a fast mutex is acquired, the CPU IRQL is raised to APC_LEVEL (1). This prevents any delivery
of APCs to that thread.

« A fast mutex can only be waited on indefinitely - there is no way to specify a timeout.

Because of the first two bullets above, the fast mutex is slightly faster than a regular mutex. In fact, most
drivers requiring a mutex use a fast mutex unless there is a compelling reason to use a regular mutex.

Don’t use I/O operations while holding on to a fast mutex. I/O completions are delivered with
a special kernel APC, but those are blocked while holding a fast mutex, creating a deadlock.

A fast mutex is initialized by allocating a FAST_MUTEX structure from non-paged memory and calling
ExInitializeFastMutex. Acquiring the mutex is done withExAcquireFastMutex orExAcquireFastMutexUnsafe
(if the current IRQL happens to be APC_LEVEL already). Releasing a fast mutex is accomplished with
ExReleaseFastMutex or ExReleaseFastMutexUnsafe.

Semaphore

The primary goal of a semaphore is to limit something, such as the length of a queue. The semaphore
is initialized with its maximum and initial count (typically set to the maximum value) by calling
KeInitializeSemaphore. While its internal count is greater than zero, the semaphore is signaled. A
thread that calls KeWaitForSingleObject has its wait satisfied, and the semaphore count drops by one.
This continues until the count reaches zero, at which point the semaphore becomes non-signaled.

Semaphores use the KSEMAPHORE structure to hold their state, which must be allocated from non-paged
memory. Here is the definition of KeInitializeSemaphore:

VOID KelnitializeSemaphore (
_Out_ PRKSEMAPHORE Semaphore,
_In_ LONG Count, // starting count
_In_ LONG Limit); // maximum count

As an example, imagine a queue of work items managed by the driver. Some threads want to add items to
the queue. Each such thread calls KeWaitForSingleObject to obtain one “count” of the semaphore. As
long as the count is greater than zero, the thread continues and adds an item to the queue, increasing its
length, and semaphore “loses” a count. Some other threads are tasked with processing work items from
the queue. Once a thread removes an item from the queue, it calls KeReleaseSemaphore that increments
the count of the semaphore, moving it to the signaled state again, allowing potentially another thread to
make progress and add a new item to the queue.

KeReleaseSemaphore is defined like so:
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LONG KeReleaseSemaphore (
_Inout_ PRKSEMAPHORE Semaphore,
_In_ KPRIORITY Increment,
_In_ LONG Adjustment,
_In_ BOOLEAN Wait);

The Increment parameter indicates the priority boost to apply to the thread that has a successful waiting
on the semaphore. The details of how this boost works are described in the next chapter. Most drivers
should provide the value 1 (that’s the default used by the kernel when a semaphore is released by the user
mode ReleaseSemaphore API). Adjustment is the value to add to the semaphore’s current count. It’s
typically one, but can be a higher value if that makes sense. The last parameter (Wait) indicates whether a
wait operation (KeWaitForSingleObject or KeWaitForMultipleOb jects) immediately follows (see the
information bar in the mutex discussion above). The function returns the old count of the semaphore.

but this is not the case. A semaphore lacks ownership, meaning one thread can acquire the
semaphore, while another can release it. This is a strength, not a weakness, as described in the
above example. A Semaphore’s purpose is very different from that of a mutex.

g Is a semaphore with a maximum count of one equivalent to a mutex? At first, it seems so,

You can read the current count of the semaphore by calling KeReadStateSemaphore:
LONG KeReadStateSemaphore (_In_ PRKSEMAPHORE Semaphore);

Event

An event encapsulates a boolean flag - either true (signaled) or false (non-signaled). The primary purpose
of an event is to signal something has happened, to provide flow synchronization. For example, if some
condition becomes true, an event can be set, and a bunch of threads can be released from waiting and
continue working on some data that perhaps is now ready for processing.

The are two types of events, the type being specified at event initialization time:

« Notification event (manual reset) - when this event is set, it releases any number of waiting threads,
and the event state remains set (signaled) until explicitly reset.

« Synchronization event (auto reset) - when this event is set, it releases at most one thread (no matter
how many are waiting for the event), and once released the event goes back to the reset (non-
signaled) state automatically.

An event is created by allocating a KEVENT structure from non-paged memory and then callingKeInitializeEvent
to initialize it, specifying the event type (NotificationEvent or SynchronizationEvent) and the initial
event state (signaled or non-signaled):
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VOID KelnitializeEvent (
_Out_ PRKEVENT Event,
_In_ EVENT_TYPE Type, // NotificationEvent or SynchronizationEvent
_In_ BOOLEAN State); // initial state (signaled=TRUE)

Notification events are called Manual-reset in user-mode terminology, while Synchronization events are
called Auto-reset. Despite the name changes, these are the same.

Waiting for an event is done normally with the KewaitXxx functions. Calling KeSetEvent sets the event to
the signaled state, while calling KeResetEvent or KeClearEvent resets it (non-signaled state) (the latter
function being a bit quicker as it does not return the previous state of the event):

LONG KeSetEvent (

_Inout_ PRKEVENT Event,

_In_ KPRIORITY Increment,

_In_ BOOLEAN Wait);
VOID KeClearEvent (_Inout_ PRKEVENT Event);
LONG KeResetEvent (_Inout_ PRKEVENT Event);

Just like with a semaphore, setting an event allows providing a priority boost to the next successful wait
on the event.

Finally, the current state of an event (signaled or non-signaled) can be read with KeReadStateEvent:
LONG KeReadStateEvent (_In_ PRKEVENT Event);

Named Events

Event objects can be named (as can mutexes and semaphores). This can be used as an easy way
of sharing an event object with other drivers or with user-mode clients. One way of creating or
opening a named event by name is with the helper functions IoCreateSynchronizationEvent and
IoCreateNotificationEvent APIs:

PKEVENT IoCreateSynchronizationEvent(
_In_ PUNICODE_STRING EventName,
_Out_ PHANDLE EventHandle);

PKEVENT IoCreateNotificationEvent(
_In_ PUNICODE_STRING EventName,
_Out_ PHANDLE EventHandle);
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These APIs create the named event object if it does not exist and set its state to signaled, or obtain another
handle to the named event if it does exist. The name itself is provided as a normal UNICODE_STRING and
must be a full path in the Object Manager’s namespace, as can be observed in the Sysinternals WinObj
tool.

These APIs return two values: the pointer to the event object (direct returned value) and an open handle
in the EventHandle parameter. The returned handle is a kernel handle, to be used by the driver only. The
functions return NULL on failure.

You can use the previously described events API to manipulate the returned event by address. Don’t forget
to close the returned handle (ZwClose) to prevent a leak. Alternatively, you can call ObReferenceOb ject
on the returned pointer to make sure it’s not prematurely destroyed and close the handle immediately. In
that case, call ObDere ferenceOb ject when you’re done with the event.

Built-in Named Kernel Events

One use of the ToCreateNotificationEvent APIis to gain access to a bunch of named event objects the
kernel provides in the \KernelObjects directory. These events provide various notifications for memory
related status, that may be useful for kernel drivers.

Figure 6-11 shows the named events in WinObj. Note that the lower symbolic links are actually events, as
these are internally implemented as Dynamic Symbolic Links (see more details at https://scorpiosoftware.
net/2021/04/30/dynamic-symbolic-links/).

w® WinObj - Sysinternals: www.sysinternals.com
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Figure 6-11: Kernel Named Events
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All the events shown in figure 6-11 are Notification events. Table 6-5 lists these events with their meaning.

Table 6-5: Named kernel events

Name Description

HighMemoryCondition The system has lots of free physical memory
LowMemoryCondition The system is low on physical memory
HighPagedPoolCondition The system has lots of free paged pool memory
LowPagedPoolCondition The system is low on paged pool memory

HighNonPagedPoolCondition = The system has lots of free non-paged pool memory

LowNonPagedPoolCondition  The system is low on non-paged pool memory

HighCommitCondition The system has lots of free memory in RAM and paging file(s)

LowCommitCondition The system is low on RAM and paging file(s)

MaximumCommitCondition  The system is almost out of memory, and no further increase in page files size is
possible

Drivers can use these events as hints to either allocate more memory or free memory as required. The
following example shows how to obtain one of these events and wait for it on some thread (error handling
ommitted):

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"\\KernelObjects\\LowCommitCondition");
HANDLE hEvent;

auto event = IoCreateNotificationEvent(&name, &hEvent);

// on some driver-created thread. ..

KeWaitForSingleObject(event, Executive, KernelMode, FALSE, nullptr);
// free some memory 1if possible. ..

/7

// close the handle

ZwClose(hEvent);

’ Write a driver that waits on all these named events and uses DbgPrint to indicate a signaled
? event with its description.

Executive Resource

The classic synchronization problem of accessing a shared resource by multiple threads was dealt with by
using a mutex or fast mutex. This works, but mutexes are pessimistic, meaning they allow a single thread
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to access a shared resource. That may be unfortunate in cases where multiple threads access a shared
resource by reading only.

In cases where it’s possible to distinguish data changes (writes) vs. just looking at the data (reading)
- there is a possible optimization. A thread that requires access to the shared resource can declare its
intentions - read or write. If it declares read, other threads declaring read can do so concurrently, improving
performance. This is especially useful if the shared data changes infrequently, i.e. there are considerably
more reads than writes.

Mutexes by their very nature are pessimistic locks, since they enforce a single thread at a time execution.
This makes them always work at the expense of possible performance gains with concurrency.

The kernel provides yet another synchronization primitive that is geared towards this scenario, known as
single writer, multiple readers. This object is the Executive Resource, another special object which is not a
dispatcher object.

Initializing an executive resource is done by allocating an ERESOURCE structure from non-paged pool and

calling ExInitializeResourcelite. Once initialized, threads can acquire either the exclusive lock (for
writes) using ExAcquireResourceExclusivel ite or the shared lock by calling ExAcquireResourceSharedLite.
Once done the work, a thread releases the executive resource with ExReleaseResourcel ite (no matter
whether it acquired as exclusive or not).

The requirement for using the acquire and release functions is that normal kernel APCs must be
disabled. This can be done with KeEnterCtriticalRegion just before the acquire call, and then
KeLeaveCriticalRegion just after the release call. The following code snippet demonstrates that:

ERESOURCE resource;
void WriteData() {
KeEnterCriticalRegion();
ExAcquireResourceExclusivelite(&resource, TRUE); // wait until acquired

// Write to the data

ExReleaseResourcel ite(&resource);
KeLeaveCriticalRegion();

Since these calls are so common when working with executive resources, there are functions that perform
both operations with a single call:
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void WriteData() {
ExEnterCriticalRegionAndAcquireResourceExclusive(&resource);

// Write to the data
ExReleaseResourceAndLeaveCriticalRegion(&resource);
A similar function exists for shared acquisition, ExEnterCriticalRegionAndAcquireResourceShared.

Finally, before freeing the memory the resource occupies, call ExDeleteResourcelLite to remove the
resource from the kernel’s resource list:

NTSTATUS ExDeleteResourcelite(
_Inout_ PERESOURCE Resource);

You can query the number of waiting threads for exclusive and shared access of a resource with the
functions ExGetExclusiveWaiterCount and ExGetSharedWaiterCount, respectively.

There are other functions for working with executive resources for some specialized cases. Consult the
WDK documentation for more information.

f Create appropriate C++ RAII wrappers for executive resources.

High IRQL Synchronization

The sections on synchronization so far have dealt with threads waiting for various types of objects. How-
ever, in some scenarios, threads cannot wait - specifically, when the processor’s IRQL is DISPATCH_LEVEL
(2) or higher. This section discusses these scenarios and how to handle them.

Let’s examine an example scenario: A driver has a timer, set up with KeSetTimer and uses a DPC to
execute code when the timer expires. At the same time, other functions in the driver, such as IRP_MJ_-
DEVICE_CONTROL may execute at the same time (runs at IRQL 0). If both these functions need to access a
shared resource (e.g. a linked list), they must synchronize access to prevent data corruption.

The problem is that a DPC cannot call KeWaitForSingleObject or any other waiting function - calling
any of these is fatal. So how can these functions synchronize access?

The simple case is where the system has a single CPU. In this case, when accessing the shared resource,
the low IRQL function just needs to raise IRQL to DISPATCH_LEVEL and then access the resource. During
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that time a DPC cannot interfere with this code since the CPU’s IRQL is already 2. Once the code is done
with the shared resource, it can lower the IRQL back to zero, allowing the DPC to execute. This prevents
execution of these routines at the same time. Figure 6-12 shows this setup.

JF v
Do work Do work

Y

Raise IRQL to 2 Access shared

resource

Access shared
resource

Y

Do more work

Lower IRQLto O

Do more work

Figure 6-12: High-IRQL synchronization by manipulating IRQL

In standard systems, where there is more than one CPU, this synchronization method is not enough,
because the IRQL is a CPU’s property, not a system-wide property. If one CPU’s IRQL is raised to 2, if a
DPC needs to execute, it can execute on another CPU whose IRQL may be zero. In this case, it’s possible
that both functions execute at the same time, accessing the shared data, causing a data race.

How can we solve that? We need something like a mutex, but that can synchronize between processors -
not threads. That’s because when the CPU’s IRQL is 2 or higher, the thread itself loses meaning because
the scheduler cannot do work on that CPU. This kind of object exists - the Spin Lock.
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The Spin Lock

The Spin Lock is just a bit in memory that is used with atomic test-and-set operations via an API. When
a CPU tries to acquire a spin lock, and that spin lock is not currently free (the bit is set), the CPU keeps
spinning on the spin lock, busy waiting for it to be released by another CPU (remember, putting the thread
into a waiting state cannot be done at IRQL DISPATCH_LEVEL or higher).

In the scenario depicted in the previous section, a spin lock would need to be allocated and initialized. Each
function that requires access to the shared data needs to raise IRQL to 2 (if not already there), acquire the
spin lock, perform the work on the shared data, and finally release the spin lock and lower IRQL back (if
applicable; not so for a DPC). This chain of events is depicted in figure 6-13.

Creating a spin lock requires allocating a KSPIN_LOCK structure from non-paged pool, and calling
KeInitializeSpinlLock. This puts the spin lock in the unowned state.
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Figure 6-13: High-IRQL synchronization with a Spin Lock

Acquiring a spin lock is always a two-step process: first, raise the IRQL to the proper level, which is the
highest level of any function trying to synchronize access to a shared resource. In the previous example, this
associated IRQL is 2. Second, acquire the spin lock. These two steps are combined by using the appropriate
API. This process is depicted in figure 6-14.
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Figure 6-14: Acquiring a Spin Lock

Acquiring and releasing a spin lock is done using an API that performs the two steps outlined in figure
6-12. Table 6-4 shows the relevant APIs and the associated IRQL for the spin locks they operate on.

Table 6-4: APIs for working with spin locks

IRQL Acquire function Release function Remarks
DISPATCH_LEVEL (2) KeAcquireSpinLock KeReleaseSpinLock

DISPATCH_LEVEL (2) KeAcquireSpinLockAtDpcLevel KeReleaseSpinLockFromDpcLevel (a)
Device IRQL KeAcquireInterruptSpinLock KeReleaselInterruptSpinLock (b)
Device IRQL KeSynchronizeExecution (none) (c)
HIGH_LEVEL ExInterlockedXxx (none) (d)

Remarks on table 6-4:

(a) Can be called at IRQL 2 only. Provides an optimization that just acquires the spin lock without changing
IRQLs. The canonical scenario is calling these APIs within a DPC routine.

(b) Useful for synchronizing an ISR with any other function. Hardware-based drivers with an interrupt
source use these routines. The argument is an interrupt object (KINTERRUPT), where the spin lock is part
of it.

(c) KeSynchronizeExecution acquires the interrupt object spin lock, calls the provided callback and
releases the spin lock. The net effect is the same as calling the pair KeAcquireInterruptSpinLock /
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KeReleaselnterruptSpinLock.

(d) A set of three functions for manipulating LIST_ENTRY-based linked lists. These functions use the
provided spin lock and raise IRQL to HIGH_LEVEL. Because of the high IRQL, these routines can be used
in any IRQL, since raising IRQL is always a safe operation.

If you acquire a spin lock, be sure to release it in the same function. Otherwise, you’re risking
a deadlock or a system crash.

its own spin lock to protect concurrent access to its own data from high-IRQL functions. Some
spin locks exist as part of other objects, such as the KINTERRUPT object used by hardware-based
drivers that handle interrupts. Another example is a system-wide spin lock known as the Cancel
spin lock, which is acquired by the kernel before calling a cancellation routine registered by a
driver. This is the only case where a driver released a spin lock it has not acquired explicitly.

e Where do spin locks come from? The scenario described here requires the driver to allocate

If several CPUs try to acquire the same spin lock at the same time, which CPU gets the spin
lock first? Normally, there is no order - the CPU with fastest electrons wins :). The kernel does
provide an alternative, called Queued spin locks that serve CPUs on a FIFO basis. These only
work with IRQL DISPATCH_LEVEL. The relevant APIs are KeAcquireInStackQueuedSpinLock
and KeReleaseInStackQueuedSpinLock. Check the WDK documentation for more details.

defined earlier in this chapter.

f Write a C++ wrapper for a DISPATCH_LEVEL spin lock that works with the Locker RAII class

Queued Spin Locks

A variant on classic spin locks are queued spin locks. These behave the same as normal spin locks, with
the following differences:

» Queued spin locks always raise to IRQL DISPTACH_LEVEL (2). This means they cannot be used for
synchronizing with an ISR, for example.

+ There is a queue of CPU waiting to acquire the spin lock, on a FIFO basis. This is more efficient when
high contention is expected. Normal spin locks provide no gauarantee as to the order of acquisition
when multiple CPUs attempt to acquire a spin lock.

A queued spin lock is initialized just like a normal spin lock (KeInitializeSpinLock). Acquiring and
releasing a queued spin lock is achieved with different APIs:
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void KeAcquirelInStackQueuedSpinLock (
_Inout_ PKSPIN_LOCK SpinlLock,
_Out_ PKLOCK_QUEUE_HANDLE LockHandle);
void KeReleaseInStackQueuedSpinLock (
_In_ PKLOCK_QUEUE_HANDLE LockHandle);

Except for a spin lock, the caller provides an opaque KLOCK_QUEUE_HANDLE structure that is filled in by
KeAcquireInStackQueuedSpinLock. The same one must be passed toKeReleaseInStackQueuedSpinLock.

Just like with normal dispatch-level spin locks, shortcuts exist if the caller is already at IRQL DISPATCH_-
LEVEL. KeAcquireInStackQueuedSpinLockAtDpcLevel acquires the spin lock with no IRQL changes,
while KeReleaseInStackQueuedSpinLockFromDpcLevel releases it.

f Write a C++ RAII wrapper for a queued spin lock.

Work Items

Sometimes there is a need to run a piece of code on a different thread than the executing one. One
way to do that is to create a thread explicitly and task it with running the code. The kernel provides
functions that allow a driver to create a separate thread of execution: PsCreateSystemThread and
IoCreateSystemThread (available in Windows 8+). These functions are appropriate if the driver needs
to run code in the background for a long time. However, for time-bound operations, it’s better to use a
kernel-provided thread pool that will execute your code on some system worker thread.

PsCreateSystemThread and IoCreateSystemThread are discussed in chapter 8.

ing a device or driver object with the thread. This makes the I/O system add a reference to the
object, which makes sure the driver cannot be unloaded prematurely while the thread is still
executing.

e IoCreateSystemThread is preferred over PsCreateSystemThread, because is allows associat-

A thread created by PsCreateSystemThread must terminate itself eventually by calling
PsTerminateSystemThread (from within the thread). This function never returns if successful.

Work items is the term used to describe functions queued to the system thread pool. A driver can allocate
and initialize a work item, pointing to the function the driver wishes to execute, and then the work item
can be queued to the pool. This may seem very similar to a DPC, the primary difference being work items
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always execute at IRQL PASSIVE_LEVEL (0). Thus, work items can be used by IRQL 2 code (such as DPCs)
to perform operations not normally allowed at IRQL 2 (such as I/O operations).

Creating and initializing a work item can be done in one of two ways:

« Allocate and initialize the work item with IoAllocateWorkItem. The function returns a pointer to
the opaque I0_WORKITEM. When finished with the work item it must be freed with IoFreeWorkItem.

« Allocate an I0_WORKITEM structure dynamically with size provided by IoSizeofWorkItem. Then
call IoInitializeWorkItem. When finished with the work item, call IoUninitializeWorkItem.

These functions accept a device object, so make sure the driver is not unloaded while there is a work item
queued or executing.

functions do not associate the work item with anything in the driver, so it’s possible for the
driver to be unloaded while a work item is still executing. These APIs are marked as deprecated
- always prefer using the Io functions.

e There is another set of APIs for work items, all start with Ex, such as ExQueueWorkItem. These

To queue the work item, call IoQueueWorkItem. Here is its definition:

viud IoQueueWorkItem(

_Inout_ PIO_WORKITEM IoWorkItem, // the work item

_In_ PIO_WORKITEM_ROUTINE WorkerRoutine, // the function to be called
_In_ WORK_QUEUE_TYPE QueueType, // queue type

_In_opt_ PVOID Context); // driver-defined value

The callback function the driver needs to provide has the following prototype:

IO_WORKITEM_ROUTINE WorkItem;

void WorkItem(
_In_ PDEVICE_OBJECT DeviceObject,
_In_opt_ PVOID Context);

The system thread pool has several queues (at least logically), based on the thread priorities that serve
these work items. There are several levels defined:
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typedef enum _WORK_QUEUE_TYPE ({

CriticalWorkQueue, // priority 13
DelayedWorkQueue, // priority 12
HyperCriticalWorkQueue, // priority 15
NormalWorkQueue, // priority 8

BackgroundWorkQueue, // priority 7

RealTimeWorkQueue, // priority 18
SuperCriticalWorkQueue, // priority 14
MaximumWorkQueue,

CustomPriorityWorkQueue = 32
} WORK_QUEUE_TYPE;

The documentation indicates DelayedWorkQueue must be used, but in reality, any other supported level
can be used.

function uses a different callback that has an added parameter which is the work item itself.

6 There is another function that can be used to queue a work item: IoQueueWorkItemEx. This
This is useful if the work item function needs to free the work item before it exits.

Summary

In this chapter, we looked at various kernel mechanisms driver developers should be aware of and use. In
the next chapter, we’ll take a closer look at I/O Request Packets (IRPs).
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After a typical driver completes its initialization in DriverEntry, its primary job is to handle requests.
These requests are packaged as the semi-documented I/O Request Packet (IRP) structure. In this chapter,
we’ll take a deeper look at IRPs and how a driver handles common IRP types.

In This chapter:

+ Introduction to IRPs

+ Device Nodes

« IRP and I/O Stack Location

« Dispatch Routines

« Accessing User Buffers

« Putting it All Together: The Zero Driver

Introduction to IRPs

An IRP is a structure that is allocated from non-paged pool typically by one of the “managers” in the
Executive (I/O Manager, Plug & Play Manager, Power Manager), but can also be allocated by the driver,
perhaps for passing a request to another driver. Whichever entity allocating the IRP is also responsible for
freeing it.

An IRP is never allocated alone. It’s always accompanied by one or more I/O Stack Location structures
(IO_STACK_LOCATION). In fact, when an IRP is allocated, the caller must specify how many I/O stack
locations need to be allocated with the IRP. These I/O stack locations follow the IRP directly in memory.
The number of I/O stack locations is the number of device objects in the device stack. We’ll discuss device
stacks in the next section. When a driver receives an IRP, it gets a pointer to the IRP structure itself,
knowing it’s followed by a set of I/O stack location, one of which is for the driver’s use. To get the correct
/O stack location, a driver calls IoGetCurrentIrpStackLocation (actually a macro). Figure 7-1 shows a
conceptual view of an IRP and its associated I/O stack locations.
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I0_STACK_LOCATION

Figure 7-1: IRP and its I/O stack locations

The parameters of the request are somehow “split” between the main IRP structure and the current I0_-
STACK_LOCATION.

Device Nodes

The I/O system in Windows is device-centric, rather than driver-centric. This has several implications:

« Device objects can be named, and handles to device objects can be opened. The CreateFile function
accepts a symbolic link that leads to a device object. CreateFile cannot accept a driver’s name as
an argument.

« Windows supports device layering - one device can be layered on top of another. Any request
destined for a lower device will reach the uppermost device first. This layering is common for
hardware-based devices, but it works with any device type.

Figure 7-2 shows an example of several layers of devices, “stacked” one on top of the other. This set of
devices is known as a device stack, sometimes referred to as device node (although the term device node is
often used with hardware device stacks). Figure 7-1 shows six layers, or six devices. Each of these devices
is represented by a DEVICE_OBJECT structure created by calling the standard IoCreateDevice function.
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Figure 7-2: Layered devices

The different device objects that comprise the device node (devnode) layers are labeled according to their
role in the devnode. These roles are relevant in a hardware-based devnode.

All the device objects in figure 7-2 are just DEVICE_OBJECT structures, each created by a different driver
that is in charge of that layer. More generically, this kind of device node does not have to be related to
hardware-based device drivers.

Here is a quick rundown of the meaning of the labels present in figure 7-2:

« PDO (Physical Device Object) - Despite the name, there is nothing “physical” about it. This device
object is created by a bus driver - the driver that is in charge of the particular bus (e.g. PCI, USB,
etc.). This device object represents the fact that there is some device in that slot on that bus.

« FDO (Functional Device Object) - This device object is created by the “real” driver; that is, the driver
typically provided by the hardware’s vendor that understands the details of the device intimately.

« FiDO (Filter Device Object) - These are optional filter devices created by filter drivers.

The Plug & Play (P&P) manager, in this case, is responsible for loading the appropriate drivers, starting
from the bottom. As an example, suppose the devnode in figure 7-2 represents a set of drivers that manage
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a PCI network card. The sequence of events leading to the creation of this devnode can be summarized as
follows:

1. The PCI bus driver (pci.sys) recognizes the fact that there is something in that particular slot. It
creates a PDO (IoCreateDevice) to represent this fact. The bus driver has no idea whether this a
network card, video card or something else; it only knows there is something there and can extract
basic information from its controller, such as the Vendor ID and Device ID of the device.

2. The PCIbus driver notifies the P&P manager that it has changes on its bus (calls IoInval idateDeviceRelation
with the BusRelations enumeration value).

3. The P&P manager requests a list of PDOs managed by the bus driver. It receives back a list of PDOs,
in which this new PDO is included.

4. Now the P&P manager’s job is to find and load the proper driver that should manage this new PDO.
It issues a query to the bus driver to request the full hardware device ID.

5. With this hardware ID in hand, the P&P manager looks in the Registry at HKLM\System\ Current-
ControlSet\Enum\PCI\(HardwarelD). If the driver has been loaded before, it will be registered there,
and the P&P manager will load it. Figure 7-3 shows an example hardware ID in the registry (NVIDIA
display driver).

6. The driver loads and creates the FDO (another call to IoCreateDevice), but adds an additional
call to IoAttachDeviceToDeviceStack, thus attaching itself over the previous layer (typically the
PDO).

We'll see how to write filter drivers that take advantage of IoAttachDeviceToDeviceStack in chapter
13.
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Figure 7-3: Hardware ID information
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The filter device objects are loaded as well, if they are registered correctly in the Registry. Lower filters
(below the FDO) load in order, from the bottom. Each filter driver loaded creates its own device object and
attaches it on top of the previous layer. Upper filters work the same way but are loaded after the FDO. All
this means that with operational P&P devnodes, there are at least two layers - PDO and FDO, but there
could be more if filters are involved. We’ll look at basic filter development for hardware-based drivers in
chapter 13.

Full discussion of Plug & Play and the exact way this kind of devnode is built is beyond the scope of this
book. The previous description is incomplete and glances over some details, but it should give you the
basic idea. Every devnode is built from the bottom up, regardless of whether it is related to hardware or

not.

Lower filters are searched in two locations: the hardware ID key shown in figure 7-3 and in the correspond-
ing class based on the ClassGuid value listed under HKLM\System\CurrentControlSet\Control\Classes.
The value name itself is LowerFilters and is a multiple string value holding service names, pointing to
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the same Services key. Upper filters are searched in a similar manner, but the value name is UpperFilters.
Figure 7-4 shows the registry settings for the DiskDrive class, which has a lower filter and an upper filter.
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Figure 7-4: The DiskDrive class key

IRP Flow

Figure 7-2 shows an example devnode, whether related to hardware or not. An IRP is created by one of
the managers in the Executive - for most of our drivers that is the I/O Manager.

The manager creates an IRP with its associated I0_STACK_LOCATIONSs - six in the example in figure 7-2.
The manager initializes the main IRP structure and the first I/O stack location only. Then it passes the
IRP’s pointer to the uppermost layer.

A driver receives the IRP in its appropriate dispatch routine. For example, if this is a Read IRP, then the
driver will be called in its IRP_MJ_READ index of its MajorFunction array from its driver object. At this
point, a driver has several options when dealing with IRP:

« Pass the request down - if the driver’s device is not the last device in the devnode, the driver can
pass the request along if it’s not interesting for the driver. This is typically done by a filter driver
that receives a request that it’s not interested in, and in order not to hurt the functionality of the
device (since the request is actually destined for a lower-layer device), the driver can pass it down.

This must be done with two calls:
— Call IoSkipCurrentIrpStackLocation to make sure the next device in line is going to see

the same information given to this device - it should see the same I/O stack location.
— Call IoCallDriver passing the lower device object (which the driver received at the time it
called IoAttachDeviceToDeviceStack) and the IRP.

Before passing the request down, the driver must prepare the next I/O stack location with proper
information. Since the I/O manager only initializes the first /O stack location, it’s the responsibility
of each driver to initialize the next one. One way to do that is to call IoCopyIrpStackLocationToNext
before calling IoCallDriver. This works, but is a bit wasteful if the driver just wants the lower
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layer to see the same information. Calling IoSkipCurrentIrpStackLocation is an optimization
which decrements the current I/O stack location pointer inside the IRP, which is later incremented
by IoCallDriver, so the next layer sees the same IO_STACK_LOCATION this driver has seen. This
decrement/increment dance is more efficient than making an actual copy.

« Handle the IRP fully - the driver receiving the IRP can just handle the IRP without propagating it
down by eventually calling IToCompleteRequest. Any lower devices will never see the request.

« Do a combination of the above options - the driver can examine the IRP, do something (such as log
the request), and then pass it down. Or it can make some changes to the next I/O stack location, and
then pass the request down.

« Pass the request down (with or without changes) and be notified when the request completes by
a lower layer device - Any layer (except the lowest one) can set up an I/O completion routine by
calling ToSetCompletionRoutine before passing the request down. When one of the lower layers
completes the request, the driver’s completion routine will be called.

« Start some asynchronous IRP handling - the driver may want to handle the request, but if the request
is lengthy (typical of a hardware driver, but also could be the case for a software driver), the driver
may mark the IRP as pending by calling IoMarkIrpPending and return a STATUS_PENDING from
its dispatch routine. Eventually, it will have to complete the IRP.

Once some layer calls IoCompleteRequest, the IRP turns around and starts “bubbling up” towards
the originator of the IRP (typically one of the I/O System Managers). If completion routines have been
registered, they will be invoked in reverse order of registration.

In most drivers in this book, layering will not be considered, since the driver is most likely the single
device in its devnode. The driver will handle the request then and there or handle it asynchronously; it
will not pass it down, as there is no device underneath.

We’ll discuss other aspects of IRP handling in filter drivers, including completion routines, in chapter 13.

IRP and 170 Stack Location

Figure 7-5 shows some of the important fields in an IRP.
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Figure 7-5: Important fields of the IRP structure

Here is a quick rundown of these fields:

« IoStatus - contains the Status (NT_STATUS) of the IRP and an Information field. The Information
field is a polymorphic one, typed as ULONG_PTR (32 or 64-bit integer), but its meaning depends on the
type of IRP. For example, for Read and Write IRPs, its meaning is the number of bytes transferred
in the operation.

+ UserBuffer - contains the raw buffer pointer to the user’s buffer for relevant IRPs. Read and Write
IRPs, for instance, store the user’s buffer pointer in this field. In DeviceIoControl IRPs, this points
to the output buffer provided in the request.

« UserEvent - this is a pointer to an event object (KEVENT) that was provided by a client if the call is
asynchronous and such an event was supplied. From user mode, this event can be provided (with a
HANDLE) in the OVERLAPPED structure that is mandatory for invoking I/O operations asynchronously.

+ AssociatedIrp - this union holds three members, only one (at most) of which is valid:

* SystemBuffer - the most often used member. This points to a system-allocated non-paged pool buffer
used for Buffered I/O operations. See the section “Buffered I/0” later in this chapter for the details.

* MasterIrp - A pointer to a “master” IRP, if this IRP is an associated IRP. This idea is supported by the
I/0 manager, where one IRP is a “master” that may have several “associated” IRPs. Once all the associated
IRPs complete, the master IRP is completed automatically. MasterIrp is valid for an associated IRP - it
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points to the master IRP.
* IrpCount - for the master IRP itself, this field indicates the number of associated IRPs associated with
this master IRP.

Usage of master and associated IRPs is pretty rare. We will not be using this mechanism in this book.

« Cancel Routine - a pointer to a cancel routine that is invoked (if not NULL) if the driver is asked to
can cel the IRP, such as with the user mode functions Cancello and CancelloEx. Software drivers
rarely need cancellation routines, so we will not be using those in most examples.

« MdlAddress - points to an optional Memory Descriptor List (MDL). An MDL is a kernel data
structure that knows how to describe a buffer in RAM. Md1Address is used primarily with Direct
I/O (see the section “Direct I/O” later in this chapter).

Every IRP is accompanied by one or more I0_STACK_LOCATIONs. Figure 7-6 shows the important fields in
an IO_STACK_LOCATION.

MajorFunction |MinorFunction

Parameters

DeviceIoControl

CompletionRoutine

Context StartDevice

Figure 7-6: Important fields of the I0_STACK_LOCATION structure

Here’s a rundown of the fields shown in figure 7-6:
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MajorFunction - this is the major function of the IRP (IRP_MJ_CREATE, IRP_MJ_READ, etc.). This
field is sometimes useful if the driver points more than one major function code to the same handling
routine. In that routine, the driver may want to distinguish between the major function codes using
this field.

MinorFunction - some IRP types have minor functions. These are IRP_MJ_PNP, IRP_MJ_POWER and
IRP_MJ_SYSTEM_CONTROL (WMI). Typical code for these handlers has a switch statement based on
the MinorFunction. We will not be using these types of IRPs in this book, except in the case of filter
drivers for hardware-based devices, which we’ll examine in some detail in chapter 13.
FileObject - the FILE_OBJECT associated with this IRP. Not needed in most cases, but is available
for dispatch routines that need it.

DeviceObject - the device object associated with this IRP. Dispatch routines receive a pointer to
this, so typically accessing this field is not required.

CompletionRoutine - the completion routine that is set for the previous (upper) layer (set with
IoSetCompletionRoutine), if any.

Context - the argument to pass to the completion routine (if any).

Parameters - this monster union contains multiple structures, each valid for a particular operation.
For example, in a Read (IRP_MJ_READ) operation, the Parameters.Read structure field should be

used to get more information about the Read operation.

The current I/O stack location obtained with IoGetCurrentIrpStacklLocation hosts most of the
parameters of the request in the Parameters union. It’s up to the driver to access the correct structure, as

we’ve already seen in chapter 4 and will see again in this and subsequent chapters.

Viewing IRP Information

While debugging or analyzing kernel dumps, a couple of commands may be useful for searching or

examining IRPs.

The ! irpfind command can be used to find IRPs - either all IRPs, or IRPs that meet certain criteria. Using
lirpfind without any arguments searches the non-paged pool(s) for all IRPs. Check out the debugger
documentation on how to specify specific criteria to limit the search. Here’s an example of some output

when searching for all IRPs:

1kd> lirpfind
Unable to get offset of nt!_MI_VISIBLE_STATE.SpecialPool
Unable to get value of nt!_MI_VISIBLE_STATE.SessionSpecialPool

Scanning large pool allocation table for tag 0x3f707249 (Irp?) (ffffbf@a8761000\
@ : ffffbfRa87910000)

Irp [ Thread ] irpStack: (Mj,Mn)  DevObj [Driver\
] MDL Process
ffffbf@aa795ca30 [ffffbfla7fcde@80] irpStack: ( ¢, 2) ffffbf@a74d20050 [ \File\
System\Ntfs]
ffffbfRa9a8ef010 [ffffbfRa7fcde@80] irpStack: ( ¢, 2) ffffbf@a74d20050 [ \File\
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System\Ntfs]

ffffbfQaB8eb68ea20 [ffffbfRa7fcde@80] irpStack: ( ¢, 2) ffffbf@a74d20050 [ \File\
System\Ntfs]

ffffbf0a90deb710@ [ffffbf@a808a1080] irpStack: ( ¢, 2) ffffbf@a74d20050 [ \File\
System\Ntfs]

ffffbf0a99d1da90 [00VVVVRVYRRRRA] Irp is complete (CurrentLocation 10 > Stack\
Count 9)

ffffbfRa74cec940 [00VVVVVVVVVVVRRA] Irp is complete (CurrentlLocation 8 > StackC\
ount T7)

ffffbf0aa0640a20 [ffffbfla7fcde@80] irpStack: ( ¢, 2) ffffbf@a74d20050 [ \File\
System\Nt fs]

ffffbfQa89acf4e@ [ffffbfRa7fcde@80] irpStack: ( ¢, 2) ffffbf@a74d20050 [ \File\
System\Ntfs]

ffffbf@a89acfab@ [ffffbf@aT7fcde@80] irpStack: ( ¢, 2) ffffbf@a74d20050 [ \File\
System\Ntfs]

(truncated)

Faced with a specific IRP, the command ! irp examines the IRP, providing a nice overview of its data. As
always, the dt command can be used with the nt!_IRP type to look at the entire IRP structure. Here’s an
example of one IRP viewed with !irp:

kd> lirp ffffbf@a8bbada20
Irp is active with 13 stacks 12 is current (= Oxffffbf@a8bbaded8)
No Mdl: No System Buffer: Thread ffffbf@aT7fcde@80: Irp stack trace.
cmd flg cl Device File Completion-Context
[N/A(Q), N/A(9)]
0 0 0VVVVVVY VVVRVY VYVYVYVV -0V

Args: 00000000 POVOVRCD VOVOPRY VEPEREVD
[N/A(@), N/A(9)]
@ © 000CVCR0 POCOVRD BPERCROR-BAVRCRRV

(truncated)

Args: 00000000 0VVYVVVY VVVYVYYY VYYD
[N/A(@), N/A(0)]
@ O 0VYVVYY VVVYVAVD VVAVVYYA -V

Args: 00000000 VYV VYV VYRV
> [IRP_MJ_DIRECTORY_CONTROL(c), N/A(2)]
Q el ffffbf0a74d20050 ffffbf@a7f52f790 fffff8015cOb50a0-ffffbf@a91d99010 Su\
ccess Error Cancel pending
\FileSystem\Ntfs
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Args: 00004000 ©0Y0VE51 0VVYYVL VYOV
[IRP_MJ_DIRECTORY_CONTROL(c), N/A(2)]
Q@ © ffffbf0abe83dco ffffbf@aT7f52f790 000V -0V
\FileSystem\F1ltMgr
Args: 00004000 ©00YVV51 VOV VYRV

The ! irp commands lists the I/O stack locations and the information stored in them. The current I/O stack
location is marked with a > symbol (see the IRP_MJ_DIRECTORY_CONTROL line above).

The details for each I0_STACK_LOCATION are as follows (in order):

« first line:
— Major function code (e.g. IRP_MJ_DEVICE_CONTROL).
— Minor function code.
« second line:
— Flags (mostly unimportant)
— Control flags
— Device object pointer
— File object pointer
— Completion routine (if any)
— Completion context (for the completion routine)

— Success, Error, Cancel indicate the IRP completion cases where the completion routine would
be invoked
- “pending” if the IRP was marked as pending (SL_PENDING_RETURNED flag is set in the Control
flags)
« Driver name for that layer
« “Args” line:
— The value of Parameters.Others.Argument1 in the I/O stack location. Essentially the first
pointer-size member in the Parameters union.
— The value of Parameters.Others.Argument2 in the I/O stack location (the second pointer-
size member in the Parameters union)
— DeviceI/O control code (if IRP_MJ_DEVICE_CONTROL or IRP_MJ_INTERNAL _DEVICE_CONTROL).
It’s shown as a DML link that invokes the ! ioct1decode command to decode the control code
(more on device I/O control codes later in this chapter). For other major function codes, shows
the third pointer-size member (Parameters.Others. Argument3)
— The forth pointer-size member (Parameters.Others.Argument4)

The !irp command accepts an optional details argument. The default is zero, which provides the output
described above (considered a summary). Specifying 1 provides additional information in a concrete form.
Here is an example for an IRP targeted towards the console driver (you can locate those easily by looking
for cmd.exe processes):
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1kd> lirp ffffdb899e82a6f0 1
Irp is active with 2 stacks 1 is current (= @xffffdb899e82a7cQ)
No Mdl: System buffer=ffffdb89c1c84ac@: Thread ffffdb89b6efa®80: Irp stack tr\
ace.
Flags = 00060030
ThreadListEntry.Flink = ffffdb89b6efa530
ThreadListEntry.Blink = ffffdb89b6efa530
IoStatus.Status = 0000000
IoStatus.Information = 00000V
RequestorMode = 00000001
Cancel = 00
Cancellrql = 0
ApcEnvironment = 00
Userlosb = 73d598f420
UserEvent = 00000000
Overlay.AsynchronousParameters.UserApcRoutine = 00000000
Overlay.AsynchronousParameters.UserApcContext = 00000000
Overlay.AllocationSize = 00000000 - 00OV
CancelRoutine = fffff8026f481730
UserBuffer = 00000000
&Tail .Overlay.DeviceQueueEntry = ffffdb899e82a768
Tail.Overlay.Thread = ffffdb89b6efad80
Tail.Overlay.AuxiliaryBuffer = 00000000
ff£f8006d16437b8
Tail.Overlay.ListEntry.Blink f£££8006d16437b8
Tail.Overlay.CurrentStackLocation = ffffdb899e82a7cO
Tail.Overlay.OriginalFileObject = ffffdb89c1c@a240
Tail.Apc = 8b8b7240
Tail.CompletionKey = 15f8b8b7240
cmd flg cl Device File Completion-Context
>[N/ACE), N/A(T)]
0 1 0000VYYV VYYVRRVY VBVYYVW -V pending

Tail.Overlay.ListEntry.Flink

Args: ffff8006d1643790 15f8d92c340 0xale666b@ ffffdb899eT7ab3cOd
[IRP_MJ_DEVICE_CONTROL(e), N/A(Q)]

5 0 ffffdb89846f9e10 ffffdb89c1cla240 BBV -V

\Driver\condrv

Args: 00000000 VVVYVL6O Vx500016 VYLV

Additionally, specifying detail value of 4 shows Driver Verifier information related to the IRP (if the driver
handling this IRP is under the verifier’s microscope). Driver Verifier will be discussed in chapter 13.
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Dispatch Routines

In chapter 4, we have seen an important aspect of DriverEntry - setting up dispatch routines. These are
the functions connected with major function codes. The MajorFunction field in DRIVER_OBJECT is the
array of function pointers index by the major function code.

All dispatch routines have the same prototype, repeated here for convenience using the DRIVER_DISPATCH
typedef from the WDK (somewhat simplified for clarity):

typedef NTSTATUS DRIVER_DISPATCH (
_In_ PDEVICE_OBJECT DeviceObject,
_Inout_ PIRP Irp);

The relevant dispatch routine (based on the major function code) is the first routine in a driver that sees
the request. Normally, it’s called in the requesting thread context, i.e. the thread that called the relevant
API (e.g. ReadFile) in IRQL PASSIVE_LEVEL (0). However, it’s possible that a filter driver sitting on top
of this device sent the request down in a different context - it may be some other thread unrelated to the
original requestor and even in higher IRQL, such as DISPATCH_LEVEL (2). Robust drivers need to be ready
to deal with this kind of situation, even though for software drivers this “inconvenient” context is rare.
We’ll discuss the way to properly deal with this situation in the section “Accessing User Buffers”, later in
this chapter.

The first thing a typical dispatch routine does is check for errors. For example, read and write operations
contain buffers - do these buffers have appropriate size? For DeviceloControl, there is a control code
in addition to potentially two buffers. The driver needs to make sure the control code is something it
recognizes. If any error is identified, the IRP is typically completed immediately with an appropriate status.

If all checks turn up ok, then the driver can deal with performing the requested operation.

Here is the list of the most common dispatch routines for a software driver:

« IRP_MJ_CREATE - corresponds to a CreateFile call from user mode or ZwCreateFile in kernel
mode. This major function is essentially mandatory, otherwise no client will be able to open a handle
to a device controlled by this driver. Most drivers just complete the IRP with a success status.

« IRP_MJ_CLOSE - the opposite of IRP_MJ_CREATE. Called by CloseHandle from user mode or
ZwClose from kernel mode when the last handle to the file object is about to be closed. Most drivers
just complete the request successfully, but if something meaningful was done in IRP_MJ_CREATE,
this is where it should be undone.

« IRP_MJ_READ - corresponds to a read operation, typically invoked from user mode by ReadFile or
kernel mode with ZwReadFile.

« IRP_MJ_WRITE - corresponds to a write operation, typically invoked from user mode by WriteFile
or kernel mode with ZwwriteFile.

+ IRP_MJ_DEVICE_CONTROL - corresponds to the DeviceIoControl call from user mode or ZwDeviceIoControlF
from kernel mode (there are other APIs in the kernel that can generate IRP_MJ_DEVICE_CONTROL
IRPs).

« IRP_MJ_INTERNAL_DEVICE_CONTROL - similar to IRP_MJ_DEVICE_CONTROL, but only available to
kernel callers.
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Completing a Request

Once a driver decides to handle an IRP (meaning it’s not passing down to another driver), it must eventually
complete it. Otherwise, we have a leak on our hands - the requesting thread cannot really terminate and
by extension, its containing process will linger on as well, resulting in a “zombie process”.

Completing a request means calling IoCompleteRequest after setting the request status and extra
information. If the completion is done in the dispatch routine itself (a common case for software drivers),
the routine must return the same status that was placed in the IRP.

The following code snippet shows how to complete a request in a dispatch routine:

NTSTATUS MyDispatchRoutine(PDEVICE_OBJECT, PIRP Irp) {

VI
Irp->IoStatus.Status = STATUS_XXX;
Irp->IoStatus.Information = bytes; // depends on request type

IoCompleteRequest(Irp, IO_NO_INCREMENT);
return STATUS_XXX;

Since the dispatch routine must return the same status as was placed in the IRP, it’s tempting
to write the last statement like so: return Irp->IoStatus.Status; This, however, will likely
result in a system crash. Can you guess why?

After the IRP is completed, touching any of its members is a bad idea. The IRP has probably
already been freed and you’re touching deallocated memory. It can actually be worse, since
another IRP may have been allocated in its place (this is common), and so the code may return
the status of some random IRP.

The Information field should be zero in case of an error (a failure status). Its exact meaning for a successful
operation depends on the type of IRP.

The IoCompleteRequest API accepts two arguments: the IRP itself and an optional value to temporarily
boost the original thread’s priority (the thread that initiated the request in the first place). In most cases,
for software drivers, the thread in question is the executing thread, so a thread boost is inappropriate. The
value TO_NO_INCREMENT is defined as zero, so no increment in the above code snippet.

However, the driver may choose to give the thread a boost, regardless of whether it’s the calling thread
or not. In this case, the thread’s priority jumps with the given boost, and then it’s allowed to execute one
quantum with that new priority before the priority decreases by one, it can then get another quantum
with the reduced priority, and so on, until its priority returns to its original level. Figure 7-7 illustrates this
scenario.
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Figure 7-7: Thread priority boost and decay

The thread’s priority after the boost can never go above 15. If it’s supposed to, it will be 15. If
the original thread’s priority is above 15 already, boosting has no effect.

Accessing User Buffers

A given dispatch routine is the first to see the IRP. Some dispatch routines, mainly IRP_MJ_READ, IRP_MJ_-
WRITE and IRP_MJ_DEVICE_CONTROL accept buffers provided by a client - in most cases from user mode.
Typically, a dispatch routine is called in IRQL 0 and in the requesting thread context, which means the
buffers pointers provided by user mode are trivially accessible: the IRQL is 0, so page faults are handled
normally, and the thread is the requestor, so the pointers are valid in this process context.

However, there could be issues. As we’ve seen in chapter 6, even in this convenient context (requesting
thread and IRQL 0), it’s possible for another thread in the client’s process to free the passed-in buffer(s),
before the driver gets a chance to examine them, and so cause an access violation. The solution we’ve used
in chapter 6 is to use a __try / __except block to handle any access violation by returning failure to the
client.

In some cases, even that is not enough. For example, if we have some code running at IRQL 2 (such as a
DPC running as a result of timer expiration), we cannot safely access the user’s buffers in this context. In
general, there are two potential issues here:

« IRQL of the calling CPU is 2 (or higher), meaning no page fault handling can occur.

« The thread calling the driver may be some arbitrary thread, and not the original requestor. This
means that the buffer pointer(s) provided are meaningless, since the wrong process address space is
accessible.
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Using exception handling in such a case will not work as expected, because we’ll be accessing some
memory location that is essentially invalid in this random process context. Even if the access succeeds
(because that memory happens to be allocated in this random process and is resident in RAM), you’ll be
accessing random memory, and certainly not the original buffer provided to the client.

All this means that there must be some good way to access the original user’s buffer in such an inconvenient
context. In fact, there are two such ways provided by the I/O manager for this purpose, called Buffered I/O
and Direct I/O. In the next two sections, we’ll see what each of these schemes mean and how to use them.

(and are in system space). Common examples are device objects (created with IoCreateDevice)

0 Some data structures are always safe to access, since they are allocated from non-paged pool
and IRPs.

Buffered I/0

Buffered I/O is the simplest of the two ways. To get support for Buffered I/O for Read and Write operations,
a flag must be set on the device object like so:

DeviceObject->Flags |= DO_BUFFERED_IO; // DO = Device Object

DeviceObject isthe allocated pointer from a previous call to IoCreateDevice (or IoCreateDeviceSecure).

For IRP_MJ_DEVICE_CONTROL buffers, see the section “User Buffers for IRP_MJ_DEVICE_CONTROL” later
in this chapter.

Here are the steps taken by the I/O Manager and the driver when a read or write request arrives:

1. The I/O Manager allocates a buffer from non-paged pool with the same size as the user’s buffer.
It stores the pointer to this new buffer in the AssociatedIrp->SystemBuffer member of the
IRP. (The buffer size can be found in the current I/O stack location’s Parameters.Read.Length
or Parameters.Write.Length.)

2. For a write request, the I/O Manager copies the user’s buffer to the system buffer.

3. Only now the driver’s dispatch routine is called. The driver can use the system buffer pointer directly
without any checks, because the buffer is in system space (its address is absolute - the same from
any process context), and in any IRQL, because the buffer is allocated from non-paged pool, so it
cannot be paged out.

4. Once the driver completes the IRP (IoCompleteRequest), the I/O manager (for read requests)
copies the system buffer back to the user’s buffer (the size of the copy is determined by the
IoStatus. Information field in the IRP set by the driver).

5. Finally, the I/O Manager frees the system buffer.

user’s buffer from IoCompleteRequest. This function can be called from any thread, in IRQL
<= 2. The way it’s done is by queuing a special kernel APC to the thread that requested the
operation. Once this thread is scheduled for execution, the first thing it does is run this APC
which performs the actual copying. The requesting thread is obviously in the correct process
context, and the IRQL is 1, so page faults can be handled normally.

0 You may be wondering how does the I/O Manager copy back the system buffer to the original
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Figures 7-8a to 7-8e illustrate the steps taken with Buffered I/0.
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User space

Figure 7-8a: Buffered I/O: initial state
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Kernel space

n g=Irp->AssociatedIrp.SystemBuffer

RAM

User space

Figure 7-8b: Buffered I/O: system buffer allocated
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Figure 7-8c: Buffered I/O: driver accesses system buffer
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Kernel space

Figure 7-8d: Buffered I/O: on IRP completion, I/O manager copies buffer back (for read)
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Figure 7-8e: Buffered I/O: final state - I/O manager frees system buffer

Buffered I/O has the following characteristics:
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« Easy to use - just specify the flag in the device object, and everything else is taken care of by the
I/O Manager.

» It always involves a copy - which means it’s best used for small buffers (typically up to one page).
Large buffers may be expensive to copy. In this case, the other option, Direct I/O, should be used
instead.

Direct I/0

The purpose of Direct I/O is to allow access to a user’s buffer in any IRQL and any thread but without any
copying going around.

For read and write requests, selecting Direct I/O is done with a different flag of the device object:
DeviceObject->Flags |= DO_DIRECT_IO;

As with Buffered I/0O, this selection only affects read and write requests. For DeviceIoControl see the
next section.

Here are the steps involved in handling Direct I/O:

1. The I/O Manager first makes sure the user’s buffer is valid and then pages it into physical memory
(if it wasn’t already there).

2. It then locks the buffer in memory, so it cannot be paged out until further notice. This solves one
of the issues with buffer access - page faults cannot happen, so accessing the buffer in any IRQL is
safe.

3. The I/O Manager builds a Memory Descriptor List (MDL), a data structure that describes a buffer in
physical memory. The address of this data structure is stored in the Md1Address field of the IRP.

4. At this point, the driver gets the call to its dispatch routine. The user’s buffer, although locked in
RAM, cannot be accessed from an arbitrary thread just yet. When the driver requires access to
the buffer, it must call a function that maps the same user buffer to a system address, which by
definition is valid in any process context. So essentially, we get two mappings to the same memory
buffer. One is from the original address (valid only in the context of the requestor process) and the
other in system space, which is always valid. The API to call is MmGetSystemAddressForMdlSafe,
passing the MDL built by the I/O Manager. The return value is the system address.

5. Once the driver completes the request, the I/O Manager removes the second mapping (to system
space), frees the MDL, and unlocks the user’s buffer, so it can be paged normally just like any other
user-mode memory.

The MDL is in actually a list of MDL structures, each one describing a piece of the buffer that is contigous
in physical memory. Remember, that a buffer that is contigous in virtual memory is not necessary
contigous in physical memory (the smallest piece is a page size). In most cases, we don’t need to care
about this detail. One case where this matters is in Direct Memory Access (DMA) operations. Fortunately,
this is in the realm of hardware-based drivers.
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Figures 7-9a to 7-9f illustrate the steps taken with Direct I/O.

Kernel space

User space

Figure 7-9a: Direct I/O: initial state
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Kernel space

RAM

User space

Figure 7-9b: Direct I/0: I/O manager faults buffer’s pages to RAM and locks them

Kernel space

Irp->MdlAddress

RAM

User space

Figure 7-9c: Direct I/O: the MDL describing the buffer is stored in the IRP
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Kernel space

Irp->MdlAddress MDL
n
g = MmGetSystemAddressForMdlSafe(
g Irp->MdlAddress, ..);
RAM
n
; S
User space
Figure 7-9d: Direct I/O: the driver double-maps the buffer to a system address
Kernel space
Irp->MdlAddress MDL
n
g = MmGetSystemAddressForMdlSafe(
. Irp->MdlAddress, ..);
RAM
n
User space

Figure 7-9e: Direct I/O: the driver accesses the buffer using the system address
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Kernel space

RAM

User space

Figure 7-9f: Direct I/O: when the IRP is completed, the I/O manager frees the mapping, the MDL and unlocks the buffer

Notice there is no copying at all. The driver just reads/writes to the user’s buffer directly, using the system
address.

the WDK. Unlocking is done with MmUnlockPages, also documented. This means a driver can

6 Locking the user’s buffer is done with the MmProbeAndLockPages API, fully documented in
use these routines outside the narrow context of Direct I/O.

indicating whether the system mapping has already been done. If so, it just returns the existing

P Calling MmGetSystemAddressForMdlSafe can be done multiple times. The MDL stores a flag
pointer.

Here is the prototype of MmGetSystemAddressForMdlSafe:

PVOID MmGetSystemAddressForMdlSafe (
_Inout_ PMDL Mdl,
_In_ ULONG Priority);

The function is implemented inline within the wdm.h header by calling the more generic MmMapLockedPagesSpeci fyC
function:
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PVOID MmGetSystemAddressForMdlSafe(PMDL Mdl, ULONG Priority) {
if (Mdl->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA|MDL_SOURCE_IS_NONPAGED_POOL)) {
return Mdl->MappedSystemVa;
} else {
return MmMapLockedPagesSpecifyCache(Mdl, KernelMode, MmCached,
NULL, FALSE, Priority);

MmGetSystemAddressForMdlSafe accepts the MDL and a page priority (MM_PAGE_PRIORITY enumera-
tion). Most drivers specify NormalPagePriority, but there is alsoLowPagePriority and HighPagePriority.
This priority gives a hint to the system of the importance of the mapping in low memory conditions. Check
the WDK documentation for more information.

If MmGetSystemAddressForMdlSafe fails, it returns NULL. This means the system is out of system page
tables or very low on system page tables (depends on the priority argument above). This should be a
rare occurrence, but still can happen in low memory conditions. A driver must check for this; if NULL is
returned, the driver should complete the IRP with the status STATUS_INSUFFICIENT_RESOURCES.

There is a similar function, called MmGetSystemAddressForMdl, which if it fails, crashes the
system. Do not use this function.

You may be wondering why doesn’t the I/O manager call MmGetSystemAddressForMdlSafe automati-
cally, which would be simple enough to do. This is an optimization, where the driver may not need to
call this function at all if there is any error in the request, so that the mapping doesn’t have to occur at

all.

Drivers that don’t set either of the flags DO_BUFFERED_IO nor DO_DIRECT_IO in the device object flags
implicitly use Neither I/O, which simply means the driver doesn’t get any special help from the I/O
manager, and it’s up to the driver to deal with the user’s buffer.

User Buffers for IRP_MJ_DEVICE_CONTROL

The last two sections discussed Buffered I/O and Direct I/O as they pertain to read and write requests.
For IRP_MJ_DEVICE_CONTROL (and IRP_MJ_INTERNAL_DEVICE_CONTROL ), the buffering access method is
supplied on a control code basis. Here is the prototype of the user-mode APIDeviceloControl (it’s similar
with the kernel function ZwDeviceloControlFile):
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BOOL DeviceloControl(

HANDLE hDevice, // handle to device or file
DWORD dwIoControlCode, // IOCTL code (see <winioctl.h>)
PVOID lpInBuffer, // input buffer

DWORD nInBufferSize, // size of input buffer

PVOID 1pOutBuffer, // output buffer

DWORD nOutBufferSize, // size of output buffer

PDWORD 1pdwBytesReturned, // # of bytes actually returned
LPOVERLAPPED 1pOverlapped); // for async. operation

There are three important parameters here: the I/O control code, and optional two buffers designated
“input” and “output”. As it turns out, the way these buffers are accessed depends on the control code,
which is very convenient, because different requests may have different requirements related to accessing
the user’s buffer(s).

The control code defined by a driver must be built with the CTL_CODE macro, defined in the WDK and
user-mode headers, defined like so:

#define CTL_CODE( DeviceType, Function, Method, Access ) ( \
((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method))

The first parameter, DeviceType can be one of a set of constants defined by Microsoft for various known
device types (such as FILE_DEVICE_DISK and FILE_DEVICE_KEYBOARD). For custom devices (like the ones
we are writing), it can be any value, but the documentation states that the minimum value for custom codes
should be 0x8000.

The second parameter, Function, is a running index, that should be different between multiple control
codes defined by the same driver. If all other components of the macro are same (possible), at least the
Function would be a differentating factor. Similarly to device type, the official documentation states that
custom devices should use values starting from 0x800.

The third parameter (Method) is the key to selecting the buffering method for accessing the input and
output buffers provided with DeviceloControl. Here are the options:

+ METHOD_NEITHER - this value means no help is required of the I/O manager, so the driver is left
dealing with the buffers on its own. This could be useful, for instance, if the particular code does
not require any buffer - the control code itself is all the information needed - it’s best to let the I/O
manager know that it does not need to do any additional work.

— In this case, the pointer to the user’s input buffer is stored in the current I/O stack location’s
Parameters.DeviceloControl.Type3InputBuffer field, and the output buffer is stored in
the IRP’s UserBuf fer field.

« METHOD_BUFFERED - this value indicates Buffered I/O for both the input and output buffer. When
the request starts, the I/O manager allocates the system buffer from non-paged pool with the
size that is the maximum of the lengths of the input and output buffers. It then copies the input
buffer to the system buffer. Only now the IRP_MJ_DEVICE_CONTROL dispatch routine is invoked.
When the request completes, the I/O manager copies the number of bytes indicated with the
IoStatus. Information field in the IRP to the user’s output buffer.
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— The system buffer pointer is at the usual location: AssociatedIrp.SystemBuffer inside the
IRP structure.

« METHOD_IN_DIRECT and METHOD_OUT_DIRECT - contrary to intuition, both of these values mean the
same thing as far as buffering methods are concerned: the input buffer uses Buffered I/O and the
output buffer uses Direct I/O. The only difference between these two values is whether the output
buffer can be read (METHOD_IN_DIRECT) or written (METHOD_OUT_DIRECT).

’ The last bullet indicates that the output buffer can also be treated as input by using METHOD_-
IN_DIRECT.

Table 7-1 summarizes these buffering methods.

Table 7-1: Buffering method based on control code Method parameter

Method Input buffer Output buffer
METHOD_NEITHER Neither Neither
METHOD_BUFFERED Buffered Buffered
METHOD_IN_DIRECT Buffered Direct
METHOD_OUT_DIRECT Buffered Direct

Finally, the Access parameter to the macro indicates the direction of data flow. FILE_WRITE_ACCESS
means from the client to the driver, FILE_READ_ACCESS means the opposite, and FILE_ANY_ACCESS means
bi-directional access (the input and output buffers are used). You should always use FILE_ANY_ACCESS.
Beside simplifying the control code building, you guarantee that if later on, once the driver is already
deployed, you may want to use the other buffer, you wouldn’t need to change the Access parameter, and
so not disturb existing clients that would not know about the control code change.

accessing the buffer(s). The values for the input and output buffer pointers provided by the
client are copied as-is to the IRP. No checking is done by the I/O manager to make sure these
pointers point to valid memory. A driver should not use these pointers as memory pointers, but
they can be used as two arbitrary values propagating to the driver that may mean something.

g If a control code is built with METHOD_NEITHER, the I/O manager does nothing to help with

Putting it All Together: The Zero Driver

In this section, we’ll use what we’ve learned in this (and earlier) chapter and build a driver and a client
application. The driver is named Zero and has the following characteristics:

» For read requests, it zeros out the provided buffer.
« For write requests, it just consumes the provided buffer, similar to a classic null device.
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The driver will use Direct I/O so as not to incur the overhead of copies, as the buffers provided by the
client can potentially be very large.

We'll start the project by creating an “Empty WDM Project” in Visual Studio and and name it Zero. Then
we’ll delete the created INF file, resulting in an empty project, just like in previous examples.

Using a Precompiled Header

One technique that we can use that is not specific to driver development, but is generally useful, is using
a precompiled header. Precompiled headers is a Visual Studio feature that helps with faster compilation
times. The precompiled header is a header file that has #include statements for headers that rarely change,
such asntddk . h for drivers. The precompiled header is compiled once, stored in an internal binary format,
and used in subsequent compilations, which become considerably faster.

mode projects provided by the WDK templates currently don’t use precompiled headers. Since

P Many user mode projects created by Visual Studio already use precompiled headers. Kernel-
we're starting with an empty project, we have to set up precompiled headers manually anyway.

Follow these steps to create and use a precompiled header:
» Add a new header file to the project and call it pch.h. This file will serve as the precompiled header.
Add all rarely-changing #includes here:
// pch.h
#pragma once
#include <ntddk.h>

« Add a source file named pch.cpp and put a single #include in it: the precompiled header itself:

#include "pch.h"

» Now comes the tricky part. Letting the compiler know that pch.h is the precompiled header and
pch.cpp is the one creating it. Open project properties, select All Configurations and All Platforms
so you won’t need to configure every configuration/platform separately, navigate to C/C++ /
Precompiled Headers and set Precompiled Header to Use and the file name to “pch.h” (see figure
7-10). Click OK and to close the dialog box.
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Zero Property Pages

Configuration: | All Configurations V| Platform: |AII Platforms V| | Configuration Manager... |

4 Configuration Properties A Use (MYu) —
General Precompiled Header File pchh  —
Debugging Precompiled Header Qutput File 5(IntDir)5(TargetName).pch
WC++ Directories
4 CfC++
General

Optimization
Preprocessor
Code Generation
Language
Precompiled Heade
Output Files
Browse Information
Advanced
All Options
Command Line

Linker

Driver Settings

Driver Install

Build Events

Inf2Cat

Driver Signing Precompiled Header

Wpp Tracing v Create/Use Precompiled Header : Enables creation or use of a precempiled header during the build.  {/Yc, /Yu)

v v v v v W W

| 0K | | Cancel Apply

Figure 7-10: Setting precompiled header for the project

« The pch.cpp file should be set as the creator of the precompiled header. Right click this file in Solution
Explorer, and select Properties. Navigate to C/C++/ Precompiled Headers and set Precompiled Header
to Create (see figure 7-11). Click OK to accept the setting.
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pch.cpp Property Pages

Configuration: | All Configurations ~ | Platform: | All Platforms ~ Configuration Manager...
4 Configuration Properties Precompiled Header Create (/¥c) ;
General Precompiled Header File pch.h
4 CfCer Precompiled Header Output File 5(IntDir)5(TargetName).pch
General

Optimization
Preprocessor
Code Generation
Language
Output Files
Browse Information
Advanced
All Options
Command Line

I Wpp Tracing

Precompiled Header
Create/Use Precompiled Header : Enables creation or use of a precompiled header during the build.  (/¥e, /Yu)

Cancel Apply

Figure 7-10: Setting precompiled header for pch.cpp

From this point on, every C/CPP file in the project must #include "pch.h" as the first thing in the file.
Without this include, the project will not compile.

Make sure there is nothing before this #include "pch.h" in a source file. Anything before
this line does not get compiled at all!

The DriverEntry Routine

The DriveEntry routine for the Zero driver is very similar to the one we created for the driver in chapter
4. However, in chapter 4’s driver the code in DriverEntry had to undo any operation that was already done
in case of a later error. We had just two operations that could be undone: creation of the device object and
creation of the symbolic link. The Zero driver is similar, but we’ll create a more robust and less error-prone
code to handle errors during initialization. Let’s start with the basics of setting up an unload routine and
the dispatch routines:
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#define DRIVER_PREFIX "Zero: "
// DriverEntry

extern "C" NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) {
UNREFERENCED_PARAMETER(RegistryPath);

DriverObject->DriverUnload = ZeroUnload;
DriverObject->MajorFunction[IRP_MJ_CREATE] =
DriverObject->MajorFunction[IRP_MJ_CLOSE] = ZeroCreateClose;
DriverObject->MajorFunction[IRP_MJ_READ] = ZeroRead;
DriverObject->MajorFunction[IRP_MJ_WRITE] = ZeroWrite;

Now we need to create the device object and symbolic link and handle errors in a more general and robust
way. The trick we’ll use is ado / while(false) block, which is not really a loop, but it allows getting out
of the block with a simple break statement in case something goes wrong:

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\Zero");
UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\Zero");
PDEVICE_OBJECT DeviceObject = nullptr;

auto status = STATUS_SUCCESS;

do {
status = IoCreateDevice(DriverObject, 0, &devName, FILE_DEVICE_UNKNOWN,
0, FALSE, &DeviceObject);
if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to create device (0x%08X)\n", status));

break;

// set up Direct I/0
DeviceObject->Flags |= DO_DIRECT_IO;

status = IoCreateSymbolicLink(&symLink, &devName);
if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to create symbolic link (@x%@8X)\n",
status));
break;

}

} while (false);

if (INT_SUCCESS(status)) {
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if (DeviceObject)
IoDeleteDevice(DeviceObject);

}

return status;

The pattern is simple: if an error occurs in any call, just break out of the “loop”. Outside the loop, check
the status, and if it’s a failure, undo any operations done so far. With this scheme in hand, it’s easy to add
more initializations (which we’ll need in more complex drivers), while keeping the cleanup code localized
and appearing just once.

It’s possible to use goto statements instead of the do / while(false) approach, but as the great Dijkstra
wrote, “goto considered harmful”, so I tend to avoid it if [ can.

Notice we’re also initializing the device to use Direct I/O for our read and write operations.

The Create and Close Dispatch Routines

Before we get to the actual implementation of IRP_MJ_CREATE and IRP_MJ_CLOSE (pointing to the
same function), let’s create a helper function that simplifies completing an IRP with a given status and
information:

NTSTATUS Completelrp(PIRP Irp,
NTSTATUS status = STATUS_SUCCESS,
ULONG_PTR info = @) {
Irp->IoStatus.Status = status;
Irp->IoStatus.Information = info;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

Notice the default values for the status and information. The Create/Close dispatch routine implementation
becomes almost trivial:

NTSTATUS ZeroCreateClose(PDEVICE_OBJECT, PIRP Irp) {
return Completelrp(Irp);

The Read Dispatch Routine

The Read routine is the most interesting. First we need to check the length of the buffer to make sure it’s
not zero. If it is, just complete the IRP with a failure status:
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NTSTATUS ZeroRead(PDEVICE_OBJECT, PIRP Irp) {
auto stack = IoGetCurrentIrpStackLocation(Irp);
auto len = stack->Parameters.Read.Length;
if (len == 0)
return Completelrp(Irp, STATUS_INVALID_BUFFER_SIZE);

Note that the length of the user’s buffer is provided through the Parameters.Read member inside the
current I/O stack location.

We have configured Direct I/O, so we need to map the locked buffer to system space using MmGetSystemAddressForMd

NT_ASSERT(Irp->MdlAddress); // make sure Direct I/0 flag was set
auto buffer = MmGetSystemAddressForMdlSafe(Irp->Mdl1Address, NormalPagePriority);
if (!buffer)

return Completelrp(Irp, STATUS_INSUFFICIENT_RESOURCES);

The functionality we need to implement is to zero out the given buffer. We can use a simple memset call
to fill the buffer with zeros and then complete the request:

memset(buffer, 0, len);

return Completelrp(Irp, STATUS_SUCCESS, len);

If you prefer a more “fancy” function to zero out memory, call Rt1ZeroMemory. It’s a macro, defined in
terms of memset.

It’s important to set the Information field to the length of the buffer. This indicates to the client the
number of bytes transferred in the operation (returned in the second to last parameter to ReadFile). This
is all we need for the read operation.

The Write Dispatch Routine

The write dispatch routine is even simpler. All it needs to do is complete the request with the buffer length
provided by the client (essentially swallowing the buffer):
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NTSTATUS ZeroWrite(PDEVICE_OBJECT, PIRP Irp) {
auto stack = IoGetCurrentIrpStackLocation(Irp);
auto len = stack->Parameters.Write.lLength;

return Completelrp(Irp, STATUS_SUCCESS, len);

Note that we don’t even bother calling MmGetSystemAddressForMdlSafe, as we don’t need to access the
actual buffer. This is also the reason this call is not made beforehand by the I/O manager: the driver may
not even need it, or perhaps need it in certain conditions only; so the I/O manager prepares everything
(the MDL) and lets the driver decide when and if to map the buffer.

Test Application

We’ll add a new console application project to the solution to test the read and write operations.
Here is some simple code to test these operations:

int Error(const char* msg) {
printf("%s: error=%u\n", msg, ::GetlLastError());
return 1;

’

int main() {
HANDLE hDevice = CreateFile(L"\\\\.\\Zero", GENERIC_READ | GENERIC_WRITE,
0, nullptr, OPEN_EXISTING, @, nullptr);
if (hDevice == INVALID_HANDLE_VALUE) {
return Error("Failed to open device");

// test read
BYTE buffer[64];

// store some non-zero data
for (int i = 0; i < sizeof(buffer); ++i)
buffer[i] =1 + 1;

DWORD bytes;
BOOL ok = ReadFile(hDevice, buffer, sizeof(buffer), &bytes, nullptr);
if (lok)
return Error("failed to read");
if (bytes != sizeof(buffer))
printf("Wrong number of bytes\n");
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// check that all bytes are zero
for (auto n : buffer)
if (n 1= 0) {
printf("Wrong data!\n");

break;
}
// test write
BYTE buffer2[1024]; // contains junk
ok = WriteFile(hDevice, buffer2, sizeof(buffer2), &bytes, nullptr);
if (lok)

return Error("failed to write");
if (bytes != sizeof(buffer2))

printf("Wrong byte count\n");
CloseHandle(hDevice);

Read/Write Statistics

Let’s add some more functionality to the Zero driver. We may want to count the total bytes read/written
throughout the lifetime of the driver. A user-mode client should be able to read these statistics, and perhaps
even zero them out.

We'll start by defining two global variables to keep track of the total number of bytes read/written (in
Zero.cpp):

long long g_TotalRead;
long long g_TotalWritten;

You could certainly put these in a structure for easier maintenance and extension. The long long C++ type
is a signed 64-bit value. You can add unsigned if you wish, or use a typedef such as LONG64 or ULONG64,
which would mean the same thing. Since these are global variables, they are zeroed out by default.

We’ll create a new file that contains information common to user-mode clients and the driver called
ZeroCommon.h. here is where we define the control codes we support, as well as data structures to be
shared with user-mode.

First, we’ll add two control codes: one for getting the stats and another for clearing them:
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#define DEVICE_ZERO 0x8022

#define IOCTL_ZERO_GET_STATS \

CTL_CODE (DEVICE_ZERO, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_ZERO_CLEAR_STATS \

CTL_CODE(DEVICE_ZERO, 0x801, METHOD_NEITHER, FILE_ANY_ACCESS)

The DEVICE_ZERO is defined as some number from 0x8000 as the documentation recommends. The
function number starts with ©x800 and incremented with each control code. METHOD_BUFFERED is used
for getting the stats, as the size of the returned data is small (2 x 8 bytes). Clearing the stats requires no
buffers, so METHOD_NEITHER is selected.

Next, we’ll add a structure that can be used by clients (and the driver) for storing the stats:

struct ZeroStats {
long long TotalRead;
long long TotalWritten;
b

In DriverEntry, we add a dispatch routine for IRP_MJ_DEVICE_CONTROL like so:
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ZeroDeviceControl;
All the work is done in ZeroDeviceControl. First, some initialization:

NTSTATUS ZeroDeviceControl (PDEVICE_OBJECT, PIRP Irp) ({
auto irpSp = IoGetCurrentlIrpStackLocation(Irp);
auto& dic = irpSp->Parameters.DeviceloControl;
auto status = STATUS_INVALID_DEVICE_REQUEST;
ULONG_PTR len = 0;

The details for IRP_MJ_DEVICE_CONTROL are located in the current I/O stack location in the Parameters . DeviceIoCor
structure. The status is initialized to an error in case the control code provided is unsupported. len keeps
track of the number of valid bytes returned in the output buffer.

Implementing the IOCTL_ZERO_GET_STATS is done in the usual way. First, check for errors. If all goes well,
the stats are written to the output buffer:
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switch (dic.IoControlCode) {
case [OCTL_ZERO_GET_STATS:

// artificial scope so the compiler does not complain
// about defining variables skipped by a case
if (dic.OutputBufferlLength < sizeof(ZeroStats)) {

status = STATUS_BUFFER_TOO_SMALL;

break;

auto stats = (ZeroStats*)Irp->Associatedlrp.SystemBuffer;

if (stats == nullptr) {

status = STATUS_INVALID_PARAMETER;

break;
}
//
// fiil in the output buffer
//
stats->TotalRead = g_TotalRead;
stats->TotalWritten = g_TotalWritten;
len = sizeof(ZeroStats);
//
// change status to indicate success
//
status = STATUS_SUCCESS;
break;

Once out of the switch, the IRP would be completed. Here is the stats clearing Ioctl handling:

case [OCTL_ZERO_CLEAR_STATS:

g_TotalRead = g_TotalWritten = O;
status = STATUS_SUCCESS;
break;

All that’s left to do is complete the IRP with whatever the status and length values are:

return Completelrp(Irp, status, len);

For easier viewing, here is the complete IRP_MJ_DEVICE_CONTROL handling:

221
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NTSTATUS ZeroDeviceControl (PDEVICE_OBJECT, PIRP Irp) ({
auto irpSp = IoGetCurrentlIrpStackLocation(Irp);
auto& dic = irpSp->Parameters.DeviceloControl;
auto status = STATUS_INVALID_DEVICE_REQUEST;
ULONG_PTIR len = 0©;

switeh (dic.IoControlCode) {
case IOCTL_ZERO_GET_STATS:
{
if (dic.OutputBufferLength < sizeof(ZeroStats)) {
status = STATUS_BUFFER_TOO_SMALL;

break;

auto stats = (ZeroStats*)Irp->AssociatedIrp.SystemBuffer;
if (stats == nullptr) {
status = STATUS_INVALID_PARAMETER;
break;
}
stats->TotalRead = g_TotalRead;
stats->TotalWritten = g_TotalWritten;
len = sizeof(ZeroStats);
status = STATUS_SUCCESS;
break;

case IOCTL_ZERO_CLEAR_STATS:
g_TotalRead = g_TotalWritten = ©;
status = STATUS_SUCCESS;
break;

return Completelrp(Irp, status, len);

The stats have to be updated when data is read/written. It must be done in a thread safe way, as multiple
clients may bombard the driver with read/write requests. Here is the updated Zerowrite function:
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NTSTATUS ZeroWrite(PDEVICE_OBJECT, PIRP Irp) {
auto stack = IoGetCurrentIrpStackLocation(Irp);
auto len = stack->Parameters.Write.lLength;

// update the number of bytes written
InterlockedAdd64(&g_TotalWritten, len);
return Completelrp(Irp, STATUS_SUCCESS, len);

The change to ZeroRead is very similar.

Astute readers may question the safety of the Ioctl implementations. For example, is reading the total
number of bytes read/written with no multithreaded protection (while possible read/write operations
are in effect) a correct operation, or is it a data race? Technically, it’s a data race, as the driver might be
updating to the stats globals while some client is reading the values, that could result in torn reads. One
way to resolve that is by dispensing with the interlocked instructions and use a mutex or a fast mutex to
protect access to these variables. Alternatively, There are functions to deal with these scenario, such as
ReadAcquire64. Their implementation is CPU dependent. For x86/x64, they are actually normal reads,
as the processor provides safety against such torn reads. On ARM CPUs, this requires a memory barrier
to be inserted (memory barriers are beyond the scope of this book).

’ Save the number of bytes read/written to the Registry before the driver unloads. Read it back
when the driver loads.

Replace the Interlocked instructions with a fast mutex to protect access to the stats.

Here is some client code to retrieve these stats:

ZeroStats stats;
if (!DeviceloControl(hDevice, IOCTL_ZERO_GET_STATS,
nullptr, 0, &stats, sizeof(stats), &bytes, nullptr))

return Error("failed in DeviceloControl");

printf("Total Read: %11d, Total Write: %11d\n",
stats.TotalRead, stats.TotalWritten);

Summary

In this chapter, we learned how to handle IRPs, which drivers deal with all the time. Armed with this
knowledge, we can start leveraging more kernel functionality, starting with process and thread callbacks
in chapter 9. Before getting to that, however, there are more techniques and kernel APIs that may be useful
for a driver developer, described in the next chapter.
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In this chapter we’ll examine various techniques of various degrees of usefulness to driver developers.

In this chapter:

+ Driver Created Threads

+ Memory Management

« Calling Other Drivers

« Putting it All Together: The Melody Driver
+ Invoking System Services

Driver Created Threads

We've seen how to create work items in chapter 6. Work items are useful when some code needs to execute
on a separate thread, and that code is “bound” in time - that is, it’s not too long, so that the driver doesn’t
“steal” a thread from the kernel worker threads. For long operations, however, it’s preferable that drivers
create their own seperate thread(s). Two functions are available for this purpose:

NTSTATUS PsCreateSystemThread(
_Out_ PHANDLE ThreadHandle,
_In_ ULONG DesiredAccess,
_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,
_In_opt_ HANDLE ProcessHandle,
_Out_opt_ PCLIENT_ID ClientlId,
_In_ PKSTART_ROUTINE StartRoutine,
_In_opt_ PVOID StartContext);

NTSTATUS IoCreateSystemThread( // Win 8 and later
_Inout_ PVOID IoObject,
_Out_ PHANDLE ThreadHandle,
_In_ ULONG DesiredAccess,
_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,
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_In_opt_ HANDLE ProcessHandle,
_Out_opt_ PCLIENT_ID Clientld,
_In_ PKSTART_ROUTINE StartRoutine,
_In_opt_ PVOID StartContext);

Both functions have the same set of parameters except the additional first parameter to IoCreateSystemThread.
The latter function takes an additional reference on the object passed in (which must be a device object or a
driver object), so the driver is not unloaded prematurely while the thread is alive. IoCreateSystemThread

is only available for Windows 8 and later systems. Here is a description of the other parameters:

+ ThreadHandle is the address of a handle to the created thread if successful. The driver must use
ZwClose to close the handle at some point.

+ DesiredAccess is the access mask requested. Drivers should simply use THREAD_ALL_ACCESS to
get all possible access with the resulting handle.

« ObjectAttributes is the standard OBJECT _ATTRIBUTES structure. Most members have no meaning
for a thread. The most common attributes to request of the returned handle is 0BJ_KERNEL _HANDLE,
but it’s not needed if the thread is to be created in the System process - just pass NULL, which will
always return a kernel handle.

+ ProcessHandle is a handle to the process where this thread should be created. Drivers should pass
NULL to indicate the thread should be part of the System process so it’s not tied to any specific
process’ lifetime.

« ClientId is an optional output structure, providing the process and thread ID of the newly created
thread. In most cases, this information is not needed, and NULL can be specified.

+ StartRoutine is the function to execute in a separate thread of execution. This function must have
the following prototype:

VOID KSTART_ROUTINE (_In_ PVOID StartContext);

The StartContext value is provided by the last parameter to Ps/IoCreateSystemThread. This could be
anything (or NULL) that would give the new thread data to work with.

The function indicated by StartRoutine will start execution on a separate thread. It’s executed with the
IRQL being PASSIVE_LEVEL (0) in a critical region (where normal kernel APCs are disabled).

ForPsCreateSystemThread, exiting the thread function is not enough to terminate the thread. An explicit
call to PsTerminateSystemThread is required to properly manage the thread’s lifetime:

NTSTATUS PsTerminateSystemThread(_In_ NTSTATUS ExitStatus);

The exit status is the exit code of the thread, which can be retrieved with PsGetThreadExitStatus if
desired.

For IoCreateSystemThread, exiting the thread function is sufficient, as PsTerminateSystemThread is
called on its behalf when the thread function returns. The exit code of the thread is always STATUS_-
SUCCESS.
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count of the passed in device/driver object, calls PsCreateSystemThread and then decrements

e IoCreateSystemThread is a wrapper around PsCreateSystemThread that increments the ref
the ref count and calls PsTerminateSystemThread.

Memory Management

We have looked at the most common functions for dynamic memory allocation in chapter 3. The most
useful is ExAllocatePoolWithTag, which we have used multiple times in previous chapters. There are
other functions for dynamic memory allocation you might find useful. Then, we’ll examine lookaside lists,
that allow more efficient memory management if fixed-size chunks are needed.

Pool Allocations

In addition to ExAllocatePoolWithTag, the Executive provides an extended version that indicates the
importance of an allocation, taken into account in low memory conditions:

typedef enum _EX_POOL_PRIORITY ({
LowPoolPriority,
LowPoolPrioritySpecialPoolOverrun = 8,
LowPoolPrioritySpecialPoolUnderrun = 9,
NormalPoolPriority = 16,
NormalPoolPrioritySpecialPoolOverrun = 24,
NormalPoolPrioritySpecialPoolUnderrun = 25,
HighPoolPriority = 32,
HighPoolPrioritySpecialPoolOverrun = 40,
HighPoolPrioritySpecialPoolUnderrun = 41

} EX_POOL_PRIORITY;

PVOID ExAllocatePoolWithTagPriority (
_In_ POOL_TYPE PoolType,
_In_ SIZE_T NumberOfBytes,
_In_ ULONG Tag,
_In_ EX_POOL_PRIORITY Priority);

The priority-related values indicate the importance of succeeding an allocation if system memory is low
(LowPoolPriority), very low (NormalPoolPriority), or completely out of memory (HighPoolPriority).
In any case, the driver should be prepared to handle a failure.

The “special pool” values tell the Executive to make the allocation at the end of a page (“Overrun” values)
or beginning of a page (“Underrun”) values, so it’s easier to catch buffer overflow or underflow. These
values should only be used while tracking memory corruptions, as each allocation costs at least one page.

Starting with Windows 10 version 1909 (and Windows 11), two new pool allocation functions are supported.
The first is ExAllocatePool2 declared like so:
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PVOID ExAllocatePool2 (
_In_ POOL_FLAGS Flags,
_In_ SIZE_T NumberOfBytes,
_In_ ULONG Tag);

Where the POOL_FLAGS enumeration consists of a combination of values shown in table 8-1:

Table 8-1: Flags for ExAllocatePool2

Flag (POOL_FLAG_) Must recognize? Description

USE_QUOTA Yes Charge allocation to calling process

UNINITIALIZED Yes Contents of allocated memory is not touched. Without this flag,
the memory is zeroed out

CACHE_ALIGNED Yes Address should be CPU-cache aligned. This is “best effort”

RAISE_ON_FAILURE Yes Raises an exception (STATUS_INSUFFICIENT_RESOURCES)
instead of returning NULL if allocation fails

NON_PAGED Yes Allocate from non-paged pool. The memory is executable on
x86, and non-executable on all other platforms

PAGED Yes Allocate from paged pool. The memory is executable on x86,
and non-executable on all other platforms

NON_PAGED_EXECUTABLE  Yes Non paged pool with execute permissions

SPECIAL_POOL No Allocates from “special” pool (separate from the normal pool so

it’s easier to find memory corruptions)

The Must recognize? column indicates whether failure to recognize or satisfy the flag causes the function
to fail.

The second allocation function, ExAllocatePool3, is extensible, so new functions of this sort are unlikely
to pop up in the future:

PVOID ExAllocatePool3 (
_In_ POOL_FLAGS Flags,
_In_ SIZE_T NumberOfBytes,
_In_ ULONG Tag,
_In_reads_opt_(ExtendedParametersCount)
PCPOOL_EXTENDED_PARAMETER ExtendedParameters,
_In_ ULONG ExtendedParametersCount);

This function allows customization with an array of “parameters”, where the supported parameter types
may be extended in future kernel versions. The currently available parameters are defined with the POOL _-
EXTENDED_PARAMETER_TYPE enumeration:
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typedef enum POOL_EXTENDED_PARAMETER_TYPE {
PoolExtendedParameterInvalidType = 0O,
PoolExtendedParameterPriority,
PoolExtendedParameterSecurePool,
PoolExtendedParameterNumaNode,
PoolExtendedParameterMax

} POOL_EXTENDED_PARAMETER_TYPE, *PPOOL_EXTENDED_PARAMETER_TYPE;

The array provided to ExAllocatePool3 consists of structures of type POOL_EXTENDED_PARAMETER, each
one specifying one parameter:

typedef struct _POOL_EXTENDED_PARAMETER {
struct {
ULONG64 Type : 8;
ULONG64 Optional : 1;
ULONG64 Reserved : 64 - 9;

}
union {
ULONG64 Reserved?2;
PVOID Reserved3;
EX_POOL_PRIORITY Priority;
POOL _EXTENDED_PARAMS_SECURE_POOL* SecurePoolParams;
POOL_NODE_REQUIREMENT PreferredNode; // ULONG
};

} POOL_EXTENDED_PARAMETER, *PPOOL_EXTENDED_PARAMETER;

The Type member indicates which of the union members is valid for this parameter (POOL_EXTENDED_-
PARAMETER_TYPE). Optional indicates if the parameter set is optional or required. An optional parameter
that fails to be satisfied does not cause the ExAllocatePool3 to fail. Based on Type, the correct member
in the union must be set. Currently, these parameters are available:

« Priority of the allocation (Priority member)
« Preferred NUMA node (PreferredNode member)
« Use secure pool (discussed later, SecurePoolParams member)

The following example shows using ExAllocatePool3 to achieve the same effect asExAllocatePoolWithTagPriorit
for non-paged memory:
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PVOID AllocNonPagedPriority(ULONG size, ULONG tag, EX_POOL_PRIORITY priority) {
POOL_EXTENDED_PARAMETER param;
param.Optional = FALSE;
param.Type = PoolExtendedParameterPriority;
param.Priority = priority;

return ExAllocatePool3(POOL_FLAG_NON_PAGED, size, tag, &param, 1);

Secure Pools

Secure pools introduced in Windows 10 version 1909 allow kernel callers to have a memory pool that
cannot be accessed by other kernel components. This kind of protection is internally achieved by the
Hyper-V hypervisor, leveraging its power to protect memory access even from the kernel, as the memory
is part of Virtual Trust Level (VTL) 1 (the secure world). Currently, secure pools are not fully documented,
but here are the basic steps to use a secure pool.

Secure pools are only available if Virtualization Based Security (VBS) is active (meaning Hyper-
V exists and creates the two worlds - normal and secure). Discussion of VBS is beyond the scope
of this book. Consult information online (or the Windows Internals books) for more on VBS.

A secure pool can be created with ExCreatePool, returning a handle to the pool:

#define POOL_CREATE_FLG_SECURE_POOL ox1

#define POOL_CREATE_FLG_USE_GLOBAL_POOL ©x2

#define POOL_CREATE_FLG_VALID_FLAGS (POOL_CREATE_FLG_SECURE_POOL [ \
POOL_CREATE_FLG_USE_GLOBAL_POOL )

NTSTATUS ExCreatePool (
_In_ ULONG Flags,
_In_ ULONG_PTR Tag,
_In_opt_ POOL_CREATE_EXTENDED_PARAMS* Params,
_Out_ HANDLE* PoolHandle);

Currently, flags should be POOL_CREATE_FLG_VALID_FLAGS (both supported flags), and Params should be
NULL. PoolHandle contains the pool handle if the call succeeds.

Allocating from a secure pool must be done with ExAllocatePool3, described in the previous section
with a POOL_EXTENDED_PARAMS_SECURE_POOL structure as a parameter:
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#define SECURE_POOL_FLAGS_NONE 0x0
#define SECURE_POOL_FLAGS_FREEABLE  0x1
#define SECURE_POOL_FLAGS_MODIFIABLE 0x2

typedef struct _POOL_EXTENDED_PARAMS_SECURE_POOL {

HANDLE SecurePoolHandle; // pool handle
PVOID Buffer; // initial data
ULONG_PTR Cookie; // for validation
ULONG SecurePoolFlags; // flags above

} POOL_EXTENDED_PARAMS_SECURE_POOL ;

Buffer points to existing data to be initially stored in the new allocation. Cookie is used for validation, by
calling ExSecurePoolValidate. Freeing memory from a secure pool must be done with a new function,
ExFreePool2:

VOID ExFreePool2 (
_Pre_notnull_ PVOID P,
_In_ ULONG Tag,
_In_reads_opt_(ExtendedParametersCount)
PCPOOL_EXTENDED_PARAMETER ExtendedParameters,
_In_ ULONG ExtendedParametersCount);

If ExtendedParameters is NULL (and ExtendedParametersCount is zero), the call is diverted to the nor-
mal ExFreePool, which will fail for a secure pool. For a secure pool, a single POOL _EXTENDED_PARAMETER
is required that has the pool parameters with the pool handle only. Buf fer should be NULL.

Updating the memory in the pool requires its own call:

NTSTATUS ExSecurePoolUpdate (
_In_ HANDLE SecurePoolHandle,
_In_ ULONG Tag,

_In_ PVOID Allocation,
_In_ ULONG_PTR Cookie,
_In_ SIZE_T Offset,
_In_ SIZE_T Size,
_In_ PVOID Buffer);

Finally, a secure pool must be destroyed with ExDestroyPool:

VOID ExDestroyPool (_In_ HANDLE PoolHandle);
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Overloading the new and delete Operators

We know there is no C++ runtime in the kernel, which means some C++ features that work as expected
in user mode don’t work in kernel mode. One of these features are the new and delete C++ operators.
Although we can use the dynamic memory allocation functions, new and delete have a couple of
advantages over calling the raw functions:

« new causes a constructor to be invoked, and delete causes the destructor to be invoked.
« new accepts a type for which memory must be allocated, rather than specifying a number of bytes.

Fortunately, C++ allows overloading the new and delete operators, either globally or for secific types.
new can be overloaded with extra parameters that are needed for kernel allocations - at least the pool type
must be specified. The first argument to any overloaded new is the number of bytes to allocate, and any
extra parameters can be added after that. These are specified with paranthesis when actually used. The
compiler inserts a call to the appropriate constructor, if exists.

Here is a basic implementation of an overloaded new operator that calls ExAllocatePoolWithTag:

void* __cdecl operator new(size_t size, POOL_TYPE pool, ULONG tag) {
return ExAllocatePoolWithTag(pool, size, tag);

The __cdecl modifier indicates this should be using the C calling convention (rather than the __stdcall
convention). It only matters in x86 builds, but still should be specified as shown.

Here is an example usage, assuming an object of type MyData needs to be allocated from paged pool:

MyData* data = new (PagedPool, DRIVER_TAG) MyData;
if(data == nullptr)

return STATUS_INSUFFICIENT_RESOURCES;
// do work with data

The size parameter is never specified explicitly as the compiler inserts the correct size (which is essentially
sizeof(MyData) in the above example). All other parameters must be specified. We can make the overload
simpler to use if we default the tag to a macro such as DRIVER_TAG, expected to exist:

void* __cdecl operator new(size_t size, POOL_TYPE pool,
ULONG tag = DRIVER_TAG) {
return ExAllocatePoolWithTag(pool, size, tag);

And the corresponding usage is simpler:



Chapter 8: Advanced Programming Techniques (Part 1) 232

MyData* data = new (PagedPool) MyData;

In the above examples, the default constructor is invoked, but it’s perfectly valid to invoke any other
constructor that exists for the type. For example:

struct MyData {
MyData(ULONG someValue);
// details not shown

b
auto data = new (PagedPool) MyData(200);

We can easily extend the overloading idea to other overloads, such as one that wrapsExAl locatePoolWithTagPriori

void* __cdecl operator new(size_t size, POOL_TYPE pool,
EX_POOL_PRIORITY priority, ULONG tag = DRIVER_TAG) {
return ExAllocatePoolWithTagPriority(pool, size, tag, priority);

Using the above operator is just a matter of adding a priority in parenthesis:
auto data = new (PagedPool, LowPoolPriority) MyData(200);

Another common case is where you already have an allocated block of memory to store some object
(perhaps allocated by a function out of your control), but you still want to initialize the object by invoking
a constructor. Another new overload can be used for this purpose, known as placement new, since it does
not allocate anything, but the compiler still adds a call to a constructor. Here is how to define a placement
new operator overload:

void* __cdecl operator new(size_t size, void* p) {

return p;

And an example usage:

void* SomeFunctionAllocatingObject();

MyData* data = (MyData*)SomeFunctionAllocatingObject();
new (data) MyData;

Finally, an overload for delete is required so the memory can be freed at some point, calling the destructor
if it exists. Here is how to overload the delete operator:
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void __cdecl operator delete(void* p, size_t) {
ExFreePool(p);

The extra size parameter is not used in practice (zero is always the value provided), but the compiler
requires it.

thing, since there is no runtime to invoke them. The compiler will report a warning if you try. A
way around it (of sorts) is to declare the global variable as a pointer, and then use an overloaded
new to allocate and invoke a constructor in DriverEntry. of course, you must remember to call
delete in the driver’s unload routine.

’ Remember that you cannot have global objects that have default constructors that do some-

Another variant of the delete operator the compiler might insist on if you set the compiler
conformance to C++17 or newer is the following:

void __cdecl operator delete(void* p, size_t, std::align_val_t) {

ExFreePool(p);

}

You can look up the meaning of std: :align_val_t in a C++ reference, but it does not matter
for our purposes.

Lookaside Lists

The dynamic memory allocation functions discussed so far (the ExAllocatePool* family of APIs) are
generic in nature, and can accommodate allocations of any size. Internally, managing the pool is non-
trivial: various lists are needed to manage allocations and deallocations of different sizes. This management
aspect of the pools is not free.

One fairly common case that leaves room for optimizations is when fixed-sized allocations are needed.
When such allocation is freed, it’s possible to not really free it, but just mark it as available. The next
allocation request can be satisfied by the existing block, which is much faster to do than allocating a fresh
block. This is exactly the purpose of lookaside lists.

There are two APIs to use for working with lookaside lists. The original one, available from Windows 2000,
and a newer available from Vista. I'll describe both, as they are quite similar.

The “Classic” Lookaside API

The first thing to do is to initialize the data structure managing a lookaside list. Two functions are available,
which are essentially the same, selecting the paged pool or non-paged pool where the allocations should
be coming from. Here is the paged pool version:
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VOID ExInitializePagedLookasidelList (
_Out_ PPAGED_LOOKASIDE_LIST Lookaside,
_In_opt_ PALLOCATE_FUNCTION Allocate,
_In_opt_ PFREE_FUNCTION Free,

_In_ ULONG Flags,
_In_ SIZE_T Size,
_In_ ULONG Tag,
_In_ USHORT Depth);

The non-paged variant is practically the same, with the function name beingExInitializeNPagedLookasidelList.

The first parameter is the resulting initialized structure. Although, the structure layout is described in
wdm.h (with a macro named GENERAL _LLOOKASIDE_L AYOUT to accommodate multiple uses that can’t be
shared in other ways using the C language), you should treat this structure as opaque.

The Allocate parameter is an optional allocation function that is called by the lookaside implementation
when a new allocation is required. If specified, the allocation function must have the following prototype:

PVOID AllocationFunction (
_In_ POOL_TYPE PoolType,
_In_ SIZE_T NumberOfBytes,
_In_ ULONG Tag);

The allocation function receives the same parameters asExAl locatePoolWithTag. In fact, if the allocation
function is not specified, this is the call made by the lookaside list manager. If you don’t require any other
code, just specify NULL. A custom allocation function could be useful for debugging purposes, for example.
Another possibility is to call ExAllocatePoolWithTagPriority instead of ExAllocatePoolWithTag, if
that makes sense for your driver.

If you do provide an allocation function, you might need to provide a de-allocation function in the Free
parameter. If not specified, the lookaside list manager calls ExFreePool. Here is the expected prototype
for this function:

VOID FreeFunction (
_In_ __drv_freesMem(Mem) PVOID Buffer);

The next parameter, Flags can be zero or POOL_RAISE_IF_ALLOCATION_FAILURE (Windows 8 and later)
that indicates an exception should be raised (STATUS_INSUFFICIENT_RESOURCE) if an allocation fails,
instead of returning NULL to the caller.

The Size parameter is the size of chunks managed by the lookaside list. Usually, you would specify it as
sizeof some structure you want to manage. Tag is the tag to use for allocations. Finally, the last parameter,
Depth, indicates the number of allocations to keep in a cache. The documentation indicates this parameter
is “reserved” and should be zero, which makes the lookaside list manager to choose something appropriate.
Regardless of the number, the “depth” is adjusted based on the allocation patterns used with the lookaside
list.

Once a lookaside list is initialized, you can request a memory block (of the size specified in the initialization
function, of course) by calling ExAllocateFromPagedLookasidelList:
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PVOID ExAllocateFromPagedLookasidelist (
_Inout_ PPAGED_LOOKASIDE_LIST Lookaside)

Nothing could be simpler - no special parameters are required, since everything else is already known. The
corresponding function for a non-paged pool lookaside list is ExAllocateFromNPagedLookasidelList.

The opposite function used to free an allocation (or return it to the cache) isExFreeToPagedLookasidelList:

VOID ExFreeToPagedlLookasidelList (
_Inout_ PPAGED_LOOKASIDE_LIST Lookaside,
_In_ __drv_freesMem(Mem) PVOID Entry)

The only value required is the pointer to free (or return to the cache). As you probably guess, the non-paged
pool variant is ExFreeToNPagedLookasidelList.

Finally, when the lookaside list is no longer needed, it must be freed by calling ExDeletePagedLookasidel ist:

VOID ExDeletePagedlLookasidelList (
_Inout_ PPAGED_LOOKASIDE_LIST Lookaside);

One nice benefit of lookaside lists is that you don’t have to return all allocations to the list by
repeatedly calling ExFreeToPagedLookasideList before calling ExDeletePagedLookasidel ist; the
latter is enough, and will free all allocated blocks automatically. ExDeleteNPagedLookasidel ist is the
corresponding non-paged variant.

?’ Write a C++ class wrapper for lookaside lists using the above APIs.

The Newer Lookaside API

The newer API provides two main benefits over the classic API:
+ Uniform API for paged and non-paged blocks.
« The lookaside list structure itself is passed to the custom allocate and free functions (if provided),

that allows accessing driver data (example shown later).

Initializing a lookaside list is accomplished with ExInitializelookasidelListEx:
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NTSTATUS ExInitializelookasidelistEx (
_Out_ PLOOKASIDE_LIST_EX Lookaside,
_In_opt_ PALLOCATE_FUNCTION_EX Allocate,
_In_opt_ PFREE_FUNCTION_EX Free,

_In_ POOL_TYPE PoolType,
_In_ ULONG Flags,

_In_ SIZE_T Size,

_In_ ULONG Tag,

_In_ USHORT Depth);

PLOOKASIDE_L IST_EX is the opaque data structure to initialize, which must be allocated from non-paged
memory, regardless of whether the lookaside list is to manage paged or non-paged memory.

The allocation and free functions are optional, just as they are with the classic APL. These are their
prototypes:

PVOID AllocationFunction (

_In_ POOL_TYPE PoolType,

_In_ SIZE_T NumberOfBytes,

_In_ ULONG Tag,

_Inout_ PLOOKASIDE_LIST_EX Lookaside);
VOID FreeFunction (

_In_ __drv_freesMem(Mem) PVOID Buffer,

_Inout_ PLOOKASIDE_LIST_EX Lookaside);

Notice the lookaside list itself is a parameter. This could be used to access driver data that is part of a larger
structure containing the lookaside list. For example, suppose the driver has the following structure:

struct MyData {
ULONG SomeData;
LIST_ENTRY SomeHead;
LOOKASIDELIST_EX Lookaside;
1

The driver creates an instance of that structure (maybe globally, or on a per-client basis). Let’s assume it’s
created dynamically for every client creating a file object to talk to a device the driver manages:
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// 1f new is overridden as described earlier in this chapter

MyData* pData = new (NonPagedPool) MyData;

// or with a standard allocation call

MyData* pData = (MyData*)ExAllocatePoolWithTag(NonPagedPool,
sizeof(MyData), DRIVER_TAG);

// initilaize the lookaside list
ExInitializelookasidelistEx(&pData->Lookaside, MyAlloc, MyFree, ...);

In the allocation and free functions, we can get a pointer to our MyData object that contains whatever
lookaside list is being used at the time:

PVOID MyAlloc(POOL_TYPE type, SIZE_T size, ULONG tag,
PLOOKASIDE_L IST_EX lookaside) ({
MyData* data = CONTAINING_RECORD(lookaside, MyData, Lookaside);
// access members

/S

The usefulness of this technique is if you have multiple lookaside lists, each one could have their own
“context” data. Obviously, if you just have one such list stored globally, you can just access whatever
global variables you need.

Continuing with ExInitializelLookasidelListEx - PoolType is the pool type to use; this is where the
driver selects where allocations should be made from. Size, Tag and Depth have the same meaning as they
do in the classic APL

The Flags parameter can be zero, or one of the following:

+ EX_LOOKASIDE_L IST_EX_FLAGS_RAISE_ON_FAIL - raise an exception instead of returning NULL to
the caller in case of an allocation failure.

+ EX_LOOKASIDE_LIST_EX_FLAGS_FAIL_NO_RAISE - this flag can only be specified if a custom allo-
cation routine is specified, which causes the pool type provided to the allocation function to be ORed
with the POOL _QUOTA_FAIL _INSTEAD_OF_RAISE flag that causes a call toExAllocationPoolWithQuotaTag
to returnNULL on quota limit violation instead of raising the POOL_QUOTA_FAIL_INSTEAD_OF _RAISE
exception. See the docs for more details.

n The above flags are mutually exclusive.

Once the lookaside list is initialized, allocation and deallocation are done with the following APIs:
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PVOID ExAllocateFromLookasidelListEx (_Inout_ PLOOKASIDE_LIST_EX Lookaside);
VOID ExFreeTolLookasidelListEx (

_Inout_ PLOOKASIDE_LIST_EX Lookaside,

_In_ __drv_freesMem(Entry) PVOID Entry);

Of course, the terms “allocation” and “deallocation” are in the context of a lookaside list, meaning
allocations could be reused, and deallocations might return the block to the cache.

Finally, a lookaside list must be deleted with ExDeletelLookasidelistEx:

VOID ExDeletelookasideListEx (_Inout_ PLOOKASIDE_LIST_EX Lookaside);

Calling Other Drivers

One way to talk to other drivers is to be a “proper” client by calling ZwOpenFile or ZwCreateFile in
a similar manner to what a user-mode client does. Kernel callers have other options not available for
user-mode callers. One of the options is creating IRPs and sending them to a device object directly for
processing.

IRPs are typically created by one of the three managers, part of the Executive: I/O manager, Plug & Play
manager, and Power manager. In the cases we’ve seen so far, the I/O manager is the one creating IRPs for
create, close, read, write, and device I/O control request types. Drivers can create IRPs as well, initialize
them and then send them directly to another driver for processing. This could be more efficient than
opening a handle to the desired device, and then making calls using ZwReadFile, ZwWriteFile and similar
APIs we’ll look at in more detail in a later chapter. In some cases, opening a handle to a device might not
even be an option, but obtaining a device object pointer might still be possible.

The kernel provides a generic API for building IRPs, starting with IoAl locateIrp. Using this API requires
the driver to register a completion routine so the IRP can be properly freed. We’ll examine these techniques
in a later chapter (“Advanced Programming Techniques (Part 2)”). In this section, I'll introduce a simpler
function to build a device I/O control IRP using IoBuildDeviceloControlRequest:

PIRP IoBuildDeviceloControlRequest(

_In_ ULONG IoControlCode,

_In_ PDEVICE_OBJECT DeviceObject,
_In_opt_ PVOID InputBuffer,

_In_ ULONG InputBufferlLength,
_Out_opt_ PVOID OutputBuffer,

_In_ ULONG OutputBufferlLength,

_In_ BOOLEAN InternalDeviceloControl,
_In_opt_ PKEVENT Event,

_Out_ PIO_STATUS_BLOCK IoStatusBlock);

The APIreturns a proper IRP pointer on success, including filling in the first I0_STACK_LOCATION, or NULL
on failure. Some of the parameters to IoBuildDeviceIoControlRequest are the same provided to the
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DeviceloControl user-mode API (or to its kernel equivalent, ZwDeviceIoControlFile) - IoControlCode,
InputBuffer, InputBufferLength, OutputBuffer and OutputBufferLength.

The other parameters are the following:

« DeviceObject is the target device of this request. It’s needed so the API can allocate the correct
number of T0_STACK_LOCATION structures that accompany any IRP.

« InternalDeviceControl indicates whether the IRP should set its major function to IRP_MJ_INTERNAL _-
DEVICE_CONTROL (TRUE) or IRP_MJ_DEVICE_CONTROL (FALSE). This obviously depends on the target
device’s expectations.

« Event is an optional pointer to an event object that gets signaled when the IRP is completed by the
target device (or some other device the target may send the IRP to). An event is needed if the IRP
is sent for synchronous processing, so that the caller can wait on the event if the operation has not
yet completed. We'll see a complete example in the next section.

« IoStatusBlock returns the final status of the IRP (status and information), so the caller can examine
it if it so wishes.

The call to IoBuildDeviceloControlRequest just builds the IRP - it is not sent anywhere at this point.
To actually send the IRP to a device, call the generic IoCallDriver API:

NTSTATUS IoCallDriver(
_In_ PDEVICE_OBJECT DeviceObject,
_Inout_ PIRP Irp);

IoCallDriver advances the current I/O stack location to the next, and then invokes the target driver’s
major function dispatch routine. It returns whatever is returned from that dispatch routine. Here is a very
simplified implementation:

NTSTATUS IoCallDriver (PDEVICE_OBJECT DeviceObject, PIRP Irp {
// update the current layer index
DeviceObject->CurrentLocation--;
auto irpSp = IoGetNextIrpStacklLocation(Irp);

// make the next stack location the current one
Irp->Tail.Overlay.CurrentStackLocation = irpSp;
// update device object

irpSp->DeviceObject = DeviceObject;

return (DeviceObject->DriverObject->MajorFunction[irpSp->MajorFunction])

(DeviceObject, Irp);

The main question remaining is how to we get a pointer to a device object in the first place? One way is
by calling IoGetDeviceOb jectPointer:
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NTSTATUS IoGetDeviceObjectPointer(
_In_ PUNICODE_STRING ObjectName,
_In_ ACCESS_MASK DesiredAccess,
_Out_ PFILE_OBJECT *FileObject,
_Out_ PDEVICE_OBJECT *DeviceObject);

The ObjectName parameter is the fully-qualified name of the device object in the Object Manager’s
namespace (as can be viewed with the WinObj tool from Sysinternals). Desired access is usually
FILE_READ_DATA,FILE_WRITE_DATA or FILE_ALL_ACCESS. Two values are returned on success: the device
object pointer (in DeviceObject) and an open file object pointing to the device object (in FileObject).

The file object is not usually needed, but it should be kept around as a means of keeping the device object
referenced. When you’re done with the device object, call ObDereferenceOb ject on the file object pointer
to decrement the device object’s reference count indirectly. Alternatively, you can increment the device
object’s reference count (ObRe ferenceOb ject) and then decrement the file object’s reference count so you
don’t have to keep it around.

The next section demostrates usage of these APIs.

Putting it All Together: The Melody Driver

The Melody driver we’ll build in this section demonstrates many of the techniques shown in this chapter.
The melody driver allows playing sounds asynchronously (contrary to the Beep user-mode API that plays
sounds synchronously). A client application calls DeviceIoControl with a bunch of notes to play, and
the driver will play them as requested without blocking. Another sequence of notes can then be sent to
the driver, those notes queued to be played after the first sequence is finished.

It’s possible to come up with a user-mode solution that would do essentially the same thing, but this can
only be easily done in the context of a single process. A driver, on the other hand, can accept calls from
multiple processes, having a “global” ordering of playback. In any case, the point is to demonstrate driver
programming techniques, rather than managing a sound playing scenario.

We'll start by creating an empty WDM driver, as we’ve done in previous chapters, named KMelody. Then
we’ll add a file named MelodyPublic.h to serve as the common data to the driver and a user-mode client.
This is where we define what a note looks like and an I/O control code for communication:
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// MelodyPublic.h

#pragma once
#define MELODY_SYMLINK L"\\??\\KMelody"

struct Note {
ULONG Frequency;
ULONG Duration;
ULONG Delay{ 0 };
ULONG Repeat{ 1 };
b

#define MELODY_DEVICE 0x8003

#define IOCTL_MELODY_PLAY \
CTL_CODE(MELODY_DEVICE, ©x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

A note consists of a frequency (in Hertz) and duration to play. To make it a bit more interesting, a delay
and repeat count are added. If Repeat is greater than one, the sound is played Repeat times, with a delay
of Delay between repeats. Duration and Delay are provided in milliseconds.

The architecture we’ll go for in the driver is to have a thread created when the first client opens a handle
to our device, and that thread will perform the playback based on a queue of notes the driver manages.
The thread will be shut down when the driver unloads.

It may seem asymmetric at this point - why not create the thread when the driver loads? As we shall
see shortly, there is a little “snag” that we have to deal with that prevents creating the thread when the
driver loads.

Let’s start with DriverEntry. It needs to create a device object and a symbolic link. Here is the full
function:

PlaybackState* g_State;

extern "C" NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) ({
UNREFERENCED_PARAMETER(RegistryPath);

g_State = new (PagedPool) PlaybackState;
if (g_State == nullptr)
return STATUS_INSUFFICIENT_RESOURCES;
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auto status = STATUS_SUCCESS;
PDEVICE_OBJECT DeviceObject = nullptr;
UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\KMelody");

do {
UNICODE_STRING name = RTL_CONSTANT_STRING(L"\\Device\\KMelody");
status = IoCreateDevice(DriverObject, 0, &name, FILE_DEVICE_UNKNOWN,
0, FALSE, &DeviceObject);
if (INT_SUCCESS(status))
break;

status = IoCreateSymbolicLink(&symLink, &name);
if (INT_SUCCESS(status))
break;
} while (false);

if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "Error (0x%@08X)\n", status));
delete g_State;
if (DeviceObject)
IoDeleteDevice(DeviceObject);
return status;

DriverObject->DriverUnload = MelodyUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =
DriverObject->MajorFunction[IRP_MJ_CLOSE] = MelodyCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = MelodyDeviceControl;

return status;

Most of the code should be familiar by now. The only new code is the creation of an object of type
PlaybackState. The new C++ operator is overloaded as described earlier in this chapter. If allocating
a PlaybackState instance fails, DriverEntry returns STATUS_INSUFFICIENT_RESOURCES, reporting a
failure to the kernel.

The PlaybackState class is going to manage the list of notes to play and most other functionality specific
to the driver. Here is its declaration (in PlaybackState.h):
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struct PlaybackState {
PlaybackState();
~PlaybackState();

NTSTATUS AddNotes(const Note* notes, ULONG count);
NTSTATUS Start(PVOID IoObject);
void Stop();

private:
static void PlayMelody(PVOID context);
void PlayMelody();

LIST_ENTRY m_head;

FastMutex m_lock;
PAGED_LOOKASIDE_LIST m_lookaside;
KSEMAPHORE m_counter;

KEVENT m_stopEvent;

HANDLE m_hThread{ nullptr };

};

m_head is the head of the linked list holding the notes to play. Since multiple threads can access this list,
it must be protected with a synchronization object. In this case, we’ll go with a fast mutex. FastMutex
is a wrapper class similar to the one we saw in chapter 6, with the added twist that it’s initialized in its
constructor rather than a separate Init method. This is convenient, and possible, because PlaybackState
is allocated dynamically, causing its constructor to be invoked, along with constructors for data members
(if any).

The note objects will be allocated from a lookaside list (n_lookaside), as each note has a fixed size, and
there is a strong likelihood of many notes coming and going. m_stopEvent is an event object that will be
used as a way to signal our playback thread to terminate. m_hThread is the playback thread handle. Finally,
m_counter is a semaphore that is going to be used in a somewhat counter-intuitive way, its internal count
indicating the number of notes in the queue.

As you can see, the event and semaphore don’t have wrapper classes, so we need to initialize them in the
PlaybackState constructor. Here is the constructor in full (in PlaybackState.cpp) with an addition of a
type that is going to hold a single node:
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struct FullNote : Note {
LIST_ENTRY Link;

Y

PlaybackState: :PlaybackState() {
InitializelListHead(&m_head);
KeInitializeSemaphore(&m_counter, 0, 1000);
KeInitializeEvent(&m_stopEvent, SynchronizationEvent, FALSE);
ExInitializePagedLookasidelList(&m_lookaside, nullptr, nullptr, 0,
sizeof(FullNote), DRIVER_TAG, 0);

Here are the initialization steps taken by the constructor:

Initialize the linked list to an empty list (Initializel istHead).

Initialize the semaphore to a value of zero, meaning no notes are queued up at this point, with a
maximum of 1000 queued notes. Of course, this number is arbitrary.

Initialize the stop event as a SynchronizationEvent type in the non-signaled state (KeInitializeEvent).
Technically, a NotificationEvent would have worked just as well, as just one thread will be
waiting on this event as we’ll see later.

Initialize the lookaside list to managed paged pool allocations with size of sizeof(FullNote).
FullNote extends Note to include a LIST_ENTRY member, otherwise we can’t store such objects
in a linked list. The FullNote type should not be visible to user-mode, which is why it’s defined
privately in the driver’s source files only.

DRIVER_TAG and DRIVER_PREFIX are defined in the file KMelody.h.

Before the driver finally unloads, the PlaybackState object is going to be destroyed, invoking its
destructor:

PlaybackState: :~PlaybackState() {
Stop();
ExDeletePagedlLookasidelist(&m_lookaside);

The call to Stop signals the playback thread to terminate as we’ll see shortly. The only other thing left to
do in terms of cleanup is to free the lookaside list.

The unload routine for the driver is similar to ones we've seen before with the addition of freeing the
PlaybackState object:
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void MelodyUnload(PDRIVER_OBJECT DriverObject) {
delete g_State;
UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\KMelody");
IoDeleteSymbolicLink(&symLink);
IoDeleteDevice(DriverObject->DeviceObject);

The IRP_MJ_DEVICE_CONTROL handler is where notes provided by a client need to be added to the queue
of notes to play. The implementation is pretty straightforward because the heavy lifting is performed by
the PlaybackState: :AddNotes method. Here is MelodyDeviceControl that validates the client’s data
and then invokes AddNotes:

NTSTATUS MelodyDeviceControl (PDEVICE_OBJECT, PIRP Irp) {
auto irpSp = IoGetCurrentlIrpStackLocation(Irp);
auto& dic = irpSp->Parameters.DeviceloControl;
auto status = STATUS_INVALID_DEVICE_REQUEST;

ULONG info = ©;

switeh (dic.IoControlCode) {
case IOCTL_MELODY_PLAY:

if (dic.InputBufferLength == 0 ||
dic.InputBufferLength % sizeof(Note) != 0) {
status = STATUS_INVALID_BUFFER_SIZE;
break;

}

auto data = (Note*)Irp->AssociatedIrp.SystemBuffer;

if (data == nullptr) {
status = STATUS_INVALID_PARAMETER;
break;

status = g_State->AddNotes(data,
dic.InputBufferLength / sizeof(Note));
if (!NT_SUCCESS(status))
break;
info = dic.InputBufferlLength;
break;

}

return CompleteRequest(Irp, status, info);

CompleteRequest is a helper that we've seen before that completes the IRP with the given status and
information:
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NTSTATUS CompleteRequest(PIRP Irp,
NTSTATUS status = STATUS_SUCCESS, ULONG_PTR info = 0);
/S
NTSTATUS CompleteRequest(PIRP Irp, NTSTATUS status, ULONG_PTR info) {
Irp->IoStatus.Status = status;
Irp->IoStatus.Information = info;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

PlaybackState: : AddNotes needs to iterate over the provided notes. Here is the beginning of the function:

NTSTATUS PlaybackState: :AddNotes(const Note* notes, ULONG count) {
KdPrint((DRIVER_PREFIX "State::AddNotes %u\n", count));

for (ULONG i = ©; i < count; i++) {
For each note, it needs to allocate a Ful 1Note structure from the lookaside list:

auto fullNote = (FullNote*)ExAllocateFromPagedlLookasidelist(&m_lookaside);
if (fullNote == nullptr)
return STATUS_INSUFFICIENT_RESOURCES;

If succesful, the note data is copied to the Ful INote and is added to the linked list under the protection of
the fast mutex:

//

// copy the data from the Note structure
/7

memcpy (fullNote, &notes[i], sizeof(Note));

/7

// Insert into the linked list

/7

Locker locker(m_lock);
InsertTaillList(&m_head, &fullNote->Link);

Locker<T> is the same type we looked at in chapter 6. The notes are inserted at the back of the list
with InsertTaillist. This is where we must provide a pointer to a LIST_ENTRY object, which is why
FullNote objects are used instead of just Note. Finally, when the loop is completed, the semaphore must
be incremented by the number of notes to indicate there are count more notes to play:
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//

// make the semaphore signaled (if it wasn't already) to

// indicate there are new note(s) to play

/7

KeReleaseSemaphore(&m_counter, 2, count, FALSE);

KdPrint((DRIVER_PREFIX "Semaphore count: %u\n",
KeReadStateSemaphore(&m_counter)));

The value 2 used in KeReleaseSemaphore is the temporary priority boost a driver can provide to a thread
that is released because of the semaphore becoming signaled (the same thing happens with the second
parameter to IoCompleteRequest). I've chosen the value 2 arbitrarily. The value 0 (I0_NO_INCREMENT) is
fine as well.

For debugging purposes, it may be useful to read the semaphore’s count with KeReadStateSemaphore as
was done in the above code. Here is the full function (without the comments):

NTSTATUS PlaybackState: :AddNotes(const Note* notes, ULONG count) {
KdPrint((DRIVER_PREFIX "State::AddNotes %u\n", count));

for (ULONG i = ©; i < count; i++) {
auto fullNote =
(FullNote*)ExAllocateFromPagedlLookasidelist(&m_lookaside);
if (fullNote == nullptr)
return STATUS_INSUFFICIENT_RESOURCES;

memcpy(fullNote, &notes[i], sizeof(Note));

Locker locker(m_lock);
InsertTaillList(&m_head, &fullNote->Link);

}

KeReleaseSemaphore(&m_counter, 2, count, FALSE);

KdPrint((DRIVER_PREFIX "Semaphore count: %u\n",
KeReadStateSemaphore(&m_counter)));

return STATUS_SUCCESS;

The next part to look at is handling IRP_MJ_CREATE and IRP_MJ_CLOSE. In earlier chapters, we just
completed these IRPs successfully and that was it. This time, we need to create the playback thread when
the first client opens a handle to our device. The initialization in DriverEntry points both indices to the
same function, but the code is slightly different between the two. We could separate them to different
functions, but if the difference is not great we might decide to handle both within the same function.

For IRP_MJ_CLOSE, there is nothing to do but complete the IRP successfuly. For IRP_MJ_CREATE, we want
to start the playback thread the first time the dispatch routine is invoked. Here is the code:
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NTSTATUS MelodyCreateClose(PDEVICE_OBJECT DeviceObject, PIRP Irp) {

auto status = STATUS_SUCCESS;

if (IoGetCurrentIrpStackLocation(Irp)->MajorFunction == IRP_MJ_CREATE) {
//
// create the "playback" thread (if needed)
/7
status = g_State->Start(DeviceObject);

}

return CompleteRequest(Irp, status);

The 1/O stack location contains the IRP major function code we can use to make the distinction as required
here. In the Create case, we call PlaybackState: : Start with the device object pointer that would be used
to keep the driver object alive as long as the thread is running. Let’s see what that method looks like.

NTSTATUS PlaybackState: :Start(PVOID IoObject) {
Locker locker(m_lock);
if (m_hThread)
return STATUS_SUCCESS;

return IoCreateSystemThread(

IoObject, // Driver or device object
&m_hThread, // resulting handle
THREAD_ALL_ACCESS, // access mask

nullptr, // no object attributes required
NtCurrentProcess(), // create in the current process
nullptr, // returned client ID
PlayMelody, // thread function

this); // passed to thread function

Acquiring the fast mutex ensures that a second thread is not created (as m_hThread would already be non-
NULL). The thread is created with IoCreateSystemThread, which is preferred over PsCreateSystemThread
because it ensures that the driver is not unloaded while the thread is executing (this does require Windows
8 or later).

The passed-in I/O object is the device object provided by the IRP_MJ_CREATE handler. The most common
way of creating a thread by a driver is to run it in the context of the System process, as it normally should
not be tied to a user-mode process. Our case, however, is more complicated because we intend to use the
Beep driver to play the notes. The Beep driver needs to be able to handle multiple users (that might be
connected to the same system), each one playing their own sounds. This is why when asked to play a note,
the Beep driver plays in the context of the caller’s session. If we create the thread in the System process,
which is always part of session zero, we will not hear any sound, because session 0 is not an interactive
user session.
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This means we need to create our thread in the context of some process running under the caller’s session
- Using the caller’s process directly (NtCurrentProcess) is the simplest way to get it working. You may
frown at this, and rightly so, because the first process calling the driver to play something is going to have
to host that thread for the lifetime of the driver. This has an unintended side effect: the process will not die.
Even if it may seem to terminate, it will still show up in Task Manager with our thread being the single
thread still keeping the process alive. We’ll find a more elegant solution later in this chapter.

Yet another consequence of this arrangement is that we only handle one session - the first one where one
of its processes happens to call the driver. We’ll fix that as well later on.

The thread created starts running the PlayMelody function - a static function in the PlaybackState
class. Callbacks must be global or static functions (because they are directly C function pointers), but in
this case we would like to access the members of this instance of PlaybackState. The common trick is to
pass the this pointer as the thread argument, and the callback simply invokes an instance method using
this pointer:

// static function
void PlaybackState::PlayMelody(PVOID context) {
((PlaybackState*)context)->PlayMelody();

Now the instance method PlaybackState: :PlayMelody has full access to the object’s members.

static by using C++ lambda functions, as non-capturing lambdas are directly convertible to C

’ There is another way to invoke the instance method without going through the intermediate
function pointers:

IoCreateSystemThread(..., [](auto param) {
((PlaybackState*)param)->PlayMelody();
}, this);

The first order of business in the new thread is to obtain a pointer to the Beep device using IoGetDeviceOb jectPointe:

#include <ntddbeep.h>

void PlaybackState::PlayMelody() {

PDEVICE_OBJECT beepDevice;

UNICODE_STRING beepDeviceName = RTL_CONSTANT_STRING(DD_BEEP_DEVICE_NAME_U);

PFILE_OBJECT beepFileObject;

auto status = IoGetDeviceObjectPointer(&beepDeviceName, GENERIC_WRITE,
&beepFileObject, &beepDevice);

if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "Failed to locate beep device (0x%X)\n",
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status));
return;

The Beep device name is \Device\Beep as we’ve seen in chapter 2. Conveniently, the provided header
ntddbeep.h declares everything we need in order to work with the device, such as the DD_BEEP_DEVICE_-
NAME_U macro that defines the Unicode name.

At this point, the thread should loop around while it has notes to play and has not been instructed to
terminate. This is where the semaphore and the event come in. The thread must wait until one of them is
signaled. If it’s the event, it should break out of the loop. If it’s the semaphore, it means the semaphore’s
count is greater than zero, which in turn means the list of notes is not empty:

PVOID objects[] = { &m_counter, &m_stopEvent };
IO_STATUS_BLOCK ioStatus;
BEEP_SET_PARAMETERS params;

for (;;) {
status = KeWaitForMultipleObjects(2, objects, WaitAny, Executive,
KernelMode, FALSE, nullptr, nullptr);
if (status == STATUS_WAIT_1) {
KdPrint((DRIVER_PREFIX "Stop event signaled. Exiting thread...\n"));
break;

KdPrint((DRIVER_PREFIX "Semaphore count: %u\n",
KeReadStateSemaphore(&m_counter)));

The required fucntion call is to KeWaitForMultipleObjects with the event and semaphore. They are
put in an array, since this is the requirement for KeWaitForMultipleObjects. If the returned status is
STATUS_WAIT_1 (which is the same as STATUS_WAIT_© + 1), meaning index number 1 is the signaled
object, the loop is exited with a break instruction.

Now we need to extract the next note to play:

PLIST_ENTRY 1link;

{
Locker locker(m_lock);
link = RemoveHeadlList(&m_head);
NT_ASSERT(1link != &m_head);

}

auto note = CONTAINING_RECORD(link, FullNote, Link);
KdPrint((DRIVER_PREFIX "Playing note Freq: %u Dur: %u Rep: %u Delay: %u\n",
note->Frequency, note->Duration, note->Repeat, note->Delay));
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We remove the head item from the list, and doing so under the fast mutex’ protection. The assert ensures
we are in a consistent state - remember that removing an item from an empty list returns the pointer to
its head.

The actual FullNote pointer is retrieved with the help of the CONTAINING_RECORD macro, that moves the
LIST_ENTRY pointer we received from RemoveHeadList to the containing FullNode that we are actually
interested in.

The next step is to handle the note. If the note’s frequency is zero, let’s consider that as a “silence time”
with the length provided by Delay:

if (note->Frequency == 0) {
//
// just do a delay
/7
NT_ASSERT(note->Duration > 0);
LARGE_INTEGER interval;
interval.QuadPart = -10000LL * note->Duration;
KeDelayExecutionThread(KernelMode, FALSE, &interval);

KeDelayExecutionThread is the rough equivalent of the Sleep/SleepEx APIs from user-mode. Here is
its declaration:

NTSTATUS KeDelayExecutionThread (
_In_ KPROCESSOR_MODE WaitMode,
_In_ BOOLEAN Alertable,

_In_ PLARGE_INTEGER Interval);

We've seen all these parameters as part of the wait functions. The most common invocation is with
KernelMode and FALSE for WaitMode and Alertable, respectively. The interval is the most important
parameter, where negative values mean relative wait in 100nsec units. Converting from milliseconds
means multiplying by -10000, which is what you see in the above code.

If the frequency in the note is not zero, then we need to call the Beep driver with proper IRP.
We already know that we need the IOCTL_BEEP_SET control code (defined in ntddbeep.h) and the
BEEP_SET_PARAMETERS structure. All we need to do is build an IRP with the correct information using
IoBuildDeviceloControlRequest, and send it to the beep device with IoCallDriver:
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else {
params.Duration = note->Duration;
params.Frequency = note->Frequency;
int count = max(1, note->Repeat);

KEVENT doneEvent;
KeInitializeEvent(&doneEvent, NotificationEvent, FALSE);

for (int i = 0; i < count; i++) {
auto irp = IoBuildDeviceloControlRequest(IOCTL_BEEP_SET, beepDevice,
&params, sizeof(params),
nullptr, 0, FALSE, &doneEvent, &ioStatus);

if (lirp) {
KdPrint((DRIVER_PREFIX "Failed to allocate IRP\n"));
break;

}

status = IoCallDriver(beepDevice, irp);
if (INT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "Beep device playback error (0x%X)\n",
status));
break;
}
if (status == STATUS_PENDING) ({
KeWaitForSingleObject(&doneEvent, Executive, KernelMode,
FALSE, nullptr);

We loop around based on the Repeat member (which is usually 1). Then the IRP_MJ_DEVICE_CONTROL IRP
is built with IoBuildDeviceloControlRequest, supplying the frequency to play and the duration. Then,
IoCallDriver is invoked with the Beep device pointer we obtained earlier, and the IRP. Unfortunately
(or futunately, depending on your perspective), the Beep driver just starts the operation, but does not
wait for it to finish. It might (and in fact, always) returns STATUS_PENDING from the IoCallDriver call,
which means the operation is not yet complete (the actual playing has not yet begun). Since we don’t have
anything else to do until then, the doneEvent event provided to IoBuildDeviceloControlRequest is
signaled automatically by the I/O manager when the operation completes - so we wait on the event.

Now that the sound is playing, we have to wait for the duration of that note withKeDelayExecutionThread:
LARGE_INTEGER delay;
delay.QuadPart = -10000LL * note->Duration;

KeDelayExecutionThread(KernelMode, FALSE, &delay);

Finally, if Repeat is greater than one, then we might need to wait between plays of the same note:
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// perform the delay if specified,

// except for the last iteration

/7

if (i < count - 1 & note->Delay != 0) {
delay.QuadPart = -10000LL * note->Delay;
KeDelayExecutionThread(KernelMode, FALSE, &delay);

At this point, the note data can be freed (or just returned to the lookaside list) and the code loops back to
wait for the availability of the next note:

ExFreeToPagedlLookasidelist(&m_lookaside, note);

The loop continues until the thread is instructed to stop by signaling stopEvent, at which point it breaks
from the infinite loop and cleans up by dereferencing the file object obtained from IoGetDeviceObjectPointer:

ObDereferenceObject(beepFileObject);

Here is the entire thread function for convenience (comments and KdPrint removed):

void PlaybackState::PlayMelody() ({

PDEVICE_OBJECT beepDevice;

UNICODE_STRING beepDeviceName = RTL_CONSTANT_STRING(DD_BEEP_DEVICE_NAME_U);

PFILE_OBJECT beepFileObject;

auto status = IoGetDeviceObjectPointer(&beepDeviceName, GENERIC_WRITE,
&beepFileObject, &beepDevice);

if (!NT_SUCCESS(status)) {
return;

PVOID objects[] = { &m_counter, &m_stopEvent };
TO_STATUS_BLOCK ioStatus;
BEEP_SET_PARAMETERS params;

for (;;) {
status = KeWaitForMultipleObjects(2, objects, WaitAny, Executive,
KernelMode, FALSE, nullptr, nullptr);
if (status == STATUS_WAIT_1) {
break;
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PLIST_ENTRY link;

{

}

Locker locker(m_lock);
link = RemoveHeadlList(&m_head);
NT_ASSERT(1link != &m_head);

auto note = CONTAINING_RECORD(1link, FullNote, Link);
if (note->Frequency == 0) {

}

NT_ASSERT (note->Duration > 0);

LARGE_INTEGER interval;

interval .QuadPart = -10000LL * note->Duration;
KeDelayExecutionThread(KernelMode, FALSE, &interval);

else {

params.Duration = note->Duration;
params.Frequency = note->Frequency;
int count = max(1, note->Repeat);

KEVENT doneEvent;
KeInitializeEvent(&doneEvent, SynchronizationEvent, FALSE);

for (int i = 0; i < count; i++) {
auto irp = IoBuildDeviceloControlRequest(IOCTL_BEEP_SET,
beepDevice, &params, sizeof(params),
nullptr, 0, FALSE, &doneEvent, &ioStatus);
if (lirp) {
break;

}
NT_ASSERT(irp->UserEvent == &doneEvent);

status = IoCallDriver(beepDevice, irp);
if (!NT_SUCCESS(status)) {
break;
}
if (status == STATUS_PENDING) {
KeWaitForSingleObject(&doneEvent, Executive,
KernelMode, FALSE, nullptr);

LARGE_INTEGER delay;
delay.QuadPart = -10000LL * note->Duration;

254
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KeDelayExecutionThread(KernelMode, FALSE, &delay);

if (i < count - 1 && note->Delay != 0) {
delay.QuadPart = -10000LL * note->Delay;
KeDelayExecutionThread(KernelMode, FALSE, &delay);

}

ExFreeToPagedlLookasidelList(&m_lookaside, note);
}
ObDereferenceObject(beepFileObject);
}

The last piece of the puzzle is the PlaybackState: : Stop method that signals the thread to exit:

void PlaybackState: :Stop() {
if (m_hThread) {
/7
// signal the thread to stop
//
KeSetEvent(&m_stopEvent, 2, FALSE);

//

// wait for the thread to exit

/7

PVOID thread;

auto status = ObReferenceObjectByHandle(m_hThread, SYNCHRONIZE,
*PsThreadType, KernelMode, &thread, nullptr);

if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "ObReferenceObjectByHandle error (0x%X)\n",

status));
}
else {
KeWaitForSingleObject(thread, Executive, KernelMode, FALSE, nullptr\
)
ObDereferenceObject(thread);
}

ZwClose(m_hThread);
m_hThread = nullptr;

}

If the thread exists (m_hThread is non-NULL), then we set the event (KeSetEvent). Then we wait for
the thread to actually terminate. This is technically unnecessary because the thread was created with
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IoCreateSystemThread, so there is no danger the driver is unloaded prematurely. Still, it’s worthwhile
showing how to get the pointer to the thread object given a handle (since KeWaitForSingleObject
requires an object). It’s important to remember to call ObDereferenceObject once we don’t need the
pointer anymore, or the thread object will remain alive forever (keeping its process and other resources
alive as well).

Client Code

Here are some examples for invoking the driver (error handling omitted):

#include <Windows.h>
#include <stdio.h>
#include "..\KMelody\MelodyPublic.h"

int main() {
HANDLE hDevice = CreateFile(MELODY_SYMLINK, GENERIC_WRITE, O,
nullptr, OPEN_EXISTING, 0, nullptr);

Note notes[10];

= 0; i < _countof(notes); i++) {
.Frequency = 400 + i * 30;
.Duration = 500;

for (int i
notes[i]
notes[1i]

}

DWORD bytes;

DeviceloControl(hDevice, IOCTL_MELODY_PLAY, notes, sizeof(notes),

nullptr, 0, &bytes, nullptr);

for (int i = 0; i < _countof(notes); i++) {

notes[i].Frequency = 1200 - i * 100;
notes[i].Duration = 300;
notes[i].Repeat = 2;

notes[i].Delay = 300;

}
DeviceloControl (hDevice, IOCTL_MELODY_PLAY, notes, sizeof(notes),

nullptr, 0, &bytes, nullptr);

CloseHandle(hDevice);
return 0;

’
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I recommend you build the driver and the client and test them. The project names are KMelody and
Melody in the solution for this chapter. Build your own music!

? 1. Replace the call to IoCreateSystemThread with PsCreateSystemThread and make the
necessary adjustments.
2. Replace the lookaside list API with the newer APL

Invoking System Services

System Services (system calls) are normally invoked indirectly from user mode code. For example, calling
the Windows CreateFile APIin user mode invokes NtCreateFile from NtDILDII, which is a system call.
This call traverses the user/kernel boundary, eventually calling the “real” NtCreateFile implementation
within the executive.

We already know that drivers can invoke system calls as well, using the Nt or the Zw variant (which sets
the previous execution mode to KernelMode before invoking the system call). Some of these system calls
are fully documented in the driver kit, such as NtCreateFile/ZwCreateFile. Others, however, are not
documented or sometimes partially documented.

For example, enumerating processes in the system is fairly easy to do from user-mode - in fact, there
are several APIs one can use for this purpose. They all invoke the NtQuerySystemInformation system
call, which is not officially documented in the WDK. Ironically, it’s provided in the user-mode header
Winternl.h like so:

NTSTATUS NtQuerySystemInformation (
IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
OUT PVOID SystemInformation,
IN ULONG SystemInformationLength,
OUT PULONG ReturnLength OPTIONAL);

The macros IN and OUT expand to nothing. These were used in the old days before SAL was invented to
provide some semantics for developers. For some reason, Winternl.h uses these macros rather than the
modern SAL annotations.
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We can copy this definition and tweak it a bit by turning it into its Zw variant, more suitable for kernel
callers. The SYSTEM_INFORMATION_CLASS enumeration and associated data structures are the real data
we’re after. Some values are provided in user-mode and/or kernel-mode headers. Most of the values have
been “reversed engineered” and can be found in open source projects, such as Process Hacker®. Although
these APIs might not be officially documented, they are unlikely to change as Microsoft’s own tools depend
on many of them.

If the API in question only exists in certain Windows versions, it’s possible to query dynamically for the
existence of a kernel API with MmGetSystemRoutineAddress:

PVOID MmGetSystemRoutineAddress (_In_ PUNICODE_STRING SystemRoutineName);

You can think of MmGetSystemRoutineAddress as the kernel-mode equivalent of the user-mode
GetProcAddress APL

Another very useful API is NtQueryInformationProcess, also defined in Winternlh:

NTAPI NtQuerylInformationProcess (
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL);

Curiously enough, the kernel-mode headers provide many of the PROCESSINFOCLASS enumeration values,
along with their associated data structures, but not the definition of this system call itself. Here is a partial
set of values for PROCESSINFOCLASS:

typedef enum _PROCESSINFOCLASS ({
ProcessBasicInformation = 0,
ProcessDebugPort = 7,
ProcessWow64Information = 26,
ProcessImageFileName = 27,
ProcessBreakOnTermination = 29
} PROCESSINFOCLASS;

’ A more complete list is available in ntddk.h. A full list is available within the Process Hacker
project.

The following example shows how to query the current process image file name. ProcessImageF i leName
seems to be the way to go, and it expects a UNICODE_STRING as the buffer:

*https://github.com/processhacker/phnt


https://github.com/processhacker/phnt
https://github.com/processhacker/phnt
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ULONG size = 1024;
auto buffer = ExAllocatePoolWithTag(PagedPool, size, DRIVER_TAG);
auto status = ZwQueryInformationProcess(NtCurrentProcess(),
ProcessImageFileName, buffer, size, nullptr);
i f(NT_SUCCESS(status)) {
auto name = (UNICODE_STRING*)buffer;
// do something with name. ..

}
ExFreePool (buffer);

Example: Enumerating Processes

The EnumProc driver shows how to call ZwQuerySystemInformation to retrieve the list of running
processes. DriverEntry calls the EnumProcesses function that does all the work and dumps information
using simple DbgPrint calls. Then DriverEntry returns an error so the driver is unloaded.

First, we need the definition of ZwQuerySystemInformation and the required enum value and structure
which we can copy from Winternl.h:

#include <ntddk.h>

// copied from <WinTernl.h>
enum SYSTEM_INFORMATION_CLASS {
SystemProcessInformation = 5,

Y

typedef struct _SYSTEM_PROCESS_INFORMATION {
ULONG NextEntryOffset;
ULONG NumberOfThreads;
UCHAR Reservedi [48];
UNICODE_STRING ImageName;
KPRIORITY BasePriority;
HANDLE UniqueProcessId;
PVOID Reserved?Z;
ULONG HandleCount;
ULONG Sessionld;
PVOID Reserved3;
SIZE_T PeakVirtualSize;
SIZE_T VirtualSize;
ULONG Reserved4;
SIZE_T PeakWorkingSetSize;
SIZE_T WorkingSetSize;
PVOID Reserved5;
SIZE_T QuotaPagedPoolUsage;
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PVOID Reservedt;
SIZE_T QuotaNonPagedPoolUsage;
SIZE_T PagefileUsage;
SIZE_T PeakPagefileUsage;
SIZE_T PrivatePageCount;
LARGE_INTEGER Reserved7[6];
} SYSTEM_PROCESS_INFORMATION, * PSYSTEM_PROCESS_INFORMATION;

extern "C" NTSTATUS ZwQuerySystemInformation(
SYSTEM_INFORMATION_CLASS info,
PVOID buffer,
ULONG size,
PULONG len);

Notice there are lots of “reserved” members in SYSTEM_PROCESS_INFORMATION. We'll manage with what
we get, but you can find the full data structure in the Process Hacker project.

EnumProcesses starts by querying the number of bytes needed by calling ZwQuerySystemInformation
with a null buffer and zero size, getting the last parameter as the required size:

void EnumProcesses() {
ULONG size = 0;

ZwQuerySystemInformation(SystemProcessInformation, nullptr, 0, &size);

size += 1 << 12; // 4KB, just to make sure the next call succeeds

We want to allocate some more in case new processes are created between this call and the next “real” call.
We can write the code in a more robust way and have a loop that queries until the size is large enough,
but the above solution is robust enough for most purposes.

Next, we allocate the required buffer and make the call again, this time with the real buffer:

auto buffer = ExAllocatePoolWithTag(PagedPool, size, 'cprP');
if (!buffer)
return;

if (NT_SUCCESS(ZwQuerySystemInformation(SystemProcessInformation,
buffer, size, nullptr))) {

if the call succeeds, we can start iterating. The returned pointer is to the first process, where the next process
is located NextEntryOf fset bytes from this offset. The enumeration ends when NextEntryOf fset is zero:
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auto info = (SYSTEM_PROCESS_INFORMATION*)buffer;
ULONG count = ©;
for (;;) {
DbgPrint("PID: %u Session: %u Handles: %u Threads: %u Image: %wZ\n",
HandleToULong(info->UniqueProcesslId),
info->Sessionld, info->HandleCount,
info->NumberOfThreads, info->ImageName);
count++;
if (info->NextEntryOffset == 0)
break;

info = (SYSTEM_PROCESS_INFORMATION*)((PUCHAR)info + info->NextEntryOffset);
}

DbgPrint("Total Processes: %u\n", count);

We output some of the details provided in the SYSTEM_PROCESS_INFORMATION structure and count the
nnumber of processes while we’re at it. The only thing left to do in this simple example is to clean up:

}
ExFreePool (buffer);

As mentioned, DriverEntry is simple:

extern "C" NTSTATUS

DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) ({
UNREFERENCED_PARAMETER(DriverObject);
UNREFERENCED_PARAMETER(RegistryPath);

EnumProcesses();
return STATUS_UNSUCCESSFUL;

Given this knowledge, we can make the KMelody driver a bit better by creating our thread in a Csrss.exe
process for the current session, instead of the first client process that comes in. This is better, since Csrss
always exists, and is in fact a critical process - one that if killed for whatever reason, causes the system to
crash.

Killing Csrss is not easy, since it’s a protected process starting with Windows 8.1, but kernel code can
certainly do that.
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\g

? 1. Modify the KMelody driver to create the thread in a Csrss process for the current
session. Search for Csrss with ZwQuerySystemInformation and create the thread in

that process.
2. Add support for multiple sessions, where there is one playback thread per session. Hint:
call ZwQueryInformationProcess with ProcessSessionId to find out the session a
process is part of. Manage a list of PlaybackState objects, one for each session. You
can also use the undocumented (but exported) PsGetCurrentProcessSessionId APL

Summary

In this chapter, we were introduced to some programming techniques that are useful in many types of
drivers. We're not done with these techniques - there will be more in chapter 11. But for now, we can
begin using some kernel-provided notifications, starting with Process and Thread notifications in the next
chapter.



Chapter 9: Process and Thread
Notifications

One of the powerful mechanisms available for kernel drivers is the ability to be notified when certain
important events occur. In this chapter, we’ll look into some of these events, namely process creation and
destruction, thread creation and destruction, and image loads.

In this chapter:

+ Process Notifications

+ Implementing Process Notifications
+ Providing Data to User Mode

+ Thread Notifications

+ Image Load Notifications

+ Remote Thread Detection

Process Notifications

Whenever a process is created or destroyed, interested drivers can be notified by the kernel of that fact.
This allows drivers to keep track of processes, possibly associating some data with these processes. At the
very minimum, these allow drivers to monitor process creation/destruction in real-time. By “real-time”
I mean that the notifications are sent “in-line”, as part of process creation; the driver cannot miss any
processes that may be created and destroyed quickly.

For process creation, drivers also have the power to stop the process from being fully created, returning
an error to the caller that initiated process creation. This kind of power can only be directly achieved in
kernel mode.

Windows provides other mechanisms for being notified when processes are created or destroyed. For
example, using Event Tracing for Windows (ETW), such notifications can be received by a user-mode
process (running with elevated privileges). However, there is no way to prevent a process from being
created. Furthermore, ETW has an inherent notification delay of about 1-3 seconds (it uses internal
buffers for performance reasons), so a short-lived process may exit before the creation notification arrives.
Opening a handle to the created process at that time would no longer be possible.
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The main API for registering for process notifications is PsSetCreateProcessNoti fyRoutineEx, defined
like so:

NTSTATUS PsSetCreateProcessNotifyRoutineEx (
_In_ PCREATE_PROCESS_NOTIFY_ROUTINE_EX NotifyRoutine,
_In_ BOOLEAN Remove);

registration function to fail.

g There is currently a system-wide limit of 64 registrations, so it’s theoretically possible for the

The first argument is the driver’s callback routine, having the following prototype:

void ProcessNotifyCallback(
_Inout_ PEPROCESS Process,
_In_ HANDLE ProcesslId,
_Inout_opt_ PPS_CREATE_NOTIFY_INFO Createlnfo);

The second argument to PsSetCreateProcessNotifyRoutineEx indicates whether the driver is register-
ing or unregistering the callback (FALSE indicates the former). Typically, a driver will call this API with
FALSE in its DriverEntry routine and call the same API with TRUE in its Unload routine.

The parameters to the process notification routine are as follows:

» Process - the process object of the newly created process, or the process being destroyed.

« Process Id - the unique process ID of the process. Although it’s declared with type HANDLE, it’s in
fact an ID.

« Createlnfo - a structure that contains detailed information on the process being created. If the process
is being destroyed, this argument is NULL.

For process creation, the driver’s callback routine is executed by the creating thread (running as part of
the creating process). For process exit, the callback is executed by the last thread to exit the process. In
both cases, the callback is called inside a critical region (where normal kernel APCs are disabled).

Starting with Windows 10 version 1607, there is another function for process notifications: PsSetCreateProcessNot i fyRot
This “extended” function sets up a callback similar to the previous one, but the callback is also invoked
for Pico processes. Pico processes are those used to host Linux processes for the Windows Subsystem for
Linux (WSL) version 1. If a driver is interested in such processes, it must register with the extended
function.
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A driver using these callbacks must have the IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY flag in its
Portable Executable (PE) image header. Without it, the call to the registration function returns STATUS_-
ACCESS_DENIED (unrelated to driver test signing mode). Currently, Visual Studio does not provide UI for
setting this flag. It must be set in the linker command-line options with /integritycheck. Figure 9-1
shows the project properties where this setting is specified.

SysMon Property Pages

Configuration: | All Configurations ~ | Platform: | All Platforms ~ Configuration Manager...

4 Configuration Properties  ~ | All Options
General <different options>

Debugging
VC++ Directories
b C/C++
4 Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Driver Settings
Driver Install
Build Events Additional Options
Inf2Cat fintegritycheck  f——
Driver Signing
Wpp Tracing

Inherit from parent or project defaults

v v v v v W

L

Cancel Apply

Figure 9-1: /integritycheck linker switch in Visual Studio

The data structure provided for process creation is defined like so:

typedef struct _PS_CREATE_NOTIFY_INFO {
_In_ SIZE_T Size;

union {
_In_ ULONG Flags;
struct {

_In_ ULONG FileOpenNameAvailable : 1;
_In_ ULONG IsSubsystemProcess : 1;
_In_ ULONG Reserved : 30;

};
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¥
_In_ HANDLE ParentProcesslId;
_In_ CLIENT_ID CreatingThreadlId;
_Inout_ struct _FILE_OBJECT *FileObject;
_In_ PCUNICODE_STRING ImageFileName;
_In_opt_ PCUNICODE_STRING CommandLine;
_Inout_ NTSTATUS CreationStatus;

} PS_CREATE_NOTIFY_INFO, *PPS_CREATE_NOTIFY_INFO;

Here is a description of the important fields in this structure:

« CreatingThreadld - a combination of thread and process Id of the creator of the process.

« ParentProcessld - the parent process ID (not a handle). This process is usually the same as provided
by CreateThreadld.UniqueProcess, but may be different, as it’s possible, as part of process
creation, to pass in a different parent process to inherit certain properties from. See the user-mode
documentation for UpdateProcThreadAttribute with the PROC_THREAD_ATTRIBUTE_PARENT_-
PROCESS attribute.

« ImageFileName - the image file name of the executable, available if the flagF i 1eOpenNameAvailable
is set.

» CommandLine - the full command line used to create the process. Note that in some cases it may
be NULL.

« IsSubsystemProcess - this flag is set if this process is a Pico process. This can only happen if the
driver registered using PsSetCreateProcessNotifyRoutineEx2.

« CreationStatus - this is the status that would return to the caller. It’s set to STATUS_SUCCESS when
the callback is invoked. This is where the driver can stop the process from being created by placing
some failure status in this member (e.g. STATUS_ACCESS_DENIED). if the driver fails the creation,
subsequent drivers that may have set up their own callbacks will not be called.

Implementing Process Notifications

To demonstrate process notifications, we’ll build a driver that gathers information on process creation
and destruction and allow this information to be consumed by a user-mode client. This is similar to tools
such as Process Monitor and SysMon from Sysinternals, which use process and thread notifications for
reporting process and thread activity. During the course of implementing this driver, we’ll leverage some
of the techniques we learned in previous chapters.

Our driver name is going to be SysMon (unrelated to the SysMon tool). It will store all process
creation/destruction information in a linked list. Since this linked list may be accessed concurrently by
multiple threads, we need to protect it with a mutex or a fast mutex; we’ll go with fast mutex, as it’s
slightly more efficient.

The data we gather will eventually find its way to user mode, so we should declare common structures
that the driver produces and a user-mode client consumes. We’ll add a common header file named
SysMonPublic.h to the driver project and define a few structures. We start with a common header for
all information structures we need to collect:
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enum class ItemType : short {
None,
ProcessCreate,
ProcessExit

};

struct ItemHeader {
ItemType Type;
USHORT Size;
LARGE_INTEGER Time;
1

have a scope (ItemType in this case). These enums can also have a non-int size - short in the

’ The ItemType enum defined above uses the C++ 11 scoped enum feature, where enum values
example. If you’re using C, you can use classic enums, or even #defines if you prefer.

The ItemHeader structure holds information common to all event types: the type of the event, the time of
the event (expressed as a 64-bit integer), and the size of the payload. The size is important, as each event
has its own information. If we later wish to pack an array of these events and (say) provide them to a
user-mode client, the client needs to know where each event ends and the next one begins.

Once we have this common header, we can derive other data structures for particular events. Let’s start
with the simplest - process exit:

struct ProcessExitInfo : ItemHeader ({
ULONG Processld;
ULONG ExitCode;

Y

For process exit event, there is just one interesting piece of information (besides the header and the thread
ID) - the exit status (code) of the process. This is normally the value returned from a user-mode main
function.

’ If you’re using C, then inheritance is not available to you. However, you can simulate it by
having the first member be of type ItemHeader and then adding the specific members; The
memory layout is the same.

struct ProcessExitInfo {
ItemHeader Header;
ULONG Processld;

};
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The type used for a process ID is ULONG - process IDs (and thread IDs) cannot be larger than 32-bit.
HANDLE is not a good idea, as user mode may be confused by it. Also, HANDLE has a different size in a
32-bit process as opposed to a 64-bit process, so it’s best to avoid “bitness”-affected members. If you're
familiar with user-mode programming, DWORD is a common typedef for a 32-bit unsigned integer. It’s
not used here because DWORD is not defined in the WDK headers. Although it’s pretty easy to define it
explicitly, it’s simpler just to use ULONG, which means the same thing and is defined in user-mode and
kernel-mode headers.

Since we need to store every such structure as part of a linked list, each data structure must contain a
LIST_ENTRY instance that points to the next and previous items. Since these LIST_ENTRY objects should
not be exposed to user-mode, we will define extended structures containing these entries in a different file,
that is not shared with user-mode.

There are several ways to define a “bigger” structure to hold the LIST_ENTRY. One way is to create
templated type that has a LIST_ENTRY at the beginning (or end) like so:

template<typename T>

struct Fullltem {
LIST_ENTRY Entry;
T Data;

¥

The layout of FullItem<T> is shown in figure 9-2.

FullItem<T>

LIST_ENTRY Entry

ItemHeader
Provided to

User-mode

Specific Data

Figure 9-2: FullItem<T> layout

A templated class is used to avoid creating a multitude of types, one for each specific event type. For
example, we could create the following structure specifically for a process exit event:
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struct FullProcessExitInfo {
LIST_ENTRY Entry;
ProcesskExitInfo Data;

};

We could even inherit from LIST_ENTRY and then just add the ProcessExitInfo structure. But this is
not elegant, as our data has nothing to do with LIST_ENTRY, so inheriting from it is artificial and should
be avoided.

The FullItem<T> type saves the hassle of creating these individual types.

approach. I'm not going to mention C again in this chapter - there is always a workaround that

0 IF you’re using C, then templates are not available, and you must use the above structure
can be used if you have to.

Another way to accomplish something similar, without using templates is by using a union to hold on to
all the possible variants. For example:

struct ItemData : ItemHeader {
union {
ProcessCreatelnfo ProcessCreate; // TBD
ProcessExitInfo ProcessExit;
};
};

Then we just extend the list of data members in the union. The full item would be just a simple extension:

struct Fullltem {
LIST_ENTRY Entry;
ItemData Data;

};

The rest of the code uses the first option (with the template). The reader is encouraged to try the second
option.

The head of our linked list must be stored somewhere. We’ll create a data structure that will hold all
the global state of the driver, instead of creating separate global variables. Here is the definition of our
structure (in Globals.h in the smaple code for this chapter):
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#include "FastMutex.h"

struct Globals {
void Init(ULONG maxItems);
bool AddItem(LIST_ENTRY* entry);
LIST_ENTRY* Removeltem();

private:
LIST_ENTRY m_ItemsHead;
ULONG m_Count;
ULONG m_MaxCount;
FastMutex m_Lock;

Y

The FastMutex type used is the same one we developed in chapter 6.

Init is used to initialize the data members of the structure. Here is its implementation (in Globals.cpp):

void Globals::Init(ULONG maxCount) {
InitializelListHead(&m_ItemsHead);
m_Lock.Init();
m_Count = 0;
m_MaxCount = maxCount;

m_MaxCount holds the maximum number of elements in the linked list. This will be used to prevent the
list from growing arbitrarily large if a client does not request data for a while. n_Count holds the current
number of items in the list. The list itself is initialized with the normal Initializel istHead APL Finally,
the fast mutex is initialized by invoking its own Init method as implemented in chapter 6.

The DriverEntry Routine

The DriverEntry for the SysMon driver is similar to the one in the Zero driver from chapter 7. We have
to add process notification registration and proper initialization of our Globals object:

// in SysMon.cpp
Globals g_State;

extern "C"
NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) ({
auto status = STATUS_SUCCESS;

PDEVICE_OBJECT DeviceObject = nullptr;
UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\sysmon");
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bool symLinkCreated = false;

do {

UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\sysmon");

status = IoCreateDevice(DriverObject, 0, &devName,
FILE_DEVICE_UNKNOWN, ©, TRUE, &DeviceObject);

if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to create device (0x%08X)\n",

status));

break;

}
DeviceObject->Flags |= DO_DIRECT_IO;

status = IoCreateSymbolicLink(&symLink, &devName);
if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to create sym link (0x%08X)\n",
status));
break;

}

symLinkCreated = true;

status = PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, FALSE);

if (INT_SUCCESS(status)) {
KdPrint( (DRIVER_PREFIX
"failed to register process callback (0x%08X)\n",
status));
break;

}
} while (false);

if (!NT_SUCCESS(status)) {
if (symLinkCreated)
IoDeleteSymbolicLink(&symLink);
if (DeviceObject)
IoDeleteDevice(DeviceObject);
return status;

g_State.Init(10000); // hard-coded limit for now
DriverObject->DriverUnload = SysMonUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =
DriverObject->MajorFunction[IRP_MJ_CLOSE] = SysMonCreateClose;

271
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DriverObject->MajorFunction[IRP_MJ_READ] = SysMonRead;

return status;

The device object’s flags are adjusted to use Direct I/O for read/write operations (DO_DIRECT_IO). The
device is created as exclusive, so that only a single client can exist to the device. This makes sense, otherwise
multiple clients might be getting data from the device, which would mean each client getting parts of the
data. In this case, I decided to prevent that by creating the device as exclusive (TRUE value in the second
to last argument). We’ll use the read dispatch routine to return event information to a client.

The create and close dispatch routines are handled in the simplest possible way - just completing them
successfully, with the help of CompleteRequest we have encountered before:

NTSTATUS CompleteRequest(PIRP Irp,
NTSTATUS status = STATUS_SUCCESS, ULONG_PTR info = 0) {
Irp->IoStatus.Status = status;
Irp->IoStatus.Information = info;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

return status;

NTSTATUS SysMonCreateClose(PDEVICE_OBJECT, PIRP Irp) {
return CompleteRequest(Irp);

Handling Process Exit Notifications

The process notification function in the code above is OnProcessNotify and has the prototype outlined
earlier in this chapter. This callback handles process creation and exit. Let’s start with process exit, as it’s
much simpler than process creation (as we shall soon see). The basic outline of the callback is as follows:

void OnProcessNotify(PEPROCESS Process, HANDLE Processld,
PPS_CREATE_NOTIFY_INFO CreateInfo) {
if (Createlnfo) {

// process create

}
else {

// process exit
}

For process exit we have just the process ID we need to save, along with the header data common to all
events. First, we need to allocate storage for the full item representing this event:
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auto info = (Fullltem<ProcessExitInfo>*)ExAllocatePoolWithTag(PagedPool,
sizeof(Fullltem<ProcessExitInfo>), DRIVER_TAG);

if (info == nullptr) {
KdPrint((DRIVER_PREFIX "failed allocation\n"));
return;

If the allocation fails, there is really nothing the driver can do, so it just returns from the callback.

Now it’s time to fill the generic information: time, item type and size, all of which are easy to get:

auto& item = info->Data;
KeQuerySystemTimePrecise(&item.Time);

item.Type = ItemType: :ProcessExit;

item.Size = sizeof(ProcessExitInfo);
item.ProcessId = HandleToULong(ProcesslId);
item.ExitCode = PsGetProcessExitStatus(Process);

PushItem(&info->Entry);

First, we dig into the data item itself (bypassing the LIST_ENTRY) with the item variable. Next, we fill
the header information: The item type is well-known, since we are in the branch handling a process
exit notification; the time can be obtained with KeQuerySystemTimePrecise that returns the current
system time (UTC, not local time) as a 64-bit integer counting from January 1, 1601 at midnight Universal
Time. Finally, the item size is constant and is the size of the user-facing data structure (not the size of the
Fullltem<ProcessExitInfo>).

Notice the item variable is a reference to the data; without the reference (&), a copy would have
been created, which is not what we want.

The KeQuerySystemTimePrecise API is available starting with Windows 8. For earlier
versions, the KeQuerySystemTime API should be used instead.

The specific data for a process exit event consists of the process ID and the exit code. The process ID is
provided directly by the callback itself. The only thing to do is call HandleToULong so the correct cast is
used to turn a HANDLE value into an unsigned 32-bit integer. The exit code is not given directly, but it’s
easy to retrieve with PsGetProcessExitStatus:

NTSTATUS PsGetProcessExitStatus(_In_ PEPROCESS Process);

All that’s left to do now is add the new item to the end of our linked list. For this purpose, we’ll define and
implement a function named AddItem in the Globals class:
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void Globals::AddItem(LIST_ENTRY* entry) {
Locker locker(m_Lock);
if (m_Count == m_MaxCount) ({
auto head = RemoveHeadlList(&m_ItemsHead);
ExFreePool (CONTAINING_RECORD(head,
Fullltem<ItemHeader>, Entry));
m_Count--;

InsertTaillList(&m_ItemsHead, entry);
m_Count++;

AddItem uses the Locker<T> we saw in earlier chapters to acquire the fast mutex (and release it when the
variable goes out of scope) before manipulating the linked list. Remember to set the C++ standard to C++
17 at least in the project’s properties so that Locker can be used without explicitly specifying the type it
works on (the compiler makes the inference).

We’ll add new items to the tail of the list. If the number of items in the list is at its maximum, the function
removes the first item (from the head) and frees it with ExFreePool, decrementing the item count.

This is not the only way to handle the case where the number of items is too large. Feel free to use other
ways. A more “precise” way might be tracking the number of bytes used, rather than number of items,
because each item is different in size.

We don’t need to use atomic increment/decrement operations in the AddItem function because
manipulation of the item count is always done under the protection of the fast mutex.

With AddItem implemented, we can call it from our process notify routine:

g_State.AddItem(&info->Entry);

as ZwOpenKey or IoOpenDeviceRegistryKey and then ZwQueryValueKey. We'll look at these

f Implement the limit by reading from the registry in DriverEntry. Hint: you can use APIs such
APIs more closely in chapter 11.
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Handling Process Create Notifications

Process create notifications are more complex because the amount of information varies. The command
line length is different for different processes. First we need to decide what information to store for process
creation. Here is a first try:

struct ProcessCreatelnfo : ItemHeader {
ULONG Processld;
ULONG ParentProcessld;
WCHAR CommandLine[1024];

};

We choose to store the process ID, the parent process ID and the command line. Although this structure
can work and is fairly easy to deal with because its size is known in advance.

Q What might be an issue with the above declaration?

The potential issue here is with the command line. Declaring the command line with constant size is simple,
but not ideal. If the command line is longer than allocated, the driver would have to trim it, possibly hiding
important information. If the command line is shorter than the defined limit, the structure is wasting
memory.

e Can we use something like this?

struct ProcessCreateInfo : ItemHeader ({
ULONG Processld;
ULONG ParentProcessId;
UNICODE_STRING CommandLine; // can this work?

};

This cannot work. First, UNICODE_STRING is not normally defined in user mode headers. Secondly
(and much worse), the internal pointer to the actual characters normally would point to system space,
inaccessible to user-mode. Thirdly, how would that string be eventually freed?

Here is another option, which we’ll use in our driver:



Chapter 9: Process and Thread Notifications 276

struct ProcessCreatelnfo : ItemHeader {
ULONG Processld;
ULONG ParentProcessld;
ULONG CreatingThreadlId;
ULONG CreatingProcessld;
USHORT CommandLinelLength;
WCHAR CommandLine[1];
};

We'll store the command line length and copy the actual characters at the end of the structure, starting
from CommandLine. The array size is specified as 1 just to make it easier to work with in the code. The
actual number of characters is provided by CommandLineLength.

Given this declaration, we can begin implementation for process creation (CreateInfo is non-NULL):

USHORT allocSize = sizeof(Fullltem<ProcessCreatelnfo>);

USHORT commandLineSize = 0;

if (Createlnfo->CommandLine) {
commandLineSize = Createlnfo->CommandLine->Length;
allocSize += commandLineSize;

}

auto info = (Fullltem<ProcessCreatelnfo>*)ExAllocatePoolWithTag(
PagedPool, allocSize, DRIVER_TAG);

if (info == nullptr) ({
KdPrint((DRIVER_PREFIX "failed allocation\n"));
return;

}

The total size for an allocation is based on the command line length (if any). Now it’s time to fill in the
fixed-size details:

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);

item.Type = ItemType: :ProcessCreate;

item.Size = sizeof(ProcessCreateIlnfo) + commandLineSize;

item.ProcessId = HandleToULong(ProcesslId);

item.ParentProcessId = HandleToULong(Createlnfo->ParentProcesslid);

item.CreatingProcessId = HandleToULong(
CreateInfo->CreatingThreadld.UniqueProcess);

item.CreatingThreadId = HandleToULong(
Createlnfo->CreatingThreadld.UniqueThread);

The item size must be calculated to include the command line length.

Next, we need to copy the command line to the address where CommandLine begins, and set the correct
command line length:



Chapter 9: Process and Thread Notifications 277

if (commandLineSize > 0) {
memcpy (item.CommandLine, Createlnfo->CommandLine->Buffer, commandLineSize);
item.CommandLineLength = commandLineSize / sizeof(WCHAR); // len in WCHARs

}
else {

item.CommandLinelLength = ©;
}

g_State.AddItem(&info->Entry);

The command line length is stored in characters, rather than bytes. This is not mandatory, of course, but
would probably be easier to use by user mode code. Notice the command line is not NULL terminated - it’s
up to the client not read too many characters. As an alternative, we can make the string null terminated
to simplify client code. In fact, if we do that, the command line length is not even needed.

f Make the command line NULL -terminated and remove the command line length.

needed, perfect for adding a NULL-terminator. Why? sizeof(ProcessCreatelnfo) includes

P Astute readers may notice that the calculated data length is actually one character longer than
one character of the command line.

For easier reference, here is the complete process notify callback implementation:

void OnProcessNotify(PEPROCESS Process, HANDLE Processld,
PPS_CREATE_NOTIFY_INFO Createlnfo) {
if (Createlnfo) {
USHORT allocSize = sizeof(Fullltem<ProcessCreatelnfo>);
USHORT commandLineSize = 0;
if (Createlnfo->CommandLine) {
commandLineSize = Createlnfo->CommandLine->Length;
allocSize += commandLineSize;
}
auto info = (Fullltem<ProcessCreatelnfo>*)ExAllocatePoolWithTag(
PagedPool, allocSize, DRIVER_TAG);
if (info == nullptr) {
KdPrint((DRIVER_PREFIX "failed allocation\n"));

return;

auto& item = info->Data;

KeQuerySystemTimePrecise(&item.Time);
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item.Type = ItemType: :ProcessCreate;

item.Size = sizeof(ProcessCreatelnfo) + commandLineSize;

item.ProcessId = HandleToULong(ProcesslId);

item.ParentProcessId = HandleToULong(CreatelInfo->ParentProcesslId);

item.CreatingProcessId = HandleToULong(
Createlnfo->CreatingThreadld.UniqueProcess);

item.CreatingThreadId = HandleToULong(
CreatelInfo->CreatingThreadld.UniqueThread);

if (commandLineSize > 0) {
memcpy (item.CommandLine, Createlnfo->CommandLine->Buffer,
commandLineSize);
item.CommandLineLength = commandLineSize / sizeof(WCHAR);

}

else {

item.CommandLinelLength Q;

}
g_State.AddItem(&info->Entry);
}
else {
auto info = (Fullltem<ProcessExitInfo>*)ExAllocatePoolWithTag(
PagedPool, sizeof(Fullltem<ProcessExitInfo>), DRIVER_TAG);
if (info == nullptr) {
KdPrint((DRIVER_PREFIX "failed allocation\n"));

return;

auto& item = info->Data;
KeQuerySystemTimePrecise(&item.Time);

item.Type = ItemType: :ProcessExit;
item.ProcessId = HandleToULong(ProcesslId);
item.Size = sizeof(ProcessExitInfo);
item.ExitCode = PsGetProcessExitStatus(Process);

g_State.AddItem(&info->Entry);

Providing Data to User Mode

The next thing to consider is how to provide the gathered information to a user-mode client. There are
several options that could be used, but for this driver we’ll let the client poll the driver for information
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using a read request. The driver will fill the user-provided buffer with as many events as possible, until
either the buffer is exhausted or there are no more events in the queue.

We'll start the read request by obtaining the address of the user’s buffer with Direct I/O (set up in
DriverEntry):

NTSTATUS SysMonRead(PDEVICE_OBJECT, PIRP Irp) {
auto irpSp = IoGetCurrentlIrpStackLocation(Irp);
auto len = irpSp->Parameters.Read.Length;
auto status = STATUS_SUCCESS;

ULONG bytes = 0;

NT_ASSERT(Irp->MdlAddress); // we're using Direct I1/0

auto buffer = (PUCHAR)MmGetSystemAddressForMdlSafe(
Irp->MdlAddress, NormalPagePriority);

if (!buffer) {
status = STATUS_INSUFFICIENT_RESOURCES;

Now we need to access our linked list and pull items from its head. We’ll add this support to the Global
class by implementing a method that removed an item from the head and returns it. If the list is empty, it
returns NULL:

LIST_ENTRY* Globals::Removeltem() {
Locker locker(m_Lock);
auto item = RemoveHeadlList(&m_ItemsHead);
if (item == &m_ItemsHead)
return nullptr;

m_Count--;
return item;

If the linked list is empty, RemoveHeadL ist returns the head itself. It’s also possible to use IsListEmpty
to make that determination. Lastly, we can check if m_Count is zero - all these are equivalent. If there is
an item, it’s returned as a LIST_ENTRY pointer.

Back to the Read dispatch routine - we can now loop around, getting an item out, copying its data to the
user-mode buffer, until the list is empty or the buffer is full:
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else {
while (true) {
auto entry = g_State.Removeltem();
if (entry == nullptr)

break;
/7
// get pointer to the actual data item
//

auto info = CONTAINING_RECORD(entry, Fullltem<ItemHeader>, Entry);
info->Data.Size;

auto size
if (len < size) {
/7
// user's buffer too small, insert item back
//
g_State.AddHeadItem(entry);
break;
}
memcpy(buffer, &info->Data, size);
len -= size;
buffer += size;
bytes += size;
ExFreePool(info);

}
return CompleteRequest(Irp, status, bytes);

Globals: :RemoveItem is called to retrieve the head item (if any). Then we have to check if the remaining
bytes in the user’s buffer are enough to contain the data of this item. If not, we have to push the item back
to the head of the queue, accomplished with another method in the Globals class:

void Globals: :AddHeadItem(LIST_ENTRY* entry) {
Locker locker(m_Lock);
InsertHeadlList(&m_ItemsHead, entry);
m_Count++;

}

If there is enough room in the buffer, a simple memcpy is used to copy the actual data (everything except
the LIST_ENTRY to the user’s buffer). Finally, the variables are adjusted based on the size of this item and
the loop repeats.

Once out of the loop, the only thing remaining is to complete the request with whatever status and
information (bytes) have been accumulated thus far.

We need to take a look at the unload routine as well. If there are items in the linked list, they must be freed
explicitly; otherwise, we have a leak on our hands:
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void SysMonUnload(PDRIVER_OBJECT DriverObject) {
PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, TRUE);

LIST_ENTRY* entry;
while ((entry = g_State.Removeltem()) != nullptr)
ExFreePool (CONTAINING_RECORD(entry, Fullltem<ItemHeader>, Entry));

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\sysmon");
IoDeleteSymbolicLink(&symLink);
IoDeleteDevice(DriverObject->DeviceObject);

The linked list items are freed by repeatedly removing items from the list and calling ExFreePool on each
item.

The User Mode Client

Once we have all this in place, we can write a user mode client that polls data using ReadFile and displays
the results.

Themain function calls ReadFile in a loop, sleeping a bit so that the thread is not always consuming CPU.
Once some data arrives, it’s sent for display purposes:

#include <Windows.h>

#include <stdio.h>

#include <memory>

#include <string>

#include "..\SysMon\SysMonPublic.h"

int main() {
auto hFile = CreateFile(L"\\\\.\\SysMon", GENERIC_READ, O,
nullptr, OPEN_EXISTING, 0, nullptr);
if (hFile == INVALID_HANDLE_VALUE)

return Error("Failed to open file");

int size = 1 << 16; // 64 KB
auto buffer = std::make_unique<BYTE[]>(size);

while (true) {
DWORD bytes = 0;
// error handling omitted
ReadFile(hFile, buffer.get(), size, &bytes, nullptr);

if (bytes)
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DisplayInfo(buffer.get(), bytes);

// wait a bit before polling again
Sleep(400);

// never actually reached
CloseHandle(hFile);
return 0;

The DisplayInfo function must make sense of the buffer it’s given. Since all events start with a common
header, the function distinguishes the various events based on the ItemType. After the event has been
dealt with, the Size field in the header indicates where the next event starts:

void DisplayInfo(BYTE* buffer, DWORD size) {
while (size > 0) {
auto header = (ItemHeader*)buffer;
switch (header->Type) {
case ItemType: :ProcessExit:
{
DisplayTime(header->Time);
auto info = (ProcessExitInfo*)buffer;
printf("Process %u Exited (Code: %u)\n",
info->Processld, info->ExitCode);

break;

case ItemType: :ProcessCreate:
{
DisplayTime(header->Time);
auto info = (ProcessCreatelnfo*)buffer;
std: :wstring commandline(info->CommandLine,
info->CommandLinelLength);
printf("Process %u Created. Command line: %ws\n",
info->Processld, commandline.c_str());

break;

}

buffer += header->Size;
size -= header->Size;
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To extract the command line properly, the code uses the C++ wstring class constructor that can build a
string based on a pointer and the string length. The DisplayTime helper function formats the time in a
human-readable way:

void DisplayTime(const LARGE_INTEGER& time) {
//
// LARGE_INTEGER and FILETIME have the same size
// representing the same format in our case
//
FILETIME local;

/7
// convert to local time first (KeQuerySystemTime(Procise) returns UTC)
//
FileTimeTolLocalFileTime((FILETIME*)&time, &local);
SYSTEMTIME st;
FileTimeToSystemTime(&local, &st);
printf("%02d:%02d:%02d.%03d: ",
st.wHour, st.wMinute, st.wSecond, st.wMilliseconds);

SYSTEMTIME is a convenient structure to work with, as it contains all ingredients of a date and time. In the
above code, only the time is displayed, but the date components are present as well.

That’s all we need to begin testing the driver and the client.
The driver can be installed and started as done in earlier chapters, similar to the following:

sc create sysmon type= kernel binPath= C:\Test\SysMon.sys
sc start sysmon

Here is some sample output when running SysMonClient.exe:

16:18:51.961: Process 13124 Created. Command line: "C:\Program Files (x86)\Micr\
osoft\Edge\Application\97.0.1072.62\identity_helper.exe" --type=utility --utili\
ty-sub-type=winrt_app_id.mojom.WinrtAppIldService --field-trial-handle=2060,1091\
8786588500781911,4196358801973005731,131072 --lang=en-US --service-sandbox-type\
=none --mojo-platform-channel-handle=5404 /prefetch:8

16:18:51.967: Process 13124 Exited (Code: 3221226029)

16:18:51.969: Process 6216 Created. Command line: "C:\Program Files (x86)\Micro\
soft\Edge\Application\97.0.1072.62\identity_helper.exe" --type=utility --utilit\
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y-sub-type=winrt_app_id.mojom.WinrtAppIdService --field-trial-handle=2060,10918\
786588500781911,4196358801973005731,131072 --lang=en-US --service-sandbox-type=\
none --mojo-platform-channel-handle=5404 /prefetch:8

16:18:583.836: Thread 12456 Created in process 10720

16:18:58.159: Process 10404 Exited (Code: 1)

16:19:02.033: Process 6216 Exited (Code: Q)

16:19:28.163: Process 9360 Exited (Code: Q)

Thread Notifications

The kernel provides thread creation and destruction callbacks, similarly to process callbacks. The API to
use for registration is PsSetCreateThreadNotifyRoutine and for unregistering there is another API,
PsRemoveCreateThreadNotifyRoutine:

NTSTATUS PsSetCreateThreadNotifyRoutine(

_In_ PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine);
NTSTATUS PsRemoveCreateThreadNotifyRoutine (

_In_ PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine);

The arguments provided to the callback routine are the process ID, thread ID and whether the thread is
being created or destroyed:

typedef void (*PCREATE_THREAD_NOTIFY_ROUTINE) (
_In_ HANDLE Processld,
_In_ HANDLE ThreadId,
_In_ BOOLEAN Create);

If a thread is created, the callback is executed by the creator thread; if the thread exits, the callback executes
on that thread.

We'll extend the existing SysMon driver to receive thread notifications as well as process notifications.
First, we’ll add enum values for thread events and a structure representing the information, all in the
SysMonCommon.h header file:

enum class ItemType : short {
None,
ProcessCreate,
ProcessExit,
ThreadCreate,
ThreadExit

};

struct ThreadCreatelnfo : ItemHeader ({
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ULONG ThreadlId;
ULONG Processld;

Y

struct ThreadExitInfo : ThreadCreatelnfo {
ULONG ExitCode;

};

It’s convenient to have ThreadExitInfo inherit from ThreadCreatelInfo, as they share the thread and
process IDs. It’s certainly not mandatory, but it makes the thread notification callback a bit simpler to
write.

Now we can add the proper registration to DriverEntry, right after registering for process notifications:

status = PsSetCreateThreadNotifyRoutine(OnThreadNotify);
if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to set thread callbacks (@x%08X)\n",
status));
break;

Conversley, a call to PsRemoveCreateThreadNoti fyRoutine is needed in the Unload routine:

// in SysMonUnload
PsRemoveCreateThreadNotifyRoutine(OnThreadNotify);

The callback routine itself is simpler than the process notification callback, since the event structures have
fixed sizes. Here is the thread callback routine in its entirety:

void OnThreadNotify(HANDLE ProcessId, HANDLE ThreadlId, BOOLEAN Create) {
/7
// handle create and exit with the same code block, tweaking as needed
/7
auto size = Create ? sizeof(Fullltem<ThreadCreatelnfo>)
sizeof(Fullltem<ThreadExitInfo>);
auto info = (Fullltem<ThreadExitInfo>*)ExAllocatePoolWithTag(
PagedPool, size, DRIVER_TAG);
if (info == nullptr) {
KdPrint((DRIVER_PREFIX "Failed to allocate memory\n"));
return;
}
auto& item = info->Data;
KeQuerySystemTimePrecise(&item.Time);
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item.Size = Create ? sizeof(ThreadCreatelnfo) : sizeof(ThreadExitInfo);
item.Type = Create ? ItemType::ThreadCreate : ItemType::ThreadExit;
item.ProcessId = HandleToULong(ProcessId);
item.Threadld = HandleToULong(Threadld);
if (!Create) {
PETHREAD thread;
if (NT_SUCCESS(PsLookupThreadByThreadld(Threadld, &thread))) {
item.ExitCode = PsGetThreadExitStatus(thread);
ObDereferenceObject(thread);

}
g_State.AddItem(&info->Entry);

Most of this code should look pretty familiar. The slightly complex part if retrieving the thread exit code.
PsGetThreadExitStatus can be used for that, but that API requires a thread object pointer rather than an

ID. PsLookupThreadByThreadld is used to obtain the thread object that is passed to PsGetThreadExitStatus.
It’s important to remember to call ObDereferenceObject on the thread object or else it will linger in
memory until the next system restart.

To complete the implementation, we’ll add code to the client that knows how to display thread creation
and destruction (in the switch block inside DisplayInfo):

case ItemType: :ThreadCreate:

{
DisplayTime(header->Time);
auto info = (ThreadCreatelnfo*)buffer;
printf("Thread %u Created in process %u\n",
info->Threadld, info->Processld);
break;
}
case ItemType: :ThreadExit:
{
DisplayTime(header->Time);
auto info = (ThreadExitInfo*)buffer;
printf("Thread %u Exited from process %u (Code: %u)\n",
info->Threadld, info->ProcessId, info->ExitCode);
break;
}

Here is some sample output given the updated driver and client:
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16:19:41
16:19:41
16:19:41

.500:
.500:
.500:

Thread 10512 Created in process 9304

Thread 10512 Exited from process 9304 (Code: Q)

Thread 4424 Exited from process 9304 (Code: O)

16:19:41.501: Thread 10180 Exited from process 9304 (Code: Q)

16:19:41.777: Process 14324 Created. Command line: "C:\WINDOWS\system32\defrag.\
exe" -p bf8 -s 00VVVOYVRVV3BC -b -OnlyPreferred C:

16:19:41.777: Thread 8120 Created in process
16:19:41.780: Process 11572 Created. Command
ost.exe Oxffffffff -ForceVl

16:19:41.780: Thread 7952 Created in process
16:19:41.784: Thread 8748 Created in process
16:19:41.784: Thread 6408 Created in process

14324
line: \??\C:\WINDOWS\system32\conh\
11572
11572
11572

f Add client code that displays the process image name for thread create and exit.

Windows 10 adds another registration function that provides additional flexibility.

typedef enum _PSCREATETHREADNOTIFYTYPE {
PsCreateThreadNotifyNonSystem = O,
PsCreateThreadNotifySubsystems = 1

} PSCREATETHREADNOTIFYTYPE;

NTSTATUS PsSetCreateThreadNotifyRoutineEx(
_In_ PSCREATETHREADNOTIFYTYPE NotifyType,
_In_ PVOID NotifyInformation); // PCREATE_THREAD_NOTIFY_ROUTINE

Using PsCreateThreadNoti fyNonSystem indicates the callback for new threads should execute on the
newly created thread, rather than the creator.

Image Load Notifications

The last callback mechanism we’ll look at in this chapter is image load notifications. Whenever a PE image
(EXE, DLL, driver) file loads, the driver can receive a notification.

The PsSetLoadImageNoti fyRoutine APIregisters for these notifications, and PsRemoveImageNoti fyRoutine
is used for unregistering:
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NTSTATUS PsSetlLoadImageNotifyRoutine(

_In_ PLOAD_IMAGE_NOTIFY_ROUTINE NotifyRoutine);
NTSTATUS PsRemoveloadImageNotifyRoutine(

_In_ PLOAD_IMAGE_NOTIFY_ROUTINE NotifyRoutine);

The callback function has the following prototype:

typedef void (*PLOAD_IMAGE_NOTIFY_ROUTINE)(
_In_opt_ PUNICODE_STRING FullImageName,
_In_ HANDLE Processld, // pid into which image is being mapped
_In_ PIMAGE_INFO Imagelnfo);

Curiously enough, there is no callback mechanism for image unloads.

The FulllmageName argument is somewhat tricky. As indicated by the SAL annotation, it’s optional and
can be NULL. Even if it’s not NULL, it doesn’t always produce the correct image file name before Windows
10. The reasons for that are rooted deep in the kernel, it’s I/O system and the file system cache. In most
cases, this works fine, and the format of the path is the internal NT format, starting with something like
“\Device\HadrdiskVolumex\..” rather than “c:\..”. Translation can be done in a few ways, we’ll see one way
when we look at the client code.

The Processld argument is the process ID into which the image is loaded. For drivers (kernel modules),
this value is zero.

The Imagelnfo argument contains additional information on the image, declared as follows:

#define IMAGE_ADDRESSING_MODE_32BIT 3

typedef struct _IMAGE_INFO {

union {
ULONG Properties;
struct {

ULONG ImageAddressingMode
ULONG SystemModelImage

8, // Code addressing mode

1
ULONG ImageMappedToAllPids : 1; // Image mapped into all processes

1

1

;  // System mode image

ULONG ExtendedInfoPresent ; // IMAGE_INFO_EX available
ULONG MachineTypeMismatch ;. // Architecture type mismatch

ULONG resourcesignaturelLevel : 4; // Signature level
ULONG resourcesignatureType : 8, // Signature type
ULONG ImagePartialMap 1, // Nonzero if entire image is not \

mapped
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ULONG Reserved 1 12;
b
b
PVOID ImageBase;
ULONG resourceselector;
SIZE_T resourcesize;
ULONG resourcesectionNumber;

} IMAGE_INFO, *PIMAGE_INFO;
Here is quick rundown of the important fields in this structure:

« SystemModelmage - this flag is set for a kernel image, and unset for a user mode image.

« resourcesignatureLevel - signing level for Protected Processes Light (PPL) (Windows 8.1 and later).
See SE_SIGNING_LEVEL_ constants in the WDK.

« resourcesignatureType - signature type for PPL (Windows 8.1 and later). See the SE_IMAGE_-
SIGNATURE_TYPE enumeration in the WDK.

» ImageBase - the virtual address into which the image is loaded.

« ImageSize - the size of the image.

« ExtendedInfoPresent - if this flag is set, then IMAGE_INFO is part of a larger structure, IMAGE_INFO_-
EX, shown here:

typedef struct _IMAGE_INFO_EX {
SIZE_T Size;
IMAGE_INFO Imagelnfo;
struct _FILE_OBJECT *FileObject;
} IMAGE_INFO_EX, *PIMAGE_INFO_EX;

To access this larger structure, a driver can use the CONTAINING_RECORD macro like so:

if (ImageInfo->ExtendedInfoPresent) {
auto exinfo = CONTAINING_RECORD(ImageInfo, IMAGE_INFO_EX, Imagelnfo);
// access FileObject

The extended structure adds just one meaningful member - the file object used to open the image. This
may be useful for retrieving the file name in pre-WIndows 10 machines, as we’ll soon see.

As with the process and thread notifications, we’ll add the needed code to register in DriverEntry and
the code to unregister in the Unload routine. Here is the full DriverEntry function (with KdPrint calls
removed for brevity):
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extern "C" NTSTATUS
DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {
auto status = STATUS_SUCCESS;

PDEVICE_OBJECT DeviceObject = nullptr;

UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\sysmon");
bool symLinkCreated = false;

bool processCallbacks = false, threadCallbacks = false;

do {
UNICODE_STRING devName = RTL_CONSTANT_STRING(L"\\Device\\sysmon");
status = IoCreateDevice(DriverObject, 0, &devName,
FILE_DEVICE_UNKNOWN, ©, TRUE, &DeviceObject);
if (INT_SUCCESS(status)) {
break;

}
DeviceObject->Flags |= DO_DIRECT_IO;

status = IoCreateSymbolicLink(&symLink, &devName);
if (!NT_SUCCESS(status)) {
break;

}

symLinkCreated = true;

status = PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, FALSE);
if (!NT_SUCCESS(status)) {
break;

}

processCallbacks = true;

status = PsSetCreateThreadNotifyRoutine(OnThreadNotify);
if (!NT_SUCCESS(status)) {

break;

}
threadCallbacks = true;

status = PsSetLoadImageNotifyRoutine(OnImagelLoadNotify);
if (!NT_SUCCESS(status)) {
break;

}

} while (false);

if (INT_SUCCESS(status)) {
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if (threadCallbacks)
PsRemoveCreateThreadNotifyRoutine(OnThreadNotify);
if (processCallbacks)
PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, TRUE);
if (symLinkCreated)
IoDeleteSymbolicLink(&symLink);
if (DeviceObject)
IoDeleteDevice(DeviceObject);
return status;

g_State.Init(10000);

DriverObject->DriverUnload = SysMonUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =
DriverObject->MajorFunction[IRP_MJ_CLOSE] = SysMonCreateClose;

DriverObject->MajorFunction[IRP_MJ_READ] = SysMonRead;

return status;

We'll add an event type to the ItemType enum:

enum class ItemType : short {

};

As before, we need a structure to contain the information we can get from image load:

None,
ProcessCreate,
ProcessExit,
ThreadCreate,
ThreadExit,
Imageload

const int MaxImageFileSize = 300;

struct ImageLoadInfo : ItemHeader {

Y

ULONG Processld;

ULONG ImageSize;

ULONG64 LoadAddress;

WCHAR ImageFileName[MaxImageFileSize + 1];

291
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For variety, ImageLoadInfo uses a fixed size array to store the path to the image file. The interested reader
should change that to use a scheme similar to process create notifications.

The image load notification starts by not storing information on kernel images:

void OnImagelLoadNotify(PUNICODE_STRING FullImageName,
HANDLE ProcessId, PIMAGE_INFO Imagelnfo) {
if (Processld == nullptr) {
// system image, ignore
return;

This is not necessary, of course. You can remove the above check so that kernel images are reported as
well. Next, we allocate the data structure and fill in the usual information:

sizeof(Fullltem<ImagelLoadInfo>);
(Fullltem<ImageLoadInfo>*)ExAllocatePoolWithTag(PagedPool, size, DR\

auto size

auto info
IVER_TAG);
if (info == nullptr) {
KdPrint((DRIVER_PREFIX "Failed to allocate memory\n"));
return;

auto& item = info->Data;
KeQuerySystemTimePrecise(&item.Time);
item.Size = sizeof(item);

item.Type ItemType: : Imageload;
item.ProcessId = HandleToULong(ProcesslId);
item.ImageSize = (ULONG)ImageInfo->ImageSize;

item.LoadAddress = (ULONG64)Imagelnfo->ImageBase;

The interesting part is the image path. The simplest option is to examine FullImageName, and if non-
NULL, just grab its contents. But since this information might be missing or not 100% reliable, we can try
something else first, and fall back on FullImageName if all else fails.

The secret is to use F1tGetFileNameInformationUnsafe - a variant on F1tGetFileNameInformation
that is used with File System Mini-filters, as we’ll see in chapter 12. The “Unsafe” version can be called
in non-file-system contexts as is our case. A full discussion on F1tGetFileNameInformation is saved for
chapter 12. For now, let’s just use if the file object is available:



Chapter 9: Process and Thread Notifications 293

item.ImageFileName[0] = ©; // assume no file information
if (Imagelnfo->ExtendedInfoPresent) {
auto exinfo = CONTAINING_RECORD(ImageInfo, IMAGE_INFO_EX, Imagelnfo);
PFLT_FILE_NAME_INFORMATION namelnfo;
if (NT_SUCCESS(F1ltGetFileNameInformationUnsafe(exinfo->FileObject,
nullptr, FLT_FILE_NAME_NORMALIZED | FLT_FILE_NAME_QUERY_DEFAULT,
&namelInfo))) {
// copy the file path
wcscpy_s(item. ImageFileName, nameInfo->Name.Buffer);
FltReleaseFileNameInformation(nameInfo);

FltGetFileNameInformationUnsafe requires the file object that can be obtained from the extended
IMAGE_INFO_EX structure. wescpy_s ensures we don’t copy more characters than are available in the
buffer. F1tReleaseFileNameInformation must be called to free the PFLT_FILE_NAME_INFORMATION
object allocated by F1tGetFileNameInformationUnsafe.

To gain access to these functions, add #include for <FltKernel.h> and add FigMgr.lib into the Linker Input
/ Additional Dependencies line.

Finally, if this method does not produce a result, we fall back to using the provided image path:

if (item.ImageFileName[0] == 0 && FulllmageName) {
wescpy_s(item. ImageFileName, FulllmageName->Buffer);

g_State.AddItem(&info->Entry);
Here is the full image load notification code for easier reference (KdPrint removed):

void OnImagelLoadNotify(PUNICODE_STRING FullImageName, HANDLE ProcessId, PIMAGE_\
INFO Imagelnfo) {
if (Processld == nullptr) {
// system image, ignore

return;

auto size = sizeof(Fullltem<ImageLoadInfo>);
auto info = (Fullltem<ImagelLoadInfo>*)ExAllocatePoolWithTag(
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PagedPool, size, DRIVER_TAG);
if (info == nullptr)

return;

auto& item = info->Data;
KeQuerySystemTimePrecise(&item.Time);

item.Size = sizeof(item);

item.Type = ItemType: :ImagelLoad;

item.ProcessId = HandleToULong(ProcesslId);
item.ImageSize = (ULONG)Imagelnfo->ImageSize;
item.LoadAddress = (ULONG64)Imagelnfo->ImageBase;
item.ImageFileName[0] = O;

if (Imagelnfo->ExtendedInfoPresent) {

auto exinfo = CONTAINING_RECORD(Imagelnfo, IMAGE_INFO_EX, Imagelnfo);

PFLT_FILE_NAME_INFORMATION namelnfo;

if (NT_SUCCESS(F1ltGetFileNameInformationUnsafe(
exinfo->FileObject, nullptr,
FLT_FILE_NAME_NORMALIZED | FLT_FILE_NAME_QUERY_DEFAULT,
gnameInfo))) {
wescpy_s(item. ImageFileName, namelnfo->Name.Buffer);
F1tReleaseFileNameInformation(nameInfo);

}
if (item.ImageFileName[0] == 0 && FulllmageName) {

wescpy_s(item. ImageFileName, FulllmageName->Buffer);

g_State.AddItem(&info->Entry);

Final Client Code

The client code must be extended for image loads. It seems easy enough except for one snag: the resulting
image path retrieved in the image load notification is in NT Device form, instead of the more common,
“DOS based” form with drive letters, which in fact are symbolic links. We can see these mappings in tools
such as WinObj from Sysinternals (figure 9-3).
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‘WinObj - Sysinternals: ysinternals.com

File Edit Find View Options Help

@‘ O ‘ [3 | p Quick Find: ‘ 20 search

B-La\ A | Name - Type Symbolic Link Target L)
‘;"‘Nr:me . ©0 BTHL EDevice#{00010000-0000-1000-8000-011f2000045¢)_De... SymbolicLink \Device\000000d9
c:‘; a:“e Jects @ BTHLEDexice#{00010000-0000-1000-8000-011£2000046d} De... SymbolicLink \Device\000000d9
Do oo BthPan SymbolicLink \Device\BthPan
evice
Driver = C: SymbolicLink \Device\HarddiskVolume3
DriverStores @e CimfsControl Symbaliclink \Device\cimfs\control
FileSystem oo CON SymbaelicLink \Device\ConDnA\Console
GLOBAL?? e COMIMNS SymbelicLink \Device\ConDrACurrentln
KernelObjects e CONOUTS Symbeliclink \Device\ConDnA\ CurrentOut
KnownDlls eoD: Symbeliclink \Device\HarddiskVolume?
KnownDlls32 @o DamCtrl SymbuolicLink ‘Device\DamCtrl
MLS oo Dby Symbeliclink \Device\Dbgv
ObjectTypes oo DELLWALDOS Symbeliclink \Device\DELLWAL v
ﬁPCCInntrnl | [ T f e [P . N

\GLOBALTHC: 523 Objects Interval: 2 sec

Figure 9-3: Symbolic links in WinObj

Notice the device name targets for C: and D: in figure 9-3. A file like c:\temp\mydIl.dll will be reported as
\Device\DeviceHarddiskVolume3\temp\mydIldll. It would be nice if the display would show the common
mappings instead of the NT device name.

One way of getting these mappings is by calling QueryDosDevice, which retrieves the target of a symbolic
link stored in the “??” Object Manager directory. We are already familiar with these symbolic links, as they
are valid strings to the CreateFile APL

Based on QueryDosDevice, we can loop over all existing drive letters and store the targets. Then, we can
lookup every device name and find its drive letter (symbolic link). Here is a function to do that. If we can’t
find a match, we’ll just return the original string:

#include <unordered_map>

std: :wstring GetDosNameFromNTName(PCWSTR path) {
if (path[0] != L'\\")
return path;

static std: :unordered_map<std::wstring, std::wstring> map;
if (map.empty()) {
auto drives = GetlLogicalDrives();
int ¢ = 0O;
WCHAR root[] = L"X:":
WCHAR target[128];
while (drives) {
if (drives & 1) {
root[0] = 'A" + ¢;
if (QueryDosDevice(root, target, _countof(target))) {
map.insert({ target, root });
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drives >>= 1;
o+t

’

}
auto pos = weschr(path + 1, L'\\');
if (pos == nullptr)

return path;

pos = weschr(pos + 1, L'\\');
if (pos == nullptr)
return path;

std: :wstring ntname(path, pos - path);
if (auto it = map.find(ntname); it != map.end())

return it->second + std::wstring(pos);

return path;

I will let the interested reader figure out how this code works. In any case, since user-mode is not the focus
of this book, you can just use the function as is, as we’ll do in our client.

Here is the part in DisplayInfo that handles image load notifications (within the switch):

case ItemType: :Imageload:

{

DisplayTime(header->Time);

auto info = (ImagelLoadInfo*)buffer;

printf("Image loaded into process %u at address 0x%11X (%ws)\n",
info->Processld, info->LoadAddress,
GetDosNameFromNTName(info->ImageFileName).c_str());

break;

Here is some example output when running the full driver and client:
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18:59:37.660: Image loaded into process 12672 at address 0Ox7FFD531C0000 (C:\Win\
dows\System32\msvcp110_win.dll)

18:59:37.661: Image loaded into process 12672 at address 0x7FFD5BF30000 (C:\Win\
dows\System32\advapi32.dll)

18:59:37.676: Thread 11416 Created in process 5820

18:59:37.676: Thread 12496 Created in process 4824

18:59:37.731: Thread 6636 Created in process 3852

18:59:37.731: Image loaded into process 12672 at address 0x7FFD59F70000 (C:\Win\
dows\System32\ntmarta.dl1l)

18:59:37.735: Image loaded into process 12672 at address 0x7FFD51340000 (C:\Win\
dows\System32\policymanager.dll)

18:59:37.735: Image loaded into process 12672 at address 0Ox7FFD531C0000 (C:\Win\
dows\System32\msvcp110@_win.d11)

18:59:37.737: Image loaded into process 12672 at address 0Ox7FFD51340000 (C:\Win\
dows\System32\policymanager.dll)

18:59:37.737: Image loaded into process 12672 at address 0Ox7FFD531C0000 (C:\Win\
dows\System32\msvcp110@_win.d11)

18:59:37.756: Thread 6344 Created in process 704

Create a driver that monitors process creation and allows a client application to configure
executable paths that should not be allowed to execute.

f Add the process name in image load notifications.

Remote Thread Detection

One interesting example of using process and thread notifications is to detect remote threads. A remote
thread is one that is created (injected) to a process different than its creator. This fairly well-known
technique can be used (for example) to force the new thread to load a DLL, essentially injecting that
DLL into another process.

This scenario is not necessarily malicious, but it could be. The most common example where this happens
is when a debugger attaches to a target and wants to break into the target. This is done by creating a
thread in the target process (by the debugger process) and pointing the thread function to an API such as
DebugBreak that forces a breakpoint, allowing the debugger to gain control.

Anti-malware systems know how to detect these scenarios, as these may be malicious. Let’s build a driver
that can make that kind of detection. At first, it seems to be very simple: when a thread is created, compare
its creator’s process ID with the target process where the thread is created, and if they are different - you
have a remote thread on your hands.

There is a small dent in the above description. The first thread in any process is “remote” by definition,
because it’s created by some other process (typically the one calling CreateProcess), so this “natural”
occurrence should not be considered a remote thread creation.
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j If you feel up to it, code this driver on your own!

The core of the driver are process and thread notification callbacks. The most important is the thread
creation callback, where the driver’s job is to determine whether a created thread is a remote one or not.
We must keep an eye for new processes as well, because the first thread in a new process is technically
remote, but we need to ignore it.

The data maintained by the driver and later provided to the client contains the following (DetectorPublic.h):

struct RemoteThread ({
LARGE_INTEGER Time;
ULONG CreatorProcessld;
ULONG CreatorThreadlId;
ULONG ProcesslId;
ULONG Threadld;

b
Here is the data we’ll store as part of the driver (in KDetector.h):

struct RemoteThreadItem {
LIST_ENTRY Link;
RemoteThread Remote;

};
const ULONG MaxProcesses = 32;

ULONG NewProcesses[MaxProcesses] ;

ULONG NewProcessesCount;

ExecutiveResource ProcesseslLock;
LIST_ENTRY RemoteThreadsHead;

FastMutex RemoteThreadslLock;
LookasidelList<RemoteThreadItem> Lookaside;

There are a few class wrappers for kernel APIs we haven’t seen yet. FastMutex is the same we used in
the SysMon driver. ExecutiveResource is a wrapper for an ERESOURCE structure and APIs we looked at
in chapter 6. Here is its declaration and definition:
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// ExecutiveResource.h

struct ExecutiveResource {
void Init();
void Delete();

void Lock();
void Unlock();

void LockShared();
void UnlockShared();

private:
ERESOURCE m_res;
bool m_CritRegion;

¥
// ExecutiveResource.cpp

void ExecutiveResource::Init() {
ExInitializeResourcelLite(&m_res);

void ExecutiveResource: :Delete() {
ExDeleteResourcelLite(&m_res);

void ExecutiveResource: :Lock() {
m_CritRegion = KeAreApcsDisabled();
if(m_CritRegion)
ExAcquireResourceExclusivelite(&m_res, TRUE);
else

ExEnterCriticalRegionAndAcquireResourceExclusive(&m_res);

void ExecutiveResource: :Unlock() {
if (m_CritRegion)
ExReleaseResourcelite(&m_res);
else
ExReleaseResourceAndLeaveCriticalRegion(&m_res);

void ExecutiveResource: :LockShared() {
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m_CritRegion = KeAreApcsDisabled();

if (m_CritRegion)
ExAcquireResourceSharedLite(&m_res, TRUE);

else

ExEnterCriticalRegionAndAcquireResourceShared(&m_res);

void ExecutiveResource: :UnlockShared() {
Unlock();
}

A few things are worth noting:

» Acquiring an Executive Resource must be done in a critical region (when normal kernel APCs are
disabled). The call to KeAreApcsDisabled returns true if normal kernel APCs are disabled. In that
case a simple acquisition will do; otherwise, a critical region must be entered first, so the “shortcuts”
to enter a critical region and acquire the Executive Resource are used.

A similar API, KeAreAllApcsDisabled returns true if all APCs are disabled (essentially
whether the thread is in a guarded region).

« An Executive Resource is used to protect the NewProcesses array from concurrent write access.
The idea is that more reads than writes are expected for this data. In any case, I wanted to show a
possible wrapper for an Executive Resource.

« The class presents an interface that can work with the Locker<TLock> type we have been using
for exclusive access. For shared access, the LockShared and UnlockShared methods are provided.
To use them conveniently, a companion class to Locker<> can be written to acquire the lock in a
shared manner. Here is its definition (in Locker.h as well):

template<typename TLock>
struct SharedLocker ({
SharedLocker (TLock& lock) : m_lock(lock) {
lock.LockShared();
}
~SharedLocker () {
m_lock.UnlockShared();

private:
TLock& m_lock;
b

LookasideList<T> is a wrapper for lookaside lists we met in chapter 8. It’s using the new API, as it’s
easier for selecting the pool type required. Here is its definition (in LookasideList.h):
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template<typename T>
struct LookasidelList {
NTSTATUS Init(POOL_TYPE pool, ULONG tag) {
return ExInitializelookasidelListEx(&m_lookaside, nullptr, nullptr,
pool, 0, sizeof(T), tag, 0);

void Delete() {
ExDeletelLookasidelListEx(&m_lookaside);

T* Alloc() {
return (T*)ExAllocateFromLookasidelistEx(&m_lookaside);

void Free(T* p) {
ExFreeTolLookasidelListEx(&m_lookaside, p);

private:
LOOKASIDE_LIST_EX m_lookaside;

};

Going back to the data members for this driver. The purpose of the NewProcesses array is to keep track of
new processes before their first thread is created. Once the first thread is created, and identified as such, the
array will drop the process in question, because from that point on, any new thread created in that process
from another process is a remote thread for sure. We’ll see all that in the callbacks implementations.

The driver uses a simple array rather than a linked list, because I don’t expect a lot of processes with no
threads to exist for more than a tiny fraction, so a fixed sized array should be good enough. However, you
can change that to a linked list to make this bulletproof.

When a new process is created, it should be added to the NewProcesses array since the process has zero
threads at that moment:

void OnProcessNotify(PEPROCESS Process, HANDLE Processld,
PPS_CREATE_NOTIFY_INFO Createlnfo) {
UNREFERENCED_PARAMETER(Process);

if (Createlnfo) {
if (!AddNewProcess(ProcesslId)) {
KdPrint( (DRIVER_PREFIX "New process created, no room to store\n"));
}
else {
KdPrint((DRIVER_PREFIX "New process added: %u\n", HandleToULong(Pro\
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cessld)));
}

AddProcess locates an empty “slot” in the array and puts the process ID in it:

bool AddNewProcess(HANDLE pid) ({
Locker locker(ProcesseslLock);
if (NewProcessesCount == MaxProcesses)
return false;

for(int i = 0; i < MaxProcesses; i++)
if (NewProcesses[i] == 0) {
NewProcesses[i] = HandleToUlong(pid);
break;
}
NewProcessesCount++;
return true;

Now comes the interesting part: the thread create/exit callback.

? 1. Add process names to the data maintained by the driver for each remote thread. A
remote thread is when the creator (the caller) is different than the process in which the
new thread is created. We also have to remove some false positives:

void OnThreadNotify(HANDLE ProcessId, HANDLE ThreadId, BOOLEAN Create) {
if (Create) {
bool remote = PsGetCurrentProcessId() != ProcessId
&& PsInitialSystemProcess != PsGetCurrentProcess()
2& PsGetProcessId(PsInitialSystemProcess) != Processld;

The second and third checks make sure the source process or target process is not the System process. The
reasons for the System process to exist in these cases are interesting to investigate, but are out of scope for
this book - we’ll just remove these false positives. The question is how to identify the System process. All
versions of Windows from XP have the same PID for the System process: 4. We could use that number
because it’s unlikely to change in the future, but there is another way, which is foolproof and also allows
me to introduce something new.
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The kernel exports a global variable, PsInitialSystemProcess, which always points to the System
process’ EPROCESS structure. This pointer can be used just like any other opaque process pointer.

If the thread is indeed remote, we must check if it’s the first thread in the process, and if so, discard this
as a remote thread:

if (remote) {
/7
// really remote if it's not a new process
/7

bool found = FindProcess(Processld);
FindProcess searches for a process ID in the NewProcesses array:

bool FindProcess(HANDLE pid) {
auto id = HandleToUlong(pid);
SharedLocker locker (ProcesseslLock);
for (int i = 0; i < MaxProcesses; i++)
if (NewProcesses[i] == id)
return true;
return false;

If the process is found, then it’s the first thread in the process and we should remove the process from the
new processes array so that subsequent remote threads (if any) can be identified as such:

if (found) {
//

// first thread in process, remove process from new processes array

//

RemoveProcess(ProcessId);

RemoveProcess searches for the PID and removes it from the array by zeroing it out:
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bool RemoveProcess(HANDLE pid) {

auto id = HandleToUlong(pid);

Locker locker(Processeslock);

for (int i = 0; i < MaxProcesses; i++)

if (NewProcesses[i] == id) {

NewProcesses[i] = 0;
NewProcessesCount- -;
return true;

}

return false;

If the process isn’t found, then it’s not new and we have a real remote thread on our hands:

else {
//
// really a remote thread
//
auto item = Lookaside.Alloc();
auto& data = item->Remote;
KeQuerySystemTimePrecise(&data.Time);
data.CreatorProcessId = HandleToULong(PsGetCurrentProcessId());
data.CreatorThreadld = HandleToULong(PsGetCurrentThreadId());
data.ProcessId = HandleToULong(ProcesslId);
data.Threadld = HandleToULong(Threadld);

KdPrint( (DRIVER_PREFIX

"Remote thread detected. (PID: %u, TID: %u) -> (PID: %u, TID:

data.CreatorProcessId, data.CreatorThreadld,
data.ProcesslId, data.Threadld));

Locker locker(RemoteThreadslLock);
// TODO: check the list is not too big
InsertTaill ist(&RemoteThreadsHead, &item->Link);

Getting the data to a user mode client can be done in the same way as we did for the SysMon driver:

304
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NTSTATUS DetectorRead(PDEVICE_OBJECT, PIRP Irp) {
auto irpSp = IoGetCurrentlIrpStackLocation(Irp);
auto len = irpSp->Parameters.Read.Length;
auto status = STATUS_SUCCESS;

ULONG bytes = 0;
NT_ASSERT(Irp->MdlAddress);

auto buffer = (PUCHAR)MmGetSystemAddressForMdlSafe(
Irp->MdlAddress, NormalPagePriority);
if (!buffer) {
status = STATUS_INSUFFICIENT_RESOURCES;
}
else {
Locker locker(RemoteThreadslLock);
while (true) {
/7
// 1f the list is empty, there is nothing else to give
/7
if (IsListEmpty(&RemoteThreadsHead))
break;

/7
// 1f remaining buffer size is too small, break
/7
if (len < sizeof(RemoteThread))
break;

auto entry = RemoveHeadlList(&RemoteThreadsHead);

auto info = CONTAINING_RECORD(entry, RemoteThreadItem, Link);
ULONG size = sizeof(RemoteThread);

memcpy (buffer, &info->Remote, size);

len -= size;

buffer += size;

bytes += size;

//

// return data item to the lookaside 1list

//

Lookaside.Free(info);

}
return CompleteRequest(Irp, status, bytes);
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Because there is just one type of “event” and it has a fixed size, the code is simpler than in the SysMon
case.

The full driver code is in the KDetector project in the solution for this chapter.

The Detector Client

The client code is very similar to the SysMon client, but simpler, because all “events” have the same
structure and are even fixed-sized. Here are the main and DisplayData functions:

void DisplayData(const RemoteThread* data, int count) {
for (int i = 0; i < count; i++) {
auto& rt = data[i];
DisplayTime(rt.Time);
printf("Remote Thread from PID: %u TID: %u -> PID: %u TID: %u\n",
rt.CreatorProcessld, rt.CreatorThreadld, rt.Processld, rt.Threadld);

int main() {
HANDLE hDevice = CreateFile(L"\\\\.\\kdetector", GENERIC_READ, 0,
nullptr, OPEN_EXISTING, @, nullptr);
if (hDevice == INVALID_HANDLE_VALUE)

return Error("Error opening device");

RemoteThread rt[20]; // fixed array is good enough

for (;;) {
DWORD bytes;
if (!ReadFile(hDevice, rt, sizeof(rt), &bytes, nullptr))

return Error("Failed to read data");

DisplayData(rt, bytes / sizeof(RemoteThread));
Sleep(1000);

CloseHandle(hDevice);
return 0;

The DisplayTime is the same one from the SysMonClient project.

We can test the driver by installing it and starting it normally, and launching our client (or we can use
DbgView to see the remote thread outputs). The classic example of a remote thread (as mentioned earlier)
is when a debugger wishes to forcefully break into a target process. Here is one way to do that:
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1. Run some executable, say Notepad.exe.
2. Launch WinDbg.
3. Use WinDbg to attach to the Notepad process. A remote thread notification should appear.

Here are some examples of output when the detector client is running:

13:08:15.280: Remote Thread from PID: 7392 TID: 4788 -> PID: 8336 TID: 9384

13:08:58.660: Remote Thread from PID: 7392 TID: 13092 -> PID: 8336 TID: 13288
13:10:52.313: Remote Thread from PID: 7392 TID: 13092 -> PID: 8336 TID: 12676
13:11:25.207: Remote Thread from PID: 15268 TID: 7564 -> PID: 1844 TID: 6688
1383:11:25.209: Remote Thread from PID: 15268 TID: 15152 -> PID: 1844 TID: 7928

You might find some remote thread entries surprising (run Process Explorer for a while, for example)

The full code of the client is in the Detector project.

f Display process names in the client.

Summary

In this chapter we looked at some of the callback mechanisms provided by the kernel: process, thread
and image loads. In the next chapter, we’ll continue with more callback mechanisms - opening handles to
certain object types, and Registry notifications.



Chapter 10: Object and Registry
Notifications

The kernel provides more ways to intercept certain operations. First, we’ll examine object notifications,
where obtaining handles to some types of objects can be intercepted. Then, we’ll look at Registry operations
interception.

In this chapter:

« Object Notifications

« The Process Protector Driver
+ Registry Notifications

« Extending the SysMon Driver
» Exercises

Object Notifications

The kernel provides a mechanism to notify interested drivers when attempts to open or duplicate a handle
to certain object types. The officially supported object types are process, thread, and for Windows 10 -
desktop as well.

Desktop Objects

A desktop is a kernel object contained in a Window Station, yet another kernel object, which is in itself
part of a Session. A desktop contains windows, menus, and hooks. The hooks referred to here are user-
mode hooks available with the SetWindowsHookEx API.

Normally, when a user logs in, two desktops are created. A desktop named “Winlogon” is created
by Winlogon.exe. This is the desktop that you see when pressing the Secure Attention Sequence key
combination(SAS, normally Ctrl+Alt+Del). The second desktop is named “default” and is the normal
desktop we are familiar with, where normal windows are shown and used. Switching to another desktop
is done with the SwitchDesktop APIL For some more details, read this blog post®

*https://scorpiosoftware.net/2019/02/17/windows- 10-desktops-vs-sysinternals-desktops/

The registration API to call is ObRegisterCallbacks, prototyped like so:


https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/
https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/
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NTSTATUS ObRegisterCallbacks (
_In_ POB_CALLBACK_REGISTRATION CallbackRegistration,
_Outptr_ PVOID *RegistrationHandle);

Prior to registration, an OB_CALLBACK_REGISTRATION structure must be initialized, which provides
the necessary details about what the driver is registering for. The RegistrationHandle is the return
value upon a successful registration, which is just an opaque pointer used for unregistering by calling
ObUnRegisterCallbacks.

Drivers using ObRegisterCallbacks must be linked with the /integritycheck switch.

Here is the definition of OB_CALLBACK_REGISTRATION:

typedef struct _OB_CALLBACK_REGISTRATION {

_In_ USHORT Version;

_In_ USHORT OperationRegistrationCount;
_In_ UNICODE_STRING Altitude;

_In_ PVOID RegistrationContext;

_In_ OB_OPERATION_REGISTRATION *OperationRegistration;
} OB_CALLBACK_REGISTRATION, *POB_CALLBACK_REGISTRATION;

Version is just a constant that must be set to OB_FLT_REGISTRATION_VERSION (currently 0x100). Next, the
number of operations that are being registered is specified by OperationRegistrationCount. This determines
the number of OB_OPERATION_REGISTRATION structures that are pointed to by OperationRegistration.
Each one of these provides information on an object type of interest (process, thread or desktop).

The Altitude argument is interesting. It specifies a number (in string form) that affects the order of callbacks
invocation for this driver. This is necessary because other drivers may have their own callbacks and the
question of which driver is invoked first is answered by the altitude - the higher the altitude, the earlier
in the call chain the driver is invoked.

What value should the altitude be? It shouldn’t matter in most cases, as there is no obvious to know what
values other drivers are using. The altitude provided must not collide with altitudes specified by previously
registered drivers. The altitude does not have to be an integer number. In fact, it’s an infinite precision
decimal number, and this is why it’s specified as a string. To avoid collision, the altitude should be set to
something with random numbers after a decimal point, such as “12345.1762389”. The chances of collision
in this case are slim. The driver can even truly generate random digits to avoid collisions. If the registration
fails with a status of STATUS_FLT_INSTANCE_ALTITUDE_COLLISION, this means altitude collision, so the
careful driver can adjust its altitude and try again.
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The concept of Altitude is also used for registry filtering (see “Registry Notifications” later in this chapter)
and file system mini-filters (see chapter 12).

Finally, RegistrationContext is a driver defined value that is passed as-is to the callback routine(s).

The OB_OPERATION_REGISTRATION structure(s) is where the driver sets up its callbacks, indicates which
object types and operations are of interest. It’s defined like so:

typedef struct _OB_OPERATION_REGISTRATION {
_In_ POBJECT_TYPE *0bjectType;
_In_ OB_OPERATION Operations;
_In_ POB_PRE_OPERATION_CALLBACK PreOperation;
_In_ POB_POST_OPERATION_CALLBACK PostOperation;
} OB_OPERATION_REGISTRATION, *POB_OPERATION_REGISTRATION;

ObjectType is a pointer to the object type for this instance registration - process, thread or desktop. These
pointers are exported as global kernel variables: PsProcessType, PsThreadType, and ExDesktopOb jectType,
respectively.

The Operations field must specify one or two flags (O0B_OPERATION), selecting create/open (OB_OPERATION_-
HANDLE_CREATE) and/or duplicate (OB_OPERATION_HANDLE _DUPL ICATE).

OB_OPERATION_HANDLE _CREATE refers to calls to user mode functions such asCreateProcess, OpenProcess,
CreateThread, OpenThread, CreateDesktop, OpenDesktop and similar functions for these object types.
OB_OPERATION_HANDLE_DUPLICATE refers to handle duplication for these objects (such as using the
DuplicateHandle user-mode API).

The APIs intercepted are not user-mode only; kernel APIs are intercepted as well (the callbacks parameters
do indicate if the handle being created/duplicated is a kernel handle). Kernel APIs such as ZwOpenProcess,
PsCreateSystemThread, and ZwDuplicateOb ject are examples of affected functions.

Any time one of these calls is made, one or two callbacks can be registered: a pre-operation callback
(PreOperation field) and/or a post-operation callback (PostOperation).

Pre-Operation Callback

The pre-operation callback is invoked before the actual create/open/duplicate operation completes, giving
a chance to the driver to make changes to the operation’s result. The pre-operation callback receives a
OB_PRE_OPERATION_INFORMATION structure, defined as shown here:
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typedef struct _OB_PRE_OPERATION_INFORMATION {
_In_ OB_OPERATION Operation;
union {
_In_ ULONG Flags;
struct {
_In_ ULONG KernelHandle:1;
_In_ ULONG Reserved:31;

¥
b
_In_ PVOID Object;
_In_ POBJECT_TYPE ObjectType;
_Out_ PVOID CallContext;

_In_ POB_PRE_OPERATION_PARAMETERS Parameters;
} OB_PRE_OPERATION_INFORMATION, *POB_PRE_OPERATION_INFORMATION;

Here is a rundown of the structure’s members:

« Operation - indicates what operation is this (OB_OPERATION_HANDLE_CREATE or OB_OPERATION_-
HANDLE_DUPL ICATE).

«+ KernelHandle (inside Flags) - indicates this is a kernel handle. Kernel handles can only be created
and used by kernel code. This allows the driver to ignore kernel requests if it so desires.

« Object - the pointer to the actual object for which a handle is being created/opened/duplicated. For

processes, this is the EPROCESS address, for thread it’s the PETHREAD address.

ObjectType - points to the object type: *PsProcessType, *PsThreadType or *ExDesktopOb jectType.

« CallContext - a driver-defined value, that is propagated to the post-callback for this instance (if
exists).

+ Parameters - a union specifying additional information based on the Operation. This union is defined
like so:

typedef union _OB_PRE_OPERATION_PARAMETERS ({
_Inout_ OB_PRE_CREATE_HANDLE_INFORMATION CreateHandlelInformation;
_Inout_ OB_PRE_DUPLICATE_HANDLE_INFORMATION DuplicateHandleInformation;
} OB_PRE_OPERATION_PARAMETERS, *POB_PRE_OPERATION_PARAMETERS;

The driver should inspect the appropriate field based on the operation. For Create operations, the driver
receives the following information:

typedef struct _OB_PRE_CREATE_HANDLE_INFORMATION {
_Inout_ ACCESS_MASK DesiredAccess;
_In_ ACCESS_MASK OriginalDesiredAccess;
} OB_PRE_CREATE_HANDLE_INFORMATION, *POB_PRE_CREATE_HANDLE_INFORMATION;

The OriginalDesiredAccess is the access mask specified by the caller. Consider this user-mode code to open
a handle to an existing process:
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HANDLE OpenHandleToProcess(DWORD pid) {
HANDLE hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
FALSE, pid);
if(!'hProcess) {
// failed to open a handle

}

return hProcess;

In this example, the client tries to obtain a handle to a process with the specified access mask, indicating
what are its “intentions” towards that process. The driver’s pre-operation callback receives this value
in the OriginalDesiredAccess field. This value is also copied to DesiredAccess. Normally, the kernel will
determine, based on the client’s security context and the process’ security descriptor whether the client
can be granted the access it desires.

The driver can, based on its own logic, modify DesiredAccess for example by removing some of the access
requested by the client:

OB_PREOP_CALLBACK_STATUS OnPreOpenProcess(PVOID /* RegistrationContext */,
POB_PRE_OPERATION_INFORMATION Info) {

if(/* some logic */) {
Info->Parameters->CreateHandleInformation.DesiredAccess &=
~PROCESS_VM_READ;

}
return OB_PREOP_SUCCESS;

The above code snippet removes the PROCESS_VM_READ access mask before letting the operation continue
normally. If it eventually succeeds, the client will get back a valid handle, but only with the PROCESS_-
QUERY_INFORMATION access mask.

You can find the complete list of process, thread and desktop access masks in the MSDN
documentation.

g You cannot add new access mask bits that were not requested by the client.

For duplicate operations, the information provided to the driver is the following:
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typedef struct _OB_PRE_DUPLICATE_HANDLE_INFORMATION {
_Inout_ ACCESS_MASK DesiredAccess;

_In_ ACCESS_MASK OriginalDesiredAccess;
_In_ PVOID SourceProcess;
_In_ PVOID TargetProcess;

} OB_PRE_DUPLICATE_HANDLE_INFORMATION, *POB_PRE_DUPLICATE_HANDLE_INFORMATION;

The DesiredAccess field can be modified as before. The extra information provided is the source process
(from which a handle is being duplicated) and the target process (the process the new handle will be
duplicated into). This allows the driver to query various properties of these processes before making a
decision on how to modify (if at all) the desired access mask.

same, so they have the same layout in memory. This is useful for handling create and duplicate
operations with the same code.

P Notice that although both structures in the union are different, the first two members are the

Post-Operation Callback

Post-operation callbacks are invoked after the operation completes. At this point, the driver cannot make
any modifications, it can only look at the results. The post-operation callback receives the following
structure:

typedef struct _OB_POST_OPERATION_INFORMATION {
_In_ OB_OPERATION Operation;

union {
_In_ ULONG Flags;
struct {
_In_ ULONG KernelHandle:1;
_In_ ULONG Reserved:31;
};
}
_In_ PVOID Object;
_In_ POBJECT_TYPE ObjectType;
_In_ PVOID CallContext;
_In_ NTSTATUS ReturnStatus;

_In_ POB_POST_OPERATION_PARAMETERS Parameters;
} OB_POST_OPERATION_INFORMATION, *POB_POST_OPERATION_INFORMATION;

This looks similar to the pre-operation callback information, except for the following:

« The final status of the operation is returned in ReturnStatus. If successful, it means the client will
get back a valid handle (possibly with a reduced access mask).

« The Parameters union provided has just one piece of information: the access mask granted to the
client (assuming the status is successful).
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The Process Protector Driver

The Process Protector driver is an example of using object callbacks. Its purpose is to protect certain
processes from termination by denying the PROCESS_TERMINATE access mask from any client that requests
it.

The driver should keep a list of protected processes. In this driver we’ll use a simple limited array to hold
the process IDs under the driver’s protection. Here is the structure used to hold the driver’s global data
(defined in Protector.h):

#define PROCESS_TERMINATE 1
const int MaxPids = 256;

struct Globals {
ULONG PidsCount; // currently protected process count
ULONG Pids[MaxPids]; // protected PIDs
ExecutiveResource Lock;
PVOID RegHandle;

void Init() {
Lock.Init();

void Term() {
Lock.Delete();

Y

headers (only PROCESS_ALL_ACCESS is defined). It’s fairly easy to get its definition from user

’ Notice that we must define PROCESS_TERMINATE explicitly, since it's not defined in the WDK
mode headers or documentation.

The ExecutiveResource type is the same used in chapter 9. It’s important to use an Executive Resource
here and not a (fast) mutex because we anticipate many more “reads” (checks if a process is under the
driver’s termination protection) than “writes” (adding or removing processes), so there is a clear advantage
to an Executive Resource in this case. The main file (Protector.cpp) declares a global variable of type
Globals named g Data, calls Init in DriverEntry, and calls Term in the Unload routine, as we’ll see
shortly.

Object Notification Registration

The DriverEntry routine must include the registration to object callbacks for process objects. Here is the
start of DriverEntry:
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extern "C"
NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {
g_Data.Init();

Next, we prepare the structures for registration:

OB_OPERATION_REGISTRATION operation = {
PsProcessType, // object type
OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE,
OnPreOpenProcess, nullptr // pre, post

b

OB_CALLBACK_REGISTRATION reg = {
OB_FLT_REGISTRATION_VERSION,

1, // operation count
RTL_CONSTANT_STRING(L"12345.6171"), // altitude
nullptr, // context

&operation // single operation

};

The registration is for process objects only, with a pre-callback provided. This callback should remove the
PROCESS_TERMINATE access mask from the desired access requested by the client.

Now we’re ready to do perform all standard initializatio, including objack callback registration:

auto status = STATUS_SUCCESS;

UNICODE_STRING deviceName = RTL_CONSTANT_STRING(L"\\Device\\KProtect");
UNICODE_STRING symName = RTL_CONSTANT_STRING(L"\\??\\KProtect");
PDEVICE_OBJECT DeviceObject = nullptr;

do {
status = ObRegisterCallbacks(&reg, &g_Data.RegHandle);
if (INT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to register callbacks (@x%@8X)\n",
status));
break;

status = IoCreateDevice(DriverObject, 0@, &deviceName, FILE_DEVICE_UNKNOWN,
0, FALSE, &DeviceObject);
if (INT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to create device object (0x%08X)\n",
status));
break;
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status = IoCreateSymboliclLink(&symName, &deviceName);
if (INT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to create symbolic link (@x%@8X)\n",
status));
break;

}
} while (false);

The rest of DriverEntry is nothing new, shown here for completeness:

if (!NT_SUCCESS(status)) {
if (g_Data.RegHandle)
ObUnRegisterCallbacks(g_Data.RegHandle);
if (DeviceObject)
IoDeleteDevice(DeviceObject);
return status;

DriverObject->DriverUnload = ProtectUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =
DriverObject->MajorFunction[IRP_MJ_CLOSE] = ProtectCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ProtectDeviceControl;

return status;

}
Managing Protected Processes

The driver maintains an array of process IDs for processes under its protection. Managing these process
IDs is done by exposing three control codes (in ProtectorPublic.h):

#define KPROTECT_DEVICE ©x8101

#define IOCTL_PROTECT_ADD_PID \

CTL_CODE (KPROTECT_DEVICE, ©x800, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_PROTECT_REMOVE_PID \

CTL_CODE (KPROTECT_DEVICE, ©x801, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_PROTECT_REMOVE_ALL \

CTL_CODE (KPROTECT_DEVICE, ©x802, METHOD_NEITHER, FILE_ANY_ACCESS)

Before implementing the I/O Control codes, we should write functions to add processes, remove processes,
and find whether a specific PID is under the driver’s protection. Here is the function to add an array of
process IDs:
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ULONG AddProcesses(const ULONG* pids, ULONG count) {
ULONG added = ©;
ULONG current = 0;

Locker locker(g_Data.Lock);
for (int i = 0; i < MaxPids && added < count; i++) {
if (g_Data.Pids[i] == 0) {
g_Data.Pids[i] = pids[current++];
added++;

}
g_Data.PidsCount += added;

return added;

The function acquires the Executive Resource exlusively, as it is going to change the the PIDs array. The
loop body looks for an “empty” slot (where the PID is zero). If it finds one, it changes the value to the
current PID to house, and then moves on to the next. Finally, AddProcesses returns the number of added
PIDs.

The function does not check if the PID was already added. It doesn’t cause any particular issues, but it
might be nice to check for duplication, at the expense of a higher running time.

The opposite function to remove an array of PIDs is RemoveProcesses:

ULONG RemoveProcesses(const ULONG* pids, ULONG count) {
ULONG removed = 0;

Locker locker(g_Data.lLock);
for (int i = 0; i < MaxPids && removed < count; i++) {
auto pid = g_Data.Pids[i];
if(pid) {
for (ULONG ¢ = 0; ¢ < count; c++) {
if (pid == pids[c]) {
g_Data.Pids[i] = 0;
removed++;
break;
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g_Data.PidsCount -= removed;

return removed;

This function does the reverse - when it finds a non-zero PID, it searches the PIDs to remove with the
current PID, and if found, removes the PID by zeroing the entry in the array.

Lastly, FindProcess searches for a PID in the array:

int FindProcess(ULONG pid) {
SharedLocker locker(g_Data.lLock);
ULONG exist = 0;
for (int i = 0; i < MaxPids && exist < g_Data.PidsCount; i++) {
if (g_Data.Pids[i] == 0)
continue;
if (g_Data.Pids[i] == pid)
return i;
exist++;
}

return -1;

This is a function we expect to be called many more times than AddProcesses or RemoveProcesses
- it should be called any time clients call OpenProcess or DuplicateHandle with a process handle to
duplicate. Any number of threads can be making such calls at any time. This is why it’s important to
make the function as efficient as possible.

The function does not change the PIDs array, which is why it can acquire the Executive Resource is shared
mode (and thus improve concurrency). Then the PID is searched in the array, returning its index if found,
or -1 if it can’t be found. Failing to find the PID should be the common case since the driver is likely to
protect a small number of processes. This is why the number of non-zero PIDs is counted, and if it reaches
the number of PIDs protected (g_Data.PidsCount), the loop can be exited early before the entire MaxPids
elements are traversed.

Now we’re ready to implement the IRP_MJ_DEVICE_CONTROL dispatch routine. We'll start normally, by
preparing the information we need:

NTSTATUS ProtectDeviceControl (PDEVICE_OBJECT, PIRP Irp) ({
auto irpSp = IoGetCurrentIrpStackLocation(Irp);
auto& dic = irpSp->Parameters.DeviceloControl;
auto status = STATUS_INVALID_DEVICE_REQUEST;
ULONG info = ©;
auto inputlLen = dic.InputBufferlLength;

Adding and removing PIDs Ioctls accept the same information - an array of ULONG values represening one
or more PIDs. We can share their implementation like so:
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switch (dic.IoControlCode) {
case [OCTL_PROTECT_ADD_PID:
case [OCTL_PROTECT_REMOVE_PID:

{
if (inputLen == 0 || inputLen % sizeof(ULONG) != 0) {
status = STATUS_INVALID_BUFFER_SIZE;
break;
}
auto pids = (ULONG*)Irp->AssociatedIrp.SystemBuffer;
if (pids == nullptr) {
status = STATUS_INVALID_PARAMETER;
break;
}
ULONG count = inputlLen / sizeof(ULONG);
auto added = dic.IoControlCode == IOCTL_PROTECT_ADD_PID
? AddProcesses(pids, count) : RemoveProcesses(pids, count);
status = added == count ? STATUS_SUCCESS : STATUS_NOT_ALL_ASSIGNED;
info = added * sizeof(ULONG);
break;
}

First we have the usual checks for a proper buffer size and the system buffer being non-NULL. Then, it’s
just a matter of calling AddProcesses or RemoveProcesses as needed. The final status is set to STATUS_-
SUCCESS if all the provided PIDs are added or removed. Otherwise, STATUS_NOT_ALL_ASSIGNED is set
as the error value. This status is returned from trying to enable privileges in a token, hijacked here as a
convenience (or more likely laziness on my part).

Removing all processes is fairly simple, done directly in the case itself:

case I0OCTL_PROTECT_REMOVE_ALL:
Locker locker(g_Data.lLock);
Rt1ZeroMemory(g_Data.Pids, sizeof(g_Data.Pids));
g_Data.PidsCount = 0O;
status = STATUS_SUCCESS;
break;

return CompleteRequest(Irp, status, info);

Removing all PIDs is just clearing the PIDs array and resetting the count of protected processes to zero.
Finally, CompleteRequest is used to complete the IRP with the current status and information, the same
helper function we used in chapter 9.
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The Pre-Callback

The most important part of the driver is removing the PROCESS_TERMINATE access mask for PIDs that are
currently being protected:

OB_PREOP_CALLBACK_STATUS
OnPreOpenProcess(PVOID, POB_PRE_OPERATION_INFORMATION Info) {
if(Info->KernelHandle)
return OB_PREOP_SUCCESS;

auto process = (PEPROCESS)Info->Object;
auto pid = HandleToULong(PsGetProcessId(process));

AutolLock locker(g_Data.Lock);
if (FindProcess(pid)) {
// found in list, remove terminate access
Info->Parameters->CreateHandleInformation.DesiredAccess &=
~PROCESS_TERMINATE;

return OB_PREOP_SUCCESS;

If the handle is a kernel handle, we let the operation continue normally, since we don’t want to stop kernel
code from working properly.

Now we need the process ID for which a handle is being opened. The data provided in the callback as the
object pointer. Fortunately, getting the PID is simple with the PsGetProcessId API. It accepts a PEPROCESS
and returns its ID.

The last part is checking whether we’re actually protecting this particular process or not, so we call
FindProcess under the protection of the lock. If found, we remove the PROCESS_TERMINATE access mask.

The Client Application

The client application should be able to add, remove and clear processes by issuing correct DeviceIoControl
calls. The command line interface is demonstrated by the following commands (assuming the executable
is Protect.exe):

Protect.exe add 1200 2820 (protect PIDs 1200 and 2820)
Protect.exe remove 2820 (remove protection from PID 2820)
Protect.exe clear (remove all PIDs from protection)

Here is the main function:
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int wmain(int argc, const wchar_t* argv[]) {
if(argc < 2)
return PrintUsage();

enum class Options {
Unknown,
Add, Remove, Clear
};
Options option;
if (::_wesicmp(argv[1], L"add") == 0)
option = Options: :Add;
else if (::_wesicmp(argv[1], L"remove") == 0)
option = Options: :Remove;
else if (::_wecsicmp(argv[1], L"clear") == 0)
option = Options::Clear;
else {
printf("Unknown option.\n");
return PrintUsage();

HANDLE hFile = ::CreateFile(L"\\\\.\\" PROCESS_PROTECT_NAME,
GENERIC_WRITE | GENERIC_READ, 0, nullptr, OPEN_EXISTING, 0, nullptr);
if (hFile == INVALID_HANDLE_VALUE)
return Error("Failed to open device");

std: :vector<DWORD> pids;
BOOL success = FALSE;
DWORD bytes;
switch (option) {
case Options: :Add:
pids = ParsePids(argv + 2, argc - 2);
success = ::DeviceloControl(hFile, IOCTL_PROCESS_PROTECT_BY_PID,
pids.data(), static_cast<DWORD>(pids.size()) * sizeof(DWORD),
nullptr, 0, &bytes, nullptr);
break;

case Options::Remove:
pids = ParsePids(argv + 2, argc - 2);
success = ::DeviceloControl(hFile, IOCTL_PROCESS_UNPROTECT_BY_PID,
pids.data(), static_cast<DWORD>(pids.size()) * sizeof(DWORD),
nullptr, 0, &bytes, nullptr);

break;

321
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case Options::Clear:

success = ::DeviceloControl(hFile, IOCTL_PROCESS_PROTECT_CLEAR,
nullptr, 0, nullptr, 0, &bytes, nullptr);
break;

if (!success)
return Error("Failed in DeviceloControl");

printf("Operation succeeded.\n");
::CloseHandle(hFile);
return 0;

The ParsePids helper function parses process IDs and returns them as a std: : vector <DWORD> that is easy
to pass as an array by using the data() method on std: :vector<T>:

std: :vector <DWORD> ParsePids(const wchar_t* buffer[], int count) {
std: :vector <DWORD> pids;
for (int i = 0; 1 < count; i++)
pids.push_back(_wtoi(buffer[i]));

return pids;

Finally, the Error function is the same we used in previous projects, while PrintUsage just displays simple
usage information.

The driver is installed in the usual way, and then started:
sc create protect type= kernel binPath= c:\book\processprotect.sys
sc start protect

Let’s test it by launching a process (Notepad.exe) as an example, protecting it, and then trying to kill it
with Task Manager. Figure 10-1 shows the notepad instance running.
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bhil Task Manage — (]
File Options View
Processes Performance App history Startup Users Details  Services

-

Figure 10-1: Notepad running

Now protect it:
protect add 5676

Clicking End task in Task Manager, pops up an error, shown in Figure 10-2.

o The operation could not be completed.

Access is denied.

Figure 10-2: Attempting to terminate notepad

We can remove the protection and try again. This time the process is terminated as expected.

protect remove 5676

MNarme PID Status User name CPU  Memory (a.. Archite.. Description

& mzedgewebviewl.exe 10220 Running zodia 00 2972 K x4 Microsoft Ed...
[W] MsMpEng.exe 4136 Running SYSTEM 01 134364 K x64 MsMpEng.exe
[®] MsMpEngCP.exe 5756 Running SYSTEM 00 M2940K =64 MsMpEngCP....
ijsteams.exe 9528 Running zodia 00 5,896 K x84 Microsoft Tea...
(W MisSrv.exe 5912 Running LOCAL SE.. o0 2972 K x4 Microsoft MNet..
54 MNotepad.exe 5676 Running zodia 00 13,376 K xb4 MNotepad.exe
& Onelrive.exe %056 Running zodia 16 335,168 K =64 Microsoft On...
[®] rdpclip.exe 6492 Running zodia 00 1,776 K x64 RDP Clipboar...
Registry 140 Running SYSTEM 00 14720 K x64 NT Kernel & 5...

In the case of notepad, even with protection, clicking the window close button or selecting File/Exit from
the menu would terminate the process. This is because it’s being done internally by calling Exi tProcess
which does not involve any handles being opened. This means the protection mechanism we devised here
is good for processes without any user interface.
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?’ Add a control code that allows querying the currently protected processes.

Registry Notifications

Somewhat similar to object notifications, the Configuration Manager (the part in the Executive that
manages the Registry) can be used to register for notifications when Registry keys or values are accessed.

Before we look at Registry callbacks, some background on the Registry itself might be helpful.

Registry Overview

The Registry is a fairly well-known artifact in Windows; it’s a hirarchical database, used to store system-
wide and user-related information. Most of the data in the Registry is persisted in files, but some is
generated dynamically and not persisted (volatile).

The typical tool used to examine the Registry is RegEdit, part of Windows. Figure 10-3 shows the hives
shown when running RegEdit. The documented user-mode APIs use this layout of the Registry in order
to access keys.

[ Registry Editor

File Edit View Favorites Help

Computer

w |j Computer Name Type Data
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HEKEY_LOCAL_MACHINE
HEKEY_USERS
HKEY_CURREMNT_COMFIG

L4 >

Figure 10-3: The hives shown in RegEdit

The following user-mode example shows how to open the HKEY LOCAL MACHINE\SOFTWARE\Microsoft\DirectX

key for read access, and read in the Version value, which happends to be a string (figure 10-4):
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File Edit View Favorites Help
Computer\HKEY_LOCAL MACHINE\SOFTWARE\Microsoft\DirectX
: DataSharing ~ || Name Type Data
poDs . Ig'_&](Default] REG_DWORD 000000007 (1)
g:;iwme % D3D12MaxFeatureL evel REG_DWORD 0x0000C100 (49408)
. . Ws| D301 2MinFeaturelevel REG_DWORD 00000100 (49408)

Device Association Framewaork i )
DeviceReg i DxDbUninstallFodReason REG_DWORD xD0DODO0OT (1)
Dfrg fﬂDxDbUmnstaHFod'ﬁmestamp REG_SZ UTC.2021-09-13.11:43:11
DFS 35'_53Hybr\dDe\.ri(eAppIi(ableFDerDpruPreferences REG_DWORD 000000001 (1)
DiagnosticLogCSP 5,"] HybridRegkeyWriteTimestarnp REG_SZ UTC.2021-09-13.13:38:25
DirectDraw ] InstalledVersion REG_BINARY 00 00 00 09 00 00 00 00
Directlnput 35'5] LastUpdaterCallbackHresult REG_D'WORD (00000000 (0)
DirectMusic f,!ﬂLastUpdaterCa\Iback‘l’lmestamp REG_SZ UTC,2022-01-28.02:47:23
DirectPlayd f;'_&:] LastUpdaterStartHresult REG_DWORD 000000000 (0)
DirectPlayMATHelp 2!'] LastUpdaterStartTimestarnp REG_SZ UTC.2022-01-28.02:47:13
DirectShow I!'_‘%]MaxDedicated\u‘ideoMemory REG_CWORD 0x3f4a00000 (16989028352)
Directx 35'53 MaxFeatureLevel REG_DWORD 00000100 (49408)
dotnet e MinFeatureLevel REG_DWORD 00000100 (49408)
DownloadManager REG_SZ 4.08.00.0804
Driver Signing
DRM
DusmSve
DVDMavigator v

< o > < >

Figure 10-4: The HKEY LOCAL_MACHINESOFTWAREMicrosoftDirectX key
HKEY hKey;

DWORD error = RegOpenKeyEx(HKEY_LOCAL_MACHINE,
L"SOFTWARE\\Microsoft\\DirectX", @, KEY_READ, &hKey);
if (ERROR_SUCCESS == error) {
WCHAR version[64];
ULONG count = sizeof(version);
error = RegQueryValueEx(hKey, L"Version", nullptr, nullptr,
(BYTE*)version, &count);
if (ERROR_SUCCESS == error) {
printf("DirectX version: %ws\n", version);

}
RegCloseKey(hKey);

More details about the user-mode Registry API can be found in chapter 15 of my book “Windows 10
System Programming, part 2”.

If you run this little piece of code, and examine the key handle returned from RegOpenKeyEx in Process
Explorer, you’ll see something like figure 10-5. The key “name” seems to be what we have used.
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........... - e i 1 [N e e et e e e | e 8 s |+ St St e e
0x00000084 Key HKLM\SYSTEMIC: g 9 OxFFFFE78011B55430  READ_CONTROL | KEY_READ

0x00000088 Key HKLM\SYSTEM\ControlSet001\Control\Session Manager 0x00000001 OxFFFFE7801185B3D0 QUERY_VALUE

Ox000000AD Key AN 0x00020019 OxFFFFE78011843440 READ_CONTROL | KEY_READ

0x000000A4 Key ' HKLM\SOF TWARE\MicrosoftiDirectX ‘ 0x00020019 OxFFFFE78011B43660  READ_CONTROL | KEY_READ

Figure 10-5: Registry key handle in Process Explorer

However, if you double-click the handle to show the object’s (key) properties, you’ll see something similar
to figure 10-6.

C\REGISTRYWMACHINE\SOFTWARE\Microsoft\DirectX Prope...

Details  Security

Basic Information

Mame: | HKLM SOFTWARE \Microsoft\Direct ¥
Type:  Key
Description: A Registry key.
Address:  (xFFFFE7B011B43660

References Quota Charges
References: 65533 Paged: 192
Handles: 1 Mon-Paged: O

OK

Figure 10-6: Registry key properties Process Explorer

Notice the key name in the title bar. We can confirm the name by copying the real object address and
feeding it to a kernel debugger using the !object command:
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1kd> lobject OxFFFFE78011B43660
Object: ffffe78011b43660 Type: (ffffbO0f@T7d8a220) Key
ObjectHeader: ffffe78011b43630 (new version)
HandleCount: 1 PointerCount: 32767
Directory Object: 0000000 Name: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT\DIRECTX

The “real” key name starts with “REGISTRY”, which is in fact a named kernel object stored at the root of
the Object Manager’s namespace (figure 10-7).

w WinObj - Sysinternals: www.sysinternals.com

File Edit Find View Options Help
G‘ O | D} | /O Quick Find: | £ search
=118 Name Tpe Symbolic Link Target "
L) ArcName 5] Container_Micrasoft.549981C3F5F10_3.2111,12605.0_x64_8.. Job
i:lehf‘:znedobjects F' EFSinitEvent Event
e Dfs Symboliclink \Device\DfsClient
Device
Driver £ cifs Device
DriverStores F. CsrShSyncEvent Event
FileSystem 1D SeRmCommandPort ALPC Port
GLOBAL?? @@ DosDevices SymbolicLink A\
KernelObjects B REGISTRY Key
KnownDlls B2 Win32kCrossSessionGlobals Section
KnownDlls22 IO PowerPort ALPC Port
NLS ECnntalner_M|(rnsnft.XhnxGammgOverlay_S.?Z'l.'IZDH.D_XE\d..‘ Job
ObjectTypes 1D SmSsWinStationApiPort ALPC Port
RPC Centrol F' UniquelnteractiveSessionldEvent Event
Security E=FatCdrom Device
Sessions Fst Device
UMDFCommunicationP orts D PowerMonitorPort ALPC Port
Windows B Ntfs Device
EWnrkeercessSlID_ESBQ}EDE-BA'I 9-409F-B691-E7D5860876D2 Job
@ MicrosoftMalwareProtectionControlPort WD FilterCennectionPort
D0 SelsaCommandPort ALPC Port v
< >
\ 45 Objects Interval: 2 sec

Figure 10-7: The Registry key object in WinObj

Clearly, the names used to access keys from documented Windows APIs go through some “translation”,
changing HKEY_LOCAL_MACHINE to REGISTRY\MACHINE. To see the entire picture, showing the “real”
Registry, you can use my RegExp tool, downloadable from my Github repo (figure 10-8). It shows both the
Registry as observed by user-mode APIs (upper part) and the real Registry (lowe part), as used internally
within the kernel.



Chapter 10: Object and Registry Notifications 328

B Registry

File Edit Search View Key Locations Tools Options Help
@« BIZG2EF DR PR s [ x|
Path: [ HKEY_LOCAL_MACHINE\SVSTEM
=+l PAVELTT60 (Local) Mame Type Size Value Last Write Details
ZP Bookmarks @
L Standard Registry F" N
{0 HKEY.CLASSES ROOT ) ActivationBroker Key 12/07/1911:15:08  Subkeys: 1, Values: 0
G St o o i e
£ HKEY LOCALMACHINE E riverDatabase ey 2/05/22 11:10: ubkeys: 4, Values:
B BCD000N000D ) HardwareConfig Key 02/05/2211:07:48  Subkeys: 2, Values: 2
3 Input Key 1207719 11:15:07  Subkeys: 2, Values: 0
() Keyboard Layout Key 12/07/1911:49:38  Subkeys: 2, Values: 0
) Maps Key 12/07/1911:15:07  Subkeys: 1, Values: 0
D MountedDevices Key 01/09/22 20:33:20 Subkeys: 0, Values: 16
3 BEED () ResourceManager Key 12/07/1911:1507  Subkeys: 1, Values: 0
5] HKEY_USERS ] ResourcePolicyStore Key 12/07/19 111507 Subkeys: 2, Values: 0
[ HKEY_CURRENT_CONFIG “GRNG Key 02/05/22 14:02:29
@ REGISTRY £ Select Key 12/07/1911:15:07  Subkeys: 0, Values: 4
PA £ Setup Key 02/05/22 11:08:08  Subkeys: 12, Values: 15
@ MACHINE (2] Software Key 12/07/19 11:15:07 Subkeys: 1, Values: 0
13 BCDO000000D (] state Key 12/07/1911:15:07  Subkeys: 1, Values: 0
-| 8 HARDWARE CIWass Key 09/13/2116:38:19  Subkeys: 2, Values: 0
13 sAm SIwea Key 02/05/2211:12:06  Subkeys: 93, Values: D
1B SECURTY o CurrentControlSet Key 02/05/2211:07:48  Subkeys: 5, Values: 0
| SOFTWARE
|8 SYSTEM
I:] USER
|8 DEFAULT
& 5-1-5-18
18 5-1-5-19
4B s1-5-20
|8 5-1-5-21-1968166439-3083973779- 398638822~ 1001
l_i §-1-5-21-3968166439-3083973779-398838822-1001_Class|
|8 5-1-5-21-1968166439-3083973779- 398636822~ 1004
I:] wc
< bR S >
I8 HKEY_LOCAL_MACHINEVSYSTEM

Figure 10-8: The Registry Explorer tool

Table 10-1 shows the “translations” for common key names.

Table 10-1: Registry keys

User-facing key name Real key name Notes

HKEY_LOCAL_MACHINE REGISTRY\MACHINE

HKEY_USERS REGISTRY\USERS

HKEY_CURRENT_USER REGISTRY\USER\{userSID}

(no equivalence) REGISTRY\A Root of private process keys

(no equivalence) REGISTRY\WC Root of keys for Windows Containers (silos)

All the key names received/handled with the following Registry notifications always use the real key

names.

Using Registry Notifications

The CmRegisterCallbackEx API is used to register for such notifications. Its prototype is as follows:
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NTSTATUS CmRegisterCallbackEx (

_In_ PEX_CALLBACK_FUNCTION Function,

_In_ PCUNICODE_STRING Altitude,

_In_ PVOID Driver, // PDRIVER_OBJECT
_In_opt_ PVOID Context,

_Out_ PLARGE_INTEGER Cookie,

_Reserved_ PVOID Reserved

Function is the callback itself, which we’ll look at in a moment. Altitude is the driver’s callback altitude,
which essentially has the same meaning as it has with object callbacks. The Driver argument should
be the driver object provided to DriverEntry. Context is a driver-defined value passed as-is to the
callback. Finally, Cookie is the result of the registration if successful. This cookie should be passed to
CmUnregisterCallback to unregister.

It’s a bit annoying that all the various registration APIs are inconsistent with respect to registra-
tion/unregistration: CmRegisterCallbackEx returns a LARGE_INTEGER as representing the registration;
ObRegisterCallbacks returns a PVOID; process and thread registration functions return nothing
(internally use the address of the callback itself to identify the registration). Finally, process and thread
unregistration is done with asymmetric APIs; Oh well.

The callback function is very generic, shown here:

NTSTATUS RegistryCallback (
_In_ PVOID CallbackContext,
_In_opt_ PVOID Argumenti,
_In_opt_ PVOID Argument2);

CallbackContext is the Context argument passed to CmRegisterCallbackEx. The first generic argument
is really an enumeration, REG_NOTIFY_CLASS, describing the operation for which the callback is being
invoked. The second argument is a pointer to a specific structure relevant to this type of notification. A
driver will typically switch on the notification type like so:

NTSTATUS OnRegistryNotify(PVOID, PVOID Argumenti, PVOID Argument2) {
switch ((REG_NOTIFY_CLASS)(ULONG_PTR)Argumenti) {
S/

The callback is called at IRQL PASSIVE_LEVEL (0) by the thread performing the operation.

Table 10-2 shows some values from the REG_NOTIFY_CLASS enumeration and the corresponding structure
passed in as Argument2.
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Table 10-2: Some registry notifications and associated structures

Notification Associated structure
RegNtPreDeleteKey REG_DELETE_KEY_INFORMATION
RegNtPostDeleteKey REG_POST_OPERATION_INFORMATION
RegNtPreSetValueKey REG_SET_VALUE_KEY_INFORMATION
RegNtPostSetValueKey REG_POST_OPERATION_INFORMATION
RegNtPreCreateKey REG_PRE_CREATE_KEY_INFORMATION
RegNtPostCreateKey REG_POST_CREATE_KEY_INFORMATION

Handling Pre-Notifications

The callback is called for pre-operations before these are carried out by the Configuration Manager. At
that point, the driver has the following options:

« Returning STATUS_SUCCESS from the callback instructs the Configuration Manager to continue pro-
cessing the operation normally (including calling other drivers that have registered for notifications).

« Return some failure status from the callback. In this case, the Configuration Manager returns to the
caller with that status, and the post-operation will not be invoked.

+ Handle the request in some way, and then return STATUS_CALLBACK_BYPASS from the callback. The
Configuration Manager returns success to the caller and does not invoke the post-operation. The

driver must take care to set proper values in the REG_xxx_KEY_INFORMATION structure provided in
the callback.

Handling Post-Operations
After the operation is completed, and assuming the driver did not prevent the post-operation from

occurring, the callback is invoked after the Configuration Manager performs the requested operation. The
structure provided for many post operations is shown here:

typedef struct _REG_POST_OPERATION_INFORMATION {

PVOID Object; // input

NTSTATUS Status; // input

PVOID Prelnformation; // The pre information

NTSTATUS ReturnStatus; // can change the outcome of the operation
PVOID CallContext;

PVOID ObjectContext;

PVOID Reserved;

} REG_POST_OPERATION_INFORMATION, *PREG_POST_OPERATION_INFORMATION;

The callback has the following options for a post-operation:
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« Look at the operation result and do something benign (log it, for instance).

« Modify the return status by setting a new status value in the ReturnStatus field of the post-
operation structure, and return STATUS_CALLBACK_BYPASS from the callback. The Configuration
Manager returns this new status to the caller.

« Modify the output parameters in the REG_xxx_KEY_INFORMATION structure and return STATUS_-
SUCCESS. The Configuration Manager returns this new data to the caller.

The PreInformation member of the post-operation structure points to the pre-information
structure assocaited with that operation.

Care must be taken if data is changed when a post-operation, or if a successful status is changed
to a failed one or vice versa. This might require the driver to deallocate or allocate key objects.

Extending the SysMon Driver

We'll extend our SysMon driver from chapter 9 to include notifications for a Registry operation. As an
example, we’ll add notifications for write operations to anywhere under HKEY_LOCAL_MACHINE.

First, we’ll define a data structure that would include the reported information (in SysMonPublic.h):

struct RegistrySetValueInfo : ItemHeader {
ULONG Processld;
ULONG ThreadlId;
USHORT KeyNameOffset; // from beginning of structure
USHORT ValueNameOffset; // from beginning of structure
ULONG DataType; // REG_xxx
ULONG DataSize; // actual size
USHORT DataOffset;
USHORT ProvidedDataSize;

};

Key names, value names and values could be large, so it’s best not to use fixed-size arrays (although that
would be much simpler), but store offsets to the names and value. Each name will be NULL -terminated,
which avoids the need to store lengths of strings (as we did in the command line case in chapter 9). The
data itself could be arbitrarily large, so we’ll have to decide on a maximum length to copy as part of the
notification.

DataType is one of the REG_xxx type constants, such asREG_SZ,REG_DWORD, REG_BINARY, etc. These values
are the same as used with user-mode APIs.

Next, we'll add a new event type for this notification:
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enum class ItemType : short {

None,

ProcessCreate,

ProcessExit,

ThreadCreate,

ThreadExit,

Imageload,

RegistrySetValue // new value
};

It’s possible to subdivide Registry notifications further by defining a Registry item type and then
define specific items for different Registry operations. In this example, we just add one specific Registry
operation, but you may want to take the more generic approach if multiple Registry operations are of
interest.

In DriverEntry, we need to add registry callback registration as part of the do/while(false) block. The
returned cookie representing the registration is stored in a global variable:

UNICODE_STRING altitude = RTL_CONSTANT_STRING(L"7657.124");
status = CmRegisterCallbackEx(OnRegistryNotify, &altitude, DriverObject,
nullptr, &g_RegCookie, nullptr);
if(INT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX "failed to set registry callback (%@8X)\n",
status));
break;

It would have been better to encapsulate all state in the Globals strcuture and provide methods
for initializing and uninitializing all the callbacks within this class. This is left as an exercise to
the reader.

We must also unregister the notification in the Unload routine:
CmUnRegisterCallback(g_RegCookie);

Handling Registry Callback

Our callback should only care about writes done to HKEY_LOCAL MACHINE. First, we switch on the
operation of interest:



Chapter 10: Object and Registry Notifications 333

NTSTATUS OnRegistryNotify(PVOID context, PVOID argl, PVOID arg2) {
UNREFERENCED_PARAMETER(context);

switch ((REG_NOTIFY_CLASS)(ULONG_PTR)argl) {
case RegNtPostSetValueKey:
/S

}
return STATUS_SUCCESS;

In this driver we don’t care about any other operation, so after the switch we simply return a successful
status. Note that we examine the post-operation, since only the result is interesting for this driver. Next,
inside the case we care about, we cast the second argument to the post-operation data and check if the
operation succeeded:

auto args = (REG_POST_OPERATION_INFORMATION*)arg2;
if (!NT_SUCCESS(args->Status))
break;

If the operation is not successful, we bail out. This is just an arbitrary decision for this driver; a different
driver might be interested in these failed attempts.

Next, we need to check if the key in question is under HKEY_LOCAL_MACHINE, which as we’ve seen is
in actuality \REGISTRY\MACHINE.

The key path is not stored in the post-structure and not even stored in the pre-structure directly. Instead, the
Registry key object itself is provided as part of the post-information structure. We then need to extract the
key name with CmCallbackGetKeyObjectIDEx (Windows 8+) or CmCallbackGetKeyObjectID (earlier
versions), and see if it’s starting with \REGISTRY\MACHINE\. These APIs are declared as follows:

NTSTATUS CmCallbackGetKeyObjectID (

_In_ PLARGE_INTEGER  Cookie,
_In_ PVOID Object,
_Out_opt_  PULONG_PTR ObjectID,

_Outptr_opt_ PCUNICODE_STRING *ObjectName);
NTSTATUS CmCallbackGetKeyObjectIDEx (

_In_ PLARGE_INTEGER Cookie,

_In_ PVOID Object,

_Out_opt_ PULONG_PTR ObjectlID,
_Outptr_opt_ PCUNICODE_STRING *ObjectName,
_In_ ULONG Flags); // must be zero

Cookie identifies the registration cookie returned from CmRegisterCallbackEx, identifying the driber.
Object is the Registry key whos name we need. ObjectID is an optional returned value that provides the
unique identifier of the key in question. Finally, ObjectName is a pointer to a UNICODE_STRING pointer
retruned with the full key name itself.
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The two APIs are identical from a parameter perspective, as the Flags argument to CmCal 1backGetKeyOb ject IDEx
must be zero. There are differences in implementation, however:

First, The returned key name from CmCal 1backGetKeyOb jectID is valid until the last handle of the key is
closed. With CmCallbackGetKeyOb jectIDEx, the name must be freed by calling CmCallbackReleaseKeyOb ject IDEx

VOID CmCallbackReleaseKeyObjectIDEx (_In_ PCUNICODE_STRING ObjectName);

Second, if the name of the Registry key is changed after it’s been obtained with CmCallbackGetKeyOb jectID,
subsequent calls to CmCal 1backGetKeyOb jectID will return the old, stale, name. In contrast,CmCal 1backReleaseKey!
always returns the current key name.

’ Call CmCallbackReleaseKeyObjectIDEx is you're targeting Windows 8 and later.

Here is the call to obtain the key name and checking if it’s part of HKLM:

static const WCHAR machine[] = L"\\REGISTRY\\MACHINE\\";
PCUNICODE_STRING name;
if (NT_SUCCESS(CmCallbackGetKeyObjectIDEx(&g_RegCookie, args->Object,
nullptr, &name, 0))) {
if (wesncmp(name->Buffer, machine, ARRAYSIZE(machine) - 1) == 0) {

If the condition holds, then we need to capture the information of the operation into our notification
structure and add it to the queue. The needed information (data type, value name, actual value, etc.)
is provided with the pre-information structure that is luckily available as part of the post-information
structure we receive directly.

auto prelnfo = (REG_SET_VALUE_KEY_INFORMATION*)args->Prelnformation;
NT_ASSERT(prelnfo);

Calculating the correct size to allocate is more involved than previous cases, as we have several variable-
length strings to deal with. We can start with the base data structure size and then add the sizes (in bytes)
of the strings (not forgetting to leave room for a terminating NULL ):
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USHORT size = sizeof(RegistrySetValuelnfo);

USHORT keyNameLen = name->Length + sizeof(WCHAR);

USHORT valueNamelLen = prelnfo->ValueName->Length + sizeof(WCHAR);
/7

// restrict copied data to 256 bytes

//

USHORT valueSize = (USHORT)min(256, prelnfo->DataSize);

size += keyNameLen + valueNamelLen + valueSize;

The driver stores the data itself, and since it’s unbounded in theory, we decide to store no more than 256
bytes. We will still report the true size of the data - the data itself may be truncated.

Now comes the real work of making the allocation and filling all the details. First, the fixed-size data,
including the header:

auto info = (Fullltem<RegistrySetValuelnfo>*)ExAllocatePoolWithTag(PagedPool,
size + sizeof(LIST_ENTRY), DRIVER_TAG);

if (info) {
auto& data = info->Data;
KeQuerySystemTimePrecise(&data.Time);
data.Type = ItemType: :RegistrySetValue;
data.Size = size;
data.DataType = prelnfo->Type;
data.ProcessId = HandleToULong(PsGetCurrentProcessId());
data.Threadld = HandleToUlong(PsGetCurrentThreadId());
data.ProvidedDataSize = valueSize;
data.DataSize = prelnfo->DataSize;

Next, we copy the strings and set the offsets:

// first offset starts at the end of the structure

//

USHORT offset = sizeof(data);

data.KeyNameOffset = offset;

wesnepy_s( (PWSTR) ((PUCHAR)&data + offset),
keyNameLen / sizeof(WCHAR), name->Buffer,
name->Length / sizeof(WCHAR));

offset += keyNamelLen;

data.ValueNameOffset = offset;

wesnepy_s( (PWSTR) ((PUCHAR)&data + offset),
valueNameLen / sizeof(WCHAR), prelnfo->ValueName->Buffer,
prelnfo->ValueName->Length / sizeof(WCHAR));

offset += valueNamelLen;
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data.DataOffset = offset;
memcpy ( (PUCHAR)&data + offset, prelnfo->Data, valueSize);

// finally, add the item
g_State.AddItem(&info->Entry);

Using wesnepy_s to copy the strings is a good choice in this case, since it appends NULL at the end of
strings (if there is enough space, and we made sure of that).

Finally, if CmCallbackGetKeyOb jectIDEx succeeds, the resulting key name must be explicitly freed:
CmCallbackReleaseKeyObjectIDEx(name);

Here is the full function for convenience:

NTSTATUS OnRegistryNotify(PVOID context, PVOID argl, PVOID arg2) {
UNREFERENCED_PARAMETER(context);

switch ((REG_NOTIFY_CLASS)(ULONG_PTR)argl) ({
case RegNtPostSetValueKey:
auto args = (REG_POST_OPERATION_INFORMATION*)arg2;
if (!NT_SUCCESS(args->Status))
break;

static const WCHAR machine[] = L"\\REGISTRY\\MACHINE\\";

PCUNICODE_STRING name;
if (NT_SUCCESS(CmCallbackGetKeyOb jectIDEx(
2g_RegCookie, args->Object, nullptr, &name, 0))) {
//
// look for HKLM subkeys
//
if (wesncmp(name->Buffer, machine, ARRAYSIZE(machine) - 1) == 0) {
auto prelnfo = (REG_SET_VALUE_KEY_INFORMATION*)args->Prelnformation;
USHORT size = sizeof(RegistrySetValuelnfo);
USHORT keyNamelLen = name->Length + sizeof(WCHAR);
USHORT valueNamelLen = prelnfo->ValueName->Length + sizeof(WCHAR);
//
// restrict copied data to 256 bytes
/7
USHORT valueSize = (USHORT)min(256, prelnfo->DataSize);
size += keyNamelLen + valueNamelLen + valueSize;
auto info = (Fullltem<RegistrySetValuelInfo>*)
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ExAllocatePoolWithTag(PagedPool,
size + sizeof(LIST_ENTRY), DRIVER_TAG);

if (info) {

}

auto& data = info->Data;
KeQuerySystemTimePrecise(&data.Time);
data.Type = ItemType: :RegistrySetValue;
data.Size = size;
data.DataType = prelnfo->Type;
data.ProcessId = HandleToULong(PsGetCurrentProcessId());
data.Threadld = HandleToUlong(PsGetCurrentThreadId());
data.ProvidedDataSize = valueSize;
data.DataSize = prelnfo->DataSize;
//
// first offset starts at the end of the structure
//
USHORT offset = sizeof(data);
data.KeyNameOffset = offset;
wesnepy_s( (PWSTR) ((PUCHAR)&data + offset),
keyNameLen / sizeof(WCHAR), name->Buffer,
name->Length / sizeof(WCHAR));
offset += keyNamelen;
data.ValueNameOffset = offset;
wesnepy_s((PWSTR) ((PUCHAR)&data + offset),
valueNameLen / sizeof(WCHAR), prelnfo->ValueName->Buffer,
prelnfo->ValueName->Length / sizeof(WCHAR));
offset += valueNamelLen;
data.DataOffset = offset;
memcpy ( (PUCHAR)&data + offset, prelnfo->Data, valueSize);
g_State.AddItem(&info->Entry);

else {

}

KdPrint((DRIVER_PREFIX

"Failed to allocate memory for registry set value\n"));

CmCallbackReleaseKeyObjectIDEx(name);

}

break;

}

return STATUS_SUCCESS;
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Modified Client Code

The client application should be modified to support this new event type. Here is the case added as part
of DisplayInfo:

case ItemType::RegistrySetValue:

{
DisplayTime(header->Time);
auto info = (RegistrySetValuelnfo*)buffer;
printf("Registry write PID=%u, TID=%u: %ws\\%ws type: %d size: %d data: ",
info->Processld, info->Threadld,
(PCWSTR)((PBYTE)info + info->KeyNameOffset),
(PCWSTR) ((PBYTE)info + info->ValueNameOffset),
info->DataType, info->DataSize);
DisplayRegistryValue(info);
break;
}

The data itself is displayed by a helper functiom, DisplayRegistryValue:

void DisplayRegistryValue(const RegistrySetValueInfo* info) {
auto data = (PBYTE)info + info->DataOffset;
switeh (info->DataType) {
case REG_DWORD:
printf("0x%08X (%u)\n", *(DWORD*)data, *(DWORD*)data);
break;

case REG_SZ:

case REG_EXPAND_SZ:
printf("%ws\n", (PCWSTR)data);
break;

// add other cases... (REG_QWORD, REG_LINK, etc.)
default:

DisplayBinary(data, info->ProvidedDataSize);
break;

DisplayBinary is a simple helper function that shows binary data as a series of hex values shown here
for completeness:
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void DisplayBinary(const BYTE* buffer, DWORD size) {
printf("\n");
for (DWORD i = 0; i < size; i++) {
printf("%02X ", buffer[i]);
/7
// go to new line every 16 values
/7
if ((i +1) % 16 == Q)
printf("\n");
}
printf("\n");
}

Here is some output for this enhanced client and driver:

11:14:13.991: Registry write PID=5076, TID=9532: \REGISTRY\MACHINE\SOFTWARE\Mic\
rosoft\Windows\CurrentVersion\Diagnostics\DiagTrack\Aggregation\Instrumentation\
\CodecAppSvcAggregator \HbActiveMillis type: 11 size: 8 data:

4E 88 2B 05 00 00 00 00

11:14:13.991: Registry write PID=5076, TID=9532: \REGISTRY\MACHINE\SOFTWARE\Mic\
rosoft\Windows\CurrentVersion\Diagnostics\DiagTrack\Aggregation\Instrumentation\
\CodecAppSvcAggregator \HbErrorMillis type: 11 size: 8 data:

00 00 00 00 V0 0O VO 00

11:14:13.991: Registry write PID=5076, TID=9532: \REGISTRY\MACHINE\SOFTWARE\Mic\
rosoft\Windows\CurrentVersion\Diagnostics\DiagTrack\Aggregation\Instrumentation\
\CodecAppSvcAggregator\HbSeq type: 4 size: 4 data: 0x0Q0000005 (5)

Err type: 1 size: 30 data: ProcTerminated

11:14:13.991: Registry write PID=5076, TID=9532: \REGISTRY\MACHINE\SOFTWARE\Mic\
rosoft\Windows\CurrentVersion\Diagnostics\DiagTrack\Aggregation\Instrumentation\
\UpdateHeartbeatScan\HbErr type: 4 size: 4 data: 0x00000000 (Q)

11:14:36.838: Registry write PID=7148, TID=8648: \REGISTRY\MACHINE\SOFTWARE\Mic\
rosoft\Windows NT\CurrentVersion\Notifications\Data\418AQ73AA3BC1CT75 type: 3 si\
ze: 464 data:

90 05 00 00 00 V0 VO V0 04 QY V4 V0 01 00 01 00

01 01 00 00 A5 AD CF 00 4F 00 02 00 00 00 01 91

40 01 02 99 66 00 ©3 03 DD 01 03 89 A8 01 @D 28

CT7 ©1 oD D3 F9 00 OE BA CD 00 OF 16 8C 01 10 FF

88 01 1E C3 30 02 22 78 CE 00 24 AC CT7T 00 29 45

00 02 29 45 01 ©1 2F A8 FF ©1 31 48 4F 00 36 1E

E1 ©1 3E 5B ED 01 46 48 B6 00 48 3B DB 01 4E 12

’ Enhance SysMon by adding I/O control codes to enable/disable certain notification types
? (processes, threads, image loads, Registry).

339
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Performance Considerations

The Registry callback is invoked for every registry operation; there is no apriori way to request filtering of
certain operations only. This means the callback needs to be as quick as possible since the caller is waiting.
Also, there may be more than one driver in the chain of callbacks.

Some Registry operations, especially read operations happen in large quantities, so it’s better for a driver
to avoid processing read operations, if possible. If it must process read operations, it should at least limit
its processing to certain keys of interest, such as anything under HKLM\System\CurrentControlSet (just
an example). If processing can be done asynchronously, a work item could be used.

Write and create operations are used much less often, so in these cases the driver can do more if needed.

Miscellaenous Notes

« The documentation provides some warnings when dealing with Registry notifications, worth
repeating here.

Certain Registry operations are lightly-documented because they are not very useful. Modifying the
following operations should be avoided as it’s difficult and error-prone: NtRestoreKey, NtSaveKey,
NtSaveKeyEx,NtLoadKeyEx,NtUnloadKey2,NtUnloadKeyEx,NtReplaceKey,NtRenameKey,NtSetInformationKey

« The operations RegNtPostCreateKeyEx and RegNtPostOpenKeyEx provide a Registry key object
(Object member in REG_POST_OPERATION_INFORMATION). This member is valid only if the Status
member is STATUS_SUCCESS. Otherwise, its value is undefined.

« For some operations, the Object member points to a Registry key that is being destroyed (its internal
reference count is zero). These are the operations:

— RegNtPreKeyHandleClose (REG_KEY_HANDLE_CLOSE_INFORMATION structure)

— RegNtPostKeyHandleClose (REG_POST_OPERATION_INFORMATION structure)

— RegNtCallbackObjectContextCleanup (REG_CALLBACK_CONTEXT_CLEANUP_INFORMATION struc-
ture)

The Object member should not be passed to general kernel routines (such asObReferenceOb jectByPointer).
However, for the first two cases, the object can still be used within the callback by calling Comfiguration
Manager functions (e.g. CmCal lbackGetKeyOb ject IDEx).

\g
? 1. Implement a driver that protects a Registry key from modifications. A client can send
the driver registry keys to protect or unprotect.

2. Implement a driver that redirects Registry write operations coming from selected
processes (configured by a client application) to their own private key if they access
HKEY_LOCAL_MACHINE. If the app is writing data, it goes to its private store. If it’s
reading data, first check the private store, and if no such value is found, go to the real
Registry key.
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Summary

In this chapter, we looked at two callback mechanisms supported by the kernel - obtaining handles to
certain object types, and Registry access. In the next chapter, we’ll look at more techniques that may be
useful for a driver developer.



Chapter 11: Advanced Programming
Techniques (Part 2)

In this chapter we’ll continue to examine techniques of various degrees of usefulness to driver developers.

In this chapter:

o Timers

« Generic Tables

« Hash Tables

« Singly Linked Lists
« Callback Objects

Timers

We have briefly seen an example that uses a kernel timer in chapter 6. In this section, we’ll cover kernel
timers in more detail, as well as high-resolution timers, which have been introduced in Windows 8.1.

Kernel Timers

A kernel timer is represented by the KTIMER structure that must be allocated from non-paged memory.
The timer can be set to one shot or periodic. The interval itself can be relative or absolute, making
it quite flexible. A kernel timer is a dispatcher object, which means it can be waited upon with
KeWaitForSingleObject and similar APIs. Once a KTIMER is allocated, it must be initialized by calling
KeInitializeTimer orKelnitializeTimerEx:
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VOID KelnitializeTimer (_Out_ PKTIMER Timer);

typedef enum _TIMER_TYPE ({
NotificationTimer,
SynchronizationTimer

} TIMER_TYPE;

VOID KelnitializeTimerEx (
_Out_ PKTIMER Timer,
_In_ TIMER_TYPE Type);

There are two kinds of timers (similar to the two kinds of event kernel object types) - NotificationTimer
that releases any number of waiting threads, and remains in the signaled state, or aSynchronizationTimer,
that after releasing a single thread goes to the non-signaled state automatically. KeInitializeTimer is a
shortcut that initializes a notification timer.

Once the timer is initialized, its interval can be set with KeSetTimer (one shot) orKeSetTimerEx (periodic):

BOOLEAN KeSetTimer (
_Inout_ PKTIMER Timer,
_In_ LARGE_INTEGER DueTime,
_In_opt_ PKDPC Dpc);
BOOLEAN KeSetTimerEx (
_Inout_ PKTIMER Timer,
_In_ LARGE_INTEGER DueTime,
_In_ LONG Period,
_In_opt_ PKDPC Dpc);

Both functions set the timer interval based on a LARGE_INTEGER structure, that is set to a negative number
for a relative count, and a positive number for an absolute count from January 1, 1601, at midnight GMT.
The number (whether positive or negative) is specified as 10@nsec units. For example, 1msec equals 10000
X 10@nsec units. Here is how to specify a relative interval of 10 milliseconds:

LARGE_INTEGER interval;
interval.QuadPart = -10 * 10000; // 10 msec

We have encountered these units before when discussing KeDelayExecutionThread in chapter 8.

The Period argument in KeSetTimerEx indicates the period the timer should count repeatedly from its
first signaling. Curiously enough, it’s specified in milliseconds. Finally, a DPC object can be specified as
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an alternative to waiting. If one is provided, it will be inserted in a CPU’s DPC queue and run just like
any other DPC.

Both functions return TRUE if the timer is already in the system’s timer queue. If it was there before the
call, it’s implicitly cancelled and set to the new specified time. With KeSetTimer, once the timer expires,
it won’t restart unless another call to KeSetTimer (Ex) is made. Regardless, a timer can be cancelled by
calling KeCancelTimer:

BOOLEAN KeCancelTimer (_Inout_ PKTIMER);

KeCancelTimer returns TRUE if the timer was in the system’s timer queue - which is always TRUE for a
periodic timer.

Another available API to set a timer’s interval is KeSetCoalescableTimer:

BOOLEAN KeSetCoalescableTimer (
_Inout_ PKTIMER Timer,
_In_ LARGE_INTEGER DueTime,
_In_ ULONG Period,
_In_ ULONG TolerableDelay,
_In_opt_ PKDPC Dpc);

Most parameters are the same as KeSetTimerEx, except for the additional TolerableDelay. This
parameter allows a caller to set some “tolerance” interval in milliseconds that indicates that it’s ok to
program the timer to expire slightly after the provided DueTime by no more than the tolerance delay.
The period (if non-zero) can be up to the tolerance higher or lower. The point of a coallesable timer is to
allow the system to save energy by not waking up too often to signal timers. Close-enough timers will be
“coallesced” by the system, so that a single wakeup can signal multiple timers if their tolerance allows it.

Finally, you can query a timer’s signaled state by calling KeReadStateTimer (may be useful for debugging
purposes):

BOOLEAN KeReadStateTimer (_In_ PKTIMER Timer);

Timer Resolution

It may seem from the KeSetTimer(Ex) APIs that the timer’s resolution can be really high, as the units are
very small. For example, it seems you can set a timer to expire after 1 microsecond by specifiying the value
-10 for DueTime. This does not work as expected, however.

There is a default timer resolution, which is typically 15.625 milliseconds in today’s systems. This is the
default (and maximum) resolution, that is also used by the kernel’s scheduler. This resolution can be
changed, however. A quick way to determine the clock’s resolution is to run the Sysinternals ClockRes.exe
command line tool. Here is an example run:
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C:\>clockres

Clockres v2.1 - Clock resolution display utility
Copyright (C) 2016 Mark Russinovich
Sysinternals

Maximum timer interval: 15.625 ms
Minimum timer interval: ©.500 ms
Current timer interval: 1.000 ms

The current timer interval is the active one, and is (more often than not) lower than the default. This is
because user mode processes can change the clock’s resolution to get better timing in wait operations,
sleep calls, and timers. For example, the timeBeginPeriod or timeSetEvent user mode multimedia APIs
allow setting up a timer with up to 1 millisecond resolution (both call the NtSetTimerResolution native
API). This causes the clock’s resolution to be reprogrammed to cater for the client process. The system
keeps track of processes that request resolution changes, and so has to make sure the clock is using the
highest resolution (lowest interval) requested by any process.

A kernel driver can specify its own request for a resolution value by calling ExSetTimerResolution:

ULONG ExSetTimerResolution (
_In_ ULONG DesiredTime,
_In_ BOOLEAN SetResolution);

The DesiredTime is in 100-nanosecond (nsec) units. If SetResolution is TRUE, the system adjusts the
resolution to the closest value it can support, and returns the actual set value. If SetResolution is FALSE,
the system decrements an internal counter (incremented for each ExSetTimerResolution call with TRUE),
and if zero is reached, resets the resolution to its initial value. Of course, this will not occur as long as there
are user mode processes that requested a higher resolution than the default.

With Windows 8 and later, you can also query the current resolution without making any changes with
ExQueryTimerResolution:

void ExQueryTimerResolution (
_Out_ PULONG MaximumTime,
_Out_ PULONG MinimumTime,
_Out_ PULONG CurrentTime);

The returned values are in 100-nsec units. Converted to milliseconds, these numbers are the same ones
displayed by ClockRes.

tion.

’ The KeQueryTimeIncrement function returns the same value as the maximum timer resolu-
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j Write a C++ RAII wrapper for working with timers.

High-Resolution Timers

Starting with Windows 8.1, the kernel provides support for another type of timer - high-resolusion timers,
that can be used instead of the “standard” timers. These newer timers offer the following benefits over
standard timers:

+ There is no need to set the timer resolution explicitly - it will be set as required based on the provided
interval (and revert automatically as well).

« High resolution timers never expire earlier than their set time.

« There is no need to set up an explicit DPC to be used as callback - the callback is specified directly
as part of setting the timer. The system will invoke the callback at IRQL DISPATCH_LEVEL (2).

A high-resolution timer must be first allocated by calling ExAllocateTimer:

PEX_TIMER ExAllocateTimer (
_In_opt_ PEXT_CALLBACK Callback,
_In_opt_ PVOID CallbackContext,
_In_ ULONG Attributes);

The callback provided must have the following prototype:

VOID EXT_CALLBACK (
_In_ PEX_TIMER Timer,
_In_opt_ PVOID Context);

The CallbackContext parameter to ExAllocateTimer is passed as-is to the callback function, along with
the timer object itself. The attributes provided can be zero or the following:

» EX_TIMER_HIGH_RESOLUTION - specifies that the timer should be a high-resolution one. Without
this flag, the timer is similar in terms of accuracy to a standard timer.

« EX_TIMER_NO_WAKE - indicates the timer should expire at its interval plus its tolerance delay (set
with ExSetTimer discussed shortly). This flag conflicts with the previous one.

« EX_TIMER_NOTIFICATION - creates the timer as a notification timer as opposed to a synchronization
timer (if this flag is not specified). The timer object can be waited upon just like standard timers.

ExAllocateTimer returns an opaque pointer to the allocated timer object that must be eventually freed
with ExDeleteTimer (shown later).

The next step is to set the timer interval and start it by calling ExSetTimer:
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BOOLEAN ExSetTimer (
_In_ PEX_TIMER Timer,
_In_ LONGLONG DueTime,
_In_ LONGLONG Period,
_In_opt_ PEXT_SET_PARAMETERS Parameters);

High-resolution timers only work with relative time, meaning DueTime must be a negative value (in the
usual 100 nsec units). The optional Period parameter is the period for a periodic timer. It’s specified in the
same 100 nsec units (contrary to a standard timer where the period is specified in milliseconds). Finally,
Parameters can be NULL or a pointer to EXT_SET_PARAMETERS:

typedef struct _EXT_SET_PARAMETERS_VO {
ULONG Version;
ULONG Reserved;
LONGLONG NoWakeTolerance;

} EXT_SET_PARAMETERS, *PEXT_SET_PARAMETERS;

The only parameter of interest is NowakeTolerance, indicates the timer’s maximum tolerance for waking
a processor. If the value is set to EX_TIMER_UNL IMITED_TOLERANCE, the timer never wakes a processor in
a low power state. Initializing this structure must be done with ExInitializeSetTimerParameters that
sets the Version member to the correct value, Reserved and NowakeTolerance to zero. Here is a typical
way of working with EXT_SET_PARAMETERS if desired:

EXT_SET_PARAMETERS params;
ExInitializeSetTimerParameters(&params);
params.NoWakeTolerance = -5000; // 0.5 msec
ExSetTimer(timer, -15000, 0, &params); // 1.5 msec interval

ExSetTimer cancels any previous timer that may have been active and sets the new values. If the timer
was active, the function returns TRUE. Otherwise, it returns FALSE.

As with standard timers, it’s possible to cancel a high-resolution timer with ExCancelTimer:

BOOLEAN ExCancelTimer (
_Inout_ PEX_TIMER Timer,
_In_opt_ PEXT_CANCEL_PARAMETERS Parameters);

The function returns TRUE if the timer was actually cancelled, or FALSE if the timer was inactive - nothing
to cancel. Parameters must be NULL.

Finally, a timer object must be deleted with ExDeleteTimer:
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BOOLEAN ExDeleteTimer (

_In_ PEX_TIMER Timer,
_In_ BOOLEAN Cancel,
_In_ BOOLEAN Wait,

_In_opt_ PEXT_DELETE_PARAMETERS Parameters);

Cancel indicates whether to cancel the timer (if active). If Cancel is set to TRUE, then Wait can be set to
TRUE as well to wait until the timer has been cancelled. If Wait is set to TRUE, so must Cancel. Similar to
ExSetTimer, an optional EXT_DELETE_PARAMETERS structure can be provided, that includes an optional
callback to be invoked when the timer is finally deleted. ExDeleteTimer returns TRUE if Cancel is TRUE
and the timer was cancelled.

f Write a C++ RAII wrapper for High-Resolution timers.

You can find examples for using standard and high-resolution timers in the Timers project, part of the
source code for this chapter. The example driver has a few I/O control codes to set up a standard timer
and a high-resolution timer. Here is an excerpt for creating a high-resolution timer:

// in TimersPublic.h

struct PeriodicTimer ({
ULONG Interval;
ULONG Period;

};

// in DriverEntry
// g_HiRes is PEX_TIMER

g_HiRes = ExAllocateTimer(HiResCallback, nullptr,
EX_TIMER_HIGH_RESOLUTION);

/)
case IOCTL_TIMERS_SET_HIRES:
//check buffer... and then
auto data = (PeriodicTimer*)Irp->Associatedlrp.SystemBuffer;
ExSetTimer(g_HiRes, -10000LL * data->Interval,
10000LL * data->Period, nullptr);
status = STATUS_SUCCESS;
break;

/)
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void HiResCallback(PEX_TIMER, PVOID) {
auto counter = KeQueryPer formanceCounter(nullptr);
DbgPrint (DRIVER_PREFIX "Hi-Res Timer DPC: IRQL=%d Counter=%11d\n",
(int)KeGetCurrentlIrql(), counter.QuadPart);

The TimersTest user-mode application can be used to test the timers. Here is the entire code:

#include <Windows.h>
#include <stdio.h>

"

#include "..\Timers\TimersPublic.h"
int main(int argc, const char* argv[]) {
if (argc < 2) {
printf("Usage: TimersTest [query | stop | set [hires] "
"[interval(ms)] [period(ms)]]\n");

HANDLE hDevice = CreateFile(L"\\\\.\\Timers", GENERIC_READ | GENERIC_WRITE,
0, nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE) {
printf("Error opening device (%u)\n", GetlLastError());
return 1;

DWORD bytes;
if (arge < 2 || _stricmp(argv[1], "query") == 0) {
TimerResolution res;
if (DeviceloControl(hDevice, IOCTL_TIMERS_GET_RESOLUTION, nullptr,
0, &res, sizeof(res), &bytes, nullptr)) {
printf("Timer resolution (1@@nsec): Max: %u Min: %u "
"Current: %u Inc: %u\n",
res.Maximum, res.Minimum, res.Current, res.Increment);
float factor = 10000.0f;
printf("Timer resolution (msec): Max: %.3f Min: %.3f "
"Current: %.3f Inc: %.3f\n",
res.Maximum / factor, res.Minimum / factor,

res.Current / factor, res.Increment / factor);

}

else if (_stricmp(argv[1], "set") == 0 && argc > 2) {
int arg = 2;
bool hires = false;
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if (_stricmp(argv[2], "hires") == 0) {
hires = true;
arg++;
}
PeriodicTimer data{};
if (argc > arg) {
data.Interval = atoi(argv|arg]);
argt+;
if (argc > arg) {
data.Period = atoi(argv[arg]);
}
if (!DeviceloControl(hDevice,
hires ? IOCTL_TIMERS_SET HIRES : IOCTL_TIMERS_SET_PERIODIC,
&data, sizeof(data), nullptr, 9, &bytes, nullptr))
printf("Error setting timer (%u)\n", GetLastError());

}
else if (_stricmp(argv[1], "stop") == 0) {
DeviceloControl (hDevice, IOCTL_TIMERS_STOP,
nullptr, 0, nullptr, 0, &bytes, nullptr);

}
else {

printf("Unknown option.\n");
}

CloseHandle(hDevice);

return 0;

’

}
I/0 Timer

There is yet another type of timer that can be used by a driver, known as an I/O Timer. This timer exists
for every device object (just one per device). When started, it runs a callback at IRQL DISPATCH_LEVEL
every second. There is no way to further customize it. It can be used as a “watchdog” of some sort, when
high resolution is not required.

The first step in using an I/O timer is to initialize it:

NTSTATUS IolnitializeTimer(
_In_ PDEVICE_OBJECT DeviceObject,
_In_ PIO_TIMER_ROUTINE TimerRoutine,
_In_opt_ PVOID Context);

Notice the device object parameter - this is how the I/O timer is identified. TimerRout ine has the following
prototype:
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VOID IO_TIMER_ROUTINE (

351

_In_ struct _DEVICE_OBJECT *DeviceObject,

_In_opt_ PVOID Context);

To start the timer, call IoStartTimer. To stop it, call IoStopTimer:

VOID IoStartTimer(_In_ PDEVICE_OBJECT DeviceObject);
VOID IoStopTimer(_In_ PDEVICE_OBJECT DeviceObject);

Generic Tables

The term “generic tables” is used by the kernel API to refer to two binary tree implementations available
to device driver writers (and the kernel itself). The first type is a Splay Tree implementation, referred to
as simply Generic Tables. The second implementation is using AVL trees, referred to as AVL tables.

Splay trees are binary search trees where frequently used items move closer to the root and thus are
faster to access. On the downside, the tree is not self-balancing in the sense that it can have any depth.
AVL trees (named after Georgy Adelson-Velsky and Evgenii Landis) are self-balancing binary search trees
trees, keeping their depth logarithmic on the number of items (in base 2). They are similar to red-black
trees, but are faster in retrieval. You can find more information online.

Both implementations have an almost identical API. We'll start with Splay trees, and then look at the

differences compared to AVL trees.

Splay Trees

The most common functions related to generic tables are shown in table 11-1.

Table 11-1: Common functions for working with generic tables

Function

Description

RtlInitializeGenericTable

Initialize a new generic table

RtlInsertElementGenericTable

Insert a new item into the table

Rt1LookupElementGenericTable

Lookup an item by key (logarithmic)

Rt1NumberGenericTableElements

Return the number of items in the table

Rt1GetElementGenericTable

Return an item by index

Rt1DeleteElementGenericTable

Delete an item from the table

Rt1EnumerateGenericTable

Enumerate the items in the table
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It’s important to note that the tables API provide no inherent synchronization. It’s the job of the driver to
make sure thread/CPU safety exists. You can use any approrpiate synchronization primitive we looked at,
such as a (fast) mutex, Executive Resource, or spin lock.

The first step when using a generic table is to initialize it by calling Rt1InitializeGenericTable:

VOID RtllInitializeGenericTable (
_Out_ PRTL_GENERIC_TABLE Table,
_In_ PRTL_GENERIC_COMPARE_ROUTINE CompareRoutine,
_In_ PRTL_GENERIC_ALLOCATE_ROUTINE AllocateRoutine,
_In_ PRTL_GENERIC_FREE_ROUTINE FreeRoutine,
_In_opt_ PVOID TableContext);

A generic table is managed by an RTL_GENERIC_TABLE structure, that although provided in the headers,
should be treated as opaque. A driver allocates such a structure and calls the initialization API. The function
requires three callbacks to be specified (all of which are mandatory).

CompareRoutine is a function that should tell which element is greater (or equal) given two elements. This
is the basis of any binary search tree implementation. The routine must have the following prototype:

typedef enum _RTL_GENERIC_COMPARE_RESULTS {
GenericlLessThan,
GenericGreaterThan,
GenericEqual

} RTL_GENERIC_COMPARE_RESULTS;

RTL_GENERIC_COMPARE_RESULTS CompareFunction (
_In_ struct _RTL_GENERIC_TABLE *Table,
_In_ PVOID FirstStruct,

_In_ PVOID SecondStruct);

The returned value is a simple enumeration. The provided arguments should be cast to the actual data
stored in the table and compared using some key present in that data. The returned value must be consistent
- using the key for comparison in a consistent way - otherwise the table APIs cannot work as expected.

The AllocateRoutine and FreeRoutine are needed to implement the method of allocating and freeing
memory for the nodes managed by the table. These include the data item itself the driver wishes to store
and any other metadata required by the table implementation. Here are the prototypes:
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PVOID AllocateFunction (
_In_ struct _RTL_GENERIC_TABLE *Table,
_In_ CLONG ByteSize);

VOID FreeFunction (
_In_ struct _RTL_GENERIC_TABLE *Table,
_In_ PVOID Buffer);

The byte size provided to the allocation function is properly calculated to include any metadata required
by the tables API. As we’ll soon see, the insert API specifies the driver’s data size and automatically adds
the required overhead before calling the allocation function.

As for the implementation itself - you can use any memory APIs discussed, such asExAllocatePoolWithTag,
ExAllocatePool2, or even lookaside lists. You can use the paged pool or non-paged pool, as needed. The
deallocation function must free the allocation appropriately.

Finally, the TableContext parameter allows adding some context pointer that may be useful for the driver.
It can be retrieved by accessing the TableContext member of RTL_GENERIC_TABLE. It’s also possible to
allocate a structure that starts with a RTL_GENERIC_TABLE member, and add driver-specific members, so
that access is possible by casting to the larger structure.

Although the RTL_GENERIC_TABLE is supposed to be opaque, there is no other way to get to
the table context except accessing the TableContext member directly.

Once the table is initialized, items can be inserted (based on a key) by callingRt1InsertElementGenericTable:

PVOID RtlInsertElementGenericTable (
_In_ PRTL_GENERIC_TABLE Table,
_In_reads_bytes_(BufferSize) PVOID Buffer,
_In_ CLONG BufferSize,
_Out_opt_ PBOOLEAN NewElement);

The provided Buffer should be the data to be placed in the table, which should contain the key to be
used for comparison. The function calls the compare function to figure out if the element already exists
in the table. If it does, its address is returned and no insertion takes place. If it doesn’t exist, it’s inserted
by copying the provided buffer to the “real” buffer allocated (by calling the registered allocation routine).
BufferSize should specify the number of bytes in the data structure to copy. The returned pointer in this
case is the address of the stored object within the table.

For example, suppose the driver wants to keep some data on a per-process basis, keyed by the process ID.
The data structure could look something like the following (full example is shown in the next section):
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struct ProcessData {
ULONG 1Id; // serves as the key

// data to be tracked per process...

b
Inserting an item would be done with the following code:

void AddProcessData(ULONG pid) {
ProcessData data;
data.Id = pid;

// fill more members. ..

PVOID item = RtlInsertElementGenericTable(&g_table,
&data, sizeof(data), nullptr);

There is no need to store the returned pointer - the driver can get it later by performing a lookup. Notice
that the provided data is on the stack - it doesn’t matter, as it’s copied to the dynamically-allocated buffer
anyway.

The final optional parameter to Rt1InsertElementGenericTable (NewElement) returns if a new item
was inserted (TRUE) or the item was already in the table (FALSE).

Retrieving an item based on the key is accomplished with Rt1LookupElementGenericTable:

PVOID RtlLookupElementGenericTable (
_In_ PRTL_GENERIC_TABLE Table,
_In_ PVOID Buffer);

The provided Buffer should be the key data that will be used by the called compare routine. It
doesn’t have to include a full blown item if the key members are first in the data structure. In the
previous example, providing a simple ULONG is enough, as it’s the first member of ProcessData.
RtlLookupElementGenericTable returns the pointer to the data within the table, or NULL if the item
cannot be located.

The table API provides an additional way to retrieve items - by index:

PVOID RtlGetElementGenericTable(
_In_ PRTL_GENERIC_TABLE Table,
_In_ ULONG Index);

This is sometimes useful for enumeration purposes, although the order is not generally predictable. You
can get the number of items in the table with the simple Rt 1NumberGenericTableElements. To get a
predictable enumeration (ordered by key), you can call Rt 1EnumerateGenericTable:
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PVOID RtlEnumerateGenericTable (
_In_ PRTL_GENERIC_TABLE Table,
_In_ BOOLEAN Restart);

Set Restart to TRUE when initializing enumeration, and iterate until the returned pointer is NULL. Here is
an example:

for (PVOID ptr = RtlEnumerateGenericTable(Table, TRUE);
ptr;
ptr = RtlEnumerateGenericTable(Table, FALSE)) {
// process ptr

Rt1EnumerateGenericTable flattens the tree into a linked list and provides the items as required. A
similar API, Rt1EnumerateGenericTableWithoutSplaying will not perturb the splay links.

Finally, to delete an item from the table, call Rt 1DeleteElementGenericTable:

BOOLEAN RtlDeleteElementGenericTable (
_In_ PRTL_GENERIC_TABLE Table,
_In_ PVOID Buffer);

The function returns TRUE if the item was found and was deleted, FALSE otherwise. You must be careful
to delete all items from the table before the driver unloads, or the memory used by remaining items will
leak. You can use the following loop to delete all items properly:

PVOID element;
while ((element = RtlGetElementGenericTable(&table, 0)) != nullptr) {
Rt1DeleteElementGenericTable(&table, element);

f Write a RAII wrapper for generic tables. Use C++ templates if you can.

Tables Sample Driver

The Tables driver example shows a usage for the common generic table APIs. The driver tracks Registry
access and counts certain Registry operations on a per-process basis.

The header file TablesPublic.h contains definitions for control codes and the data structure tracked per
process (which is also returned to user mode upon request):
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#define TABLES_DEVICE 0x8003

#define IOCTL_TABLES_GET_PROCESS_COUNT \
CTL_CODE (TABLES_DEVICE, ©x800, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_TABLES_GET_PROCESS_BY_ID \

CTL_CODE(TABLES_DEVICE, ©x801, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_TABLES_GET_PROCESS_BY_INDEX '\
CTL_CODE (TABLES_DEVICE, ©x802, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_TABLES_DELETE_ALL \

CTL_CODE (TABLES_DEVICE, ©x803, METHOD_NEITHER, FILE_ANY_ACCESS)
#define IOCTL_TABLES_START \

CTL_CODE(TABLES_DEVICE, ©x804, METHOD_NEITHER, FILE_ANY_ACCESS)
#define IOCTL_TABLES_STOP \

CTL_CODE (TABLES_DEVICE, ©x805, METHOD_NEITHER, FILE_ANY_ACCESS)
#define IOCTL_TABLES_GET_ALL \

CTL_CODE (TABLES_DEVICE, ©x806, METHOD_OUT_DIRECT, FILE_ANY_ACCESS)

struct ProcessData {
ULONG 1Id;
LONG64 RegistrySetValueOperations;
LONG64 RegistryCreateKeyOperations;
LONG64 RegistryRenameOperations;
LONG64 RegistryDeleteOperations;

};

Every time a process makes one of these operation, the relevant counter is incremented. A generic table is
used to quickly lookup a process making a Registry operation based on the process’ ID.

The process generic table and other data is stored in the following structure (in Tables.h):

struct Globals {
void Init();

RTL_GENERIC_TABLE ProcessTable;
FastMutex Lock;
LARGE_INTEGER RegCookie;

¥

A global instance is created in Tables.cpp. Init is used to initialize the fast mutex (a RAII wrapper similar
to the one we saw in chapter 6) and the table itself:



Chapter 11: Advanced Programming Techniques (Part 2) 357

#define DRIVER_PREFIX "Tables: "
#define DRIVER_TAG 'IlbaT'

Globals g_Globals;

void Globals::Init() {
Lock.Init();
RtlInitializeGenericTable(&ProcessTable,
CompareProcesses, AllocateProcess, FreeProcess, nullptr);

extern Globals g_Globals;
CompareProcesses uses the process ID for comparison:

RTL_GENERIC_COMPARE_RESULTS

CompareProcesses(PRTL_GENERIC_TABLE, PVOID first, PVOID second) {
auto p1 = (ProcessData*)first;
auto p2 = (ProcessData*)second;

if (p1->Id == p2->1d)
return GenericEqual;

return p1->Id > p2->Id ? GenericGreaterThan : GenericlLessThan;

Allocation and deallocation are performed in a straightforward manner with ExAllocatePool2 and
ExFreePool:

PVOID AllocateProcess(PRTL_GENERIC_TABLE, CLONG bytes) {
return ExAllocatePool2(POOL_FLAG_PAGED | POOL_FLAG_UNINITIALIZED,
bytes, DRIVER_TAG);

void FreeProcess(PRTL_GENERIC_TABLE, PVOID buffer) {
ExFreePool (buffer);

POOL_FLAG_UNINITIALIZED is used to skip zeroing out the structure, as the table API will copy the
provided data anyway.

DriverEntry is fairly standard, with two additions. One is a Registry notification callback for tracking
Registry operations. The other is a process notification callback, so that when a process exits, the stats kept
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for the process are removed from the generic table. This is partly because process IDs may be reused and
that would track multiple processes that happen to have the same ID with the same data structure.

of the process ID and its creation time as a unique key. Another option for a unique key is a
process key available with PsGetProcessStartKey (from Windows 10 version 1703). Another
idea would be to push dead processes to a separate list.

P If you would want to track all processes without losing stats, it’s possible to use a combination

Here is the complete DriverEntry:

extern "C"
NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {
NTSTATUS status;
PDEVICE_OBJECT devObj = nullptr;
UNICODE_STRING link = RTL_CONSTANT_STRING(L"\\??\\Tables");
bool symLinkCreated = false, procRegistered = false;

do {
UNICODE_STRING name = RTL_CONSTANT_STRING(L"\\Device\\Tables");
status = IoCreateDevice(DriverObject, @, &name, FILE_DEVICE_UNKNOWN,
0, FALSE, &devObj);
if (!NT_SUCCESS(status)) {
KdPrint((DRIVER_PREFIX
"Failed in IoCreateDevice (@x%X)\n", status));
break;

status = IoCreateSymbolicLink(&link, &name);
if (INT_SUCCESS(status)) {
KdPrint( (DRIVER_PREFIX
"Failed in IoCreateSymbolicLink (@x%X)\n", status));
break;
}
symLinkCreated = true;
g_Globals.Init();

/7

// set process notification routine

//
status = PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, FALSE);

if (INT_SUCCESS(status))
break;
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procRegistered = true;

//
// Registry notitications
/7
UNICODE_STRING altitude = RTL_CONSTANT_STRING(L"123456.789");
status = CmRegisterCallbackEx(OnRegistryNotify,
&altitude, DriverObject, nullptr,
2g_Globals.RegCookie, nullptr);
} while (false);

if (!NT_SUCCESS(status)) {

if (procRegistered)
PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, TRUE);

if (!symLinkCreated)
IoDeleteSymbolicLink(&link);

if (devObj)
IoDeleteDevice(devObj);

return status;

DriverObject->DriverUnload = TablesUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE] =
DriverObject->MajorFunction[IRP_MJ_CLOSE] = TablesCreateClose;

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = TablesDeviceControl;

return status;

The Registry notification callback first tests for the interesting operations:

NTSTATUS OnRegistryNotify(PVOID, PVOID Argumenti, PVOID Argument2) {
UNREFERENCED_PARAMETER(Argument2);

auto type = (REG_NOTIFY_CLASS)(ULONG_PTR)Argumenti;
switeh (type) {

case RegNtPostSetValueKey:

case RegNtPostCreateKey:

case RegNtPostCreateKeyEx:

case RegNtPostRenameKey:

case RegNtPostDeleteValueKey:

case RegNtPostDeleteKey:
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At this point it’s time to look for the current process in the generic table. If it’s not there, then an entry
needs to be created:

PVOID buffer;
auto pid = HandleToULong(PsGetCurrentProcessId());
{
Locker locker(g_Globals.Lock);
buffer = RtllLookupElementGenericTable(&g_Globals.ProcessTable, &pid);
if (buffer == nullptr) {
//
// process does not exist, create a new entry
V4
ProcessData data{};
data.Id = pid;
buffer = RtlInsertElementGenericTable(&g_Globals.ProcessTable,
Rdata, sizeof(data), nullptr);
if (buffer) {
KdPrint((DRIVER_PREFIX
"Added process %u from Registry callback\n", pid));

The Locker class is the same one we used in chapter 6 - acquiring the lock (fast mutex in this case) in the
constructor and releasing in the destructor. Once the fast mutex is acquired, Rt 1LookupE lementGenericTable
is called to look for the process ID. If not found (NULL returned), Rt1InsertElementGenericTable is
called to insert a new item. Technically, it’s possible to just callRt1InsertElementGenericTable without
doing a lookup first, as it would return the existing pointer if the item to insrt already exists. Note that
data is zeroed out before the ID is set, so that copying the data to the table would start all counters at
Zero.

P The artificial scope is there to minimize the locking scope.

The next step is to increment the relevant counter:
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if (buffer) {
auto data = (ProcessData*)buffer;
switeh (type) {
case RegNtPostSetValueKey:
InterlockedIncrement64(&data->RegistrySetValueOperations);
break;
case RegNtPostCreateKey:
case RegNtPostCreateKeyEx:
InterlockedIncrement64(&data->RegistryCreateKeyOperations);
break;
case RegNtPostRenameKey:
InterlockedIncrement64(&data->RegistryRenameOperations);
break;
case RegNtPostDeleteKey:
case RegNtPostDeleteValueKey:
InterlockedIncrement64(&data->RegistryDeleteOperations);
break;

The process notify callback should remove a dead process data structure:

void OnProcessNotify(PEPROCESS, HANDLE pid, PPS_CREATE_NOTIFY_INFO createlnfo) {
if(!createlnfo) {
/7
// process dead, remove from table
//
Locker locker(g_Globals.Lock);
ProcessData data;
data.Id = HandleToULong(pid);
auto deleted = RtlDeleteElementGenericTable(
2g_Globals.ProcessTable, &data);
if (!deleted) {
KdPrint((DRIVER_PREFIX
"Failed to delete process with ID %u\n", data.Id));

Deleting could fail if the driver started after the process in question was already running. Note that there
is no need to create a new item if a process is created - if the process does not perform the tracked Registry
operations no item should be added as an optimization.

The IRP_MJ_DEVICE_CONTROL handler handles all client requests. It starts with the “usual” code:
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NTSTATUS TablesDeviceControl (PDEVICE_OBJECT, PIRP Irp) {
auto irpSp = IoGetCurrentlIrpStackLocation(Irp);
auto& dic = irpSp->Parameters.DeviceloControl;
auto status = STATUS_INVALID_DEVICE_REQUEST;
auto len = 0U;

switeh (dic.IoControlCode) {
After the switch, the IRP is completed with the status and len:
return CompleteRequest(Irp, status, len);

The CompleteRequest helper function is the same as used in chapter 8 (and others), completing the IRP
with whatever status and information provided.

Here is the case for getting the number of elements (processes) being tracked:

case IOCTL_TABLES_GET_PROCESS_COUNT:
{
if (dic.OutputBufferlLength < sizeof(ULONG)) ({
status = STATUS_BUFFER_TOO_SMALL;
break;
}
Locker locker(g_Globals.Lock);
*(ULONG*)Irp->AssociatedlIrp.SystemBuffer =
Rt1NumberGenericTableElements(&g_Globals.ProcessTable);
len = sizeof(ULONG);
status = STATUS_SUCCESS;
}

break;

e The NULL check for the system buffer is missing in the above snippet.

Getting a process’ data by ID requires lookup:



Chapter 11: Advanced Programming Techniques (Part 2) 363

case

{

}

IOCTL_TABLES_GET_PROCESS_BY_ID:

if (dic.OutputBufferLength < sizeof(ProcessData) ||
dic.InputBufferLength < sizeof(ULONG)) {
status = STATUS_BUFFER_TOO_SMALL;
break;
}
ULONG pid = *(ULONG*)Irp->AssociatedIrp.SystemBuffer;
Locker locker(g_Globals.Lock);
auto data = (ProcessData*)RtlLookupElementGenericTable(
2g_Globals.ProcessTable, &pid);
if (data == nullptr) {
//
// invalid or non-tracked PID
/7
status = STATUS_INVALID_CID;
break;
}
memcpy (Irp->AssociatedIrp.SystemBuffer, data, len = sizeof(ProcessData));
status = STATUS_SUCCESS;

break;

Getting all process information is a bit tricky, as we need to make sure not to overflow the user’s buffer:

case IOCTL_TABLES_GET_ALL:

{

if (dic.OutputBufferLength < sizeof(ProcessData)) {
status = STATUS_BUFFER_TOO_SMALL;
break;
}
Locker locker(g_Globals.Lock);
auto count = RtlNumberGenericTableElements(&g_Globals.ProcessTable);
if (count == 0) {
status = STATUS_NO_DATA_DETECTED;
break;
}
NT_ASSERT(Irp->MdlAddress);
count = min(count, dic.OutputBufferlLength / sizeof(ProcessData));
auto buffer = (ProcessData*)MmGetSystemAddressForMdlSafe(
Irp->MdlAddress, NormalPagePriority);
if (buffer == nullptr) {
status = STATUS_INSUFFICIENT_RESOURCES;
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break;

for (ULONG i = ©; i < count; i++) {
auto data = (ProcessData*)Rt1GetElementGenericTable(
2g_Globals.ProcessTable, i);
NT_ASSERT(data);
memcpy(buffer, data, sizeof(ProcessData));
buffer++;
}
len = count * sizeof(ProcessData);
status = STATUS_SUCCESS;
}

break;

Here is where Rt 1GetE lementGenericTable comes in handy. The code fills the user’s buffer with as many
ProcessData structures that would fit or all that exist if everything fits.

To delete all items (IOCTL _TABLES_DELETE_ALL ), which is also needed in the Unload routine, DeleteAl1Processes
is called:

void DeleteAllProcesses() {
Locker locker(g_Globals.lLock);
//
// deallocate all objects still stored in the table
/7
PVOID p;
auto t = &g_Globals.ProcessTable;
while ((p = RtlGetElementGenericTable(t, 0)) != nullptr) {
Rt1DeleteElementGenericTable(t, p);

Finally, the Unload routine cleans everything up:

void TablesUnload(PDRIVER_OBJECT DriverObject) {
CmUnRegisterCallback(g_Globals.RegCookie);
PsSetCreateProcessNotifyRoutineEx(OnProcessNotify, TRUE);
DeleteAllProcesses();
UNICODE_STRING link = RTL_CONSTANT_STRING(L"\\??\\Tables");
IoDeleteSymbolicLink(&link);

IoDeleteDevice(DriverObject->DeviceObject);
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See the full source code in the Tables project.

Testing the Tables Driver

The client application TablesTest uses command line arguments to work with the driver. Here is the
complete main function:

int main(int argc, const char* argv[]) {

enum class Command {
GetProcessCount,
DeleteAll,
GetProcessByld,
GetProcessBylIndex,
GetAllProcesses,
Start,
Stop,
Error = 99,

¥

auto cmd = Command: : GetProcessCount;
int pid = 0;

if (argec > 1) {
if (_stricmp(argv[1], "help") == 0)
return PrintUsage();
if (_stricmp(argv[1], "delete") == 0)
cmd = Command: :DeleteAll;
else if (_stricmp(argv[1], "count") == 0)

cmd Command: : GetProcessCount;

else if (_stricmp(argv[1], "start") == 0)
cmd = Command: :Start;

else if (_stricmp(argv[1], "getall") == 0)
cmd = Command: :GetAllProcesses;

else if (_stricmp(argv[1], "stop") == 0)
cmd = Command: :Stop;
else if (_stricmp(argv(1], "get") == 0) {
if (argec > 2) {
pid = atoi(argv([2]);
cmd = Command: :GetProcessBylId;
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}

else {
printf("Missing process ID\n");
return 1;

}

}
else if (_stricmp(argv(1], "geti") == 0) {
if (argec > 2) {
pid = atoi(argv([2]);
cmd = Command: :GetProcessByIndex;

}
else {
printf("Missing index\n");
return 1;
}
}
else
cmd = Command: :Error;
}
if (emd == Command: :Error) {
printf("Command error.\n");
return PrintUsage();
}

auto hDevice = CreateFile(L"\\\\.\\Tables",
GENERIC_READ | GENERIC_WRITE, ©, nullptr,
OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE) {
printf("Error opening device (%u)\n", GetlLastError());

return 1;

DWORD bytes;
BOOL success = FALSE;
switch (cmd) {
case Command: :GetProcessCount:
{
DWORD count;
success = DeviceloControl(hDevice,
IOCTL_TABLES_GET_PROCESS_COUNT, nullptr, O,
&count, sizeof(count), &bytes, nullptr);
if (success) {
printf("Process count: %u\n", count);
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break;

case Command: :GetAllProcesses:
{
DWORD count = 0Q;
success = DeviceloControl(hDevice,
IOCTL_TABLES_GET_PROCESS_COUNT, nullptr, O,
&count, sizeof(count), &bytes, nullptr);
if (count) {
count += 10; // In case more processes created
auto data = std::make_unique<ProcessData[]>(count);
success = DeviceloControl(hDevice,
IOCTL_TABLES_GET_ALL, nullptr, 0O,

data.get(), count * sizeof(ProcessData), &bytes, nullptr);

if (success) {
count = bytes / sizeof(ProcessData);
printf("Returned %u processes\n", count);
for (DWORD i = ©; i < count; i++)
DisplayProcessData(datali]);

break;

case Command: :DeleteAll:
success = DeviceloControl(hDevice, IOCTL_TABLES_DELETE_ALL,
nullptr, 0, nullptr, 0, &bytes, nullptr);
if (success)
printf("Deleted successfully.\n");
break;

case Command: :GetProcessByld:
case Command: :GetProcessBylndex:
{
ProcessData data;
success = DeviceloControl(hDevice,
cmd == Command: :GetProcessById ?
IOCTL_TABLES_GET_PROCESS_BY_ID :
IOCTL_TABLES_GET_PROCESS_BY_INDEX,
&pid, sizeof(pid), &data, sizeof(data), &bytes, nullptr);
if (success) {
DisplayProcessData(data);

367
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break;

}
if (!success) {
printf("Error (%u)\n", GetlLastError());
}
CloseHandle(hDevice);
return 0;

DisplayProcessData shows the counters:

void DisplayProcessData(ProcessData const& data) {
printf("PID: %u\n", data.Id);
printf("Registry set Value: %11d\n", data.RegistrySetValueOperations);

printf("Registry delete: %11d\n", data.RegistryDeleteOperations);
printf("Registry create key: %11d\n", data.RegistryCreateKeyOperations);
printf("Registry rename: %11d\n", data.RegistryRenameOperations);
}
? 1. Add support for system-wide statistics for the implemented operations. Add control
codes to retrieve them from user mode.
2. Save deleted processes stats in a list (so they don’t get lost once a process is terminated),
and provide this list to the client if requested.
3. Implement the start and stop control codes to allow pausing and resuming counting
operations.
AVL Trees

The API for using AVL trees is virtually identical to the splay trees API with the addition of the suffix “Av1”
to function names, such asRt1lInitializeGenericTableAvl. In the AVL tree case, a different structure,
RTL_AVL_TABLE, is used to manage the tree.

You may want to experience with both implementations and decide based on performance measurements
for your scenario that one implementation is better than the other. Fortunately, the kernel headers provide a
simple way to switch to AVL trees without changing any code by defining the macroRTL _USE_AVL_TABLES
before including <ntddk.h>:
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#define RTL_USE_AVL_TABLES

#include <ntddk.h>

That’s it! All calls to the Splay trees functions are redirected (the functions become macros) to the AVL
tree implementation.

f Try it out with the Tables driver.

Hash Tables

The Splay trees and AVL trees discussed are implemented as binary search trees. Another common way to
perform quick lookup is by using hash tables. Hash tables are based around a hash function that, if properly
implemented, provides a good distribution of values across keys - no greater/less than comparison required.

The WDK documentation does not document any hash functions, but the kernel API supports a
hash table implementation. The functions are declared in <ntddk.h>, but are undocumented. As such,
they are not described in this book. Feel free to investigate their usage, starting with the function
RtlInitHashTableContext.

Singly Linked Lists

We have seen numerous times the use of doubly-linked lists, based on the LIST_ENTRY structure. The kernel
APT also supports singly-linked lists, where the full functionality of a doubly-linked list is not required.
The structure to use is SINGLE_LIST_ENTRY defined like so:

typedef struct _SINGLE_LIST_ENTRY {
struct _SINGLE_LIST_ENTRY *Next;
} SINGLE_LIST_ENTRY, *PSINGLE_LIST_ENTRY;

This is as simple as a linked list can possibly get. Just as with doubly-linked lists, one of these is defined as
the header of the list (Next is initialized to NULL ), and the same structure is embedded in a larger structure
where the real data is. For example:
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struct MyData {
ULONGLONG Time;
ULONG Processld;
SINGLE_LIST_ENTRY Link;
ULONG ExitCode;

¥

Since it’s a singly-linked list, you can only add a new head and remove the current head (both implemented
inline within ntdef.h):

VOID PushEntrylList(
_Inout_ PSINGLE_LIST_ENTRY ListHead,
_Inout_ __drv_aliasesMem PSINGLE_LIST_ENTRY Entry);

PSINGLE_LIST_ENTRY PopEntryList(_Inout_ PSINGLE_LIST_ENTRY ListHead);

Just like doubly-linked lists, the CONTAINING_RECORD macro can be used to get to the “real” data given the
pointer to SINGLE _L IST_ENTRY, the full structure type, and the name of the SINGLE_L IST_ENTRY member
within the larger structure.

The afformentioned functions are not thread/CPU safe, so must be properly protected if appropriate. That
said, APIs are provided for thread/CPU safe pushing and popping using a spin lock only:

PSINGLE_LIST_ENTRY ExInterlockedPopEntrylList (
_Inout_ PSINGLE_LIST_ENTRY ListHead,
_Inout_ _Requires_lock_not_held_(*_Curr_) PKSPIN_LOCK Lock);

PSINGLE_LIST_ENTRY ExInterlockedPushEntrylList (
_Inout_ PSINGLE_LIST_ENTRY ListHead,
_Inout_ __drv_aliasesMem PSINGLE_LIST_ENTRY ListEntry,
_Inout_ _Requires_lock_not_held_(*_Curr_) PKSPIN_LOCK Lock);

The spin lock is acquired at IRQL HIGH_LEVEL, which makes it easy to use from any IRQL.

Sequenced Singly-Linked Lists

There is yet another implementation of atomic singly linked lists provided by the kernel. These use Lock
Free techniques, which are more efficient than using a spin lock.

The basis of these lists is a header described by a SLIST_HEADER, which should be treated as opaque. The
driver initializes the header with InitializeSListHead (or ExInitializeSListHead which is the same

thing):
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VOID InitializeSListHead (_Out_ PSLIST_HEADER SListHead);

To add an item, use an SLIST_ENTRY object (usually part of a bigger structure) by passing it to
ExInterlockedPushEntrySList macro:

PSLIST_ENTRY ExInterlockedPushEntrySList (
_Inout_ PSLIST_HEADER ListHead,
_Inout_ __drv_aliasesMem PSLIST_ENTRY ListEntry,
_Inout_opt_ _Requires_lock_not_held_(*_Curr_) PKSPIN_LOCK Lock);

The spin lock should be passed asNULL, as this macro expands to calling ExpInterlockedPushEntrySList:

PSLIST_ENTRY ExplInterlockedPushEntrySList (
_Inout_ PSLIST_HEADER ListHead,
_Inout_ __drv_aliasesMem PSLIST_ENTRY ListEntry);

As you can see, the spin lock is not used at all. It’s not quite clear why the macro accepts a spin lock, but the
documentation hints that this is only useful with doubly-linked lists, so the macro prototype is probably
for consistency only.

Similarly, popping an item (from the head only) is available with ExInterlockedPopEntrySList:
PSLIST_ENTRY ExInterlockedPopEntrySList (
_Inout_ PSLIST_HEADER ListHead,

_Inout_opt_ _Requires_lock_not_held_(*_Curr_) PKSPIN_LOCK Lock);

Again, the spin lock is not needed.

To clean the list entirely, call ExInterlockedFlushSList:
PSLIST_ENTRY ExInterlockedFlushSList (_Inout_ PSLIST_HEADER ListHead);

The function simply replaces (atomically) the head with NULL (making the list empty), and returns the
previous head. It’s the reponsibility of the driver to iterate through the list and free items that were
dynamically allocated explictly.

Finally, you can call ExQueryDepthSList to get the number of items in the list:
USHORT ExQueryDepthSList (_In_ PSLIST_HEADER SListHead);

It’s a fast operation, as the count is stored as part of SLIST_HEAD.
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Callback Objects

The kernel defines a Callback object type that can be used to provide notifications, while maintaining a
higher level of abstraction, where the callback object hides the callback(s) that should be invoked. There
are quite a few callback objects used on a normal system, which can be viewed with Sysinternals WinObj
tool (figure 11-1).

® WinObj - Sysinternals: www.sysinternals.com

File Edit Find View Options Help
®| O | D:‘ | p Quick Find: | =0 Search
=SV Name Type Symbol
""" ArcName D) LLTDCallbackMapperD047008002000000 Callback
- BaseNamedObJects () EnlightenmentState Callback
D () LLTDCallbackRspndrDD0S008007000000 Callback
_____ Driver ) LLTDCallbackRspndrD047008000000000 Callback
_____ DriverStores () DamExemptCheckCallback Callback
_____ FileSystem @) LLTDCallbackMapperD00600800a000000 Callback
_____ GLOBAL?? ) LLTDCallbackRspndrD047008001000000 Callback
_____ KemelObjects @ LLTDCallbackRspndrD006008008000000 Callback
..... KnownDlls ) SetSystemState Callback
..... KnownDlIs32 @LLTDCaIIbackMapperODDﬁDDSDDbDDDDDD Callback
----- NLS @LLTDCa||backRspnerD‘l?DDSDDZDDDDDD Callback
----- ObjectTypes & LLTDCallbackRspndr0006008009000000 Callback
----- RPC Control () GfxCallbackOhj Callback
----- Security ) WdEbNotificationCallback Callback
[ | Sessions ) LicensingData Callback
----- UMDFCommunicationPorts D) LLTDCallbackMapperd00600200d0000D0 Callback
- Windows 9 TepConnectionCallbackTemp Callback
) LLTDCallbackRspndrD00008002000000 Callback
(D) SetSystemTime Callback
Q) LLTDCallbackRspndrD006008010000000 Callback
@LLTDCa||backMapperODDﬁDDSDDfDDDDDD Callback
) NdisBindUnbind Callback
& ProcessorAdd Callback
D PowerState Callback
@LLTDCa||backRspnerDDEDDSDDbDDDDDD Callback
@LLTDCallbackRspnerDDEDDSD‘lZDDDDDD Callback
@LLTDCaIIbackMapperODDﬁDDSDD‘IDDDDDD Callback v
< >
\Callback 53 Objects Interval: 2 sec

Figure 11-1: Callback objects

There are three existing (and documented) callback objects that drivers can use (all in the \Callback object
manager directory):

« ProcessorAdd - callback invoked when a processor is hot-added to the system.

« PowerState - callback invoked when one of the following occurs: the system is about to go to a low
power state, the system switches from AC to DC (or back), or the system power policy changes as
a result of a user’s or application’s request.

« SetSystemTime - callback invoked when the system time is changed.
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Working with an existing callback object, or when creating one is essentially the same. The first step
is to create the callback object with ExCreateCallback, giving it a name with the provided OBJECT_-
ATTRIBUTES:

NTSTATUS ExCreateCallback (
_Outptr_ PCALLBACK_OBJECT *CallbackObject,
_In_ POBJECT_ATTRIBUTES ObjectAttributes,
_In_ BOOLEAN Create,
_In_ BOOLEAN AllowMultipleCallbacks);

The OBJECT_ATTRIBUTES structure must be initialized with a name, and optionally other attributes, the
most common being OBJ_CASE_INSENSITIVE. Set Create to TRUE to create a new callback object if such
does not exist. If a new callback object is created, AllowMultipleCallbacks specifies whether multiple
callbacks are allowed. If Create is FALSE or the object exists, this parameter is ignored. The returned
object’s (CallbackOb ject) reference count is incremented.

With a callback object in hand, an interested client can register a callback function with ExRegisterCallback:

PVOID ExRegisterCallback (
_Inout_ PCALLBACK_OBJECT CallbackObject,
_In_ PCALLBACK_FUNCTION CallbackFunction,
_In_opt_ PVOID CallbackContext);

The function returns a registration cookie to be used to unregister with ExUnregisterCal 1back.
The callback function itself must have the following prototype:

VOID CallbackFunction (
_In_opt_ PVOID CallbackContext,
_In_opt_ PVOID Argumenti,
_In_opt_ PVOID Argument2);

CallbackContext is whatever was passed in to ExRegisterCallback, and the two arguments are
provided by whoever is invoking the callbacks - these can be anything, as determined by the invoker.

When using existing callback objects, that’s all there is to it. If you are controlling the callback object, then
you can invoke the callbacks that are currently registered with ExNoti fyCallback:

VOID ExNotifyCallback (
_In_ PVOID CallbackObject,
_In_opt_ PVOID Argumenti,
_In_opt_ PVOID Argument2);

Finally, to unregister your callback (if you’re a client), call ExUnregisterCallback, passing the registra-
tion cookie:
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void ExUnregisterCallback (_Inout_ PVOID CallbackRegistration);

You must also decrement the reference count of the callback object with ObDereferenceOb ject, otherwise
the callback object will leak. You can do that for the existing callback objects as soon as you don’t need
them.

The Callbacks driver demonstrates using a callback object with the SetSystemTime documented callback.
Here is the entire driver:

void SystemTimeChanged(PVOID context, PVOID argl, PVOID arg2);
void OnUnload(PDRIVER_OBJECT);

PVOID g_RegCookie;

extern "C" NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING) {
OBJECT_ATTRIBUTES attr;
UNICODE_STRING name = RTL_CONSTANT_STRING(L"\\Callback\\SetSystemTime");
InitializeObjectAttributes(&attr, &name,
OBJ_CASE_INSENSITIVE, nullptr, nullptr);
PCALLBACK_OBJECT callback;
//
// open the callback object
/7
auto status = ExCreateCallback(&callback, &attr, FALSE, TRUE);
if (INT_SUCCESS(status)) {
KdPrint(("Failed to create callback object (@x%X)\n", status));
return status;

/7
// register our callback
/7
g_RegCookie = ExRegisterCallback(callback, SystemTimeChanged, nullptr);
if (g_RegCookie == nullptr) {
ObDereferenceObject(callback);
KdPrint(("Failed to register callback\n"));
return STATUS_UNSUCCESSFUL;

/7
// callback object no longer needed

/7
ObDereferenceObject(callback);
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DriverObject->DriverUnload = OnUnload;

return STATUS_SUCCESS;

void SystemTimeChanged(PVOID context, PVOID argl, PVOID arg2) {
UNREFERENCED_PARAMETER(context);
/7
// system time changed!
// (argl and arg2 are always zero with this object)
//
DbgPrint("System time changed @x%p Ox%p!\n", argl, arg2);

void OnUnload(PDRIVER_OBJECT) {
ExUnregisterCallback(g_RegCookie);

In this chapter we’ve looked at some potentially useful techniques a driver might want to use. In the next
chapter, we’ll turn our attention to file system mini-filters.
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